0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32JG12B500F1024GL125-CR

EFM32JG12B500F1024GL125-CR

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    VFBGA125

  • 描述:

    IC MCU 32BIT 1MB FLASH 125BGA

  • 数据手册
  • 价格&库存
EFM32JG12B500F1024GL125-CR 数据手册
EFM32 Gecko Family EFM32JG12 Family Data Sheet The EFM32 Gecko MCUs are the world’s most energy-friendly microcontrollers. ENERGY FRIENDLY FEATURES • ARM Cortex-M3 at 40 MHz EFM32JG12 features a powerful 32-bit ARM® Cortex®-M3 and a wide selection of peripherals, including a unique cryptographic hardware engine and Security Management Unit, True Random Number Generator, and robust capacitive touch sense unit. These features, combined with ultra-low current active and sleep modes, make EFM32JG12 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and low energy consumption. • Ultra low energy operation: • 0.39 μA EM4H Hibernate current • 1.5 μA EM2 Deep Sleep current (RTCC running with state and RAM retention) • 64 μA/MHz EM0 Active current • Hardware cryptographic engine (AES, ECC, and SHA) and TRNG Example applications: • • • • • • Security Management Unit (SMU) IoT devices and sensors Health and fitness Smart accessories Home automation and security Industrial and factory automation • Autonomous low energy sensor interface (LESENSE) • Rich analog features including ADC, VDAC, OPAMPs, and capacitive sense • Integrated DC-DC converter • 5 V tolerant I/O Core / Memory ARM CortexTM M3 processor with Memory Protection Unit ETM Debug Interface Clock Management Flash Program Memory RAM Memory LDMA Controller Energy Management High Frequency Crystal Oscillator High Frequency RC Oscillator with DPLL Voltage Regulator Voltage Monitor Auxiliary High Frequency RC Oscillator Low Frequency RC Oscillator DC-DC Converter Power-On Reset Low Frequency Crystal Oscillator Ultra Low Frequency RC Oscillator Brown-Out Detector 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports USART External Interrupts Low Energy Timer Analog Interfaces ADC Other CRYPTO Analog Comparator Pulse Counter Pin Reset Watchdog Timer Real Time Counter and Calendar Pin Wakeup CRYOTIMER General Purpose I/O IC Timer/Counter Low Energy Sensor Interface Low Energy UARTTM 2 Timers and Triggers IDAC CRC Capacitive Sense True Random Number Generator VDAC Op-Amp SMU Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop EM4 - Hibernate EM4 - Shutoff Rev. 1.2 EFM32JG12 Family Data Sheet Feature List 1. Feature List The EFM32JG12 highlighted features are listed below. • ARM Cortex-M3 CPU platform • High performance 32-bit processor @ up to 40 MHz • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 64 μA/MHz in Active Mode (EM0) • 2.1 μA EM2 Deep Sleep current (256 kB RAM retention and RTCC running from LFXO) • 1.5 μA EM2 Deep Sleep current (16 kB RAM retention and RTCC running from LFRCO) • 1.81 μA EM3 Stop current (State and 256 kB RAM retention, CRYOTIMER running from ULFRCO) • 0.39 μA EM4H Hibernate Mode (128 byte RAM retention) • Up to 1024 kB flash program memory • Dual-bank with read-while-write support • Up to 256 kB RAM data memory • Up to 65 General Purpose I/O Pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • Asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • Hardware Cryptography • AES 128/256-bit keys • ECC B/K163, B/K233, P192, P224, P256 • SHA-1 and SHA-2 (SHA-224 and SHA-256) • True random number generator (TRNG) • Security Management Unit (SMU) • Fine-grained access control for on-chip peripherals • Timers/Counters • 2 × 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • 2 × 32-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • 1 × 32-bit Real Time Counter and Calendar • 1 × 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode • 16-bit Low Energy Timer for waveform generation • 3 × 16-bit Pulse Counter with asynchronous operation • 2 × Watchdog Timer with dedicated RC oscillator silabs.com | Building a more connected world. • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Communication Interfaces • 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN • Triple buffered full/half-duplex operation with flow control • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode • 2 × I2C Interface with SMBus support • • • • • • Address recognition in EM3 Stop Mode Ultra Low-Power Precision Analog Peripherals • 12-bit 1 Msps SAR Analog to Digital Converter (ADC) • 2 × Analog Comparator (ACMP) • 2 × 12-bit 500 ksps Digital to Analog Converter (VDAC) • 3 × Operational Amplifier (OPAMP) • Digital to Analog Current Converter (IDAC) • Multi-channel Capacitive Sense Interface (CSEN) • Up to 54 pins connected to analog channels (APORT) shared between analog peripherals Low-Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in deep sleep mode • Wide range of supported sensors, including LC sensors and capacitive touch switches • Up to 16 channels Ultra efficient Power-on Reset and Brown-Out Detector Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • JTAG (programming only) • Embedded Trace Macrocell (ETM) Wide Operating Range • 1.8 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to 125 °C TJ) temperature grades available • Packages • 7 mm × 7 mm QFN48 • 7 mm × 7 mm BGA125 • Pre-Programmed