0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32GG12B130F512GQ64-AR

EFM32GG12B130F512GQ64-AR

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    TQFP64

  • 描述:

    IC MCU 32BIT 512KB FLASH 64TQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
EFM32GG12B130F512GQ64-AR 数据手册
EFM32 Giant Gecko Series 1 Family EFM32GG12 Family Data Sheet The EFM32 Giant Gecko Series 1 MCUs are the world’s most energy-friendly microcontrollers, featuring new connectivity interfaces and user interface features. • ARM Cortex-M4 at 72 MHz • Ultra low energy operation • 76 µA/MHz in Energy Mode 0 (EM0) • 1.8 μA EM2 Deep Sleep current (RTCC running with state and RAM retention) EFM32GG12 includes a powerful 32-bit ARM® Cortex®-M4 and provides robust security via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Random Number Generator (TRNG). New features include an SD/MMC/SDIO controller, Octal/Quad-SPI memory controller, CAN bus controller, PDM interface, highly robust capacitive sensing, enhanced alpha blending graphics engine, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current active mode and short wake-up time from energy-saving modes, make EFM32GG12 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and low-energy consumption. • Octal/Quad-SPI memory interface w/ XIP • SD/MMC/SDIO Host Controller • PDM Microphone/Sensor Interface • Dual CAN 2.0 Bus Controller • Crystal-free low-energy USB • Hardware cryptographic engine supports AES, ECC, SHA, and TRNG • Robust capacitive touch sense Example applications: • Smart energy meters • Industrial and factory automation • Home automation and security Core / Memory ARM CortexTM M4 processor with FPU and MPU Flash Program Memory RAM Memory • Footprint compatible with select EFM32 packages • Mid- and high-tier wearables • IoT devices Clock Management ETM High Frequency Crystal Oscillator High Frequency RC Oscillator PLL Universal HF RC Oscillator Auxiliary High Freq. RC Osc. Debug Interface LDMA Controller Low Frequency Crystal Oscillator Ultra Low Freq. RC Oscillator Low Frequency RC Oscillator • 5 V tolerant I/O Energy Management Voltage Regulator Voltage/Temp Monitor DC-DC Converter Power-On Reset Brown-Out Detector Backup Domain Other CRYPTO CRC True Random Number Generator SMU 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports USART UART CAN SD / MMC / SDIO PDM Quad-SPI LEUSB (crystal free) Low Energy UARTTM EBI + pixel-alpha I2C TFT Driver External Interrupts General Purpose I/O Pin Reset Pin Wakeup Timers and Triggers Timer/Counter Low Energy Sensor IF Analog Interfaces Low Energy LCD Controller ADC Low Energy Timer Real Time Counter VDAC Operational Amplifier Pulse Counter Watchdog Timer Analog Comparator IDAC Real Time Counter and Calendar CRYOTIMER Capacitive Sensing Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop EM4H - Hibernate EM4S - Shutoff Rev. 1.0 EFM32GG12 Family Data Sheet Feature List 1. Feature List The EFM32GG12 highlighted features are listed below. • ARM Cortex-M4 CPU Platform • High performance 32-bit processor @ up to 72 MHz • DSP instruction support and Floating Point Unit • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 76 μA/MHz in Active Mode (EM0) • 1.8 μA EM2 Deep Sleep current (16 kB RAM retention and RTCC running from LFRCO) • Integrated DC-DC Buck Converter • Up to 1024 kB Flash Program Memory • Dual-bank with read-while-write support • 192 kB RAM Data Memory • Includes ECC (SEC-DED) • Octal/Quad-SPI Flash Memory Interface • Supports 3 V and 1.8 V memories • 1/2/4/8-bit data bus • Quad-SPI Execute In Place (XIP) • Communication Interfaces • Low-energy Universal Serial Bus (USB) with Device and Host support • Fully USB 2.0 compliant • On-chip PHY and embedded 5 V to 3.3 V regulator • Crystal-free Device mode operation • Patent-pending Low-Energy Mode (LEM) • SD/MMC/SDIO Host Controller • SD v3.01, SDIO v3.0 and MMC v4.51 • 1/4/8-bit bus width • Up to 2× CAN Bus Controller • Version 2.0A and 2.0B up to 1 Mbps • 5× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN • Triple buffered full/half-duplex operation with flow control • Ultra high speed (36 MHz) operation on one instance • 2× Universal Asynchronous Receiver/Transmitter • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode • 2× I2C Interface with SMBus support • Address recognition in EM3 Stop Mode silabs.com | Building a more connected world. • Up to 95 General Purpose I/O Pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 5 V tolerance on select pins • Asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • Up to 12 Channel DMA Controller • Up to 16 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • External Bus Interface for up to 4x256 MB of external memory mapped space • TFT Controller with Direct Drive • Per-pixel alpha-blending engine • Hardware Cryptography • AES 128/256-bit keys • ECC B/K163, B/K233, P192, P224, P256 • SHA-1 and SHA-2 (SHA-224 and SHA-256) • True Random Number Generator (TRNG) • Hardware CRC Engine • Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial • Security Management Unit (SMU) • Fine-grained access control for on-chip peripherals • Integrated Low-energy LCD Controller with up to 8×36 segments • Voltage boost, contrast and autonomous animation • Patented low-energy LCD driver • Backup Power Domain • RTCC and retention registers in a separate power domain, available down to energy mode EM4H • Operation from backup battery when main power absent/ insufficient • Ultra Low-Power Precision Analog Peripherals • 2× 12-bit 1 Msamples/s Analog to Digital Converter (ADC) • On-chip temperature sensor • 2× 12-bit 500 ksamples/s Digital to Analog Converter (VDAC) • Digital to Analog Current Converter (IDAC) • Up to 3× Analog Comparator (ACMP) • Up to 4× Operational Amplifier (OPAMP) • Robust current-based capacitive sensing with wake-ontouch (CSEN) • Up to 83 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT) • Supply Voltage Monitor Rev. 1.0 | 2 EFM32GG12 Family Data Sheet Feature List • Timers/Counters • 4× 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • Dead-Time Insertion on two timer instances • 2× 32-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • Dead-Time Insertion on one timer instance • 32-bit Real Time Counter and Calendar (RTCC) • 24-bit Real Time Counter (RTC) • 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode • 2× 16-bit Low Energy Timer for waveform generation • 3× 16-bit Pulse Counter with asynchronous operation • 2× Watchdog Timer with dedicated RC oscillator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Up to 16 inputs • Ultra Efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • 4-pin JTAG interface • Embedded Trace Macrocell (ETM) silabs.com | Building a more connected world. • Pre-Programmed Bootloader • Wide Operating Range • 1.8 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to 125 °C TJ) temperature grades available • Packages • QFN64 (9x9 mm) • TQFP64 (10x10 mm) • TQFP100 (14x14 mm) • BGA112 (10x10 mm) • BGA120 (7x7 mm) Rev. 1.0 | 3 EFM32GG12 Family Data Sheet Ordering Information 2. Ordering Information RAM (kB) USB QSPI EFM32GG12B810F1024GL120-A 1024 192 Yes Yes Yes EFM32GG12B810F1024IL120-A 1024 192 Yes Yes Yes EFM32GG12B830F512GL120-A 512 192 Yes Yes EFM32GG12B830F512IL120-A 512 192 Yes EFM32GG12B810F1024GL112-A 1024 192 EFM32GG12B810F1024IL112-A 1024 EFM32GG12B830F512GL112-A LCD Flash (kB) SDIO Ordering Code DC-DC Converter Table 2.1. Ordering Information GPIO Package Temp Range Yes Yes 95 BGA120 -40 to +85°C Yes Yes 95 BGA120 -40 to +125°C Yes Yes Yes 95 BGA120 -40 to +85°C Yes Yes Yes Yes 95 BGA120 -40 to +125°C Yes Yes Yes Yes Yes 89 BGA112 -40 to +85°C 192 Yes Yes Yes Yes Yes 89 BGA112 -40 to +125°C 512 192 Yes Yes Yes Yes Yes 89 BGA112 -40 to +85°C EFM32GG12B830F512IL112-A 512 192 Yes Yes Yes Yes Yes 89 BGA112 -40 to +125°C EFM32GG12B810F1024GQ100-A 1024 192 Yes Yes Yes Yes Yes 81 QFP100 -40 to +85°C EFM32GG12B810F1024IQ100-A 1024 192 Yes Yes Yes Yes Yes 81 QFP100 -40 to +125°C EFM32GG12B830F512GQ100-A 512 192 Yes Yes Yes Yes Yes 81 QFP100 -40 to +85°C EFM32GG12B830F512IQ100-A 512 192 Yes Yes Yes Yes Yes 81 QFP100 -40 to +125°C EFM32GG12B810F1024GM64-A 1024 192 Yes Yes Yes Yes Yes 51 QFN64 -40 to +85°C EFM32GG12B810F1024GQ64-A 1024 192 Yes Yes Yes Yes Yes 48 QFP64 -40 to +85°C EFM32GG12B810F1024IM64-A 1024 192 Yes Yes Yes Yes Yes 51 QFN64 -40 to +125°C EFM32GG12B810F1024IQ64-A 1024 192 Yes Yes Yes Yes Yes 48 QFP64 -40 to +125°C EFM32GG12B830F512GM64-A 512 192 Yes Yes Yes Yes Yes 51 QFN64 -40 to +85°C EFM32GG12B830F512GQ64-A 512 192 Yes Yes Yes Yes Yes 48 QFP64 -40 to +85°C EFM32GG12B830F512IM64-A 512 192 Yes Yes Yes Yes Yes 51 QFN64 -40 to +125°C EFM32GG12B830F512IQ64-A 512 192 Yes Yes Yes Yes Yes 48 QFP64 -40 to +125°C EFM32GG12B510F1024GL120-A 1024 192 Yes No No No Yes 95 BGA120 -40 to +85°C EFM32GG12B510F1024IL120-A 1024 192 Yes No No No Yes 95 BGA120 -40 to +125°C EFM32GG12B530F512GL120-A 512 192 Yes No No No Yes 95 BGA120 -40 to +85°C EFM32GG12B530F512IL120-A 512 192 Yes No No No Yes 95 BGA120 -40 to +125°C EFM32GG12B510F1024GL112-A 1024 192 Yes No No No Yes 92 BGA112 -40 to +85°C EFM32GG12B510F1024IL112-A 1024 192 Yes No No No Yes 92 BGA112 -40 to +125°C EFM32GG12B530F512GL112-A 512 192 Yes No No No Yes 92 BGA112 -40 to +85°C EFM32GG12B530F512IL112-A 512 192 Yes No No No Yes 92 BGA112 -40 to +125°C EFM32GG12B510F1024GQ100-A 1024 192 Yes No No No Yes 81 QFP100 -40 to +85°C EFM32GG12B510F1024IQ100-A 1024 192 Yes No No No Yes 81 QFP100 -40 to +125°C silabs.com | Building a more connected world. Rev. 1.0 | 4 EFM32GG12 Family Data Sheet USB QSPI EFM32GG12B530F512GQ100-A 512 192 Yes No No EFM32GG12B530F512IQ100-A 512 192 Yes No No EFM32GG12B510F1024GM64-A 1024 192 Yes No EFM32GG12B510F1024GQ64-A 1024 192 Yes EFM32GG12B510F1024IM64-A 1024 192 EFM32GG12B510F1024IQ64-A 1024 EFM32GG12B530F512GM64-A LCD RAM (kB) SDIO Flash (kB) DC-DC Converter Ordering Information GPIO Package Temp Range No Yes 81 QFP100 -40 to +85°C No Yes 81 QFP100 -40 to +125°C No No Yes 54 QFN64 -40 to +85°C No No No Yes 51 QFP64 -40 to +85°C Yes No No No Yes 54 QFN64 -40 to +125°C 192 Yes No No No Yes 51 QFP64 -40 to +125°C 512 192 Yes No No No Yes 54 QFN64 -40 to +85°C EFM32GG12B530F512GQ64-A 512 192 Yes No No No Yes 51 QFP64 -40 to +85°C EFM32GG12B530F512IM64-A 512 192 Yes No No No Yes 54 QFN64 -40 to +125°C EFM32GG12B530F512IQ64-A 512 192 Yes No No No Yes 51 QFP64 -40 to +125°C EFM32GG12B410F1024GL120-A 1024 192 No Yes Yes Yes Yes 93 BGA120 -40 to +85°C EFM32GG12B410F1024IL120-A 1024 192 No Yes Yes Yes Yes 93 BGA120 -40 to +125°C EFM32GG12B430F512GL120-A 512 192 No Yes Yes Yes Yes 93 BGA120 -40 to +85°C EFM32GG12B430F512IL120-A 512 192 No Yes Yes Yes Yes 93 BGA120 -40 to +125°C EFM32GG12B410F1024GL112-A 1024 192 No Yes Yes Yes Yes 87 BGA112 -40 to +85°C EFM32GG12B410F1024IL112-A 1024 192 No Yes Yes Yes Yes 87 BGA112 -40 to +125°C EFM32GG12B430F512GL112-A 512 192 No Yes Yes Yes Yes 87 BGA112 -40 to +85°C EFM32GG12B430F512IL112-A 512 192 No Yes Yes Yes Yes 87 BGA112 -40 to +125°C EFM32GG12B410F1024GQ100-A 1024 192 No Yes Yes Yes Yes 83 QFP100 -40 to +85°C EFM32GG12B410F1024IQ100-A 1024 192 No Yes Yes Yes Yes 83 QFP100 -40 to +125°C EFM32GG12B430F512GQ100-A 512 192 No Yes Yes Yes Yes 83 QFP100 -40 to +85°C EFM32GG12B430F512IQ100-A 512 192 No Yes Yes Yes Yes 83 QFP100 -40 to +125°C EFM32GG12B410F1024GM64-A 1024 192 No Yes Yes Yes Yes 53 QFN64 -40 to +85°C EFM32GG12B410F1024GQ64-A 1024 192 No Yes Yes Yes Yes 50 QFP64 -40 to +85°C EFM32GG12B410F1024IM64-A 1024 192 No Yes Yes Yes Yes 53 QFN64 -40 to +125°C EFM32GG12B410F1024IQ64-A 1024 192 No Yes Yes Yes Yes 50 QFP64 -40 to +125°C EFM32GG12B430F512GM64-A 512 192 No Yes Yes Yes Yes 53 QFN64 -40 to +85°C EFM32GG12B430F512GQ64-A 512 192 No Yes Yes Yes Yes 50 QFP64 -40 to +85°C EFM32GG12B430F512IM64-A 512 192 No Yes Yes Yes Yes 53 QFN64 -40 to +125°C EFM32GG12B430F512IQ64-A 512 192 No Yes Yes Yes Yes 50 QFP64 -40 to +125°C EFM32GG12B310F1024GL112-A 1024 192 No No No No Yes 90 BGA112 -40 to +85°C EFM32GG12B330F512GL112-A 512 192 No No No No Yes 90 BGA112 -40 to +85°C EFM32GG12B310F1024GQ100-A 1024 192 No No No No Yes 86 QFP100 -40 to +85°C EFM32GG12B330F512GQ100-A 512 192 No No No No Yes 86 QFP100 -40 to +85°C Ordering Code silabs.com | Building a more connected world. Rev. 1.0 | 5 EFM32GG12 Family Data Sheet RAM (kB) USB QSPI EFM32GG12B110F1024GM64-A 1024 192 No No No EFM32GG12B110F1024GQ64-A 1024 192 No No No EFM32GG12B110F1024IM64-A 1024 192 No No EFM32GG12B110F1024IQ64-A 1024 192 No EFM32GG12B130F512GM64-A 512 192 EFM32GG12B130F512GQ64-A 512 EFM32GG12B130F512IM64-A EFM32GG12B130F512IQ64-A LCD Flash (kB) SDIO Ordering Code DC-DC Converter Ordering Information GPIO Package Temp Range No No 56 QFN64 -40 to +85°C No No 53 QFP64 -40 to +85°C No No No 56 QFN64 -40 to +125°C No No No No 53 QFP64 -40 to +125°C No No No No No 56 QFN64 -40 to +85°C 192 No No No No No 53 QFP64 -40 to +85°C 512 192 No No No No No 56 QFN64 -40 to +125°C 512 192 No No No No No 53 QFP64 -40 to +125°C EFM32 G G 1 2 B 810 F 1024 G L 120 – A R Tape and Reel (Optional) Revision Pin Count Package – M (QFN), L (BGA), Q (QFP) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code Performance Grade – B (Basic) Device Configuration Series Gecko Family – G (Giant) Energy Friendly Microcontroller 32-bit Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.0 | 6 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . 11 . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Power . . . . . . . . . . . 3.2.1 Energy Management Unit (EMU) 3.2.2 DC-DC Converter . . . . . 3.2.3 5 V Regulator . . . . . . . 3.2.4 EM2 and EM3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 .12 .13 3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .13 3.4 Clocking . . . . . . . . . . 3.4.1 Clock Management Unit (CMU) . 3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 .14 .14 .15 .15 3.6 Communications and Other Digital Peripherals . . . . . . . . . . 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) . . . . . . 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.6.4 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.6.5 External Bus Interface (EBI) . . . . . . . . . . . . . . . 3.6.6 Quad-SPI Flash Controller (QSPI) . . . . . . . . . . . . . 3.6.7 SDIO Host Controller (SDIO) . . . . . . . . . . . . . . . 3.6.8 Universal Serial Bus (USB) . . . . . . . . . . . . . . . 3.6.9 Controller Area Network (CAN) . . . . . . . . . . . . . . 3.6.10 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.6.11 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . 3.6.12 Pulse Density Modulation (PDM) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 .15 .15 .15 .16 .16 .16 .16 .16 .16 .16 3.7 Security Features . . . . . . . . . . . . . . 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) 3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.7.3 True Random Number Generator (TRNG) . . . . 3.7.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .17 .17 .17 3.8 Analog. . . . . . . . . . . 3.8.1 Analog Port (APORT) . . . . 3.8.2 Analog Comparator (ACMP) . . 3.8.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .17 .17 . . . 3.5 Counters/Timers and PWM . . . . . . . . . 3.5.1 Timer/Counter (TIMER) . . . . . . . . 3.5.2 Wide Timer/Counter (WTIMER) . . . . . . 3.5.3 Real Time Counter and Calendar (RTCC) . . 3.5.4 Low Energy Timer (LETIMER) . . . . . . 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.5.6 Pulse Counter (PCNT) . . . . . . . . . 3.5.7 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.0 | 7 3.8.4 3.8.5 3.8.6 3.8.7 3.8.8 Capacitive Sense (CSEN) . . . . . . Digital to Analog Current Converter (IDAC) Digital to Analog Converter (VDAC) . . Operational Amplifiers . . . . . . . Liquid Crystal Display Driver (LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .18 .18 .18 .18 . . . . . . . . . . . . . . . . . . .18 3.10 Core and Memory . . . . . . . . . . . . 3.10.1 Processor Core . . . . . . . . . . . . 3.10.2 Memory System Controller (MSC) . . . . . 3.10.3 Linked Direct Memory Access Controller (LDMA) 3.10.4 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .18 .19 .19 .19 3.11 Memory Map . 3.9 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 3.12 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .22 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .23 4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .24 4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .25 4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .27 4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .28 4.1.5 5V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.1.6 Backup Supply Domain . . . . . . . . . . . . . . . . . . . . . . . . .31 4.1.7 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .32 4.1.8 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.1.9 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . .40 4.1.10 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 4.1.11 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .48 4.1.12 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . .49 4.1.13 Voltage Monitor (VMON) . . . . . . . . . . . . . . . . . . . . . . . . .51 4.1.14 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .52 4.1.15 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .54 4.1.16 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .57 4.1.17 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . . .60 4.1.18 Capacitive Sense (CSEN) . . . . . . . . . . . . . . . . . . . . . . . .62 4.1.19 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .64 4.1.20 LCD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 4.1.21 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .68 4.1.22 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .68 4.1.23 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 4.1.24 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 4.1.25 External Bus Interface (EBI) . . . . . . . . . . . . . . . . . . . . . . .75 4.1.26 Serial Data I/O Host Controller (SDIO) . . . . . . . . . . . . . . . . . . . .84 4.1.27 Quad SPI (QSPI) . . . . . . . . . . . . . . . . . . . . . . . . . .103 4.1.28 PDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 . 4.2 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . .108 4.2.1 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 09 4.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . 115 . silabs.com | Building a more connected world. Rev. 1.0 | 8 5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1 EFM32GG12B8xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 117 5.2 EFM32GG12B5xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 120 5.3 EFM32GG12B4xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 123 5.4 EFM32GG12B8xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 126 5.5 EFM32GG12B5xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 129 5.6 EFM32GG12B4xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 132 5.7 EFM32GG12B3xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 135 5.8 EFM32GG12B8xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . . . 138 5.9 EFM32GG12B5xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . . . 141 5.10 EFM32GG12B4xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . 1 . 44 5.11 EFM32GG12B3xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . 1 . 47 5.12 EFM32GG12B8xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 150 5.13 EFM32GG12B5xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 152 5.14 EFM32GG12B4xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 154 5.15 EFM32GG12B1xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 156 5.16 EFM32GG12B8xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 158 5.17 EFM32GG12B5xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 160 5.18 EFM32GG12B4xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 162 5.19 EFM32GG12B1xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 164 5.20 GPIO Functionality Table . . . . . . . . . . . . . . . . . . 166 . . . . . 5.21 Alternate Functionality Overview . . 5.22 Analog Port (APORT) Client Maps . 6. BGA120 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 . . . 204 . . . . . . . . . . . . . . . . . . . . . . .216 6.1 BGA120 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 216 6.2 BGA120 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 218 . 6.3 BGA120 Package Marking . . . 7. BGA112 Package Specifications . . . . . . . . . . . . . . . . . . . . . . 220 . . . . . . . . . . . . . . . . . . . . . . .221 7.1 BGA112 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 221 7.2 BGA112 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 223 . 7.3 BGA112 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . 225 8. TQFP100 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 226 8.1 TQFP100 Package Dimensions 8.2 TQFP100 PCB Land Pattern 8.3 TQFP100 Package Marking . . 9. TQFP64 Package Specifications 9.1 TQFP64 Package Dimensions . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . .226 . . . . . . . . . . . . . . . . . . . . . . .228 . . . . . . . . . . . . . . . . . . . . . . 229 . . . . . . . . . . . . . . . . . . . . . . . .230 . . . . . . . . . . . . . . . . . . . . . . . 230 Rev. 1.0 | 9 9.2 TQFP64 PCB Land Pattern . . 9.3 TQFP64 Package Marking . . . . . 10. QFN64 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 . . 233 . . . . . . . . . . . . . . . . . . . . . . .234 10.1 QFN64 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 234 10.2 QFN64 PCB Land Pattern. . . . . . . . . . . . . . . . . . . . . . . . 236 10.3 QFN64 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . 238 11. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 silabs.com | Building a more connected world. Rev. 1.0 | 10 EFM32GG12 Family Data Sheet System Overview 3. System Overview 3.1 Introduction The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual. A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG12 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Energy Management VREGI VBUS VREGO 5V Regulator Backup Domain IOVDDn Port I/O Configuration BU_VIN To BU_STAT BU_VOUT GPIO Digital Peripherals Voltage Monitor AVDD DVDD bypass VREGVDD VREGSW DC-DC Converter IOVDDn n=1: PD9-12, PE8-13, PF6-9 n=0: All other GPIO Voltage Regulator DECOUPLE LETIMER USB TIMER / WTIMER CAN CRYOTIMER EBI PCNT TFT RTC / RTCC SDIO USART / UART QSPI LEUART CRC Port A Drivers PA0-15 Port B Drivers PB0-15 Brown Out / Power-On Reset ARM Cortex-M4 Core I2C LESENSE Up to 1024 KB ISP Flash Program Memory CRYPTO PDM Port C Drivers PC0-15 Up to 192 KB RAM RESETn Reset Management Unit Analog Peripherals Port D Drivers PD0-15 Debug Signals (shared w/GPIO) Serial Wire and ETM Debug / Programming Port E Drivers PE0-15 Port F Drivers PF0-14 Clock Management ULFRCO AUXHFRCO LFRCO LFXTAL_P HFXTAL_N USHFRCO LFXO HFRCO + DPLL HFXO Internal Reference 12-bit ADC Digital Port Mapper Op-Amp Analog Port (APORT) VDAC Mux & FB LDMA Controller Watchdog Timers LFXTAL_N HFXTAL_P IDAC Floating Point Unit Input Mux Security Management + - Memory Protection Unit TRNG A A H P B B VDD Temp Sense Capacitive Touch + Analog Comparator Low-Energy LCD, up to 8x36 configuration Figure 3.1. Detailed EFM32GG12 Block Diagram silabs.com | Building a more connected world. Rev. 1.0 | 11 EFM32GG12 Family Data Sheet System Overview 3.2 Power The EFM32GG12 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. The EFM32GG12 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption. AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.2.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.2.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.2.3 5 V Regulator A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources. silabs.com | Building a more connected world. Rev. 1.0 | 12 EFM32GG12 Family Data Sheet System Overview 3.2.4 EM2 and EM3 Power Domains The EFM32GG12 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3 Peripheral Power Subdomains on page 13. If all of the peripherals in a peripheral power domain are unused, the power domain for that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and EM3. Table 3.1. EM2 and EM3 Peripheral Power Subdomains Peripheral Power Domain 1 Peripheral Power Domain 2 ACMP0 ACMP1 PCNT0 PCNT1 ADC0 PCNT2 LETIMER0 CSEN LESENSE VDAC0 APORT LEUART0 - LEUART1 - LETIMER1 - I2C0 - I2C1 - IDAC - ADC1 - ACMP2 - LCD - RTC 3.3 General Purpose Input/Output (GPIO) EFM32GG12 has up to 95 General Purpose Input/Output pins. GPIO are organized on three independent supply rails, allowing for interface to multiple logic levels in the system simultaneously. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.4 Clocking 3.4.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFM32GG12. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. silabs.com | Building a more connected world. Rev. 1.0 | 13 EFM32GG12 Family Data Sheet System Overview 3.4.2 Internal and External Oscillators The EFM32GG12 supports two crystal oscillators and fully integrates five RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated universal high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an external crystal. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. 3.5 Counters/Timers and PWM 3.5.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.5.2 Wide Timer/Counter (WTIMER) WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.5.3 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. 3.5.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. silabs.com | Building a more connected world. Rev. 1.0 | 14 EFM32GG12 Family Data Sheet System Overview 3.5.6 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.5.7 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.6 Communications and Other Digital Peripherals 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous Receiver/Transmitter is a subset of the USART peripheral, supporting full duplex asynchronous UART communication with hardware flow control and RS-485. 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.6.4 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.6.5 External Bus Interface (EBI) The External Bus Interface provides access to external parallel interface devices. The interface is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipulating the I/O settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface to external devices. Timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices. The EBI contains a TFT controller which can drive a TFT via an RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface. silabs.com | Building a more connected world. Rev. 1.0 | 15 EFM32GG12 Family Data Sheet System Overview 3.6.6 Quad-SPI Flash Controller (QSPI) The QSPI provides access to to a wide range of flash devices with wide I/O busses. The I/O and clocking configuration is flexible and supports many types of devices. Up to 8-bit wide interfaces are supported. The QSPI handles opcodes, status flag polling, and timing configuration automatically. The external flash memory is mapped directly to internal memory to allow random access to any word in the flash and direct code execution. An integrated instruction cache minimizes latency and allows efficient code execution. Execute in Place (XIP) is supported for devices with this feature. Large data chunks can be transferred with DMA as efficiently as possible with high throughput and minimimal bus load, utilizing an integrated 1 kB SRAM FIFO. 3.6.7 SDIO Host Controller (SDIO) The SDIO is an SD3.01 / SDIO3.0 / eMMC4.51-compliant Host Controller interface for transferring data to and from SD/MMC/SDIO devices. The module conforms to the SD Host Controller Standard Specification Version 3.00. The Host Controller handles SDIO/SD/MMC Protocol at the transmission level, packing data, adding cyclic redundancy check (CRC), Start/End bits, and checking for transaction format correctness. 3.6.8 Universal Serial Bus (USB) The USB is a full-speed/low-speed USB 2.0 compliant host/device controller. The USB can be used in device and host-only configurations, while a clock recovery mechanism allows crystal-less operation in device mode. The USB block supports both full speed (12 MBit/s) and low speed (1.5 MBit/s) operation. When operating as a device, a special Low Energy Mode ensures the current consumption is optimized, enabling USB communications on a strict power budget. The USB device includes an internal dedicated DescriptorBased Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes internal pull-up and pull-down resistors, as well as voltage comparators for monitoring the VBUS voltage and A/B device identification using the ID line. 3.6.9 Controller Area Network (CAN) The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32 message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in order to support Time Triggered CAN applications. 3.6.10 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.6.11 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.6.12 Pulse Density Modulation (PDM) Interface The PDM module provides a serial interface and decimation filter for Pulse Density Modulation (PDM) microphones, isolated Sigmadelta ADCs, digital sensors and other PDM or sigma delta bit stream peripherals. A programmable Cascaded Integrator Comb (CIC) filter is used to decimate the incoming bit streams. PDM supports multiple channels of stereo or mono input data and DMA transfer. silabs.com | Building a more connected world. Rev. 1.0 | 16 EFM32GG12 Family Data Sheet System Overview 3.7 Security Features 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.7.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.7.3 True Random Number Generator (TRNG) The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation). 3.7.4 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.8 Analog 3.8.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.8.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. 3.8.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. silabs.com | Building a more connected world. Rev. 1.0 | 17 EFM32GG12 Family Data Sheet System Overview 3.8.4 Capacitive Sense (CSEN) The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. 3.8.5 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.8.6 Digital to Analog Converter (VDAC) The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.8.7 Operational Amplifiers The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.8.8 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 3.9 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFM32GG12. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.10 Core and Memory 3.10.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Embedded Trace Macrocell (ETM) for real-time trace and debug • Up to 1024 kB flash program memory • Dual-bank memory with read-while-write support • Up to 192 kB RAM data memory • Configuration and event handling of all modules • 2-pin Serial-Wire or 4-pin JTAG debug interface silabs.com | Building a more connected world. Rev. 1.0 | 18 EFM32GG12 Family Data Sheet System Overview 3.10.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.10.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. 3.10.4 Bootloader All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area. silabs.com | Building a more connected world. Rev. 1.0 | 19 EFM32GG12 Family Data Sheet System Overview 3.11 Memory Map The EFM32GG12 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFM32GG12 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.0 | 20 EFM32GG12 Family Data Sheet System Overview Figure 3.3. EFM32GG12 Memory Map — Peripherals silabs.com | Building a more connected world. Rev. 1.0 | 21 EFM32GG12 Family Data Sheet System Overview 3.12 Configuration Summary The features of the EFM32GG12 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining peripherals support full configuration. Table 3.2. Configuration Summary Module Configuration Pin Connections USART0 IrDA, SmartCard US0_TX, US0_RX, US0_CLK, US0_CS USART1 I2S, SmartCard US1_TX, US1_RX, US1_CLK, US1_CS USART2 IrDA, SmartCard, High-Speed US2_TX, US2_RX, US2_CLK, US2_CS USART3 I2S, SmartCard US3_TX, US3_RX, US3_CLK, US3_CS USART4 I2S, SmartCard US4_TX, US4_RX, US4_CLK, US4_CS TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] TIMER2 with DTI TIM2_CC[2:0], TIM2_CDTI[2:0] TIMER3 - TIM3_CC[2:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] WTIMER1 - WTIM1_CC[3:0] silabs.com | Building a more connected world. Rev. 1.0 | 22 EFM32GG12 Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.0 | 23 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range Test Condition Min Typ Max Unit TSTG -50 — 150 °C Voltage on supply pins other than VREGI and VBUS VDDMAX -0.3 — 3.8 V Voltage ramp rate on any supply pin VDDRAMPMAX — — 1 V / µs DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3 -0.3 — Min of 5.25 and IOVDD +2 V LCD pins3 -0.3 — Min of 3.8 and IOVDD +2 V Standard GPIO pins -0.3 — IOVDD+0.3 V Total current into VDD power IVDDMAX lines Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C -0.3 — 5.5 V Current for all I/O pins Junction temperature Voltage on regulator supply pins VREGI and VBUS IIOALLMAX TJ VVREGI Note: 1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.0 | 24 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD silabs.com | Building a more connected world. Rev. 1.0 | 25 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit Operating ambient temperature range1 TA -G temperature grade -40 25 85 °C -I temperature grade -40 25 125 °C AVDD supply voltage2 VAVDD 1.8 3.3 3.8 V VREGVDD operating supply voltage2 3 VVREGVDD DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.8 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.8 3.3 3.8 V DCDC in bypass, T ≤ 85 °C — — 200 mA DCDC in bypass, T > 85 °C — — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF VSCALE2, MODE = WS3 — — 72 MHz VSCALE2, MODE = WS2 — — 54 MHz VSCALE2, MODE = WS1 — — 36 MHz VSCALE2, MODE = WS0 — — 18 MHz VSCALE0, MODE = WS2 — — 20 MHz VSCALE0, MODE = WS1 — — 14 MHz VSCALE0, MODE = WS0 — — 7 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VREGVDD current DVDD operating supply voltage IVREGVDD VDVDD IOVDD operating supply volt- VIOVDD age DECOUPLE output capacitor5 6 CDECOUPLE HFCORECLK frequency fCORE HFCLK frequency HFSRCCLK frequency HFBUSCLK frequency HFPERCLK frequency HFPERBCLK frequency HFPERCCLK frequency fHFCLK fHFSRCCLK fHFBUSCLK fHFPERCLK fHFPERBCLK fHFPERCCLK silabs.com | Building a more connected world. All IOVDD pins4 Rev. 1.0 | 26 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. 4. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD. 5. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. 6. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Min Typ Max Unit Thermal resistance, QFN64 Package THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s — 17.8 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 15.4 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 13.8 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 33.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 32.1 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 30.1 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 44.1 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 37.7 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 35.5 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 42.0 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 37.0 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 35.3 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 47.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 41.8 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 39.6 — °C/W Thermal resistance, TQFP64 THEPackage TAJA_TQFP64 Thermal resistance, TQFP100 Package THETAJA_TQFP100 Thermal resistance, BGA112 THEPackage TAJA_BGA112 Thermal resistance, BGA120 THEPackage TAJA_BGA120 silabs.com | Building a more connected world. Rev. 1.0 | 27 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC accuracy ACCDC Regulation window2 WINREG Steady-state output ripple VR Output voltage under/overshoot VOV MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V — 3 — mVpp CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — 25 60 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — 45 90 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 40 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 100 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.0 | 28 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive4, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — — 50 mA Low power (LP) mode, LPCMPBIASEMxx3 = 0 — — 75 µA Low power (LP) mode, LPCMPBIASEMxx3 = 3 — — 10 mA CDCDC 25% tolerance 1 4.7 4.7 µF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 µH — 1.2 2.5 Ω DCDC nominal output capacitor5 Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details. silabs.com | Building a more connected world. Rev. 1.0 | 29 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.5 5V Regulator VVREGI = 5 V, VVREGO = 3.3 V, CVREGI = 10 µF, CVREGO = 4.7 µF, unless otherwise specified. Table 4.5. 5V Regulator Parameter Symbol Test Condition Min Typ Max Unit VREGI or VBUS input voltage range VVREGI Regulating output 2.7 — 5.5 V Bypass mode enabled 2.7 — 3.8 V VREGO output voltage VVREGO Regulating output, 3.3 V setting1 3.1 3.3 3.5 V EM4S open-loop output, IOUT < 100 µA 1.8 — 3.8 V — 0.1 — V Voltage output step size VVREGO_SS Resistance in Bypass Mode RBYP Bypass mode enabled — 1.2 2.5 Ω Output current IOUT EM0 or EM1, VVREGI > VVREGO + 0.6 V — — 200 mA EM0 or EM1, VVREGI > VVREGO + 0.3 V — — 100 mA EM2, EM3, or EM4H, VVREGI > VVREGO + 0.6 V — — 2 mA EM2, EM3, or EM4H, VVREGI > VVREGO + 0.3 V — — 0.5 mA EM4S — — 20 µA EM0 or EM1 — 0.10 — mV/mA EM2, EM3, or EM4H — 2.5 — mV/mA Load regulation LRVREGO DC power supply rejection PSRDC — 40 — dB VREGI or VBUS bypass capacitance CVREGI — 10 — µF 1 4.7 10 µF EM0 or EM1, No load — 29 — µA EM2, EM3, or EM4H, No load — 270 — nA EM4S, No load — 70 — nA VREGO bypass capacitance CVREGO Supply current consumption IVREGI VREGI and VBUS detection high threshold VDET_H 0.9 1.15 — V VREGI and VBUS detection low threshold VDET_L — 1.07 1.45 V — 0.35 — mA/mV Current monitor transfer ratio IMONXF Translation of current through VREGO path to voltage at ADC input Note: 1. Output may be disturbed during DCDC mode transitions from BYPASS or OFF mode to LOWNOISE mode. Perturbation on VREGO can temporarily bring VREGO up beyond 3.5 V during these DCDC mode transitions. Refer to the EFM32GG12 Errata document, item EMU_E219 for more details. silabs.com | Building a more connected world. Rev. 1.0 | 30 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.6 Backup Supply Domain Table 4.6. Backup Supply Domain Parameter Symbol Test Condition Min Typ Max Unit 1.8 — 3.8 V EMU_BUCTRL_PWRRES = RES0 3400 3900 4400 Ω EMU_BUCTRL_PWRRES = RES1 1450 1800 2150 Ω EMU_BUCTRL_PWRRES = RES2 1000 1350 1700 Ω EMU_BUCTRL_PWRRES = RES3 525 815 1100 Ω EMU_BUCTRL_VOUTRES = STRONG 35 110 185 Ω EMU_BUCTRL_VOUTRES = MED 475 775 1075 Ω EMU_BUCTRL_VOUTRES = WEAK 5600 6500 7400 Ω BU_VIN not powering backup domain, 25 °C — 11 70 nA BU_VIN powering backup domain, 25 °C 2 — 550 2500 nA Backup supply voltage range VBU_VIN PWRRES resistor Output impedance between BU_VIN and BU_VOUT 1 Supply current RPWRRES RBU_VOUT IBU_VIN Note: 1. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability. 2. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup regulator. Does not include supply current required for backed-up circuitry. silabs.com | Building a more connected world. Rev. 1.0 | 31 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.7 Current Consumption 4.1.7.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.7. Current Consumption 3.3 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 113 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 112 125 µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 128 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 110 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 113 130 µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 115 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 116 135 µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 122 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 308 400 µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 99 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 255 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 72 MHz HFRCO — 51 57 µA/MHz 50 MHz crystal — 49 — µA/MHz 48 MHz HFRCO — 51 60 µA/MHz 32 MHz HFRCO — 54 — µA/MHz 26 MHz HFRCO — 55 64 µA/MHz 16 MHz HFRCO — 60 — µA/MHz 1 MHz HFRCO — 246 350 µA/MHz 19 MHz HFRCO — 49 — µA/MHz 1 MHz HFRCO — 204 — µA/MHz Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 32 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Full 192 kB RAM retention and RTCC running from LFXO — 3.0 — µA Full 192 kB RAM retention and RTCC running from LFRCO — 3.4 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO1 — 2.4 4.7 µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 192 kB RAM retention and CRYOTIMER running from ULFRCO — 2.7 7 µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.94 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.59 — µA 128 byte RAM retention, no RTCC — 0.59 1.15 µA Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled IEM4H_VS Test Condition Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.08 0.16 µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled2 — 0.73 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled2 — 0.32 — µA Note: 1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 33 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.7.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.8. Current Consumption 3.3 V using DC-DC Converter Parameter Symbol Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode2 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 76 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 75 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 85 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 76 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 78 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 85 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 89 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 104 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 686 — µA/MHz 72 MHz HFRCO, CPU running Prime from flash — 80 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 79 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 89 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 84 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 87 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 100 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 109 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 139 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1290 — µA/MHz Rev. 1.0 | 34 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 32 MHz HFRCO, CPU running while loop from flash — 76 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 77 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 82 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 257 — µA/MHz Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode2 19 MHz HFRCO, CPU running while loop from flash — 115 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1259 — µA/MHz Current consumption in EM0 IACTIVE_LPM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in LP mode3 19 MHz HFRCO, CPU running while loop from flash — 67 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 214 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 72 MHz HFRCO — 38 — µA/MHz 50 MHz crystal — 39 — µA/MHz 48 MHz HFRCO — 42 — µA/MHz 32 MHz HFRCO — 48 — µA/MHz 26 MHz HFRCO — 53 — µA/MHz 16 MHz HFRCO — 68 — µA/MHz 1 MHz HFRCO — 652 — µA/MHz 32 MHz HFRCO — 37 — µA/MHz 26 MHz HFRCO — 39 — µA/MHz 16 MHz HFRCO — 43 — µA/MHz 1 MHz HFRCO — 209 — µA/MHz Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode1 19 MHz HFRCO — 56 — µA/MHz 1 MHz HFRCO — 627 — µA/MHz Current consumption in EM1 IEM1_LPM_VS mode with all peripherals disabled and voltage scaling enabled. DCDC in LP mode3 19 MHz HFRCO — 35 — µA/MHz 1 MHz HFRCO — 185 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, DCDC in LP mode3 Full 192 kB RAM retention and RTCC running from LFXO — 2.2 — µA Full 192 kB RAM retention and RTCC running from LFRCO — 2.5 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO4 — 1.8 — µA Full 192 kB RAM retention and CRYOTIMER running from ULFRCO — 1.9 — µA Current consumption in EM0 IACTIVE_LPM mode with all peripherals disabled, DCDC in LP mode3 Current consumption in EM1 IEM1_LPM mode with all peripherals disabled, DCDC in Low Power mode3 Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 35 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM4H mode, with voltage scaling enabled IEM4H_VS 128 byte RAM retention, RTCC running from LFXO — 0.86 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.55 — µA 128 byte RAM retention, no RTCC — 0.55 — µA No RAM retention, no RTCC — 0.08 — µA Current consumption of peIPD1_VS ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled5 — 0.76 — µA Current consumption of peIPD2_VS ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled5 — 0.32 — µA Current consumption in EM4S mode IEM4S Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 2. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 3. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 4. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 5. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 36 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.7.3 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.9. Current Consumption 1.8 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 113 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 112 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 128 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 110 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 112 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 115 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 116 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 122 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 304 — µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 99 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 251 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 72 MHz HFRCO — 51 — µA/MHz 50 MHz crystal — 49 — µA/MHz 48 MHz HFRCO — 51 — µA/MHz 32 MHz HFRCO — 53 — µA/MHz 26 MHz HFRCO — 55 — µA/MHz 16 MHz HFRCO — 60 — µA/MHz 1 MHz HFRCO — 242 — µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 49 — µA/MHz 1 MHz HFRCO — 201 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 192 kB RAM retention and RTCC running from LFXO — 2.9 — µA Full 192 kB RAM retention and RTCC running from LFRCO — 3.1 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO1 — 2.1 — µA Current consumption in EM0 IACTIVE mode with all peripherals disabled silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 37 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 192 kB RAM retention and CRYOTIMER running from ULFRCO — 2.6 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.85 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.48 — µA 128 byte RAM retention, no RTCC — 0.48 — µA IEM4H_VS Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.06 — µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled2 — 0.75 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled2 — 0.32 — µA Note: 1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 38 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.8 Wake Up Times Table 4.10. Wake Up Times Parameter Symbol Wake up time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 tEM3_WU Test Condition Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 11.4 — µs Code execution from RAM — 3.8 — µs Code execution from flash — 11.4 — µs Code execution from RAM — 3.8 — µs Wake up from EM4H1 tEM4H_WU Executing from flash — 92 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 288 — µs Time from release of reset source to first instruction execution tRESET Soft Pin Reset released — 53 — µs Any other reset released — 347 — µs Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK = 19 MHz2 3 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz4 — 4.3 — µs Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. 2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. 3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. silabs.com | Building a more connected world. Rev. 1.0 | 39 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.9 Brown Out Detector (BOD) Table 4.11. Brown Out Detector (BOD) Parameter Symbol Test Condition Min Typ Max Unit DVDD BOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling (EM0/EM1) 1.35 — — V DVDD falling (EM2/EM3) 1.3 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 18 — mV DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs AVDD BOD threshold VAVDDBOD — — 1.8 V AVDD falling (EM0/EM1) 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V AVDD rising AVDD BOD hysteresis VAVDDBOD_HYST — 20 — mV AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 25 — mV — 300 — µs EM4 BOD hysteresis VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/µs rate Rev. 1.0 | 40 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10 Oscillators 4.1.10.1 Low-Frequency Crystal Oscillator (LFXO) Table 4.12. Low-Frequency Crystal Oscillator (LFXO) Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.0 | 41 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10.2 High-Frequency Crystal Oscillator (HFXO) Table 4.13. High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Crystal frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO Nominal on-chip tuning cap range1 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO Current consumption after startup IHFXO Min Typ Max Unit No clock doubling 4 — 50 MHz Clock doubler enabled 4 — 25 MHz 50 MHz crystal — — 50 Ω 24 MHz crystal — — 150 Ω 4 MHz crystal — — 180 Ω On each of HFXTAL_N and HFXTAL_P pins 8.7 — 51.7 pF — 0.084 — pF 50 MHz crystal, ESR = 50 Ohm, CL = 8 pF — 350 — µs 24 MHz crystal, ESR = 150 Ohm, CL = 6 pF — 700 — µs 4 MHz crystal, ESR = 180 Ohm, CL = 18 pF — 3 — ms 50 MHz crystal — 660 — µA 24 MHz crystal — 330 — µA 4 MHz crystal — 70 — µA Note: 1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. silabs.com | Building a more connected world. Rev. 1.0 | 42 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10.3 Low-Frequency RC Oscillator (LFRCO) Table 4.14. Low-Frequency RC Oscillator (LFRCO) Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF1 = 1, T ≤ 85 °C 31.3 32.768 33.6 kHz ENVREF1 = 1, T > 85 °C 31 32.768 36.8 kHz ENVREF1 = 0, T ≤ 85 °C 31.3 32.768 33.4 kHz ENVREF1 = 0, T > 85 °C 30 32.768 33.6 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 370 — nA ENVREF = 0 in CMU_LFRCOCTRL — 520 — nA Startup time tLFRCO Current consumption 2 ILFRCO Note: 1. In CMU_LFRCOCTRL register. 2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. silabs.com | Building a more connected world. Rev. 1.0 | 43 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10.4 High-Frequency RC Oscillator (HFRCO) Table 4.15. High-Frequency RC Oscillator (HFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs Maximum DPLL lock time1 tDPLL_LOCK fREF = 32.768 kHz, fHFRCO = 39.98 MHz, N = 1219, M = 0 — 183 — µs Current consumption on all supplies IHFRCO fHFRCO = 72 MHz — 550 600 µA fHFRCO = 64 MHz — 500 550 µA fHFRCO = 56 MHz — 430 475 µA fHFRCO = 48 MHz — 380 410 µA fHFRCO = 38 MHz — 310 340 µA fHFRCO = 32 MHz — 265 280 µA fHFRCO = 26 MHz — 220 235 µA fHFRCO = 19 MHz — 180 190 µA fHFRCO = 16 MHz — 150 160 µA fHFRCO = 13 MHz — 135 140 µA fHFRCO = 7 MHz — 98 102 µA fHFRCO = 4 MHz — 38 42 µA fHFRCO = 2 MHz — 32 35 µA fHFRCO = 1 MHz — 28 30 µA fHFRCO = 72 MHz, DPLL enabled — 580 650 µA fHFRCO = 40 MHz, DPLL enabled — 500 525 µA fHFRCO = 32 MHz, DPLL enabled — 400 420 µA fHFRCO = 16 MHz, DPLL enabled — 220 235 µA fHFRCO = 4 MHz, DPLL enabled — 56 60 µA fHFRCO = 1 MHz, DPLL enabled — 35 38 µA — 0.8 — % Coarse trim step size (% of period) SSHFRCO_COARS E Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS silabs.com | Building a more connected world. Rev. 1.0 | 44 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNINGEN = 0 1 — 10 MHz FREQRANGE = 3, FINETUNINGEN = 0 2 — 17 MHz FREQRANGE = 6, FINETUNINGEN = 0 4 — 30 MHz FREQRANGE = 7, FINETUNINGEN = 0 5 — 34 MHz FREQRANGE = 8, FINETUNINGEN = 0 7 — 42 MHz FREQRANGE = 10, FINETUNINGEN = 0 12 — 58 MHz FREQRANGE = 11, FINETUNINGEN = 0 15 — 68 MHz FREQRANGE = 12, FINETUNINGEN = 0 18 — 83 MHz FREQRANGE = 13, FINETUNINGEN = 0 24 — 100 MHz FREQRANGE = 14, FINETUNINGEN = 0 28 — 119 MHz FREQRANGE = 15, FINETUNINGEN = 0 33 — 138 MHz FREQRANGE = 16, FINETUNINGEN = 0 43 — 163 MHz Note: 1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period. silabs.com | Building a more connected world. Rev. 1.0 | 45 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Parameter Symbol Test Condition Frequency accuracy fAUXHFRCO_ACC Start-up time tAUXHFRCO Current consumption on all supplies Coarse trim step size (% of period) IAUXHFRCO SSAUXHFR- Min Typ Max Unit At production calibrated frequencies, across supply voltage and temperature -3 — 3 % fAUXHFRCO ≥ 19 MHz — 400 — ns 4 < fAUXHFRCO < 19 MHz — 1.4 — µs fAUXHFRCO ≤ 4 MHz — 2.5 — µs fAUXHFRCO = 50 MHz — 270 285 µA fAUXHFRCO = 48 MHz — 255 272 µA fAUXHFRCO = 38 MHz — 212 225 µA fAUXHFRCO = 32 MHz — 174 185 µA fAUXHFRCO = 26 MHz — 148 158 µA fAUXHFRCO = 19 MHz — 118 127 µA fAUXHFRCO = 16 MHz — 108 116 µA fAUXHFRCO = 13 MHz — 88 112 µA fAUXHFRCO = 7 MHz — 59 72 µA fAUXHFRCO = 4 MHz — 32 36 µA fAUXHFRCO = 2 MHz — 27 30 µA fAUXHFRCO = 1 MHz — 26 28 µA — 0.8 — % — 0.1 — % — 0.2 — % RMS CO_COARSE Fine trim step size (% of period) SSAUXHFRCO_FINE Period jitter PJAUXHFRCO silabs.com | Building a more connected world. Rev. 1.0 | 46 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.10.6 USB High-Frequency RC Oscillator (USHFRCO) Table 4.17. USB High-Frequency RC Oscillator (USHFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fUSHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % USB clock recovery enabled, Active connection as device, FINETUNINGEN1 = 1 -0.25 — 0.25 % — 300 — ns fUSHFRCO = 48 MHz, FINETUNINGEN1 = 1 — 293 305 µA fUSHFRCO = 50 MHz, FINETUNINGEN1 = 0 — 257 270 µA fUSHFRCO = 48 MHz, FINETUNINGEN1 = 0 — 249 260 µA fUSHFRCO = 32 MHz, FINETUNINGEN1 = 0 — 165 176 µA fUSHFRCO = 16 MHz, FINETUNINGEN1 = 0 — 100 111 µA — 0.2 — % RMS Min Typ Max Unit 0.88 1 1.12 kHz Start-up time tUSHFRCO Current consumption on all supplies IUSHFRCO Period jitter PJUSHFRCO Note: 1. In the CMU_USHFRCOCTRL register. 4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO) Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 47 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.11 Flash Memory Characteristics1 Table 4.19. Flash Memory Characteristics1 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Test Condition Min Typ Max Unit 10000 — — cycles T ≤ 85 °C 10 — — years T ≤ 125 °C 10 — — years Burst write, 128 words, average time per word 20 27 32 µs Single word 59 68 80 µs Page erase time2 tPERASE 20 27 35 ms Mass erase time3 tMERASE 20 27 35 ms Device erase time4 5 tDERASE T ≤ 85 °C — 80 95 ms T ≤ 125 °C — 80 100 ms Page Erase — — 1.6 mA Mass or Device Erase — — 1.9 mA Erase current6 IERASE Write current6 IWRITE — — 3.7 mA Supply voltage during flash erase and write VFLASH 1.62 — 3.6 V Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 3. Mass erase is issued by the CPU and erases all flash. 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.0 | 48 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.12 General-Purpose I/O (GPIO) Table 4.20. General-Purpose I/O (GPIO) Parameter Symbol Test Condition Min Typ Max Unit Input low voltage1 VIL GPIO pins — — IOVDD*0.3 V Input high voltage1 VIH GPIO pins IOVDD*0.7 — — V Output high voltage relative to IOVDD VOH Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 40 nA LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 60 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C — — 150 nA LFXO Pins, GPIO ≤ IOVDD, T > 85 °C — — 300 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA 30 40 65 kΩ 15 25 35 ns DRIVESTRENGTH2 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up/pull-down resistor3 RPUD Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.0 | 49 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns — 33 +/-10% — Ω DRIVESTRENGTH2 = STRONG, SLEWRATE2 = 0x6 CL = 50 pF, DRIVESTRENGTH2 = WEAK, SLEWRATE2 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH2 = STRONG, SLEWRATE = 0x62 CL = 50 pF, DRIVESTRENGTH2 = WEAK, SLEWRATE2 = 0x6 Required external series resistor on USB D+ and D- RUSB Note: 1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD (or BU_VIN in backup mode). 2. In GPIO_Pn_CTRL register. 3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD (or BU_VIN in backup mode). silabs.com | Building a more connected world. Rev. 1.0 | 50 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.13 Voltage Monitor (VMON) Table 4.21. Voltage Monitor (VMON) Parameter Symbol Test Condition Supply current (including I_SENSE) IVMON Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Min Typ Max Unit In EM0 or EM1, 1 active channel, T ≤ 85 °C — 6 11 µA In EM0 or EM1, 1 active channel, T > 85 °C — — 21 µA In EM0 or EM1, All channels active, T ≤ 85 °C — 15 20 µA In EM0 or EM1, All channels active, T > 85 °C — — 32 µA In EM2, EM3 or EM4, 1 channel active and above threshold — 62 — nA In EM2, EM3 or EM4, 1 channel active and below threshold — 62 — nA In EM2, EM3 or EM4, All channels active and above threshold — 99 — nA In EM2, EM3 or EM4, All channels active and below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV Rev. 1.0 | 51 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.14 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.22. Analog to Digital Converter (ADC) Parameter Symbol Resolution VRESOLUTION Input voltage range1 VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits — — VFS V -VFS/2 — VFS/2 V 1 — VAVDD V Power supply rejection2 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 270 350 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 1 4 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 70 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE3 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 0 4 — 85 — µA — 16 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE3 = KEEPADCWARM Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 180 — µA IADC_CLK silabs.com | Building a more connected world. Rev. 1.0 | 52 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol ADC clock frequency Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time5 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE3 = NORMAL — — 5 µs WARMUPMODE3 = KEEPINSTANDBY — — 2 µs WARMUPMODE3 = KEEPINSLOWACC — — 1 µs Internal reference6, differential measurement 58 67 — dB External reference7, differential measurement — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz Temperature sensor slope tADCSTART SNDRADC VTS_SLOPE Test Condition Note: 1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_CTRL register. 4. In ADCn_BIASPROG register. 5. Derived from ADCCLK. 6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. 7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. silabs.com | Building a more connected world. Rev. 1.0 | 53 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.15 Analog Comparator (ACMP) Table 4.23. Analog Comparator (ACMP) Parameter Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Active current not including voltage reference3 IACMP Current consumption of inter- IACMPREF nal voltage reference3 silabs.com | Building a more connected world. Min Typ Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 1, FULLBIAS2 = 0 — 75 — nA BIASPROG2 = 0x10, FULLBIAS2 =0 — 350 — nA BIASPROG2 = 0x02, FULLBIAS2 =1 — 6.5 — µA BIASPROG2 = 0x20, FULLBIAS2 =1 — 65 100 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA MAX — VVREGVDD_ V MAX Rev. 1.0 | 54 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST Comparator delay5 tACMPDELAY Min Typ Max Unit HYSTSEL4 = HYST0 -3 0 3 mV HYSTSEL4 = HYST1 5 18 27 mV HYSTSEL4 = HYST2 12 33 50 mV HYSTSEL4 = HYST3 17 46 67 mV HYSTSEL4 = HYST4 23 57 92 mV HYSTSEL4 = HYST5 26 68 108 mV HYSTSEL4 = HYST6 30 79 140 mV HYSTSEL4 = HYST7 34 90 160 mV HYSTSEL4 = HYST8 -3 0 3 mV HYSTSEL4 = HYST9 -27 -18 -5 mV HYSTSEL4 = HYST10 -50 -33 -12 mV HYSTSEL4 = HYST11 -67 -45 -17 mV HYSTSEL4 = HYST12 -92 -57 -23 mV HYSTSEL4 = HYST13 -108 -67 -26 mV HYSTSEL4 = HYST14 -140 -78 -30 mV HYSTSEL4 = HYST15 -160 -88 -34 mV BIASPROG2 = 1, FULLBIAS2 = 0 — 30 — µs BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 — µs BIASPROG2 = 0x02, FULLBIAS2 =1 — 360 — ns BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 1.98 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 100 — kΩ CSRESSEL6 = 6 — 162 — kΩ CSRESSEL6 = 7 — 235 — kΩ Capacitive sense internal re- RCSRES sistance silabs.com | Building a more connected world. Rev. 1.0 | 55 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. In ACMPn_CTRL register. 3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. 4. In ACMPn_HYSTERESIS registers. 5. ± 100 mV differential drive. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.0 | 56 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.16 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.24. Digital to Analog Converter (VDAC) Parameter Symbol Test Condition Min Typ Max Unit Output voltage VDACOUT Single-Ended 0 — VVREF V -VVREF — VVREF V 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 402 — µA 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 88 — µA 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUPTIME = 0x0A — 2 — µA Differential1 Current consumption including references (2 channels)2 IDAC Current from HFPERCLK3 IDAC_CLK — 6.6 — µA/MHz Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB Power supply rejection ratio4 PSRR silabs.com | Building a more connected world. Rev. 1.0 | 57 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 500 ksps, single-ended, internal 1.25V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5V reference — 61.6 — dB 500 ksps, single-ended, 3.3V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25V reference — 63.3 — dB 500 ksps, differential, internal 2.5V reference — 64.4 — dB 500 ksps, differential, 3.3V VDD reference — 65.8 — dB Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal ratio (1 kHz sine wave), 1.25V reference Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5V reference — 65.3 — dB — 66.7 — dB 500 ksps, single-ended, 3.3V VDD reference — 70.0 — dB 500 ksps, differential, internal 1.25V reference — 67.8 — dB 500 ksps, differential, internal 2.5V reference — 69.0 — dB 500 ksps, differential, 3.3V VDD reference — 68.5 — dB — 70.2 — dB Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition Total harmonic distortion THD Differential non-linearity5 DNLDAC -1.25 — 1.25 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error6 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % — — 75 pF Gain error6 External load capactiance, OUTSCALE=0 VGAIN CLOAD silabs.com | Building a more connected world. Rev. 1.0 | 58 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU. 4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale 5. Entire range is monotonic and has no missing codes. 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. silabs.com | Building a more connected world. Rev. 1.0 | 59 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.17 Current Digital to Analog Converter (IDAC) Table 4.25. Current Digital to Analog Converter (IDAC) Parameter Symbol Number of ranges NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total accuracy, STEPSEL1 = ACCIDAC 0x10 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — ranges RANGESEL1 = RANGE0 0.05 — 1.6 µA RANGESEL1 = RANGE1 1.6 — 4.7 µA RANGESEL1 = RANGE2 0.5 — 16 µA RANGESEL1 = RANGE3 2 — 64 µA — 32 — steps RANGESEL1 = RANGE0 — 50 — nA RANGESEL1 = RANGE1 — 100 — nA RANGESEL1 = RANGE2 — 500 — nA RANGESEL1 = RANGE3 — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -3 — 3 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGESEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2.7 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -2.5 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -1.5 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -1.0 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -1.1 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.1 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.9 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.9 — % Rev. 1.0 | 60 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Start up time tIDAC_SU Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Current consumption2 IIDAC Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Min Typ Max Unit Output within 1% of steady state value — 5 — µs Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 11 28 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 13 30 µA EM2 or EM3 Source mode, excluding output current, T = 25 °C — 0.05 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — 0.07 — µA EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 11 — µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 13 — µA RANGESEL1 = RANGE0, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.11 — % RANGESEL1 = RANGE1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.06 — % RANGESEL1 = RANGE2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.04 — % RANGESEL1 = RANGE3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.03 — % RANGESEL1 = RANGE0, output voltage = 100 mV — 0.29 — % RANGESEL1 = RANGE1, output voltage = 100 mV — 0.27 — % RANGESEL1 = RANGE2, output voltage = 150 mV — 0.12 — % RANGESEL1 = RANGE3, output voltage = 250 mV — 0.03 — % Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.0 | 61 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.18 Capacitive Sense (CSEN) Table 4.26. Capacitive Sense (CSEN) Parameter Symbol Test Condition Single conversion time (1x accumulation) tCNV Maximum external capacitive CEXTMAX load Min Typ Max Unit 12-bit SAR Conversions — 20.2 — µs 16-bit SAR Conversions — 26.4 — µs Delta Modulation Conversion (single comparison) — 1.55 — µs IREFPROG=7 (Gain = 1x), including routing parasitics — 68 — pF IREFPROG=0 (Gain = 10x), including routing parasitics — 680 — pF — 1 — kΩ 12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 326 — nA Delta Modulation conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 226 — nA 12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 33 — nA Delta Modulation conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 25 — nA 12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 690 — nA Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 515 — nA 12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 79 — nA Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 57 — nA Maximum external series im- REXTMAX pedance Supply current, EM2 bonded ICSEN_BOND conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 ICSEN_EM2 silabs.com | Building a more connected world. Rev. 1.0 | 62 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Supply current, continuous conversions, WARMUPMODE=KEEPCSENWARM ICSEN_ACTIVE SAR or Delta Modulation conversions of 33 pF capacitor, IREFPROG=0 (Gain = 10x), always on — 90.5 — µA HFPERCLK supply current ICSEN_HFPERCLK Current contribution from HFPERCLK when clock to CSEN block is enabled. — 2.25 — µA/MHz Note: 1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). silabs.com | Building a more connected world. Rev. 1.0 | 63 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.19 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes1 2. Table 4.27. Operational Amplifier (OPAMP) Parameter Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range Input voltage VIN Min Typ Max Unit 2 — 3.8 V HCMDIS = 1 1.62 — 3.8 V HCMDIS = 0, Rail-to-rail input range VVSS — VOPA V HCMDIS = 1 VVSS — VOPA-1.2 V Input impedance RIN 100 — — MΩ Output voltage VOUT VVSS — VOPA V Load capacitance3 CLOAD OUTSCALE = 0 — — 75 pF OUTSCALE = 1 — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA Output impedance Internal closed-loop gain Active current4 ROUT GCL IOPA silabs.com | Building a more connected world. Rev. 1.0 | 64 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Open-loop gain GOL Loop unit-gain frequency5 Phase margin Output voltage noise UGF PM NOUT silabs.com | Building a more connected world. Min Typ Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — 3.38 — MHz DRIVESTRENGTH = 2, Buffer connection — 0.9 — MHz DRIVESTRENGTH = 1, Buffer connection — 132 — kHz DRIVESTRENGTH = 0, Buffer connection — 34 — kHz DRIVESTRENGTH = 3, 3x Gain connection — 2.57 — MHz DRIVESTRENGTH = 2, 3x Gain connection — 0.71 — MHz DRIVESTRENGTH = 1, 3x Gain connection — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms Rev. 1.0 | 65 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Slew rate6 SR DRIVESTRENGTH = 3, INCBW=17 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=17 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — 0.42 — V/µs DRIVESTRENGTH = 1, INCBW=17 — 0.17 — V/µs DRIVESTRENGTH = 1, INCBW=0 — 0.058 — V/µs DRIVESTRENGTH = 0, INCBW=17 — 0.044 — V/µs DRIVESTRENGTH = 0, INCBW=0 — 0.015 — V/µs Startup time8 TSTART DRIVESTRENGTH = 2 — — 12 µs Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV DC power supply rejection ratio9 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB silabs.com | Building a more connected world. Rev. 1.0 | 66 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. 