UART Bootloader • Full Software Support • CMSIS register definitions • Low-power Hardware Abstraction Layer (HAL) • Portable software components • Third-party middleware • Free and available example code Rev. 1.2 | 2 EFM32JG12 Family Data Sheet Ordering Information 2. Ordering Information Table 2.1. Ordering Information DC-DC ConRAM (kB) verter Ordering Code Flash (kB) EFM32JG12B500F1024GL125-C 1024 256 EFM32JG12B500F1024IL125-C 1024 EFM32JG12B500F1024GM48-C EFM32JG12B500F1024IM48-C GPIO Package Temp Range Yes 65 BGA125 -40 to +85°C 256 Yes 65 BGA125 -40 to +125°C 1024 256 Yes 33 QFN48 -40 to +85°C 1024 256 Yes 33 QFN48 -40 to +125°C EFM32 J G 1 2 B 500 F 1024 G M 48 – A R Tape and Reel (Optional) Revision Pin Count Package – M (QFN) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code Performance Grade – P (Performance), B (Basic), V (Value) Device Configuration Series Gecko Family – J, P Energy Friendly Microcontroller 32-bit Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.2 | 3 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Power . . . . . . . . . . . 3.2.1 Energy Management Unit (EMU) 3.2.2 DC-DC Converter . . . . . 3.2.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Clocking . . . . . . . . . . 3.4.1 Clock Management Unit (CMU) . 3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 . 9 . 9 .10 .10 .10 .10 3.6 Communications and Other Digital Peripherals . . . . . . . . . . 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.6.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.6.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.6.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .10 .10 .10 .11 3.7 Security Features . . . . . . . . . . . . . . 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) 3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.7.3 True Random Number Generator (TRNG) . . . . 3.7.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .11 .11 3.8 Analog. . . . . . . . . . . . . . 3.8.1 Analog Port (APORT) . . . . . . . 3.8.2 Analog Comparator (ACMP) . . . . . 3.8.3 Analog to Digital Converter (ADC) . . . 3.8.4 Capacitive Sense (CSEN) . . . . . . 3.8.5 Digital to Analog Current Converter (IDAC) 3.8.6 Digital to Analog Converter (VDAC) . . 3.8.7 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .12 .12 .12 .12 .12 3.9 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .12 3.10 Core and Memory . 3.10.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 . . . 3.5 Counters/Timers and PWM . . . . . . . . . 3.5.1 Timer/Counter (TIMER) . . . . . . . . 3.5.2 Wide Timer/Counter (WTIMER) . . . . . . 3.5.3 Real Time Counter and Calendar (RTCC) . . 3.5.4 Low Energy Timer (LETIMER) . . . . . . 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.5.6 Pulse Counter (PCNT) . . . . . . . . . 3.5.7 Watchdog Timer (WDOG) . . . . . . . . . . silabs.com | Building a more connected world. . . . . . . 8 8 8 8 Rev. 1.2 | 4 3.10.2 Memory System Controller (MSC) . . . . . 3.10.3 Linked Direct Memory Access Controller (LDMA) 3.10.4 Bootloader . . . . . . . . . . . . . 3.11 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3.12 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .16 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Electrical Characteristics . . . . . . . . 4.1.1 Absolute Maximum Ratings . . . . . . 4.1.2 Operating Conditions . . . . . . . . 4.1.3 Thermal Characteristics . . . . . . . 4.1.4 DC-DC Converter . . . . . . . . . 4.1.5 Current Consumption . . . . . . . . 4.1.6 Wake Up Times . . . . . . . . . . 4.1.7 Brown Out Detector (BOD) . . . . . . 4.1.8 Oscillators . . . . . . . . . . . . 4.1.9 Flash Memory Characteristics . . . . . 4.1.10 General-Purpose I/O (GPIO) . . . . . 4.1.11 Voltage Monitor (VMON) . . . . . . . 4.1.12 Analog to Digital Converter (ADC) . . . 4.1.13 Analog Comparator (ACMP) . . . . . 4.1.14 Digital to Analog Converter (VDAC) . . . 4.1.15 Current Digital to Analog Converter (IDAC) 4.1.16 Capacitive Sense (CSEN) . . . . . . 4.1.17 Operational Amplifier (OPAMP) . . . . 4.1.18 Pulse Counter (PCNT) . . . . . . . 4.1.19 Analog Port (APORT) . . . . . . . . 4.1.20 I2C . . . . . . . . . . . . . . 4.1.21 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .18 .20 .21 .23 .28 .29 .30 .34 .35 .37 .38 .40 .43 .46 .48 .50 .53 .53 .54 .57 4.2 Typical Performance Curves . 4.2.1 Supply Current . . . . 4.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 .59 .64 5. Typical Connection Diagrams 5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 5.2 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1 EFM32JG12B5xx in BGA125 Device Pinout . . . . . . . . . . . . . . . . . . . .67 6.2 EFM32JG12B5xx in QFN48 Device Pinout . . . . . . . . . . . . . . . . . . . .71 6.3 GPIO Functionality Table . . . . . . . . . . . . . . . . . . . . . . . . . .73 6.4 Alternate Functionality Overview . . . . . . . . . . . . . . . . . . . . . . . .92 6.5 Analog Port (APORT) Client Maps 7. BGA125 Package Specifications 7.1 BGA125 Package Dimensions . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . .104 . . . . . . . . . . . . . . . . . . . . . . .113 . . . . . . . . . . . . . . . . . . . . . . . 113 Rev. 1.2 | 5 7.2 BGA125 PCB Land Pattern . . 7.3 BGA125 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 . . 