2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. 7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. 4.1.20 LCD Driver Table 4.28. LCD Driver Parameter Symbol Frame rate Min Typ Max Unit fLCDFR 30 — 100 Hz LCD supply range1 VLCDIN 1.8 — 3.8 V LCD output voltage range VLCD Current source mode, No external LCD capacitor 2.0 — VLCDIN-0.4 V Step-down mode with external LCD capacitor 2.0 — VLCDIN V Charge pump mode with external LCD capacitor 2.0 — 1.9 * VLCDIN V Current source mode — 64 — mV Charge pump or Step-down mode — 43 — mV — +/-4 — % Contrast control step size STEPCONTRAST Contrast control step accura- ACCCONTRAST cy2 Test Condition Note: 1. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW. 2. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation. silabs.com | Building a more connected world. Rev. 1.0 | 67 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.21 Pulse Counter (PCNT) Table 4.29. Pulse Counter (PCNT) Parameter Symbol Test Condition Min Typ Max Unit Input frequency FIN Asynchronous Single and Quadrature Modes — — 20 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit 4.1.22 Analog Port (APORT) Table 4.30. Analog Port (APORT) Parameter Symbol Test Condition Supply current1 2 IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 63 — nA Note: 1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current. 2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. silabs.com | Building a more connected world. Rev. 1.0 | 68 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.23 I2C 4.1.23.1 I2C Standard-mode (Sm)1 Table 4.31. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — µs SCL clock high time tHIGH 4 — — µs SDA set-up time tSU_DAT 250 — — ns SDA hold time3 tHD_DAT 100 — 3450 ns Repeated START condition set-up time tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time tSU_STO 4 — — µs Bus free time between a STOP and START condition tBUF 4.7 — — µs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.0 | 69 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.23.2 I2C Fast-mode (Fm)1 Table 4.32. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs STOP condition set-up time tSU_STO 0.6 — — µs Bus free time between a STOP and START condition tBUF 1.3 — — µs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.0 | 70 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.23.3 I2C Fast-mode Plus (Fm+)1 Table 4.33. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs STOP condition set-up time tSU_STO 0.26 — — µs Bus free time between a STOP and START condition tBUF 0.5 — — µs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.0 | 71 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.24 USART SPI SPI Master Timing Table 4.34. SPI Master Timing Parameter Symbol Test Condition SCLK period 1 2 3 tSCLK CS to MOSI 1 2 SCLK to MOSI 1 2 MISO setup time 1 2 tCS_MO tSCLK_MO tSU_MI silabs.com | Building a more connected world. Min Typ Max Unit All USARTs except USART2 2* tHFPERCLK — — ns USART2 2* tHFPERBCLK — — ns USART2, location 4, IOVDD = 1.8 V -4 — 6 ns USART2, location 4, IOVDD = 3.0 V -2.5 — 5 ns USART2, location 5, IOVDD = 1.8 V -6.5 — 7.5 ns USART2, location 5, IOVDD = 3.0 V -5.5 — 6 ns All other USARTs and locations, IOVDD = 1.8 V -10.5 — 9 ns All other USARTs and locations, IOVDD = 3.0 V -8.5 — 7.5 ns USART2, location 4, IOVDD = 1.8 V -1 — 6 ns USART2, location 4, IOVDD = 3.0 V -1 — 5.5 ns USART2, location 5, IOVDD = 1.8 V -3 — 4 ns USART2, location 5, IOVDD = 3.0 V -2.5 — 2.5 ns All other USARTs and locations, IOVDD = 1.8 V -7 — 8.5 ns All other USARTs and locations, IOVDD = 3.0 V -6 — 9 ns USART2, location 4, IOVDD = 1.8 V 41 — — ns USART2, location 4, IOVDD = 3.0 V 32 — — ns USART2, location 5, IOVDD = 1.8 V 49 — — ns USART2, location 5, IOVDD = 3.0 V 30 — — ns All other USARTs and locations, IOVDD = 1.8 V 51 — — ns All other USARTs and locations, IOVDD = 3.0 V 32 — — ns Rev. 1.0 | 72 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit MISO hold time 1 2 tH_MI USART2, location 4, IOVDD = 1.8 V -12 — — ns USART2, location 4, IOVDD = 3.0 V -12 — — ns USART2, location 5, IOVDD = 1.8 V -9.5 — — ns USART2, location 5, IOVDD = 3.0 V -9.5 — — ns All other USARTs and locations, IOVDD = 1.8 V -10.5 — — ns All other USARTs and locations, IOVDD = 3.0 V -10.5 — — ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 73 EFM32GG12 Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.35. SPI Slave Timing Parameter Symbol SCLK period 1 2 3 Test Condition Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 2 3 tSCLK_HI 2.5 * tHFPERCLK — — ns SCLK low time1 2 3 tSCLK_LO 2.5 * tHFPERCLK — — ns CS active to MISO 1 2 tCS_ACT_MI 22 — 54 ns CS disable to MISO 1 2 tCS_DIS_MI 20 — 175 ns MOSI setup time 1 2 tSU_MO 6 — — ns MOSI hold time 1 2 3 tH_MO 7 — — ns SCLK to MISO 1 2 3 tSCLK_MI 17 + 1.5 * tHFPERCLK — 41 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 74 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.25 External Bus Interface (EBI) EBI Write Enable Output Timing Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.36. EBI Write Enable Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_WEn / EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid tOH_WEn IOVDD ≥ 1.62 V -22 + (WRHOLD * t{}HFCORECLK{}) — — ns IOVDD ≥ 3.0 V -14 + (WRHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -12 + (WRSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -10 + (WRSETUP * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -6 + (MAX(1, WRSTRB) * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -5 + (MAX(1, WRSTRB) * tHFCORECLK) — — ns Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn / EBI_NANDWEn edge1 EBI_WEn / EBI_NANDWEn pulse width1 tOSU_WEn tWIDTH_WEn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length of tOSU_WEn by 1/2 * tHFCLKNODIV. silabs.com | Building a more connected world. Rev. 1.0 | 75 EFM32GG12 Family Data Sheet Electrical Specifications WRSETUP (0, 1, 2, ...) EBI_BL[N-1:0] WRSTRB (1, 2, 3, ...) Z EBI_BL tOSU_WEn EBI_A[N-1:0] tOH_WEn Z EBI_A tOSU_WEn EBI_AD[15:0] WRHOLD (0, 1, 2, ...) tOH_WEn Z DATA[15:0] tOSU_WEn tOH_WEn tOSU_WEn tOH_WEn EBI_CSn EBI_WEn tWIDTH_WEn Figure 4.3. EBI Write Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 76 EFM32GG12 Family Data Sheet Electrical Specifications EBI Address Latch Enable Output Timing Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.37. EBI Address Latch Enable Output Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_ALE edge to EBI_AD invalid1 2 tOH_ALEn IOVDD ≥ 1.62 V -22 + (ADDRHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -13 + (ADDRHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -10 — — ns IOVDD ≥ 3.0 V -9 — — ns IOVDD ≥ 1.62 V -5 + ((ADDRSETUP + 1) * t{}HFCORECLK{}) — — ns IOVDD ≥ 3.0 V -4 + ((ADDRSETUP + 1) * t{}HFCORECLK{}) — — ns Output setup time, from EBI_AD valid to leading EBI_ALE edge tOSU_ALEn EBI_ALEn pulse width1 tWIDTH_ALEn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length of tOSU_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV. 2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state. silabs.com | Building a more connected world. Rev. 1.0 | 77 EFM32GG12 Family Data Sheet Electrical Specifications ADDRSETUP (1, 2, 3, ...) EBI_AD[15:0] ADDRHOLD (0, 1, 2, ...) ADDR[16:1] WRSETUP (0, 1, 2, ...) WRSTRB (1, 2, 3, ...) DATA[15:0] WRHOLD (0, 1, 2, ...) Z tWIDTH_ALEn EBI_ALE tWIDTH_ALEn tOSU_ALEn EBI_CSn EBI_WEn Figure 4.4. EBI Address Latch Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 78 EFM32GG12 Family Data Sheet Electrical Specifications EBI Read Enable Output Timing Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.38. EBI Read Enable Output Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_REn / EBI_NANDREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid tOH_REn IOVDD ≥ 1.62 V -21 + (RDHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -11 + (RDHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -11 + (RDSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -10 + (RDSETUP * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -6 + (MAX(1, RDSTRB) * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -4 + (MAX(1, RDSTRB) * tHFCORECLK) — — ns Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn / EBI_NANDREn edge 1 tOSU_REn EBI_REn pulse width1 2 tWIDTH_REn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length of tOSU_REn by 1/2 * tHFCLKNODIV. 2. When page mode is used, RDSTRB is replaced by RDPA for page hits. silabs.com | Building a more connected world. Rev. 1.0 | 79 EFM32GG12 Family Data Sheet Electrical Specifications RDSETUP (0, 1, 2, ...) EBI_BL[1:0] RDSTRB (1, 2, 3, ...) EBI_BL Z tSU_REn EBI_A[27:0] tH_REn EBI_A Z tH_REn tSU_REn EBI_AD[15:8] RDHOLD (0, 1, 2, ...) ADDR[7:0] Z tSU_REn tH_REn tSU_REn tH_REn EBI_CSn EBI_AD[7:0] EBI_REn Z DATA[7:0] Z tWIDTH_REn Figure 4.5. EBI Read Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 80 EFM32GG12 Family Data Sheet Electrical Specifications EBI TFT Output Timing All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.39. EBI TFT Output Timing Parameter Symbol Output hold time, EBI_DCLK tOH_DCLK to EBI_AD invalid Output setup time, EBI_AD valid to EBI_DCLK tOSU_DCLK Test Condition Min Typ Max Unit IOVDD ≥ 1.62 V -19 + (TFTHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -10 + (TFTHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -12 + (TFTSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -11 + (TFTSETUP * tHFCORECLK) — — ns EBI_DCLK tOSU_DCLK EBI_AD DATA[15:0] tOH_DCLK DATA[15:0] DATA[15:0] Figure 4.6. EBI TFT Output Timing silabs.com | Building a more connected world. Rev. 1.0 | 81 EFM32GG12 Family Data Sheet Electrical Specifications EBI Read Enable Timing Requirements Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.40. EBI Read Enable Timing Requirements Parameter Symbol Test Condition Min Typ Max Unit Setup time, from EBI_AD valid to trailing EBI_REn edge tSU_REn IOVDD ≥ 1.62 V 50 — — ns IOVDD ≥ 3.0 V 29 — — ns IOVDD ≥ 1.62 V -9 — — ns Hold time, from trailing tH_REn EBI_REn edge to EBI_AD invalid RDSETUP (0, 1, 2, ...) EBI_A[N-1:0] ADDR[N:1] EBI_AD[15:0] Z RDSTRB (1, 2, 3, ...) RDHOLD (0, 1, 2, ...) Z DATA[15:0] Z EBI_CSn EBI_REn tSU_REn tH_REn Figure 4.7. EBI Read Enable Timing Requirements silabs.com | Building a more connected world. Rev. 1.0 | 82 EFM32GG12 Family Data Sheet Electrical Specifications EBI Ready/Wait Timing Requirements Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.41. EBI Ready/Wait Timing Requirements Parameter Symbol Test Condition Min Typ Max Unit Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge tSU_ARDY IOVDD ≥ 1.62 V 52 + (3 * tHFCORECLK) — — ns IOVDD ≥ 3.0 V 33 + (3 * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -9 — — ns Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid tH_ARDY RDSETUP (0, 1, 2, ...) RDSTRB (1, 2, 3, ...) SYNC (3) RDHOLD (0, 1, 2, ...) EBI_RDY EBI_AD[15:0] Z DATA[15:0] EBI_CSn tSU_ARDY EBI_REn tH_ARDY Figure 4.8. EBI Ready/Wait Timing Requirements silabs.com | Building a more connected world. Rev. 1.0 | 83 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.26 Serial Data I/O Host Controller (SDIO) SDIO DS Mode Timing Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins. Table 4.42. SDIO DS Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 25 MHz Using HFXO — — 21 MHz Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 18.14 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 18.14 — — ns Clock rise time tR 1.49 — 4.86 ns Clock fall time tF 1.28 — 3.91 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 5 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 0 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 14 ns 5 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.43. SDIO DS Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 19 MHz Using HFXO — — 15 MHz Using HFRCO, AUXHFRCO, or USHFRCO 24.1 — — ns Using HFXO 23.8 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 24.1 — — ns Using HFXO 23.8 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.49 — 4.86 ns Clock fall time tF 1.28 — 3.91 ns silabs.com | Building a more connected world. Rev. 1.0 | 84 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Input setup time, CMD, DAT[0:3] valid to SD_CLK Test Condition Min Typ Max Unit tISU 5 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 0 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 19.1 ns 5 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:3] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:3] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:3] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.9. SDIO DS Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 85 EFM32GG12 Family Data Sheet Electrical Specifications SDIO HS Mode Timing Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.44. SDIO HS Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 45 MHz Using HFXO — — 45 MHz Using HFRCO, AUXHFRCO, or USHFRCO 10.57 — — ns Using HFXO 8.66 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 10.57 — — ns Using HFXO 8.66 — — ns Clock rise time tR 0.83 — 3 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 3.2 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 15.3 ns 2 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.45. SDIO HS Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 35 MHz Using HFXO — — 35 MHz Using HFRCO, AUXHFRCO, or USHFRCO 13.11 — — ns Using HFXO 10.88 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 13.11 — — ns Using HFXO 10.88 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 0.83 — 3 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 3.5 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.0 | 86 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Min Typ Max Unit — — 20.3 ns 2 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.10. SDIO HS Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 87 EFM32GG12 Family Data Sheet Electrical Specifications SDIO SDR Mode Timing Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins. Table 4.46. SDIO SDR Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 28 MHz Using HFXO — — 28 MHz Using HFRCO, AUXHFRCO, or USHFRCO 16.4 — — ns Using HFXO 13.61 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 16.4 — — ns Using HFXO 13.61 — — ns 1.8 — 6.56 ns Clock rise time tR Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 5 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 1.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 20 ns 0.8 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.47. SDIO SDR Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 25 MHz Using HFXO — — 25 MHz Using HFRCO, AUXHFRCO, or USHFRCO 18.36 — — ns Using HFXO 15.24 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 18.36 — — ns Using HFXO 15.24 — — ns 1.8 — 6.56 ns Clock low time Clock high time tWL tWH Clock rise time tR Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 5 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 1.5 — — ns silabs.com | Building a more connected world. Rev. 1.0 | 88 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Min Typ Max Unit — — 24.3 ns 0.8 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.11. SDIO SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 89 EFM32GG12 Family Data Sheet Electrical Specifications SDIO DDR Mode Timing Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins. Table 4.48. SDIO DDR Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 14 MHz Using HFXO — — 11.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 34.5 — — ns Using HFXO 34.7 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 34.5 — — ns Using HFXO 34.7 — — ns Clock rise time tR 1.79 — 6.56 ns Clock fall time tF 1.40 — 5.12 ns Input setup time, CMD valid to SD_CLK tISU 6 — — ns Input hold time, SD_CLK to CMD change tIH 1.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 21.1 ns 2 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:3] valid to SD_CLK tISU2X 6.3 — — ns Input hold time, SD_CLK to DAT[0:3] change tIH2X 1.5 — — ns Output delay time, SD_CLK to DAT[0:3] valid tODLY2X — — 30.8 ns 2 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:3] change Table 4.49. SDIO DDR Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12.5 MHz Using HFXO — — 10 MHz Using HFRCO, AUXHFRCO, or USHFRCO 36.72 — — ns Using HFXO 38.1 — — ns Clock low time tWL silabs.com | Building a more connected world. Rev. 1.0 | 90 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 36.72 — — ns Using HFXO 38.1 — — ns Clock rise time tR 1.79 — 6.56 ns Clock fall time tF 1.40 — 5.12 ns Input setup time, CMD valid to SD_CLK tISU 7 — — ns Input hold time, SD_CLK to CMD change tIH 1.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 24.81 ns 2 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:3] valid to SD_CLK tISU2X 8.3 — — ns Input hold time, SD_CLK to DAT[0:3] change tIH2X 1.5 — — ns Output delay time, SD_CLK to DAT[0:3] valid tODLY2X — — 35.1 ns 2 — — ns Output hold time, SD_CLK to tOH2X DAT[0:3] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:3] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:3] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.12. SDIO DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 91 EFM32GG12 Family Data Sheet Electrical Specifications SDIO MMC Legacy Mode Timing Timing is specified with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.50. SDIO MMC Legacy Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 28 MHz Using HFXO — — 28 MHz Using HFRCO, AUXHFRCO, or USHFRCO 16.96 — — ns Using HFXO 14.28 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 16.96 — — ns Using HFXO 14.28 — — ns Clock rise time tR 1.8 — 5.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 4.8 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 18.8 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.51. SDIO MMC Legacy Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 25 MHz Using HFXO — — 25 MHz Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 15.2 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 15.2 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.8 — 5.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 4.8 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 23.6 ns silabs.com | Building a more connected world. Rev. 1.0 | 92 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Min Typ Max Unit 3 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.13. SDIO MMC Legacy Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 93 EFM32GG12 Family Data Sheet Electrical Specifications SDIO MMC SDR Mode Timing at 1.8 V Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.52. SDIO MMC SDR Mode Timing (Location 0, 1.8V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 28 MHz Using HFXO — — 28 MHz Using HFRCO, AUXHFRCO, or USHFRCO 16.96 — — ns Using HFXO 14.28 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 16.96 — — ns Using HFXO 14.28 — — ns Clock rise time tR 1.8 — 5.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 4.8 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 18.8 ns 2.85 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.53. SDIO MMC SDR Mode Timing (Location 1, 1.8V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 25 MHz Using HFXO — — 25 MHz Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 15.2 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 15.2 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.8 — 5.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 4.8 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.0 | 94 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY Test Condition Min Typ Max Unit — — 23.6 ns 3 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:7] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.14. SDIO MMC SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 95 EFM32GG12 Family Data Sheet Electrical Specifications SDIO MMC SDR Mode Timing at 3.0 V Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.54. SDIO MMC SDR Mode Timing (Location 0, 3V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 49 MHz Using HFXO — — 49 MHz Using HFRCO, AUXHFRCO, or USHFRCO 9.7 — — ns Using HFXO 7.8 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 9.7 — — ns Using HFXO 7.8 — — ns Clock rise time tR 0.85 — 2.5 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 3.13 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 15.2 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.55. SDIO MMC SDR Mode Timing (Location 1, 3V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 38 MHz Using HFXO — — 38 MHz Using HFRCO, AUXHFRCO, or USHFRCO 12 — — ns Using HFXO 10 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 12 — — ns Using HFXO 10 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 0.85 — 2.5 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 3.4 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.0 | 96 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY Test Condition Min Typ Max Unit — — 19.83 ns 3 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:7] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.15. SDIO MMC SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 97 EFM32GG12 Family Data Sheet Electrical Specifications SDIO MMC DDR Mode Timing at 1.8 V Timing is specified for route location 0 at 1.8 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins. Table 4.56. SDIO MMC DDR Mode Timing (Location 0, 1.8V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 14.5 MHz Using HFXO — — 12 MHz Using HFRCO, AUXHFRCO, or USHFRCO 31.6 — — ns Using HFXO 31.2 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 31.6 — — ns Using HFXO 31.2 — — ns Clock rise time tR 1.79 — 5.54 ns Clock fall time tF 1.40 — 4.21 ns Input setup time, CMD valid to SD_CLK tISU 5.7 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 19.81 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 7.6 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 30.3 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:7] change Table 4.57. SDIO MMC DDR Mode Timing (Location 1, 1.8V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12 MHz Using HFXO — — 10 MHz 38.2 — — ns 38 — — ns Clock low time tWL Using HFRCO, AUXHFRCO, or USHFRCO Using HFXO silabs.com | Building a more connected world. Rev. 1.0 | 98 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 38.2 — — ns 38 — — ns Using HFXO Clock rise time tR 1.79 — 5.54 ns Clock fall time tF 1.40 — 4.21 ns Input setup time, CMD valid to SD_CLK tISU 7.1 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 23.87 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 8.24 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 34.94 ns 3 — — ns Output hold time, SD_CLK to tOH2X DAT[0:7] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:7] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:7] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.16. SDIO MMC DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 99 EFM32GG12 Family Data Sheet Electrical Specifications SDIO MMC DDR Mode Timing at 3.0 V Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins. Table 4.58. SDIO MMC DDR Mode Timing (Location 0, 3V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 16 MHz Using HFXO — — 13.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 29.69 — — ns Using HFXO 29.63 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 29.69 — — ns Using HFXO 29.63 — — ns Clock rise time tR 0.84 — 2.5 ns Clock fall time tF 0.77 — 2.2 ns Input setup time, CMD valid to SD_CLK tISU 4.3 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 16.47 ns Output hold time, SD_CLK to tOH CMD change 3 — — ns Input setup time, DAT[0:7] valid to SD_CLK tISU2X 6 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 26.6 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:7] change Table 4.59. SDIO MMC DDR Mode Timing (Location 1, 3V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12.5 MHz Using HFXO — — 11 MHz Using HFRCO, AUXHFRCO, or USHFRCO 36.7 — — ns Using HFXO 34.6 — — ns Clock low time tWL silabs.com | Building a more connected world. Rev. 1.0 | 100 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 36.7 — — ns Using HFXO 34.6 — — ns Clock rise time tR 0.84 — 2.5 ns Clock fall time tF 0.77 — 2.2 ns Input setup time, CMD valid to SD_CLK tISU 5.1 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 20.9 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 6.8 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 31.37 ns 3 — — ns Output hold time, SD_CLK to tOH2X DAT[0:7] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:7] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:7] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.17. SDIO MMC DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.0 | 101 EFM32GG12 Family Data Sheet Electrical Specifications SDIO SPI Mode Timing Timing is specified for route location 0 at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins. Table 4.60. SDIO SPI Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSCLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 25 MHz Using HFXO — — 21 MHz Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 18.14 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 18.3 — — ns Using HFXO 18.14 — — ns Clock rise time tR 1.49 — 4.86 ns Clock fall time tF 1.28 — 3.91 ns Input setup time, MISO valid to SCLK tISU 5 — — ns Input hold time, SCLK to MISO change tIH 0 — — ns Output delay time, SCLK to MOSI valid tODLY — — 14 ns Output hold time, SCLK to MOSI change tOH 5 — — ns Min Typ Max Unit Table 4.61. SDIO SPI Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSCLK Using HFRCO, AUXHFRCO, or USHFRCO — — 19 MHz Using HFXO — — 15 MHz Using HFRCO, AUXHFRCO, or USHFRCO 24.1 — — ns Using HFXO 23.8 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 24.1 — — ns Using HFXO 23.8 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.49 — 4.86 ns Clock fall time tF 1.28 — 3.91 ns Input setup time, MISO valid to SCLK tISU 5 — — ns silabs.com | Building a more connected world. Rev. 1.0 | 102 EFM32GG12 Family Data Sheet Electrical Specifications Parameter Symbol Input hold time, SCLK to MISO change Test Condition Min Typ Max Unit tIH 0 — — ns Output delay time, SCLK to MOSI valid tODLY — — 19.1 ns Output hold time, SCLK to MOSI change tOH 5 — — ns tWH tWL SCLK tISU tIH MISO tODLY (max) tOH (min) MOSI Figure 4.18. SDIO SPI Mode Timing 4.1.27 Quad SPI (QSPI) 4.1.27.1 QSPI SDR Mode QSPI SDR Mode Timing (Location 0) Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 20, RX DLL = 45, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.62. QSPI SDR Mode Timing (Location 0) Parameter Symbol Full SCLK period T Output valid Min Typ Max Unit (1/FSCLK) * 0.965 — — ns tOV — — T/2 - 3.0 ns Output hold tOH T/2 - 21.4 — — ns Input setup tSU 25.96 - T/2 — — ns Input hold tH T/2 - 1.0 — — ns silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 103 EFM32GG12 Family Data Sheet Electrical Specifications QSPI SDR Mode Timing (Optimal Conditions) Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 17, RX DLL = 29, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.63. QSPI SDR Mode Timing (Optimized at 3.0V, Location 0) Parameter Symbol Full SCLK period T Output valid Min Typ Max Unit (1/FSCLK) * 0.965 — — ns tOV — — T/2 - 2.2 ns Output hold tOH T/2 - 19.13 — — ns Input setup tSU 15.33 - T/2 — — ns Input hold tH T/2 - 4.1 — — ns silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 104 EFM32GG12 Family Data Sheet Electrical Specifications QSPI SDR Mode Timing (Locations 1, 2) Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 15, RX DLL = 47, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.64. QSPI SDR Mode Timing (Locations 1, 2) Parameter Symbol Full SCLK period T Output valid Test Condition Min Typ Max Unit (1/FSCLK) * 0.965 — — ns tOV — — T/2 - 2.6 ns Output hold tOH T/2 - 19.26 — — ns Input setup tSU 25.47 - T/2 — — ns Input hold tH T/2 - 0.5 — — ns DQx Output Timing tOV SCLK tOH DQx DQx Input Timing SCLK tSU tH DQx Figure 4.19. QSPI SDR Timing Diagrams QSPI SDR Flash Timing Example This example uses timing values from SDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing using the QSPI in SDR mode. • Using a configured SCLK frequency (FSCLK) of 40 MHz: • The resulting minimum period, T(min) = (1/FSCLK) * 0.965 = 24.125 ns. • Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.2) = 2.4 ns. • Flash will see a minimum hold time of T/2 + tOH = T/2 + (T/2 – 19.13) = T – 19.13 = 24.125 – 19.13 = 4.9 ns. • Flash can have a maximum output valid time of T/2 – tSU = T/2 – (15.33 – T/2) = T – 15.33 = 24.125 – 15.33 = 8.8 ns. • Flash can have a minimum output hold time of tH – T/2 = (T/2 – 4.1) – T/2 = - 4.1 ns. silabs.com | Building a more connected world. Rev. 1.0 | 105 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.27.2 QSPI DDR Mode QSPI DDR Mode Timing (Location 0) Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 20, RX DLL = 52, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.65. QSPI DDR Mode Timing (Location 0) Parameter Symbol Test Condition Min Typ Max Unit Half SCLK period T/2 HFXO (1/FSCLK) * 0.4 - 0.4 — — ns HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 2.3 ns Output hold tOH T/2 - 18.63 — — ns Input setup tSU 14.85 — — ns Input hold tH -2.2 — — ns QSPI DDR Mode Timing (Optimal Conditions) Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 17, RX DLL = 37, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.66. QSPI DDR Mode Timing (Optimized at 3.0V, Location 0) Parameter Symbol Test Condition Typ Max Unit Half SCLK period T/2 HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 2.4 ns Output hold tOH T/2 - 19.02 — — ns Input setup tSU 12.93 — — ns Input hold tH -0.8 — — ns silabs.com | Building a more connected world. Min Rev. 1.0 | 106 EFM32GG12 Family Data Sheet Electrical Specifications QSPI DDR Mode Timing (Locations 1, 2) Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 17, RX DLL = 50, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.67. QSPI DDR Mode Timing (Locations 1, 2) Parameter Symbol Test Condition Min Typ Max Unit Half SCLK period T/2 HFXO (1/FSCLK) * 0.4 - 0.4 — — ns HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 2.8 ns Output hold tOH T/2 - 15.21 — — ns Input setup tSU 9.2 — — ns Input hold tH -0.38 — — ns DQx Output Timing tOV tOV SCLK tOH tOH DQx DQx Input Timing SCLK tSU tH tSU tH DQx Figure 4.20. QSPI DDR Timing Diagrams QSPI DDR Flash Timing Example This example uses timing values for DDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing using the QSPI in DDR mode. • Using a configured SCLK frequency (FSCLK) of 20 MHz from the HFXO clock source: • The resulting minimum half-period, T/2(min) = (1/FSCLK) * 0.44 = 22 ns. • Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.2) = 2.4 ns. • Flash will see a minimum hold time of tOH = T/2 – 19.02 = 22 – 19.02 = 2.98 ns. • Flash can have a maximum output valid time of T/2 – tSU = T/2 – 12.93 = 22 – 12.93 = 9.07 ns. • Flash can have a minimum output hold time of tH = - 0.8 ns. silabs.com | Building a more connected world. Rev. 1.0 | 107 EFM32GG12 Family Data Sheet Electrical Specifications 4.1.28 PDM PDM Timing Timing is specified for all route locations, 10 pF to 25 pF loading on PDM_CLK, and slew rate for PDM_CLK set to 7. Table 4.68. Pulse Density Modulation (PDM) Timing Parameter Symbol Test Condition Min Typ Max Unit PDM_CLK frequency during data transfer FPDM_CLK Microphone mode, VSCALE2 or VSCALE0 — — 4.8 MHz Sensor mode, VSCALE2 — — 20 MHz Sensor mode, VSCALE0 — — 10 MHz 47.5 — 52.5 % PDM_CLK duty cycle DCPDM_CLK PDM_CLK rise time tR — — 7.5 ns PDM_CLK fall time tF — — 7.5 ns Input setup time tISU 20 — — ns Input hold time tIH VSCALE2 3 — — ns VSCALE0 4 — — ns PDM Microphone Mode PDM_CLK tISU PDM_DAT0-3 L tIH tISU R tIH L R L PDM Sensor Mode PDM_CLK tISU tIH PDM_DAT0-3 Figure 4.21. PDM Timing Diagrams 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.0 | 108 EFM32GG12 Family Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.22. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.0 | 109 EFM32GG12 Family Data Sheet Electrical Specifications Figure 4.23. EM0 Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.0 | 110 EFM32GG12 Family Data Sheet Electrical Specifications Figure 4.24. EM1 Sleep Mode Typical Supply Current vs. Temperature Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.0 | 111 EFM32GG12 Family Data Sheet Electrical Specifications Figure 4.25. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.0 | 112 EFM32GG12 Family Data Sheet Electrical Specifications Figure 4.26. EM0 and EM1 Mode Typical Supply Current vs. Supply Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.0 | 113 EFM32GG12 Family Data Sheet Electrical Specifications Figure 4.27. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply silabs.com | Building a more connected world. Rev. 1.0 | 114 EFM32GG12 Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.28. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.0 | 115 EFM32GG12 Family Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 20mV/div offset:1.8V 100mA VSW ILOAD 1mA 2V/div offset:1.8V 100μs/div 10μs/div Figure 4.29. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.0 | 116 EFM32GG12 Family Data Sheet Pin Definitions 5. Pin Definitions 5.1 EFM32GG12B8xx in BGA120 Device Pinout Figure 5.1. EFM32GG12B8xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.1. EFM32GG12B8xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF14 A9 GPIO (5V) PF12 A10 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 117 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs GPIO (5V) PA15 B1 GPIO B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF13 B9 GPIO (5V) PF4 B10 GPIO PF3 B11 GPIO VBUS B12 USB VBUS signal and auxiliary input to 5 V regulator. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 L5 L8 Ground IOVDD1 C6 Digital IO power supply 1. Digital IO power supply 0. VREGI A11 Input to 5 V regulator. PF11 A13 PE13 PF9 C7 GPIO IOVDD0 C9 G3 J11 K3 L4 L9 PF2 C10 GPIO PF1 C11 GPIO (5V) PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PF0 D11 GPIO (5V) PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PC9 E11 GPIO (5V) PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE6 F11 GPIO PE7 F12 GPIO PC8 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO PE3 G11 GPIO PE4 G12 GPIO PE5 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. silabs.com | Building a more connected world. Rev. 1.0 | 118 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) PE2 H12 PD14 J1 PE1 Description GPIO Pin Name Pin(s) Description Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. DECOUPLE H13 GPIO (5V) PD15 J2 GPIO (5V) J12 GPIO (5V) VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V) PC1 K2 GPIO (5V) PE0 K12 GPIO (5V) VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V) PC3 L2 GPIO (5V) PA7 L3 GPIO PB9 L6 GPIO (5V) PB10 L7 GPIO (5V) PD1 L10 GPIO PC6 L11 GPIO PC7 L12 GPIO VREGVSS L13 Voltage regulator VSS PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) PA14 M6 GPIO RESETn M7 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB12 M8 GPIO PD0 M9 GPIO (5V) PD2 M10 GPIO (5V) PD3 M11 GPIO PD4 M12 GPIO PD8 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO BODEN N7 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PB13 N8 GPIO PB14 N9 GPIO AVDD N10 Analog power supply. PD5 N11 GPIO PD6 N12 GPIO PD7 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 119 EFM32GG12 Family Data Sheet Pin Definitions 5.2 EFM32GG12B5xx in BGA120 Device Pinout Figure 5.2. EFM32GG12B5xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.2. EFM32GG12B5xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF14 A9 GPIO (5V) PF12 A10 GPIO (5V) VREGI A11 Input to 5 V regulator. VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.0 | 120 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF11 A13 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF13 B9 GPIO (5V) PF4 B10 GPIO PF3 B11 GPIO NC B12 No Connect. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 L5 L8 Ground IOVDD1 C6 Digital IO power supply 1. Digital IO power supply 0. PF9 C7 GPIO IOVDD0 C9 G3 J11 K3 L4 L9 PF2 C10 GPIO PF1 C11 GPIO (5V) PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PF0 D11 GPIO (5V) PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PC9 E11 GPIO (5V) PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE6 F11 GPIO PE7 F12 GPIO PC8 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO PE3 G11 GPIO PE4 G12 GPIO PE5 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. DECOUPLE H13 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PD15 J2 PE2 H12 PD14 J1 GPIO GPIO (5V) silabs.com | Building a more connected world. GPIO (5V) Rev. 1.0 | 121 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE1 J12 GPIO (5V) VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V) PC1 K2 GPIO (5V) PE0 K12 GPIO (5V) VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V) PC3 L2 GPIO (5V) PA7 L3 GPIO PB9 L6 GPIO (5V) PB10 L7 GPIO (5V) PD1 L10 GPIO PC6 L11 GPIO PC7 L12 GPIO VREGVSS L13 Voltage regulator VSS PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) PA14 M6 GPIO RESETn M7 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB12 M8 GPIO PD0 M9 GPIO (5V) PD2 M10 GPIO (5V) PD3 M11 GPIO PD4 M12 GPIO PD8 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO BODEN N7 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PB13 N8 GPIO PB14 N9 GPIO AVDD N10 Analog power supply. PD5 N11 GPIO PD6 N12 GPIO PD7 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 122 EFM32GG12 Family Data Sheet Pin Definitions 5.3 EFM32GG12B4xx in BGA120 Device Pinout Figure 5.3. EFM32GG12B4xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.3. EFM32GG12B4xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF4 A9 GPIO PF2 A10 GPIO VREGI A11 Input to 5 V regulator. VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.0 | 123 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF11 A13 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF3 B9 GPIO PF1 B10 GPIO (5V) PF12 B11 GPIO (5V) VBUS B12 USB VBUS signal and auxiliary input to 5 V regulator. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 K12 L5 L6 M8 M11 N8 IOVDD1 C6 Digital IO power supply 1. IOVDD0 C9 G3 J11 K3 L4 L7 Digital IO power supply 0. Ground PF9 C7 GPIO PF0 C10 GPIO (5V) PE4 C11 GPIO PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PE5 D11 GPIO PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PE6 E11 GPIO PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE7 F11 GPIO PC8 F12 GPIO (5V) PC9 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO PE0 G11 GPIO (5V) PE1 G12 GPIO (5V) PE3 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. PE2 H12 GPIO PC7 H13 GPIO PD14 J1 GPIO (5V) PD15 J2 silabs.com | Building a more connected world. GPIO (5V) Rev. 1.0 | 124 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description DECOUPLE J13 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. GPIO (5V) PC1 K2 GPIO (5V) GPIO PC2 L1 GPIO (5V) L2 GPIO (5V) PA7 L3 GPIO PB9 L8 GPIO (5V) PB10 L9 GPIO (5V) PD0 L10 GPIO (5V) PD1 L11 GPIO PD4 L12 GPIO PD7 L13 GPIO PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) PA14 M6 GPIO RESETn M7 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. AVDD M9 M10 N11 Analog power supply. PD3 M12 GPIO PD6 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO PB12 N7 GPIO PB13 N9 GPIO PB14 N10 GPIO PD2 N12 GPIO (5V) PD5 N13 GPIO PC6 J12 GPIO PC0 K1 PD8 K13 PC3 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 125 EFM32GG12 Family Data Sheet Pin Definitions 5.4 EFM32GG12B8xx in BGA112 Device Pinout Figure 5.4. EFM32GG12B8xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.4. EFM32GG12B8xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF6 A8 GPIO VREGI A9 Input to 5 V regulator. VREGO A10 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF11 A11 GPIO (5V) PA15 B1 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 126 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD11 B6 GPIO PF9 B7 GPIO PF8 B8 GPIO PC12 B9 GPIO (5V) VBUS B10 USB VBUS signal and auxiliary input to 5 V regulator. PF10 B11 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PF5 C4 GPIO PF4 C5 GPIO PF2 C6 GPIO VSS C7 D4 G3 G9 H6 H9 K4 Ground PF12 C8 GPIO (5V) PE4 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PF3 D6 GPIO IOVDD0 D7 G4 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE5 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE6 E9 GPIO PE3 E10 GPIO PE2 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE7 F9 GPIO PE1 F10 GPIO (5V) DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PB5 G1 GPIO PB6 G2 GPIO PE0 G10 GPIO (5V) VREGVDD G11 Voltage regulator VDD input PC0 H1 GPIO (5V) PC2 H2 GPIO (5V) PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 127 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PD2 H8 GPIO (5V) PC6 H10 GPIO VREGSW H11 DCDC regulator switching node PC1 J1 GPIO (5V) PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PD0 J8 GPIO (5V) PD5 J9 GPIO PC7 J10 GPIO VREGVSS J11 Voltage regulator VSS PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) PA11 K5 GPIO RESETn K6 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB10 K7 GPIO (5V) PD1 K8 GPIO PD3 K9 GPIO PD6 K10 GPIO PD8 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L7 GPIO PB14 L8 GPIO PD4 L9 GPIO AVDD L10 Analog power supply. PD7 L11 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 128 EFM32GG12 Family Data Sheet Pin Definitions 5.5 EFM32GG12B5xx in BGA112 Device Pinout Figure 5.5. EFM32GG12B5xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.5. EFM32GG12B5xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF6 A8 GPIO PF10 A9 GPIO (5V) PC14 A10 GPIO (5V) PC15 A11 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 129 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE8 B4 GPIO PD12 B5 GPIO PD11 B6 GPIO PF9 B7 GPIO PF8 B8 GPIO PF11 B9 GPIO (5V) PC12 B10 GPIO (5V) PC13 B11 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) PF5 C5 GPIO PF4 C6 GPIO VSS C7 D4 G3 G9 H6 H9 K4 Ground PF2 C8 GPIO PE4 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PF3 D6 GPIO IOVDD0 D7 G4 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE5 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE6 E9 GPIO PE3 E10 GPIO PE2 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE7 F9 GPIO PE1 F10 GPIO (5V) DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PB5 G1 GPIO PB6 G2 GPIO PE0 G10 GPIO (5V) VREGVDD G11 Voltage regulator VDD input PC0 H1 GPIO (5V) PC2 H2 GPIO (5V) PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO PD2 H8 GPIO (5V) PC7 H10 GPIO VREGSW H11 DCDC regulator switching node PC1 J1 silabs.com | Building a more connected world. GPIO (5V) Rev. 1.0 | 130 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PD0 J8 GPIO (5V) PD5 J9 GPIO PC6 J10 GPIO VREGVSS J11 Voltage regulator VSS PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) PA11 K5 GPIO RESETn K6 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB10 K7 GPIO (5V) PD1 K8 GPIO PD3 K9 GPIO PD6 K10 GPIO PD8 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L7 GPIO PB14 L8 GPIO PD4 L9 GPIO AVDD L10 Analog power supply. PD7 L11 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 131 EFM32GG12 Family Data Sheet Pin Definitions 5.6 EFM32GG12B4xx in BGA112 Device Pinout Figure 5.6. EFM32GG12B4xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.6. EFM32GG12B4xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PF7 A6 GPIO PF5 A7 GPIO PF12 A8 GPIO (5V) PE4 A9 GPIO PF10 A10 GPIO (5V) PF11 A11 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 132 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE8 B4 GPIO PD11 B5 GPIO PF8 B6 GPIO PF6 B7 GPIO VBUS B8 USB VBUS signal and auxiliary input to 5 V regulator. PE5 B9 GPIO VREGI B10 Input to 5 V regulator. VREGO B11 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) PD12 C5 GPIO PF9 C6 GPIO VSS C7 D4 F9 G3 G9 H6 K4 K7 K10 L7 Ground PF2 C8 GPIO PE6 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO IOVDD0 D7 G4 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE7 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE0 E9 GPIO (5V) PE1 E10 GPIO (5V) PE3 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE2 F10 GPIO DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PB5 G1 GPIO PB6 G2 GPIO PC6 G10 GPIO PC7 G11 GPIO PC0 H1 GPIO (5V) PC2 H2 silabs.com | Building a more connected world. GPIO (5V) Rev. 1.0 | 133 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO PD8 H8 GPIO PD5 H9 GPIO PD6 H10 GPIO PD7 H11 GPIO PC1 J1 GPIO (5V) PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PB10 J8 GPIO (5V) PD2 J9 GPIO (5V) PD3 J10 GPIO PD4 J11 GPIO PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) PA11 K5 GPIO RESETn K6 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. AVDD K8 K9 L10 Analog power supply. PD1 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L8 GPIO PB14 L9 GPIO PD0 L11 GPIO (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 134 EFM32GG12 Family Data Sheet Pin Definitions 5.7 EFM32GG12B3xx in BGA112 Device Pinout Figure 5.7. EFM32GG12B3xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.7. EFM32GG12B3xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PF7 A6 GPIO PF5 A7 GPIO PF4 A8 GPIO PE4 A9 GPIO PC14 A10 GPIO (5V) PC15 A11 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 135 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE8 B4 GPIO PD11 B5 GPIO PF8 B6 GPIO PF6 B7 GPIO PF3 B8 GPIO PE5 B9 GPIO PC12 B10 GPIO (5V) PC13 B11 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) PD12 C5 GPIO PF9 C6 GPIO VSS C7 D4 F9 G3 G9 H6 K4 K7 K10 L7 Ground PF2 C8 GPIO PE6 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO IOVDD0 D7 G4 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE7 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE0 E9 GPIO (5V) PE1 E10 GPIO (5V) PE3 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE2 F10 GPIO DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PB5 G1 GPIO PB6 G2 GPIO PC6 G10 GPIO PC7 G11 GPIO PC0 H1 GPIO (5V) PC2 H2 GPIO (5V) PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO PD8 H8 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 136 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PD5 H9 GPIO PD6 H10 GPIO PD7 H11 GPIO PC1 J1 GPIO (5V) PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PB10 J8 GPIO (5V) PD2 J9 GPIO (5V) PD3 J10 GPIO PD4 J11 GPIO PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) PA11 K5 GPIO RESETn K6 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. AVDD K8 K9 L10 Analog power supply. PD1 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L8 GPIO PB14 L9 GPIO PD0 L11 GPIO (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.0 | 137 EFM32GG12 Family Data Sheet Pin Definitions 5.8 EFM32GG12B8xx in QFP100 Device Pinout Figure 5.8. EFM32GG12B8xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.8. EFM32GG12B8xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.0 | 138 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 59 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 45 GPIO (5V) PD1 46 GPIO PD2 47 GPIO (5V) PD3 48 GPIO PD4 49 GPIO PD5 50 GPIO PD6 51 GPIO PD7 52 GPIO PD8 53 GPIO PC7 54 GPIO VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply. DECOUPLE 60 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.0 | 139 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) PF2 78 GPIO VBUS 79 USB VBUS signal and auxiliary input to 5 V regulator. PF12 80 GPIO (5V) PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 140 EFM32GG12 Family Data Sheet Pin Definitions 5.9 EFM32GG12B5xx in QFP100 Device Pinout Figure 5.9. EFM32GG12B5xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.9. EFM32GG12B5xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.0 | 141 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 59 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 45 GPIO (5V) PD1 46 GPIO PD2 47 GPIO (5V) PD3 48 GPIO PD4 49 GPIO PD5 50 GPIO PD6 51 GPIO PD7 52 GPIO PD8 53 GPIO PC7 54 GPIO VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply. DECOUPLE 60 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.0 | 142 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) PF2 78 GPIO NC 79 No Connect. PF12 80 GPIO (5V) PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 143 EFM32GG12 Family Data Sheet Pin Definitions 5.10 EFM32GG12B4xx in QFP100 Device Pinout Figure 5.10. EFM32GG12B4xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.10. EFM32GG12B4xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.0 | 144 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 58 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 45 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 46 GPIO (5V) PD1 47 GPIO PD2 48 GPIO (5V) PD3 49 GPIO PD4 50 GPIO PD5 51 GPIO PD6 52 GPIO PD7 53 GPIO PD8 54 GPIO PC6 55 GPIO PC7 56 GPIO DVDD 57 Digital power supply. DECOUPLE 59 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE0 60 GPIO (5V) PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. silabs.com | Building a more connected world. Rev. 1.0 | 145 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) PF2 78 GPIO VBUS 79 USB VBUS signal and auxiliary input to 5 V regulator. PF12 80 GPIO (5V) PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 146 EFM32GG12 Family Data Sheet Pin Definitions 5.11 EFM32GG12B3xx in QFP100 Device Pinout Figure 5.11. EFM32GG12B3xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.11. EFM32GG12B3xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.0 | 147 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 58 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 45 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 46 GPIO (5V) PD1 47 GPIO PD2 48 GPIO (5V) PD3 49 GPIO PD4 50 GPIO PD5 51 GPIO PD6 52 GPIO PD7 53 GPIO PD8 54 GPIO PC6 55 GPIO PC7 56 GPIO DVDD 57 Digital power supply. DECOUPLE 59 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE0 60 GPIO (5V) PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) PC12 72 GPIO (5V) PC13 73 GPIO (5V) PC14 74 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 148 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC15 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) PF2 78 GPIO PF3 79 GPIO PF4 80 GPIO PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 149 EFM32GG12 Family Data Sheet Pin Definitions 5.12 EFM32GG12B8xx in QFP64 Device Pinout Figure 5.12. EFM32GG12B8xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.12. EFM32GG12B8xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 27 55 Digital IO power supply 0. VSS 8 23 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 150 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD8 35 GPIO VREGVSS 36 Voltage regulator VSS VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. DVDD 39 Digital power supply. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO (5V) PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 151 EFM32GG12 Family Data Sheet Pin Definitions 5.13 EFM32GG12B5xx in QFP64 Device Pinout Figure 5.13. EFM32GG12B5xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.13. EFM32GG12B5xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 27 55 Digital IO power supply 0. VSS 8 23 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 152 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. DVDD 41 Digital power supply. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 153 EFM32GG12 Family Data Sheet Pin Definitions 5.14 EFM32GG12B4xx in QFP64 Device Pinout Figure 5.14. EFM32GG12B4xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.14. EFM32GG12B4xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 154 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO (5V) PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO (5V) PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 155 EFM32GG12 Family Data Sheet Pin Definitions 5.15 EFM32GG12B1xx in QFP64 Device Pinout Figure 5.15. EFM32GG12B1xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.15. EFM32GG12B1xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) PC3 12 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 156 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PC8 41 GPIO (5V) PC9 42 GPIO (5V) PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 157 EFM32GG12 Family Data Sheet Pin Definitions 5.16 EFM32GG12B8xx in QFN64 Device Pinout Figure 5.16. EFM32GG12B8xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.16. EFM32GG12B8xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 27 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 158 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA13 19 GPIO (5V) PA14 20 GPIO RESETn 21 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 22 GPIO PB12 23 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD8 35 GPIO VREGVSS 36 Voltage regulator VSS VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. DVDD 39 Digital power supply. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO (5V) PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 159 EFM32GG12 Family Data Sheet Pin Definitions 5.17 EFM32GG12B5xx in QFN64 Device Pinout Figure 5.17. EFM32GG12B5xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.17. EFM32GG12B5xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 27 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 160 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA13 19 GPIO (5V) PA14 20 GPIO RESETn 21 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 22 GPIO PB12 23 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. DVDD 41 Digital power supply. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 161 EFM32GG12 Family Data Sheet Pin Definitions 5.18 EFM32GG12B4xx in QFN64 Device Pinout Figure 5.18. EFM32GG12B4xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.18. EFM32GG12B4xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 162 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO (5V) PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO (5V) PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 163 EFM32GG12 Family Data Sheet Pin Definitions 5.19 EFM32GG12B1xx in QFN64 Device Pinout Figure 5.19. EFM32GG12B1xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.19. EFM32GG12B1xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 164 EFM32GG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC3 12 GPIO (5V) PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. PC8 41 GPIO (5V) PC9 42 GPIO (5V) PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 165 EFM32GG12 Family Data Sheet Pin Definitions 5.20 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.21 Alternate Functionality Overview for a list of GPIO locations available for each function. Table 5.20. GPIO Functionality Table GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication SDIO_DAT0 #1 BUSBY PA0 BUSAX LCD_SEG13 TIM0_CC0 #0 US1_RX #5 EBI_AD09 #0 TIM0_CC1 #7 US3_TX #0 EBI_CSTFT #3 TIM3_CC0 #4 QSPI0_CS0 #1 PCNT0_S0IN #4 LEU0_RX #4 I2C0_SDA #0 BUSAY PA1 BUSBX LCD_SEG14 BUSBY PA2 BUSAX LCD_SEG15 TIM0_CC0 #7 SDIO_DAT1 #1 EBI_AD10 #0 TIM0_CC1 #0 US3_RX #0 EBI_DCLK #3 TIM3_CC1 #4 QSPI0_CS1 #1 PCNT0_S1IN #4 I2C0_SCL #0 Other PDM_CLK #0 CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0 PDM_DAT0 #0 CMU_CLK1 #0 PRS_CH1 #0 SDIO_DAT2 #1 PDM_DAT1 #0 EBI_AD11 #0 TIM0_CC2 #0 US1_RX #6 CMU_CLK0 #0 EBI_DTEN #3 TIM3_CC2 #4 US3_CLK #0 PRS_CH8 #1 QSPI0_DQ0 #1 ETM_TD0 #3 CMU_CLK2 #1 BUSAY PA3 BUSBX LCD_SEG16 SDIO_DAT3 #1 EBI_AD12 #0 TIM0_CDTI0 #0 US3_CS #0 EBI_VSNC #3 TIM3_CC0 #5 U0_TX #2 QSPI0_DQ1 #1 CMU_CLKI0 #1 PDM_DAT2 #0 CMU_CLK2 #4 LES_ALTEX2 PRS_CH9 #1 ETM_TD1 #3 BUSBY PA4 BUSAX LCD_SEG17 SDIO_DAT4 #1 EBI_AD13 #0 TIM0_CDTI1 #0 US3_CTS #0 EBI_HSNC #3 TIM3_CC1 #5 U0_RX #2 QSPI0_DQ2 #1 PDM_DAT3 #0 LES_ALTEX3 ETM_TD2 #3 SDIO_DAT5 #1 BUSAY PA5 BUSBX LCD_SEG18 EBI_AD14 #0 TIM0_CDTI2 #0 US3_RTS #0 LES_ALTEX4 TIM3_CC2 #5 U0_CTS #2 ACMP1_O #7 PCNT1_S0IN #0 QSPI0_DQ3 #1 ETM_TD3 #3 LEU1_TX #1 silabs.com | Building a more connected world. Rev. 1.0 | 166 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI TIM3_CC0 #6 BUSBY PA6 BUSAX EBI_AD15 #0 LCD_SEG19 PA7 PA8 PA9 PA10 PA11 PA12 LETIM1_OUT1 #0 BUSAY EBI_AD13 #1 TIM0_CC2 #5 BUSBX EBI_A01 #3 LETIM1_OUT0 #0 LCD_SEG35 EBI_CSTFT #0 PCNT1_S0IN #4 BUSBY EBI_AD14 #1 BUSAX EBI_A02 #3 LCD_SEG36 EBI_DCLK #0 BUSAY EBI_AD15 #1 TIM2_CC1 #0 BUSBX EBI_A03 #3 TIM0_CC1 #6 LCD_SEG37 EBI_DTEN #0 LETIM0_OUT1 #6 BUSBY EBI_CS0 #1 BUSAX EBI_A04 #3 LCD_SEG38 EBI_VSNC #0 BUSAY EBI_CS1 #1 BUSBX EBI_A05 #3 LCD_SEG39 EBI_HSNC #0 US2_TX #2 US4_CTS #0 US4_RTS #0 Other PRS_CH6 #0 ACMP0_O #4 ETM_TCLK #3 GPIO_EM4WU1 PRS_CH7 #1 PRS_CH8 #0 PCNT1_S1IN #4 TIM2_CC2 #0 TIM0_CC2 #6 LETIM1_OUT0 #1 WTIM0_CDTI0 #2 BUSAX EBI_A00 #0 LETIM1_OUT0 #2 EBI_A06 #3 PCNT1_S0IN #5 EBI_A01 #0 LEU1_RX #1 LETIM0_OUT0 #6 EBI_REn #2 BUSBX U0_RTS #2 US2_RX #2 BUSBY EBI_NANDWEn #2 SDIO_CD #2 TIM0_CC0 #6 TIM2_CC0 #1 BUSAY Communication TIM2_CC0 #0 EBI_CS2 #1 EBI_A07 #3 PA14 WTIM0_CC0 #1 PCNT1_S1IN #0 EBI_WEn #1 PA13 Timers US2_CLK #2 PRS_CH9 #0 US2_CS #2 PRS_CH10 #0 US2_CTS #2 PRS_CH11 #0 CAN1_RX #5 CMU_CLK0 #5 US0_CLK #5 PRS_CH12 #0 US2_RTS #2 ACMP1_O #3 TIM0_CC2 #7 TIM2_CC1 #1 CAN1_TX #5 WTIM0_CDTI1 #2 US0_CS #5 LETIM1_OUT1 #1 US2_TX #3 PDM_DAT3 #3 PRS_CH13 #0 PCNT1_S1IN #5 BUSBY EBI_REn #1 TIM2_CC2 #1 US1_TX #6 BUSAX EBI_A02 #0 WTIM0_CDTI2 #2 US2_RX #3 LCD_BEXT EBI_A08 #3 LETIM1_OUT1 #2 US3_RTS #2 EBI_AD08 #0 TIM3_CC2 #0 US2_CLK #3 PRS_CH14 #0 ACMP1_O #4 BUSAY PA15 BUSBX PRS_CH15 #0 LCD_SEG12 silabs.com | Building a more connected world. Rev. 1.0 | 167 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other TIM2_CDTI0 #0 PB0 BUSBY EBI_AD00 #1 BUSAX EBI_CS0 #3 LCD_SEG32 EBI_A16 #0 TIM1_CC0 #2 TIM3_CC2 #7 WTIM0_CC0 #5 LEU1_TX #3 PRS_CH4 #1 ACMP0_O #5 PCNT0_S0IN #5 PCNT1_S1IN #2 TIM2_CDTI1 #0 PB1 BUSAY EBI_AD01 #1 TIM1_CC1 #2 BUSBX EBI_CS1 #3 WTIM0_CC1 #5 LCD_SEG33 EBI_A17 #0 LETIM1_OUT1 #5 LEU1_RX #3 PRS_CH5 #1 US1_CS #6 ACMP0_O #6 PCNT0_S1IN #5 PB2 BUSBY EBI_AD02 #1 BUSAX EBI_CS2 #3 LCD_SEG34 EBI_A18 #0 BUSAY PB3 BUSBX LCD_SEG20 / LCD_COM4 BUSBY PB4 BUSAX LCD_SEG21 / LCD_COM5 BUSAY PB5 BUSBX LCD_SEG22 / LCD_COM6 BUSBY PB6 BUSAX LCD_SEG23 / LCD_COM7 TIM2_CDTI2 #0 TIM1_CC2 #2 WTIM0_CC2 #5 LETIM1_OUT0 #5 EBI_AD03 #1 TIM1_CC3 #2 EBI_CS3 #3 WTIM0_CC0 #6 EBI_A19 #0 PCNT1_S0IN #1 EBI_AD04 #1 EBI_ARDY #3 EBI_A20 #0 ACMP0_O #7 QSPI0_DQ4 #1 US2_RX #1 PCNT1_S1IN #1 QSPI0_DQ5 #1 LEU1_TX #4 EBI_ALE #3 LETIM1_OUT0 #4 EBI_A21 #0 PCNT0_S0IN #6 EBI_A22 #0 US3_TX #2 WTIM0_CC1 #6 WTIM0_CC2 #6 EBI_WEn #3 US2_TX #1 SDIO_DAT7 #1 EBI_AD05 #1 EBI_AD06 #1 SDIO_DAT6 #1 TIM0_CC0 #3 TIM2_CC0 #4 LETIM1_OUT1 #4 PCNT0_S1IN #6 US0_RTS #4 US2_CLK #1 QSPI0_DQ6 #1 LEU1_RX #4 US0_CTS #4 US2_CS #1 PRS_CH12 #1 QSPI0_DQ7 #1 US0_TX #4 PB7 LFXTAL_P TIM0_CDTI0 #4 TIM1_CC0 #3 US1_CLK #0 US3_RX #2 US4_TX #0 U0_CTS #4 silabs.com | Building a more connected world. Rev. 1.0 | 168 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other US0_RX #4 PB8 LFXTAL_N TIM0_CDTI1 #4 US1_CS #0 TIM1_CC1 #3 US4_RX #0 CMU_CLKI0 #2 U0_RTS #4 EBI_ALE #1 PB9 BUSAY BUSBX SDIO_WP #3 EBI_NANDREn #2 EBI_A00 #1 LETIM0_OUT0 #7 EBI_A03 #0 PB10 BUSAX EBI_A04 #0 LETIM0_OUT1 #7 EBI_A10 #3 BUSAY PB11 PB12 CAN0_TX #3 PDM_DAT1 #3 US1_RTS #0 PRS_CH9 #2 US2_CTS #3 ACMP1_O #6 U1_RX #2 TIM0_CDTI2 #4 US0_CTS #5 CMU_CLK1 #5 TIM1_CC2 #3 US1_CLK #5 CMU_CLKI0 #7 VDAC0_OUT0 / OPA0_OUT EBI_A02 #1 LETIM0_OUT0 #1 US2_CS #3 PDM_DAT0 #3 EBI_A11 #3 PCNT0_S1IN #7 U1_CTS #2 ACMP0_O #3 IDAC0_OUT PCNT1_S0IN #6 I2C1_SDA #1 GPIO_EM4WU7 BUSBY TIM1_CC3 #3 BUSAX EBI_A03 #1 LETIM0_OUT1 #1 VDAC0_OUT1 / OPA1_OUT EBI_A12 #3 PCNT0_S0IN #7 PCNT1_S1IN #6 WTIM1_CC0 #0 BUSBX PCNT2_S0IN #2 BUSBY WTIM1_CC1 #0 BUSAX PCNT2_S1IN #2 HFXTAL_N PB15 ACMP1_O #5 EBI_BL1 #2 HFXTAL_P PB14 PRS_CH13 #1 BUSBX BUSAY PB13 PDM_DAT2 #3 SDIO_CD #3 EBI_BL0 #2 EBI_A01 #1 US1_CTS #0 U1_TX #2 EBI_A09 #3 BUSBY CAN0_RX #3 BUSAY EBI_CS3 #1 BUSBX EBI_ARDY #2 silabs.com | Building a more connected world. TIM3_CC1 #7 US2_CTS #1 U1_RTS #2 PDM_CLK #3 I2C1_SCL #1 US0_CLK #4 US1_CTS #5 LEU0_TX #1 CMU_CLKI0 #3 PRS_CH7 #0 US0_CS #4 US1_RTS #5 PRS_CH6 #1 LEU0_RX #1 SDIO_WP #2 US2_RTS #1 ETM_TD2 #1 Rev. 1.0 | 169 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other CAN0_RX #0 VDAC0_OUT0ALT / OPA0_OUTALT #0 PC0 BUSACMP0Y BUSACMP0X EBI_AD07 #1 EBI_CS0 #2 EBI_REn #3 EBI_A23 #0 US0_TX #5 TIM0_CC1 #3 US1_TX #0 TIM2_CC1 #4 US1_CS #4 PCNT0_S0IN #2 US2_RTS #0 LES_CH0 PRS_CH2 #0 US3_CS #3 I2C0_SDA #4 CAN0_TX #0 VDAC0_OUT0ALT / OPA0_OUTALT #1 PC1 BUSACMP0Y BUSACMP0X EBI_AD08 #1 TIM0_CC2 #3 EBI_CS1 #2 TIM2_CC2 #4 EBI_BL0 #3 WTIM0_CC0 #7 EBI_A24 #0 PCNT0_S1IN #2 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 LES_CH1 PRS_CH3 #0 US3_RTS #1 I2C0_SCL #4 PC2 PC3 VDAC0_OUT0ALT / OPA0_OUTALT #2 EBI_AD09 #1 TIM0_CDTI0 #3 CAN1_RX #0 EBI_CS2 #2 TIM2_CC0 #5 US1_RX #4 LES_CH2 BUSACMP0Y EBI_NANDWEn #3 WTIM0_CC1 #7 US2_TX #0 PRS_CH10 #1 BUSACMP0X EBI_A25 #0 LETIM1_OUT0 #3 QSPI0_RST0 #1 VDAC0_OUT0ALT / OPA0_OUTALT #3 EBI_AD10 #1 TIM0_CDTI1 #3 CAN1_TX #0 EBI_CS3 #2 TIM2_CC1 #5 US1_CLK #4 LES_CH3 BUSACMP0Y EBI_BL1 #3 WTIM0_CC2 #7 US2_RX #0 PRS_CH11 #1 BUSACMP0X EBI_NANDREn #0 LETIM1_OUT1 #3 QSPI0_RST1 #1 BUSACMP0Y PC4 BUSACMP0X OPA0_P EBI_AD11 #1 EBI_ALE #2 EBI_NANDREn #3 EBI_A26 #0 TIM0_CC0 #5 TIM0_CDTI2 #3 TIM2_CC2 #5 LETIM0_OUT0 #3 PCNT1_S0IN #3 SDIO_CD #1 US2_CLK #0 US4_CLK #0 LES_CH4 U0_TX #4 GPIO_EM4WU6 U1_CTS #4 I2C1_SDA #0 SDIO_WP #1 BUSACMP0Y PC5 BUSACMP0X OPA0_N EBI_AD12 #1 EBI_WEn #2 EBI_NANDWEn #0 EBI_A00 #3 TIM0_CC1 #5 LETIM0_OUT1 #3 PCNT1_S1IN #3 US2_CS #0 US4_CS #0 U0_RX #4 LES_CH5 U1_RTS #4 I2C1_SCL #0 silabs.com | Building a more connected world. Rev. 1.0 | 170 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers US0_RTS #2 BUSACMP0Y PC6 BUSACMP0X EBI_A05 #0 WTIM1_CC3 #2 OPA3_P PC7 PC8 PC9 PC10 PC11 EBI_A06 #0 BUSACMP0X EBI_A13 #1 OPA3_N EBI_A21 #3 BUSACMP1X EBI_A20 #1 BUSACMP1X EBI_A27 #3 BUSACMP1Y BUSACMP1X US0_CTS #2 WTIM1_CC0 #3 US1_RTS #3 LEU1_RX #0 I2C0_SCL #2 TIM2_CC0 #2 US0_CS #2 EBI_A26 #3 EBI_A21 #1 BUSACMP1X LEU1_TX #0 EBI_A15 #0 BUSACMP1Y BUSACMP1Y US1_CTS #3 I2C0_SDA #2 BUSACMP0Y BUSACMP1Y Communication EBI_A22 #1 TIM2_CC1 #2 TIM2_CC2 #2 CAN1_RX #3 US0_CLK #2 CAN1_TX #3 US0_RX #2 EBI_ALE #4 CAN1_TX #4 EBI_ALE #5 US0_TX #2 EBI_A23 #1 I2C1_SDA #4 Other LES_CH6 PRS_CH14 #1 ETM_TCLK #2 LES_CH7 PRS_CH15 #1 ETM_TD0 #2 LES_CH8 PRS_CH4 #0 LES_CH9 PRS_CH5 #0 GPIO_EM4WU2 LES_CH10 LES_CH11 CAN1_RX #4 PC12 US0_RTS #3 VDAC0_OUT1ALT / OPA1_OUTALT #0 TIM1_CC3 #0 US1_CTS #4 CMU_CLK0 #1 BUSACMP1Y PCNT2_S0IN #4 US2_CTS #4 LES_CH12 BUSACMP1X U0_RTS #3 U1_TX #0 VDAC0_OUT1ALT / OPA1_OUTALT #1 PC13 BUSACMP1Y BUSACMP1X silabs.com | Building a more connected world. EBI_ARDY #4 TIM0_CDTI0 #1 US0_CTS #3 TIM1_CC0 #0 US1_RTS #4 TIM1_CC2 #4 US2_RTS #4 PCNT0_S0IN #0 U0_CTS #3 PCNT2_S1IN #4 U1_RX #0 LES_CH13 Rev. 1.0 | 171 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other US0_CS #3 VDAC0_OUT1ALT / OPA1_OUTALT #2 PC14 BUSACMP1Y EBI_NANDWEn #4 BUSACMP1X TIM0_CDTI1 #1 US1_CS #3 TIM1_CC1 #0 US2_RTS #3 TIM1_CC3 #4 US3_CS #2 LETIM0_OUT0 #5 U0_TX #3 PCNT0_S1IN #0 U1_CTS #0 LES_CH14 PRS_CH0 #2 LEU0_TX #5 US0_CLK #3 VDAC0_OUT1ALT / OPA1_OUTALT #3 PC15 BUSACMP1Y EBI_NANDREn #4 BUSACMP1X TIM0_CDTI2 #1 US1_CLK #3 TIM1_CC2 #0 US3_RTS #3 WTIM0_CC0 #4 U0_RX #3 LETIM0_OUT1 #5 U1_RTS #0 LES_CH15 PRS_CH1 #2 DBG_SWO #1 LEU0_RX #5 VDAC0_OUT0ALT / OPA0_OUTALT #4 PD0 OPA2_OUTALT BUSADC0Y EBI_A04 #1 WTIM1_CC2 #0 EBI_A13 #3 PCNT2_S0IN #0 CAN0_RX #2 US1_TX #1 PDM_CLK #4 USB_VBUSEN #2 BUSADC0X VDAC0_OUT1ALT / OPA1_OUTALT #4 PD1 BUSADC0Y BUSADC0X EBI_A05 #1 EBI_A14 #3 TIM0_CC0 #2 CAN0_TX #2 PDM_DAT0 #4 US1_RX #1 DBG_SWO #2 TIM0_CC1 #2 US1_CLK #1 PDM_DAT1 #4 WTIM1_CC0 #1 LEU1_TX #2 DBG_SWO #3 CAN1_RX #2 PDM_DAT2 #4 US1_CS #1 ETM_TD1 #0 LEU1_RX #2 ETM_TD1 #2 CAN1_TX #2 CMU_CLKI0 #0 US1_CTS #1 PDM_DAT3 #4 US3_CLK #2 PRS_CH10 #2 LEU0_TX #0 ETM_TD2 #0 I2C1_SDA #3 ETM_TD2 #2 WTIM1_CC3 #0 PCNT2_S1IN #0 OPA3_OUT PD2 BUSADC0Y BUSADC0X BUSADC0Y PD3 BUSADC0X OPA2_N BUSADC0Y PD4 BUSADC0X OPA2_P silabs.com | Building a more connected world. EBI_A06 #1 EBI_A15 #3 EBI_A27 #0 EBI_A07 #1 TIM0_CC2 #2 EBI_A16 #3 WTIM1_CC1 #1 EBI_A08 #1 WTIM0_CDTI0 #4 EBI_A17 #3 WTIM1_CC2 #1 Rev. 1.0 | 172 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog BUSADC0Y PD5 BUSADC0X OPA2_OUT EBI EBI_A09 #1 WTIM0_CDTI1 #4 U0_CTS #5 EBI_A18 #3 WTIM1_CC3 #1 LEU0_RX #0 I2C1_SCL #3 TIM1_CC0 #4 BUSADC0X ADC0_EXTP EBI_A10 #1 VDAC0_EXT EBI_A19 #3 ADC1_EXTP BUSADC0Y PD7 ADC0_EXTN ADC1_EXTN WTIM0_CDTI2 #4 WTIM1_CC0 #2 LETIM0_OUT0 #0 PCNT0_S0IN #3 OPA1_P BUSADC0X Communication US1_RTS #1 BUSADC0Y PD6 Timers US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1 Other PRS_CH11 #2 ETM_TD3 #0 ETM_TD3 #2 CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2 ACMP0_O #2 ETM_TD0 #0 TIM1_CC1 #4 US1_TX #2 CMU_CLK0 #2 EBI_A11 #1 WTIM1_CC1 #2 US3_CLK #1 LES_ALTEX1 EBI_A20 #3 LETIM0_OUT1 #0 U0_TX #6 ACMP1_O #2 PCNT0_S1IN #3 I2C0_SCL #1 ETM_TCLK #0 OPA1_N CMU_CLK1 #1 PD8 BU_VIN EBI_A12 #1 WTIM1_CC2 #2 US2_RTS #5 PRS_CH12 #2 ACMP2_O #0 PD9 PD10 PD11 LCD_SEG28 LCD_SEG29 LCD_SEG30 SDIO_DAT7 #0 EBI_CS0 #0 QSPI0_DQ0 #0 EBI_DTEN #1 PDM_DAT3 #2 US4_TX #1 SDIO_DAT6 #0 EBI_CS1 #0 QSPI0_DQ1 #0 EBI_VSNC #1 US4_RX #1 CMU_CLK2 #5 CMU_CLKI0 #5 SDIO_DAT5 #0 EBI_CS2 #0 QSPI0_DQ2 #0 EBI_HSNC #1 US4_CLK #1 SDIO_DAT4 #0 PD12 LCD_SEG31 EBI_CS3 #0 QSPI0_DQ3 #0 US4_CS #1 TIM2_CDTI0 #1 PD13 EBI_ARDY #1 TIM3_CC1 #6 US4_CTS #1 ETM_TD1 #1 WTIM0_CC1 #1 PD14 silabs.com | Building a more connected world. EBI_NANDWEn #1 TIM2_CDTI1 #1 CAN0_RX #5 TIM3_CC2 #6 US4_RTS #1 WTIM0_CC2 #1 I2C0_SDA #3 Rev. 1.0 | 173 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other TIM2_CDTI2 #1 PD15 EBI_NANDREn #1 TIM3_CC0 #7 CAN0_TX #5 WTIM0_CDTI0 #1 I2C0_SCL #3 PCNT1_S0IN #2 PE0 PE1 PE2 PE3 BUSDY BUSCX BUSCY BUSDX BU_VOUT BU_STAT EBI_A07 #0 EBI_A08 #0 TIM3_CC0 #1 CAN0_RX #6 WTIM1_CC1 #3 U0_TX #1 PCNT0_S0IN #1 I2C1_SDA #2 TIM3_CC1 #1 CAN0_TX #6 WTIM1_CC2 #3 U0_RX #1 PCNT0_S1IN #1 I2C1_SCL #2 EBI_A09 #0 TIM3_CC2 #1 EBI_A14 #1 WTIM1_CC3 #3 EBI_A10 #0 TIM3_CC0 #2 EBI_A15 #1 WTIM1_CC0 #4 ACMP2_O #1 CMU_CLKI0 #4 ACMP2_O #2 US0_RTS #1 U0_CTS #1 ACMP0_O #1 U1_TX #3 US0_CTS #1 U0_RTS #1 ACMP1_O #1 U1_RX #3 US0_CS #1 US1_CS #5 PE4 BUSDY EBI_A11 #0 TIM3_CC1 #2 US3_CS #1 BUSCX EBI_A16 #1 WTIM0_CC0 #0 U0_RX #6 LCD_COM0 EBI_A22 #3 WTIM1_CC1 #4 U1_CTS #3 I2C0_SDA #7 USB_VBUSEN #1 PE5 PE6 PE7 BUSCY EBI_A12 #0 BUSDX EBI_A17 #1 LCD_COM1 EBI_A23 #3 TIM3_CC0 #3 TIM3_CC2 #2 WTIM0_CC1 #0 WTIM1_CC2 #4 BUSDY EBI_A13 #0 TIM3_CC1 #3 BUSCX EBI_A18 #1 WTIM0_CC2 #0 LCD_COM2 EBI_A24 #3 WTIM1_CC3 #4 BUSCY EBI_A14 #0 BUSDX EBI_A19 #1 LCD_COM3 EBI_A25 #3 silabs.com | Building a more connected world. US0_CLK #1 US1_CLK #6 US3_CTS #1 U1_RTS #3 I2C0_SCL #7 US0_RX #1 US3_TX #1 TIM3_CC2 #3 US0_TX #1 WTIM1_CC0 #5 US3_RX #1 PRS_CH6 #2 PRS_CH7 #2 Rev. 1.0 | 174 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog BUSDY PE8 BUSCX LCD_SEG4 BUSCY PE9 BUSDX LCD_SEG5 BUSDY PE10 BUSCX LCD_SEG6 BUSCY PE11 BUSDX LCD_SEG7 EBI Timers Communication Other EBI_AD00 #0 TIM2_CDTI0 #2 SDIO_DAT3 #0 PDM_CLK #1 EBI_CS0 #4 PCNT2_S0IN #1 QSPI0_DQ4 #0 PRS_CH3 #1 SDIO_DAT2 #0 PDM_DAT0 #1 QSPI0_DQ5 #0 PRS_CH8 #2 SDIO_DAT1 #0 PDM_DAT1 #1 QSPI0_DQ6 #0 PRS_CH2 #2 US0_TX #0 GPIO_EM4WU9 EBI_AD01 #0 EBI_CS1 #4 EBI_AD02 #0 TIM1_CC0 #1 EBI_CS2 #4 WTIM0_CDTI0 #0 EBI_AD03 #0 TIM1_CC1 #1 EBI_CS3 #4 WTIM0_CDTI1 #0 TIM1_CC2 #1 BUSDY PE12 BUSCX EBI_AD04 #0 LCD_SEG8 BUSDX TIM2_CC1 #3 WTIM0_CDTI2 #0 LETIM0_OUT0 #4 BUSCY PE13 PCNT2_S1IN #1 EBI_AD05 #0 LCD_SEG9 SDIO_DAT0 #0 QSPI0_DQ7 #0 US0_RX #0 SDIO_CMD #0 US0_RX #3 US0_CLK #0 U1_TX #4 I2C0_SDA #6 LES_ALTEX5 PDM_DAT2 #1 PRS_CH3 #2 ETM_TCLK #4 CMU_CLK1 #2 CMU_CLKI0 #6 LES_ALTEX6 PDM_DAT3 #1 PRS_CH1 #3 ETM_TD0 #4 SDIO_CLK #0 LES_ALTEX7 TIM1_CC3 #1 US0_TX #3 PRS_CH2 #3 TIM2_CC2 #3 US0_CS #0 ACMP0_O #0 LETIM0_OUT1 #4 U1_RX #4 ETM_TD1 #4 I2C0_SCL #6 GPIO_EM4WU5 QSPI0_RST0 #0 BUSDY PE14 BUSCX EBI_AD06 #0 LCD_SEG10 TIM2_CDTI1 #2 TIM3_CC0 #0 SDIO_CLK #1 US0_CTS #0 QSPI0_SCLK #1 PRS_CH13 #2 ETM_TD2 #4 LEU0_TX #2 QSPI0_RST1 #0 BUSCY PE15 BUSDX LCD_SEG11 EBI_AD07 #0 TIM2_CDTI2 #2 TIM3_CC1 #0 SDIO_CMD #1 US0_RTS #0 QSPI0_DQS #1 PRS_CH14 #2 ETM_TD3 #4 LEU0_RX #2 silabs.com | Building a more connected world. Rev. 1.0 | 175 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other US2_TX #5 PF0 BUSDY BUSCX EBI_A24 #1 TIM0_CC0 #4 CAN0_RX #1 PRS_CH15 #2 WTIM0_CC1 #4 US1_CLK #2 DBG_SWCLKTCK LETIM0_OUT0 #2 LEU0_TX #3 BOOT_TX I2C0_SDA #5 US2_RX #5 PF1 BUSCY BUSDX TIM0_CC1 #4 EBI_A25 #1 WTIM0_CC2 #4 LETIM0_OUT1 #2 CAN1_RX #1 PRS_CH4 #2 US1_CS #2 DBG_SWDIOTMS U0_TX #5 GPIO_EM4WU3 LEU0_RX #3 BOOT_RX I2C0_SCL #5 BUSDY PF2 BUSCX LCD_SEG0 EBI_ARDY #0 EBI_A26 #1 BUSCY PF3 BUSDX EBI_ALE #0 LCD_SEG1 BUSDY PF4 BUSCX LCD_SEG2 PF5 PF6 LCD_SEG3 EBI_A27 #1 BUSCY PF7 BUSDX LCD_SEG25 silabs.com | Building a more connected world. EBI_BL0 #5 PRS_CH0 #3 US1_TX #5 ACMP1_O #0 U0_RX #5 DBG_TDO LEU0_TX #4 DBG_SWO #0 I2C1_SCL #4 GPIO_EM4WU4 TIM1_CC1 #5 US1_CTS #2 US2_CS #5 PRS_CH2 #1 TIM1_CC3 #6 USB_VBUSEN #0 DBG_TDI US2_TX #4 TIM0_CC0 #1 QSPI0_SCLK #0 US1_TX #3 EBI_BL1 #0 US2_RX #4 EBI_DCLK #1 ETM_TD3 #1 TIM0_CDTI2 #2 U0_TX #0 EBI_BL1 #5 PRS_CH0 #1 PRS_CH1 #1 EBI_CSTFT #1 EBI_BL1 #4 CMU_CLK1 #4 US1_RTS #2 EBI_BL0 #0 EBI_BL0 #4 CAN0_TX #1 CAN1_TX #1 TIM1_CC2 #5 EBI_REn #5 CMU_CLK0 #4 TIM0_CDTI0 #2 EBI_WEn #5 BUSDX LCD_SEG24 TIM2_CC0 #3 TIM0_CDTI1 #2 EBI_REn #0 BUSCX TIM1_CC0 #5 EBI_WEn #0 BUSCY BUSDY TIM0_CC2 #4 US2_CLK #5 TIM0_CC1 #1 QSPI0_CS0 #0 US1_RX #3 PDM_CLK #2 PDM_DAT0 #2 U0_RX #0 Rev. 1.0 | 176 EFM32GG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other US2_CLK #4 BUSDY PF8 BUSCX LCD_SEG26 EBI_WEn #4 EBI_BL0 #1 TIM0_CC2 #1 QSPI0_CS1 #0 PDM_DAT1 #2 SDIO_CD #0 ETM_TCLK #1 U0_CTS #0 GPIO_EM4WU8 U1_RTS #1 US2_CS #4 BUSCY PF9 BUSDX LCD_SEG27 QSPI0_DQS #0 EBI_REn #4 SDIO_WP #0 EBI_BL1 #1 U0_RTS #0 PDM_DAT2 #2 ETM_TD0 #1 U1_CTS #1 PF10 PF11 PF12 PF13 PF14 BUSDY BUSCX BUSCY BUSDX BUSDY BUSCX BUSCY BUSDX BUSDY BUSCX silabs.com | Building a more connected world. EBI_ARDY #5 PCNT2_S0IN #3 EBI_NANDWEn #5 PCNT2_S1IN #3 EBI_NANDREn #5 TIM1_CC3 #5 U1_TX #1 USB_DM U1_RX #1 USB_DP USB_ID TIM1_CC0 #6 TIM1_CC1 #6 Rev. 1.0 | 177 EFM32GG12 Family Data Sheet Pin Definitions 5.21 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 5.20 GPIO Functionality Table for a list of functions available on each GPIO pin. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 5.21. Alternate Functionality Overview Alternate Functionality ACMP0_O ACMP1_O LOCATION 0-3 4-7 0: PE13 4: PA6 1: PE2 5: PB0 2: PD6 6: PB2 3: PB11 7: PB3 0: PF2 4: PA14 1: PE3 5: PB9 2: PD7 6: PB10 3: PA12 7: PA5 Description Analog comparator ACMP0, digital output. Analog comparator ACMP1, digital output. 0: PD8 ACMP2_O 1: PE0 Analog comparator ACMP2, digital output. 2: PE1 ADC0_EXTN 0: PD7 Analog to digital converter ADC0 external reference input negative pin. ADC0_EXTP 0: PD6 Analog to digital converter ADC0 external reference input positive pin. ADC1_EXTN 0: PD7 Analog to digital converter ADC1 external reference input negative pin. ADC1_EXTP 0: PD6 Analog to digital converter ADC1 external reference input positive pin. BOOT_RX 0: PF1 Bootloader RX. BOOT_TX 0: PF0 Bootloader TX. BU_STAT 0: PE3 Backup Power Domain status, whether or not the system is in backup mode. BU_VIN 0: PD8 Battery input for Backup Power Domain. BU_VOUT 0: PE2 Power output for Backup Power Domain. CAN0_RX 0: PC0 5: PD14 1: PF0 6: PE0 2: PD0 CAN0 RX. 3: PB9 CAN0_TX 0: PC1 5: PD15 1: PF2 6: PE1 2: PD1 CAN0 TX. 3: PB10 silabs.com | Building a more connected world. Rev. 1.0 | 178 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality CAN1_RX LOCATION 0-3 4-7 0: PC2 4: PC12 1: PF1 5: PA12 2: PD3 Description CAN1 RX. 3: PC9 CAN1_TX 0: PC3 4: PC11 1: PF3 5: PA13 2: PD4 CAN1 TX. 3: PC10 CMU_CLK0 0: PA2 4: PF2 1: PC12 5: PA12 Clock Management Unit, clock output number 0. 2: PD7 CMU_CLK1 0: PA1 4: PF3 1: PD8 5: PB11 Clock Management Unit, clock output number 1. 2: PE12 CMU_CLK2 0: PA0 4: PA3 1: PA3 5: PD10 Clock Management Unit, clock output number 2. 2: PD6 CMU_CLKI0 DBG_SWCLKTCK DBG_SWDIOTMS 0: PD4 4: PE1 1: PA3 5: PD10 2: PB8 6: PE12 3: PB13 7: PB11 0: PF0 Clock Management Unit, clock input number 0. Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. 0: PF2 DBG_SWO 1: PC15 2: PD1 Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used. 3: PD2 0: PF5 DBG_TDI Debug-interface JTAG Test Data In. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. 0: PF2 DBG_TDO silabs.com | Building a more connected world. Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. Rev. 1.0 | 179 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PA12 EBI_A00 1: PB9 External Bus Interface (EBI) address output pin 00. 3: PC5 0: PA13 EBI_A01 1: PB10 External Bus Interface (EBI) address output pin 01. 3: PA7 0: PA14 EBI_A02 1: PB11 External Bus Interface (EBI) address output pin 02. 3: PA8 0: PB9 EBI_A03 1: PB12 External Bus Interface (EBI) address output pin 03. 3: PA9 0: PB10 EBI_A04 1: PD0 External Bus Interface (EBI) address output pin 04. 3: PA10 0: PC6 EBI_A05 1: PD1 External Bus Interface (EBI) address output pin 05. 3: PA11 0: PC7 EBI_A06 1: PD2 External Bus Interface (EBI) address output pin 06. 3: PA12 0: PE0 EBI_A07 1: PD3 External Bus Interface (EBI) address output pin 07. 3: PA13 0: PE1 EBI_A08 1: PD4 External Bus Interface (EBI) address output pin 08. 3: PA14 0: PE2 EBI_A09 1: PD5 External Bus Interface (EBI) address output pin 09. 3: PB9 0: PE3 EBI_A10 1: PD6 External Bus Interface (EBI) address output pin 10. 3: PB10 0: PE4 EBI_A11 1: PD7 External Bus Interface (EBI) address output pin 11. 3: PB11 silabs.com | Building a more connected world. Rev. 1.0 | 180 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PE5 EBI_A12 1: PD8 External Bus Interface (EBI) address output pin 12. 3: PB12 0: PE6 EBI_A13 1: PC7 External Bus Interface (EBI) address output pin 13. 3: PD0 0: PE7 EBI_A14 1: PE2 External Bus Interface (EBI) address output pin 14. 3: PD1 0: PC8 EBI_A15 1: PE3 External Bus Interface (EBI) address output pin 15. 3: PD2 0: PB0 EBI_A16 1: PE4 External Bus Interface (EBI) address output pin 16. 3: PD3 0: PB1 EBI_A17 1: PE5 External Bus Interface (EBI) address output pin 17. 3: PD4 0: PB2 EBI_A18 1: PE6 External Bus Interface (EBI) address output pin 18. 3: PD5 0: PB3 EBI_A19 1: PE7 External Bus Interface (EBI) address output pin 19. 3: PD6 0: PB4 EBI_A20 1: PC8 External Bus Interface (EBI) address output pin 20. 3: PD7 0: PB5 EBI_A21 1: PC9 External Bus Interface (EBI) address output pin 21. 3: PC7 0: PB6 EBI_A22 1: PC10 External Bus Interface (EBI) address output pin 22. 3: PE4 0: PC0 EBI_A23 1: PC11 External Bus Interface (EBI) address output pin 23. 3: PE5 silabs.com | Building a more connected world. Rev. 1.0 | 181 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PC1 EBI_A24 1: PF0 External Bus Interface (EBI) address output pin 24. 3: PE6 0: PC2 EBI_A25 1: PF1 External Bus Interface (EBI) address output pin 25. 3: PE7 0: PC4 EBI_A26 1: PF2 External Bus Interface (EBI) address output pin 26. 3: PC8 0: PD2 EBI_A27 1: PF5 External Bus Interface (EBI) address output pin 27. 3: PC9 EBI_AD00 EBI_AD01 EBI_AD02 EBI_AD03 EBI_AD04 EBI_AD05 EBI_AD06 EBI_AD07 EBI_AD08 EBI_AD09 EBI_AD10 EBI_AD11 0: PE8 1: PB0 0: PE9 1: PB1 0: PE10 1: PB2 0: PE11 1: PB3 0: PE12 1: PB4 0: PE13 1: PB5 0: PE14 1: PB6 0: PE15 1: PC0 0: PA15 1: PC1 0: PA0 1: PC2 0: PA1 1: PC3 0: PA2 1: PC4 silabs.com | Building a more connected world. External Bus Interface (EBI) address and data input / output pin 00. External Bus Interface (EBI) address and data input / output pin 01. External Bus Interface (EBI) address and data input / output pin 02. External Bus Interface (EBI) address and data input / output pin 03. External Bus Interface (EBI) address and data input / output pin 04. External Bus Interface (EBI) address and data input / output pin 05. External Bus Interface (EBI) address and data input / output pin 06. External Bus Interface (EBI) address and data input / output pin 07. External Bus Interface (EBI) address and data input / output pin 08. External Bus Interface (EBI) address and data input / output pin 09. External Bus Interface (EBI) address and data input / output pin 10. External Bus Interface (EBI) address and data input / output pin 11. Rev. 1.0 | 182 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality EBI_AD12 EBI_AD13 EBI_AD14 EBI_AD15 EBI_ALE LOCATION 0-3 4-7 0: PA3 Description External Bus Interface (EBI) address and data input / output pin 12. 1: PC5 0: PA4 External Bus Interface (EBI) address and data input / output pin 13. 1: PA7 0: PA5 External Bus Interface (EBI) address and data input / output pin 14. 1: PA8 0: PA6 External Bus Interface (EBI) address and data input / output pin 15. 1: PA9 0: PF3 4: PC11 1: PB9 5: PC11 2: PC4 External Bus Interface (EBI) Address Latch Enable output. 3: PB5 EBI_ARDY 0: PF2 4: PC13 1: PD13 5: PF10 2: PB15 External Bus Interface (EBI) Hardware Ready Control input. 3: PB4 EBI_BL0 0: PF6 4: PF6 1: PF8 5: PF6 2: PB10 External Bus Interface (EBI) Byte Lane/Enable pin 0. 3: PC1 EBI_BL1 0: PF7 4: PF7 1: PF9 5: PF7 2: PB11 External Bus Interface (EBI) Byte Lane/Enable pin 1. 3: PC3 0: PD9 EBI_CS0 4: PE8 1: PA10 External Bus Interface (EBI) Chip Select output 0. 2: PC0 3: PB0 0: PD10 EBI_CS1 4: PE9 1: PA11 External Bus Interface (EBI) Chip Select output 1. 2: PC1 3: PB1 0: PD11 EBI_CS2 4: PE10 1: PA12 2: PC2 External Bus Interface (EBI) Chip Select output 2. 3: PB2 silabs.com | Building a more connected world. Rev. 1.0 | 183 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality EBI_CS3 LOCATION 0-3 4-7 0: PD12 4: PE11 1: PB15 Description External Bus Interface (EBI) Chip Select output 3. 2: PC3 3: PB3 0: PA7 EBI_CSTFT 1: PF6 External Bus Interface (EBI) Chip Select output TFT. 3: PA0 0: PA8 EBI_DCLK 1: PF7 External Bus Interface (EBI) TFT Dot Clock pin. 3: PA1 0: PA9 EBI_DTEN 1: PD9 External Bus Interface (EBI) TFT Data Enable pin. 3: PA2 0: PA11 EBI_HSNC 1: PD11 External Bus Interface (EBI) TFT Horizontal Synchronization pin. 3: PA4 EBI_NANDREn 0: PC3 4: PC15 1: PD15 5: PF12 2: PB9 External Bus Interface (EBI) NAND Read Enable output. 3: PC4 EBI_NANDWEn 0: PC5 4: PC14 1: PD14 5: PF11 2: PA13 External Bus Interface (EBI) NAND Write Enable output. 3: PC2 EBI_REn 0: PF5 4: PF9 1: PA14 5: PF5 2: PA12 External Bus Interface (EBI) Read Enable output. 3: PC0 0: PA10 EBI_VSNC 1: PD10 External Bus Interface (EBI) TFT Vertical Synchronization pin. 3: PA3 EBI_WEn 0: PF4 4: PF8 1: PA13 5: PF4 2: PC5 External Bus Interface (EBI) Write Enable output. 3: PB6 silabs.com | Building a more connected world. Rev. 1.0 | 184 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 0: PD7 ETM_TCLK 4-7 Description 4: PE11 1: PF8 Embedded Trace Module ETM clock . 2: PC6 3: PA6 0: PD6 ETM_TD0 4: PE12 1: PF9 Embedded Trace Module ETM data 0. 2: PC7 3: PA2 0: PD3 ETM_TD1 4: PE13 1: PD13 Embedded Trace Module ETM data 1. 2: PD3 3: PA3 0: PD4 ETM_TD2 4: PE14 1: PB15 Embedded Trace Module ETM data 2. 2: PD4 3: PA4 0: PD5 ETM_TD3 4: PE15 1: PF3 Embedded Trace Module ETM data 3. 2: PD5 3: PA5 GPIO_EM4WU0 0: PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU1 0: PA6 Pin can be used to wake the system up from EM4 GPIO_EM4WU2 0: PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 0: PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 0: PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 0: PE13 Pin can be used to wake the system up from EM4 GPIO_EM4WU6 0: PC4 Pin can be used to wake the system up from EM4 GPIO_EM4WU7 0: PB11 Pin can be used to wake the system up from EM4 GPIO_EM4WU8 0: PF8 Pin can be used to wake the system up from EM4 GPIO_EM4WU9 0: PE10 Pin can be used to wake the system up from EM4 HFXTAL_N 0: PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P 0: PB13 High Frequency Crystal positive pin. I2C0_SCL 0: PA1 4: PC1 1: PD7 5: PF1 2: PC7 6: PE13 3: PD15 7: PE5 silabs.com | Building a more connected world. I2C0 Serial Clock Line input / output. Rev. 1.0 | 185 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality I2C0_SDA I2C1_SCL LOCATION 0-3 4-7 0: PA0 4: PC0 1: PD6 5: PF0 2: PC6 6: PE12 3: PD14 7: PE4 0: PC5 4: PF2 1: PB12 Description I2C0 Serial Data input / output. I2C1 Serial Clock Line input / output. 2: PE1 3: PD5 0: PC4 I2C1_SDA 4: PC11 1: PB11 2: PE0 I2C1 Serial Data input / output. 3: PD4 IDAC0_OUT 0: PB11 IDAC0 output. 0: PA14 LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required. To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. LCD_BEXT If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO. LCD_COM0 0: PE4 LCD driver common line number 0. LCD_COM1 0: PE5 LCD driver common line number 1. LCD_COM2 0: PE6 LCD driver common line number 2. LCD_COM3 0: PE7 LCD driver common line number 3. LCD_SEG0 0: PF2 LCD segment line 0. LCD_SEG1 0: PF3 LCD segment line 1. LCD_SEG2 0: PF4 LCD segment line 2. LCD_SEG3 0: PF5 LCD segment line 3. LCD_SEG4 0: PE8 LCD segment line 4. LCD_SEG5 0: PE9 LCD segment line 5. LCD_SEG6 0: PE10 LCD segment line 6. LCD_SEG7 0: PE11 LCD segment line 7. LCD_SEG8 0: PE12 LCD segment line 8. LCD_SEG9 0: PE13 LCD segment line 9. LCD_SEG10 0: PE14 LCD segment line 10. LCD_SEG11 0: PE15 LCD segment line 11. LCD_SEG12 0: PA15 LCD segment line 12. silabs.com | Building a more connected world. Rev. 1.0 | 186 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description LCD_SEG13 0: PA0 LCD segment line 13. LCD_SEG14 0: PA1 LCD segment line 14. LCD_SEG15 0: PA2 LCD segment line 15. LCD_SEG16 0: PA3 LCD segment line 16. LCD_SEG17 0: PA4 LCD segment line 17. LCD_SEG18 0: PA5 LCD segment line 18. LCD_SEG19 0: PA6 LCD segment line 19. LCD_SEG20 / LCD_COM4 0: PB3 LCD_SEG21 / LCD_COM5 0: PB4 LCD_SEG22 / LCD_COM6 0: PB5 LCD_SEG23 / LCD_COM7 0: PB6 LCD_SEG24 0: PF6 LCD segment line 24. LCD_SEG25 0: PF7 LCD segment line 25. LCD_SEG26 0: PF8 LCD segment line 26. LCD_SEG27 0: PF9 LCD segment line 27. LCD_SEG28 0: PD9 LCD segment line 28. LCD_SEG29 0: PD10 LCD segment line 29. LCD_SEG30 0: PD11 LCD segment line 30. LCD_SEG31 0: PD12 LCD segment line 31. LCD_SEG32 0: PB0 LCD segment line 32. LCD_SEG33 0: PB1 LCD segment line 33. LCD_SEG34 0: PB2 LCD segment line 34. LCD_SEG35 0: PA7 LCD segment line 35. LCD_SEG36 0: PA8 LCD segment line 36. LCD_SEG37 0: PA9 LCD segment line 37. LCD_SEG38 0: PA10 LCD segment line 38. LCD_SEG39 0: PA11 LCD segment line 39. LES_ALTEX0 0: PD6 LESENSE alternate excite output 0. LES_ALTEX1 0: PD7 LESENSE alternate excite output 1. LES_ALTEX2 0: PA3 LESENSE alternate excite output 2. LES_ALTEX3 0: PA4 LESENSE alternate excite output 3. LES_ALTEX4 0: PA5 LESENSE alternate excite output 4. LES_ALTEX5 0: PE11 LESENSE alternate excite output 5. LES_ALTEX6 0: PE12 LESENSE alternate excite output 6. silabs.com | Building a more connected world. LCD segment line 20. This pin may also be used as LCD COM line 4 LCD segment line 21. This pin may also be used as LCD COM line 5 LCD segment line 22. This pin may also be used as LCD COM line 6 LCD segment line 23. This pin may also be used as LCD COM line 7 Rev. 1.0 | 187 EFM32GG12 Family Data Sheet Pin Definitions Alternate LOCATION Functionality 0-3 LES_ALTEX7 0: PE13 LESENSE alternate excite output 7. LES_CH0 0: PC0 LESENSE channel 0. LES_CH1 0: PC1 LESENSE channel 1. LES_CH2 0: PC2 LESENSE channel 2. LES_CH3 0: PC3 LESENSE channel 3. LES_CH4 0: PC4 LESENSE channel 4. LES_CH5 0: PC5 LESENSE channel 5. LES_CH6 0: PC6 LESENSE channel 6. LES_CH7 0: PC7 LESENSE channel 7. LES_CH8 0: PC8 LESENSE channel 8. LES_CH9 0: PC9 LESENSE channel 9. LES_CH10 0: PC10 LESENSE channel 10. LES_CH11 0: PC11 LESENSE channel 11. LES_CH12 0: PC12 LESENSE channel 12. LES_CH13 0: PC13 LESENSE channel 13. LES_CH14 0: PC14 LESENSE channel 14. LES_CH15 0: PC15 LESENSE channel 15. LETIM0_OUT0 LETIM0_OUT1 LETIM1_OUT0 4-7 0: PD6 4: PE12 1: PB11 5: PC14 2: PF0 6: PA8 3: PC4 7: PB9 0: PD7 4: PE13 1: PB12 5: PC15 2: PF1 6: PA9 3: PC5 7: PB10 0: PA7 4: PB5 1: PA11 5: PB2 2: PA12 Description Low Energy Timer LETIM0, output channel 0. Low Energy Timer LETIM0, output channel 1. Low Energy Timer LETIM1, output channel 0. 3: PC2 LETIM1_OUT1 0: PA6 4: PB6 1: PA13 5: PB1 2: PA14 Low Energy Timer LETIM1, output channel 1. 3: PC3 silabs.com | Building a more connected world. Rev. 1.0 | 188 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LEU0_RX LOCATION 0-3 4-7 0: PD5 4: PA0 1: PB14 5: PC15 2: PE15 Description LEUART0 Receive input. 3: PF1 LEU0_TX 0: PD4 4: PF2 1: PB13 5: PC14 2: PE14 LEUART0 Transmit output. Also used as receive input in half duplex communication. 3: PF0 0: PC7 LEU1_RX 4: PB5 1: PA6 LEUART1 Receive input. 2: PD3 3: PB1 0: PC6 LEU1_TX 4: PB4 1: PA5 LEUART1 Transmit output. Also used as receive input in half duplex communication. 2: PD2 3: PB0 0: PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P 0: PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. OPA0_N 0: PC5 Operational Amplifier 0 external negative input. OPA0_P 0: PC4 Operational Amplifier 0 external positive input. OPA1_N 0: PD7 Operational Amplifier 1 external negative input. OPA1_P 0: PD6 Operational Amplifier 1 external positive input. OPA2_N 0: PD3 Operational Amplifier 2 external negative input. OPA2_OUT 0: PD5 Operational Amplifier 2 output. OPA2_OUTALT 0: PD0 Operational Amplifier 2 alternative output. OPA2_P 0: PD4 Operational Amplifier 2 external positive input. OPA3_N 0: PC7 Operational Amplifier 3 external negative input. OPA3_OUT 0: PD1 Operational Amplifier 3 output. OPA3_P 0: PC6 Operational Amplifier 3 external positive input. LFXTAL_N PCNT0_S0IN 0: PC13 4: PA0 1: PE0 5: PB0 2: PC0 6: PB5 3: PD6 7: PB12 silabs.com | Building a more connected world. Pulse Counter PCNT0 input number 0. Rev. 1.0 | 189 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality PCNT0_S1IN PCNT1_S0IN LOCATION 0-3 4-7 0: PC14 4: PA1 1: PE1 5: PB1 2: PC1 6: PB6 3: PD7 7: PB11 0: PA5 4: PA7 1: PB3 5: PA12 2: PD15 6: PB11 Description Pulse Counter PCNT0 input number 1. Pulse Counter PCNT1 input number 0. 3: PC4 PCNT1_S1IN 0: PA6 4: PA8 1: PB4 5: PA13 2: PB0 6: PB12 Pulse Counter PCNT1 input number 1. 3: PC5 0: PD0 PCNT2_S0IN 4: PC12 1: PE8 Pulse Counter PCNT2 input number 0. 2: PB13 3: PF10 0: PD1 PCNT2_S1IN 4: PC13 1: PE9 Pulse Counter PCNT2 input number 1. 2: PB14 3: PF11 0: PA0 PDM_CLK 4: PD0 1: PE8 PDM Clock Output. 2: PF6 3: PB12 0: PA1 PDM_DAT0 4: PD1 1: PE9 PDM Data 0. 2: PF7 3: PB11 0: PA2 PDM_DAT1 4: PD2 1: PE10 PDM Data 1. 2: PF8 3: PB10 0: PA3 PDM_DAT2 4: PD3 1: PE11 2: PF9 PDM Data 2. 3: PB9 silabs.com | Building a more connected world. Rev. 1.0 | 190 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 0: PA4 PDM_DAT3 4-7 Description 4: PD4 1: PE12 2: PD9 PDM Data 3. 3: PA13 0: PA0 PRS_CH0 1: PF3 2: PC14 Peripheral Reflex System PRS, channel 0. 3: PF2 0: PA1 PRS_CH1 1: PF4 2: PC15 Peripheral Reflex System PRS, channel 1. 3: PE12 0: PC0 PRS_CH2 1: PF5 2: PE10 Peripheral Reflex System PRS, channel 2. 3: PE13 0: PC1 PRS_CH3 1: PE8 2: PE11 Peripheral Reflex System PRS, channel 3. 3: PA0 0: PC8 PRS_CH4 1: PB0 Peripheral Reflex System PRS, channel 4. 2: PF1 0: PC9 PRS_CH5 1: PB1 Peripheral Reflex System PRS, channel 5. 2: PD6 0: PA6 PRS_CH6 1: PB14 Peripheral Reflex System PRS, channel 6. 2: PE6 0: PB13 PRS_CH7 1: PA7 Peripheral Reflex System PRS, channel 7. 2: PE7 0: PA8 PRS_CH8 1: PA2 Peripheral Reflex System PRS, channel 8. 2: PE9 silabs.com | Building a more connected world. Rev. 1.0 | 191 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PA9 PRS_CH9 1: PA3 Peripheral Reflex System PRS, channel 9. 2: PB10 0: PA10 PRS_CH10 1: PC2 Peripheral Reflex System PRS, channel 10. 2: PD4 0: PA11 PRS_CH11 1: PC3 Peripheral Reflex System PRS, channel 11. 2: PD5 0: PA12 PRS_CH12 1: PB6 Peripheral Reflex System PRS, channel 12. 2: PD8 0: PA13 PRS_CH13 1: PB9 Peripheral Reflex System PRS, channel 13. 2: PE14 0: PA14 PRS_CH14 1: PC6 Peripheral Reflex System PRS, channel 14. 2: PE15 0: PA15 PRS_CH15 1: PC7 Peripheral Reflex System PRS, channel 15. 2: PF0 QSPI0_CS0 QSPI0_CS1 QSPI0_DQ0 QSPI0_DQ1 QSPI0_DQ2 QSPI0_DQ3 QSPI0_DQ4 0: PF7 1: PA0 0: PF8 1: PA1 0: PD9 1: PA2 0: PD10 1: PA3 0: PD11 1: PA4 0: PD12 1: PA5 0: PE8 1: PB3 silabs.com | Building a more connected world. Quad SPI 0 Chip Select 0. Quad SPI 0 Chip Select 1. Quad SPI 0 Data 0. Quad SPI 0 Data 1. Quad SPI 0 Data 2. Quad SPI 0 Data 3. Quad SPI 0 Data 4. Rev. 1.0 | 192 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality QSPI0_DQ5 QSPI0_DQ6 QSPI0_DQ7 QSPI0_DQS QSPI0_RST0 QSPI0_RST1 QSPI0_SCLK LOCATION 0-3 4-7 0: PE9 1: PB4 0: PE10 1: PB5 0: PE11 1: PB6 0: PF9 1: PE15 0: PE14 1: PC2 0: PE15 1: PC3 0: PF6 1: PE14 Description Quad SPI 0 Data 5. Quad SPI 0 Data 6. Quad SPI 0 Data 7. Quad SPI 0 Data S. Quad SPI 0 Reset 0. Quad SPI 0 Reset 1. Quad SPI 0 Serial Clock. 0: PF8 SDIO_CD 1: PC4 2: PA6 SDIO Card Detect. 3: PB10 SDIO_CLK SDIO_CMD SDIO_DAT0 SDIO_DAT1 SDIO_DAT2 SDIO_DAT3 SDIO_DAT4 SDIO_DAT5 SDIO_DAT6 0: PE13 1: PE14 0: PE12 1: PE15 0: PE11 1: PA0 0: PE10 1: PA1 0: PE9 1: PA2 0: PE8 1: PA3 0: PD12 1: PA4 0: PD11 1: PA5 0: PD10 1: PB3 silabs.com | Building a more connected world. SDIO Serial Clock. SDIO Command. SDIO Data 0. SDIO Data 1. SDIO Data 2. SDIO Data 3. SDIO Data 4. SDIO Data 5. SDIO Data 6. Rev. 1.0 | 193 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality SDIO_DAT7 LOCATION 0-3 4-7 0: PD9 Description SDIO Data 7. 1: PB4 0: PF9 SDIO_WP 1: PC5 SDIO Write Protect. 2: PB15 3: PB9 TIM0_CC0 TIM0_CC1 TIM0_CC2 TIM0_CDTI0 0: PA0 4: PF0 1: PF6 5: PC4 2: PD1 6: PA8 3: PB6 7: PA1 0: PA1 4: PF1 1: PF7 5: PC5 2: PD2 6: PA9 3: PC0 7: PA0 0: PA2 4: PF2 1: PF8 5: PA7 2: PD3 6: PA10 3: PC1 7: PA13 0: PA3 4: PB7 1: PC13 Timer 0 Capture Compare input / output channel 0. Timer 0 Capture Compare input / output channel 1. Timer 0 Capture Compare input / output channel 2. Timer 0 Complimentary Dead Time Insertion channel 0. 2: PF3 3: PC2 0: PA4 TIM0_CDTI1 4: PB8 1: PC14 Timer 0 Complimentary Dead Time Insertion channel 1. 2: PF4 3: PC3 0: PA5 TIM0_CDTI2 4: PB11 1: PC15 Timer 0 Complimentary Dead Time Insertion channel 2. 2: PF5 3: PC4 TIM1_CC0 0: PC13 4: PD6 1: PE10 5: PF2 2: PB0 6: PF13 Timer 1 Capture Compare input / output channel 0. 3: PB7 silabs.com | Building a more connected world. Rev. 1.0 | 194 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality TIM1_CC1 LOCATION 0-3 4-7 0: PC14 4: PD7 1: PE11 5: PF3 2: PB1 6: PF14 Description Timer 1 Capture Compare input / output channel 1. 3: PB8 TIM1_CC2 0: PC15 4: PC13 1: PE12 5: PF4 2: PB2 Timer 1 Capture Compare input / output channel 2. 3: PB11 TIM1_CC3 0: PC12 4: PC14 1: PE13 5: PF12 2: PB3 6: PF5 Timer 1 Capture Compare input / output channel 3. 3: PB12 TIM2_CC0 0: PA8 4: PB6 1: PA12 5: PC2 2: PC8 Timer 2 Capture Compare input / output channel 0. 3: PF2 TIM2_CC1 0: PA9 4: PC0 1: PA13 5: PC3 2: PC9 Timer 2 Capture Compare input / output channel 1. 3: PE12 TIM2_CC2 0: PA10 4: PC1 1: PA14 5: PC4 2: PC10 Timer 2 Capture Compare input / output channel 2. 3: PE13 0: PB0 TIM2_CDTI0 1: PD13 Timer 2 Complimentary Dead Time Insertion channel 0. 2: PE8 0: PB1 TIM2_CDTI1 1: PD14 Timer 2 Complimentary Dead Time Insertion channel 1. 2: PE14 0: PB2 TIM2_CDTI2 1: PD15 Timer 2 Complimentary Dead Time Insertion channel 2. 2: PE15 silabs.com | Building a more connected world. Rev. 1.0 | 195 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality TIM3_CC0 TIM3_CC1 TIM3_CC2 U0_CTS LOCATION 0-3 4-7 0: PE14 4: PA0 1: PE0 5: PA3 2: PE3 6: PA6 3: PE5 7: PD15 0: PE15 4: PA1 1: PE1 5: PA4 2: PE4 6: PD13 3: PE6 7: PB15 0: PA15 4: PA2 1: PE2 5: PA5 2: PE5 6: PD14 3: PE7 7: PB0 0: PF8 4: PB7 1: PE2 5: PD5 2: PA5 Description Timer 3 Capture Compare input / output channel 0. Timer 3 Capture Compare input / output channel 1. Timer 3 Capture Compare input / output channel 2. UART0 Clear To Send hardware flow control input. 3: PC13 U0_RTS 0: PF9 4: PB8 1: PE3 5: PD6 2: PA6 UART0 Request To Send hardware flow control output. 3: PC12 U0_RX 0: PF7 4: PC5 1: PE1 5: PF2 2: PA4 6: PE4 UART0 Receive input. 3: PC15 U0_TX 0: PF6 4: PC4 1: PE0 5: PF1 2: PA3 6: PD7 UART0 Transmit output. Also used as receive input in half duplex communication. 3: PC14 0: PC14 U1_CTS 4: PC4 1: PF9 UART1 Clear To Send hardware flow control input. 2: PB11 3: PE4 0: PC15 U1_RTS 4: PC5 1: PF8 2: PB12 UART1 Request To Send hardware flow control output. 3: PE5 silabs.com | Building a more connected world. Rev. 1.0 | 196 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality U1_RX LOCATION 0-3 4-7 0: PC13 4: PE13 1: PF11 Description UART1 Receive input. 2: PB10 3: PE3 0: PC12 U1_TX 4: PE12 1: PF10 UART1 Transmit output. Also used as receive input in half duplex communication. 2: PB9 3: PE2 US0_CLK 0: PE12 4: PB13 1: PE5 5: PA12 2: PC9 USART0 clock input / output. 3: PC15 US0_CS 0: PE13 4: PB14 1: PE4 5: PA13 2: PC8 USART0 chip select input / output. 3: PC14 US0_CTS 0: PE14 4: PB6 1: PE3 5: PB11 2: PC7 USART0 Clear To Send hardware flow control input. 3: PC13 US0_RTS 0: PE15 4: PB5 1: PE2 5: PD6 2: PC6 USART0 Request To Send hardware flow control output. 3: PC12 US0_RX 0: PE11 4: PB8 1: PE6 5: PC1 2: PC10 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). 3: PE12 US0_TX 0: PE10 4: PB7 1: PE7 5: PC0 2: PC11 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI). 3: PE13 US1_CLK 0: PB7 4: PC3 1: PD2 5: PB11 2: PF0 6: PE5 USART1 clock input / output. 3: PC15 silabs.com | Building a more connected world. Rev. 1.0 | 197 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality US1_CS LOCATION 0-3 4-7 0: PB8 4: PC0 1: PD3 5: PE4 2: PF1 6: PB2 Description USART1 chip select input / output. 3: PC14 US1_CTS 0: PB9 4: PC12 1: PD4 5: PB13 2: PF3 USART1 Clear To Send hardware flow control input. 3: PC6 US1_RTS 0: PB10 4: PC13 1: PD5 5: PB14 2: PF4 USART1 Request To Send hardware flow control output. 3: PC7 US1_RX 0: PC1 4: PC2 1: PD1 5: PA0 USART1 Asynchronous Receive. 2: PD6 6: PA2 USART1 Synchronous mode Master Input / Slave Output (MISO). 3: PF7 US1_TX 0: PC0 4: PC1 1: PD0 5: PF2 2: PD7 6: PA14 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI). 3: PF6 US2_CLK 0: PC4 4: PF8 1: PB5 5: PF2 2: PA9 USART2 clock input / output. 3: PA15 US2_CS 0: PC5 4: PF9 1: PB6 5: PF5 2: PA10 USART2 chip select input / output. 3: PB11 US2_CTS 0: PC1 4: PC12 1: PB12 5: PD6 2: PA11 USART2 Clear To Send hardware flow control input. 3: PB10 US2_RTS 0: PC0 4: PC13 1: PB15 5: PD8 2: PA12 USART2 Request To Send hardware flow control output. 3: PC14 silabs.com | Building a more connected world. Rev. 1.0 | 198 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality US2_RX LOCATION 0-3 4-7 0: PC3 4: PF7 1: PB4 5: PF1 2: PA8 Description USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). 3: PA14 US2_TX 0: PC2 4: PF6 1: PB3 5: PF0 2: PA7 USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI). 3: PA13 0: PA2 US3_CLK 1: PD7 USART3 clock input / output. 2: PD4 0: PA3 US3_CS 1: PE4 2: PC14 USART3 chip select input / output. 3: PC0 0: PA4 US3_CTS 1: PE5 USART3 Clear To Send hardware flow control input. 2: PD6 0: PA5 US3_RTS 1: PC1 2: PA14 USART3 Request To Send hardware flow control output. 3: PC15 0: PA1 US3_RX 1: PE7 2: PB7 0: PA0 US3_TX US4_CLK US4_CS US4_CTS US4_RTS USART3 Asynchronous Receive. USART3 Synchronous mode Master Input / Slave Output (MISO). 1: PE6 USART3 Asynchronous Transmit. Also used as receive input in half duplex communication. 2: PB3 USART3 Synchronous mode Master Output / Slave Input (MOSI). 0: PC4 1: PD11 0: PC5 1: PD12 0: PA7 1: PD13 0: PA8 1: PD14 silabs.com | Building a more connected world. USART4 clock input / output. USART4 chip select input / output. USART4 Clear To Send hardware flow control input. USART4 Request To Send hardware flow control output. Rev. 1.0 | 199 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality US4_RX US4_TX LOCATION 0-3 4-7 Description 0: PB8 USART4 Asynchronous Receive. 1: PD10 USART4 Synchronous mode Master Input / Slave Output (MISO). 0: PB7 USART4 Asynchronous Transmit. Also used as receive input in half duplex communication. 1: PD9 USART4 Synchronous mode Master Output / Slave Input (MOSI). USB_DM 0: PF10 USB D- pin. USB_DP 0: PF11 USB D+ pin. USB_ID 0: PF12 USB ID pin. 0: PF5 USB_VBUSEN 1: PE4 USB 5 V VBUS enable. 2: PD0 VDAC0_EXT 0: PD6 VDAC0_OUT0 / OPA0_OUT 0: PB11 0: PC0 VDAC0_OUT0ALT / OPA0_OUTALT Digital to analog converter VDAC0 external reference input pin. Digital to Analog Converter DAC0 output channel number 0. 4: PD0 1: PC1 Digital to Analog Converter DAC0 alternative output for channel 0. 2: PC2 3: PC3 VDAC0_OUT1 / OPA1_OUT 0: PB12 0: PC12 VDAC0_OUT1ALT / OPA1_OUTALT Digital to Analog Converter DAC0 output channel number 1. 4: PD1 1: PC13 Digital to Analog Converter DAC0 alternative output for channel 1. 2: PC14 3: PC15 WTIM0_CC0 0: PE4 4: PC15 1: PA6 5: PB0 6: PB3 Wide timer 0 Capture Compare input / output channel 0. 7: PC1 WTIM0_CC1 0: PE5 4: PF0 1: PD13 5: PB1 6: PB4 Wide timer 0 Capture Compare input / output channel 1. 7: PC2 WTIM0_CC2 0: PE6 4: PF1 1: PD14 5: PB2 6: PB5 Wide timer 0 Capture Compare input / output channel 2. 7: PC3 silabs.com | Building a more connected world. Rev. 1.0 | 200 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 0: PE10 WTIM0_CDTI0 4-7 Description 4: PD4 1: PD15 Wide timer 0 Complimentary Dead Time Insertion channel 0. 2: PA12 WTIM0_CDTI1 WTIM0_CDTI2 WTIM1_CC0 0: PE11 4: PD5 2: PA13 0: PE12 4: PD6 2: PA14 0: PB13 4: PE3 1: PD2 5: PE7 2: PD6 Wide timer 0 Complimentary Dead Time Insertion channel 1. Wide timer 0 Complimentary Dead Time Insertion channel 2. Wide timer 1 Capture Compare input / output channel 0. 3: PC7 0: PB14 WTIM1_CC1 4: PE4 1: PD3 Wide timer 1 Capture Compare input / output channel 1. 2: PD7 3: PE0 0: PD0 WTIM1_CC2 4: PE5 1: PD4 Wide timer 1 Capture Compare input / output channel 2. 2: PD8 3: PE1 0: PD1 WTIM1_CC3 4: PE6 1: PD5 Wide timer 1 Capture Compare input / output channel 3. 2: PC6 3: PE2 Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions selected on that pin (i.e. another alternate function enabled to the same pin inadvertently). Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to the pins for timing-critical signals. The following table lists the alternate functions and locations with special priority. Table 5.22. Alternate Functionality Priority Alternate Functionality Location Priority CMU_CLK2 1: PA3 5: PD10 High Speed High Speed CMU_CLKI0 1: PA3 5: PD10 High Speed High Speed PDM_CLK 0: PA0 High Speed PDM_DAT0 0: PA1 High Speed silabs.com | Building a more connected world. Rev. 1.0 | 201 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality Location Priority PDM_DAT1 0: PA2 High Speed PDM_DAT2 0: PA3 High Speed PDM_DAT3 0: PA4 High Speed QSPI0_CS0 0: PF7 High Speed QSPI0_CS1 0: PF8 High Speed QSPI0_DQ0 0: PD9 High Speed QSPI0_DQ1 0: PD10 High Speed QSPI0_DQ2 0: PD11 High Speed QSPI0_DQ3 0: PD12 High Speed QSPI0_DQ4 0: PE8 High Speed QSPI0_DQ5 0: PE9 High Speed QSPI0_DQ6 0: PE10 High Speed QSPI0_DQ7 0: PE11 High Speed QSPI0_DQS 0: PF9 High Speed QSPI0_RST0 0: PE14 High Speed QSPI0_RST1 0: PE15 High Speed QSPI0_SCLK 0: PF6 High Speed SDIO_CLK 0: PE13 High Speed SDIO_CMD 0: PE12 High Speed SDIO_DAT0 0: PE11 High Speed SDIO_DAT1 0: PE10 High Speed SDIO_DAT2 0: PE9 High Speed SDIO_DAT3 0: PE8 High Speed SDIO_DAT4 0: PD12 High Speed SDIO_DAT5 0: PD11 High Speed SDIO_DAT6 0: PD10 High Speed SDIO_DAT7 0: PD9 High Speed TIM0_CC0 3: PB6 Non-interference TIM0_CC1 3: PC0 Non-interference TIM0_CC2 3: PC1 Non-interference TIM0_CDTI0 1: PC13 Non-interference TIM0_CDTI1 1: PC14 Non-interference TIM0_CDTI2 1: PC15 Non-interference TIM2_CC0 0: PA8 Non-interference TIM2_CC1 0: PA9 Non-interference TIM2_CC2 0: PA10 Non-interference TIM2_CDTI0 0: PB0 Non-interference silabs.com | Building a more connected world. Rev. 1.0 | 202 EFM32GG12 Family Data Sheet Pin Definitions Alternate Functionality Location Priority TIM2_CDTI1 0: PB1 Non-interference TIM2_CDTI2 0: PB2 Non-interference US2_CLK 4: PF8 5: PF2 High Speed High Speed US2_CS 4: PF9 5: PF5 High Speed High Speed US2_RX 4: PF7 5: PF1 High Speed High Speed US2_TX 4: PF6 5: PF0 High Speed High Speed silabs.com | Building a more connected world. Rev. 1.0 | 203 EFM32GG12 Family Data Sheet Pin Definitions 5.22 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 204 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. IOVDD_1 IOVDD_0 PF0 PF1 PF2 PF3 PF4 PF12 PF13 PF14 PF5 PF7 PF6 PF8 PF9 PE9 PE8 PE11 PE10 PE12 PE13 PE14 PE15 IOVDD_0 CX CY AX AY BX BY CX CY DX DY PA15 ACMP0X ACMP0Y PA1 PA2 PA3 POS IDAC0_OUTPAD 1X 1Y IDAC0 ACMP2 NEG PA4 PA5 PA6 1X 1Y 3X 3Y 2X 2Y CSEN ACMP0 CEXT_SENSE NEG ADC0X ADC0Y AX AY BX BY CX CY DX DY 4X 4Y POS CEXT POS PB1 PB2 PB3 ADC0 NEG OPA0_N 1Y 2Y 3Y 4Y OUT ADC1 POS NEG OUT0 IDAC0_OUTPAD OUT0ALT OUT0ALT PC1 VDAC0_OUT0ALT OUT0ALT VDAC0_OU0ALTT OPA1 OUT1 VDAC0_OUT0ALT VDAC0_OUT0ALT PC2 NEG OPA0 OUT0ALT PC3 OUT 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 OUT1ALT POS OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 OPA1_P 1X 2X 3X 4X OPA1_N 1Y 2Y 3Y 4Y OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 VDAC0_OUT1ALT PC15 PF11 ACMP1 PF10 NEG OUT1ALT VDAC0_OUT1ALT PC14 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 POS POS NEG 1Y 2Y 3Y 4Y NEXT1 NEXT0 OPA0_P 1X 2X 3X 4X EXTP EXTN EXTP EXTN PB6 PC0 0Y 1Y 2Y 3Y 4Y NEXT3 NEXT1 0Y 1Y 2Y 3Y 4Y NEXT3 NEXT1 PB4 PB5 0X 1X 2X 3X 4X NEXT2 NEXT0 0X 1X 2X 3X 4X NEXT2 NEXT0 PB0 1X 2X 3X 4X NEXT1 NEXT0 OUT1ALT VDAC0_OUT1ALT OUT1ALT VDAC0_OUT1ALT PC12 PC11 PC10 PC9 OPA2_P 1X 2X 3X 4X POS OPA2_N 1Y 2Y 3Y 4Y NEG OUT2 OUT2ALT OUT1 OUT2 OUT3 OUT4 NEXT2 PC8 OPA2 PE7 PE6 PE5 PE4 OUT PE1 PE0 OPA3_P 1X 2X 3X 4X POS OPA3_N 1Y 2Y 3Y 4Y NEG OUT3 OUT3ALT OUT1 OUT2 OUT3 OUT4 NEXT3 OPA3 OPA3_P OPA3_N OUT ADC_EXTN OPA1_N ADC_EXTP OPA1_P OPA0_P PC4 PC13 ADC0X ADC0Y PA0 ACMP1Y ACMP1X BX BY AX AY DX DY PC7 PC6 PD7 PD6 OPA0_N PC5 PD5 OPA2_P OPA2_N OUT3 OUT1ALT PD4 PD3 PD2 VDAC0_OUT1ALT PD1 OUT0ALT VDAC0_OUT0ALT PD0 PB12 PB11 PB9 PB10 PA14 PA13 PA11 PA12 BUSACMP0X, BUSACMP1Y PA10 BUSADC0X ACMP0X, ACMP1Y PA8 BUSAX, BUSBY, ... ADC0X PA9 APORTnX, APORTnY PA7 nX, nY AX, BY, … VDAC0_OUT2ALT OUT2ALT OUT2 Figure 5.20. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin silabs.com | Building a more connected world. Rev. 1.0 | 204 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 PB15 PB13 BUSAY BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP0Y BUSACMP0X Bus APORT0Y EFM32GG12 Family Data Sheet Pin Definitions PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. Table 5.23. ACMP0 Bus and Pin Mapping Rev. 1.0 | 205 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 PB15 PB13 BUSAY BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP1Y BUSACMP1X Bus APORT0Y EFM32GG12 Family Data Sheet Pin Definitions Table 5.24. ACMP1 Bus and Pin Mapping Rev. 1.0 | 206 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 PB15 PB13 BUSAY BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFM32GG12 Family Data Sheet Pin Definitions Table 5.25. ACMP2 Bus and Pin Mapping Rev. 1.0 | 207 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 PB15 PB13 BUSAY BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSADC0Y BUSADC0X Bus APORT0Y EFM32GG12 Family Data Sheet Pin Definitions Table 5.26. ADC0 Bus and Pin Mapping Rev. 1.0 | 208 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 PB15 PB13 BUSAY BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFM32GG12 Family Data Sheet Pin Definitions Table 5.27. ADC1 Bus and Pin Mapping Rev. 1.0 | 209 silabs.com | Building a more connected world. PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX APORT4Y APORT4X APORT2Y APORT2X PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT3Y APORT3X APORT1Y APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions Table 5.28. CSEN Bus and Pin Mapping CEXT CEXT_SENSE Table 5.29. IDAC0 Bus and Pin Mapping Rev. 1.0 | 210 silabs.com | Building a more connected world. PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions Table 5.30. VDAC0 / OPA Bus and Pin Mapping OPA0_N OPA0_P Rev. 1.0 | 211 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions OPA1_N OPA1_P OPA2_N Rev. 1.0 | 212 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions OPA2_OUT OPA2_P OPA3_N Rev. 1.0 | 213 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions OPA3_OUT OPA3_P VDAC0_OUT0 / OPA0_OUT Rev. 1.0 | 214 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG12 Family Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.0 | 215 EFM32GG12 Family Data Sheet BGA120 Package Specifications 6. BGA120 Package Specifications 6.1 BGA120 Package Dimensions Figure 6.1. BGA120 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 216 EFM32GG12 Family Data Sheet BGA120 Package Specifications Table 6.1. BGA120 Package Dimensions Dimension Min Typ Max A 0.78 0.84 0.90 A1 0.13 0.18 0.23 A3 0.17 0.21 0.25 A2 0.45 REF D 7.00 BSC e 0.50 BSC E 7.00 BSC D1 6.00 BSC E1 6.00 BSC b 0.20 0.25 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 0.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 217 EFM32GG12 Family Data Sheet BGA120 Package Specifications 6.2 BGA120 PCB Land Pattern Figure 6.2. BGA120 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 218 EFM32GG12 Family Data Sheet BGA120 Package Specifications Table 6.2. BGA120 PCB Land Pattern Dimensions Dimension Min Nom X 0.20 C1 6.00 C2 6.00 E1 0.5 E2 0.5 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 219 EFM32GG12 Family Data Sheet BGA120 Package Specifications 6.3 BGA120 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 6.3. BGA120 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 220 EFM32GG12 Family Data Sheet BGA112 Package Specifications 7. BGA112 Package Specifications 7.1 BGA112 Package Dimensions Figure 7.1. BGA112 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 221 EFM32GG12 Family Data Sheet BGA112 Package Specifications Table 7.1. BGA112 Package Dimensions Dimension Min Typ Max A - - 1.30 A1 0.55 0.60 0.65 A2 0.21 BSC A3 0.30 0.35 0.40 d 0.43 0.48 0.53 D 10.00 BSC D1 8.00 BSC E 10.00 BSC E1 8.00 BSC e1 0.80 BSC e2 0.80 BSC L1 1.00 REF L2 1.00 REF Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 222 EFM32GG12 Family Data Sheet BGA112 Package Specifications 7.2 BGA112 PCB Land Pattern Figure 7.2. BGA112 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 223 EFM32GG12 Family Data Sheet BGA112 Package Specifications Table 7.2. BGA112 PCB Land Pattern Dimensions Dimension Min Nom X 0.45 C1 8.00 C2 8.00 E1 0.8 E2 0.8 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 224 EFM32GG12 Family Data Sheet BGA112 Package Specifications 7.3 BGA112 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 7.3. BGA112 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 225 EFM32GG12 Family Data Sheet TQFP100 Package Specifications 8. TQFP100 Package Specifications 8.1 TQFP100 Package Dimensions Figure 8.1. TQFP100 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 226 EFM32GG12 Family Data Sheet TQFP100 Package Specifications Table 8.1. TQFP100 Package Dimensions Dimension Min Typ Max A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 b1 0.17 0.20 0.23 c 0.09 - 0.20 c1 0.09 - 0.16 D 16.0 BSC E 16.0 BSC D1 14.0 BSC E1 14.0 BSC e 0.50 BSC L1 1 REF L 0.45 0.60 0.75 ϴ 0 3.5 7 ϴ1 0 - - ϴ2 11 12 13 ϴ3 11 12 13 R1 0.08 - - R2 0.08 - 0.2 S 0.2 - - aaa 0.2 bbb 0.2 ccc 0.08 ddd 0.08 eee 0.05 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 227 EFM32GG12 Family Data Sheet TQFP100 Package Specifications 8.2 TQFP100 PCB Land Pattern Figure 8.2. TQFP100 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 228 EFM32GG12 Family Data Sheet TQFP100 Package Specifications Table 8.2. TQFP100 PCB Land Pattern Dimensions Dimension Min Nom C1 15.4 C2 15.4 E 0.50 BSC X 0.30 Y 1.50 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. 8.3 TQFP100 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 8.3. TQFP100 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 229 EFM32GG12 Family Data Sheet TQFP64 Package Specifications 9. TQFP64 Package Specifications 9.1 TQFP64 Package Dimensions Figure 9.1. TQFP64 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 230 EFM32GG12 Family Data Sheet TQFP64 Package Specifications Table 9.1. TQFP64 Package Dimensions Dimension Min Typ Max A — 1.15 1.20 A1 0.05 — 0.15 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 b1 0.17 0.20 0.23 c 0.09 — 0.20 c1 0.09 — 0.16 D 12.00 BSC D1 10.00 BSC e 0.50 BSC E 12.00 BSC E1 10.00 BSC L 0.45 L1 0.60 0.75 1.00 REF R1 0.08 — — R2 0.08 — 0.20 S 0.20 — — θ 0 3.5 7 ϴ1 0 — 0.10 ϴ2 11 12 13 ϴ3 11 12 13 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 231 EFM32GG12 Family Data Sheet TQFP64 Package Specifications 9.2 TQFP64 PCB Land Pattern Figure 9.2. TQFP64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 232 EFM32GG12 Family Data Sheet TQFP64 Package Specifications Table 9.2. TQFP64 PCB Land Pattern Dimensions Dimension Min Max C1 11.30 11.40 C2 11.30 11.40 E 0.50 BSC X 0.20 0.30 Y 1.40 1.50 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 9.3 TQFP64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 9.3. TQFP64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 233 EFM32GG12 Family Data Sheet QFN64 Package Specifications 10. QFN64 Package Specifications 10.1 QFN64 Package Dimensions Figure 10.1. QFN64 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 234 EFM32GG12 Family Data Sheet QFN64 Package Specifications Table 10.1. QFN64 Package Dimensions Dimension Min Typ Max A 0.70 0.75 0.80 A1 0.00 — 0.05 b 0.20 0.25 0.30 A3 0.203 REF D 9.00 BSC e 0.50 BSC E 9.00 BSC D2 7.10 7.20 7.30 E2 7.10 7.20 7.30 L 0.40 0.45 0.50 L1 0.00 — 0.10 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 235 EFM32GG12 Family Data Sheet QFN64 Package Specifications 10.2 QFN64 PCB Land Pattern Figure 10.2. QFN64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 236 EFM32GG12 Family Data Sheet QFN64 Package Specifications Table 10.2. QFN64 PCB Land Pattern Dimensions Dimension Typ C1 8.90 C2 8.90 E 0.50 X1 0.30 Y1 0.85 X2 7.30 Y2 7.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad. 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 237 EFM32GG12 Family Data Sheet QFN64 Package Specifications 10.3 QFN64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 10.3. QFN64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 238 EFM32GG12 Family Data Sheet Revision History 11. Revision History Revision 1.0 July, 2019 • 4.1 Electrical Characteristics updated with final production test limits. • RESETn pin pullup connection to AVDD clarified in pinout tables. • Table 5.20 GPIO Functionality Table on page 166 formatting updated for translation. Revision 0.6 February, 2019 • • • • Updated 2. Ordering Information with new high temperature range BGA part numbers. 4.1 Electrical Characteristics updated with notes distinguishing RESETn reference (AVDD) from all other GPIO reference (IOVDD). Added to pin description of DECOUPLE - decouple output for on-chip voltage should not be used to power external circuits. 5.20 GPIO Functionality Table: re-ordered to show pins in alphabetical order by GPIO name. Revision 0.5 December, 2018 • • • • 4.1 Electrical Characteristics updated with latest characterization data and production test limits. 4.1 Electrical Characteristics added SDIO location 1 and SDIO SPI mode timing details. 4.1 Electrical Characteristics sorted all table footnotes in order of appearance. Table 5.21 Alternate Functionality Overview on page 178 changed vertical white space. Revision 0.1 May, 2018 Initial release. silabs.com | Building a more connected world. Rev. 1.0 | 239 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW Quality Support and Community www.silabs.com/simplicity www.silabs.com/quality community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
EFM32GG12B130F512GQ64-AR
物料型号:EFM32GG12

器件简介:EFM32GG12系列是一款高性能的微控制器,具有丰富的外设和功能,适用于多种应用场景。

引脚分配:文档中详细列出了该系列微控制器的引脚分配,包括GPIO名称、模拟功能、EBI(外部总线接口)、定时器、通信接口等。

参数特性:文档提供了微控制器的电气特性,包括电源电压、工作温度范围、引脚配置等。

功能详解:文档中对微控制器的各个功能模块进行了详细说明,如ADC(模拟数字转换器)、DAC(数字模拟转换器)、OPA(运算放大器)、PRS(外设反射系统)等。

应用信息:EFM32GG12系列微控制器适用于需要高性能和丰富外设的场合,如工业控制、医疗设备、智能家居等。

封装信息:文档提供了不同封装类型的尺寸和PCB布局指南,如BGA120、BGA112、TQFP100、TQFP64和QFN64等。
EFM32GG12B130F512GQ64-AR 价格&库存

很抱歉,暂时无法提供与“EFM32GG12B130F512GQ64-AR”相匹配的价格&库存,您可以联系我们找货

免费人工找货