117 8. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 118 8.1 QFN48 Package Dimensions 8.2 QFN48 PCB Land Pattern 8.3 QFN48 Package Marking 9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . 118 . . . . . . . . . . . . . . . . . . . . . . . .120 . . . . . . . . . . . . . . . . . . . . . . . .122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 silabs.com | Building a more connected world. Rev. 1.2 | 6 EFM32JG12 Family Data Sheet System Overview 3. System Overview 3.1 Introduction The EFM32JG12 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the EFM32JG12 Reference Manual. A block diagram of the EFM32JG12 family is shown in Figure 3.1 Detailed EFM32JG12 Block Diagram on page 7. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Port I/O Configuration IOVDD Energy Management AVDD_1 Digital Peripherals IOVDD LETIMER Voltage Monitor AVDD_0 DVDD TIMER VREGSW DC-DC Converter PCNT Voltage Regulator Port Mapper USART LEUART ARM Cortex-M3 Core Up to 1024 KB ISP Flash Program Memory Memory Protection Unit LDMA Controller Clock Management ULFRCO AUXHFRCO LFXTAL_N HFXTAL_P HFXTAL_N PBn Port C Drivers PCn Port D Drivers PDn Port F Drivers PFn Port I Drivers PIn Port J Drivers PJn Port K Drivers PKn CRC LESENSE Analog Peripherals IDAC VDAC Internal Reference 12-bit ADC LFRCO LFXO HFRCO + DPLL HFXO Op-Amp VDD APORT Serial Wire and ETM Debug / Programming A A H P B B Mux & FB Up to 256 KB RAM CRYPTO Input Mux Reset Management Unit Watchdog Timer LFXTAL_P I2C + - Brown Out / Power-On Reset Debug Signals (shared w/GPIO) Port B Drivers RTC / RTCC DECOUPLE RESETn PAn CRYOTIMER bypass VREGVDD Port A Drivers Temp Sense Capacitive Sense + Analog Comparator Figure 3.1. Detailed EFM32JG12 Block Diagram silabs.com | Building a more connected world. Rev. 1.2 | 7 EFM32JG12 Family Data Sheet System Overview 3.2 Power The EFM32JG12 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. The EFM32JG12 device family includes support for internal supply voltage scaling, as well as two different power domains groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption. AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.2.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.2.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.2.3 Power Domains The EFM32JG12 has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device. Table 3.1. Peripheral Power Subdomains Peripheral Power Domain 1 Peripheral Power Domain 2 ACMP0 ACMP1 PCNT0 PCNT1 ADC0 PCNT2 LETIMER0 CSEN LESENSE DAC0 APORT LEUART0 - I2C0 - I2C1 - IDAC silabs.com | Building a more connected world. Rev. 1.2 | 8 EFM32JG12 Family Data Sheet System Overview 3.3 General Purpose Input/Output (GPIO) EFM32JG12 has up to 65 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.4 Clocking 3.4.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFM32JG12. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.4.2 Internal and External Oscillators The EFM32JG12 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. 3.5 Counters/Timers and PWM 3.5.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.5.2 Wide Timer/Counter (WTIMER) WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.5.3 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. silabs.com | Building a more connected world. Rev. 1.2 | 9 EFM32JG12 Family Data Sheet System Overview 3.5.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.5.6 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.5.7 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.6 Communications and Other Digital Peripherals 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.6.3 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.6.4 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. silabs.com | Building a more connected world. Rev. 1.2 | 10 EFM32JG12 Family Data Sheet System Overview 3.6.5 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.7 Security Features 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.7.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFM32JG12 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.7.3 True Random Number Generator (TRNG) The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation). Note: TRNG operation is only supported at VSCALE2. TRNG cannot be used at VSCALE0. 3.7.4 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.8 Analog 3.8.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.8.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. silabs.com | Building a more connected world. Rev. 1.2 | 11 EFM32JG12 Family Data Sheet System Overview 3.8.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.8.4 Capacitive Sense (CSEN) The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. 3.8.5 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.8.6 Digital to Analog Converter (VDAC) The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.8.7 Operational Amplifiers The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.9 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFM32JG12. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.10 Core and Memory 3.10.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M3 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Embedded Trace Macrocell (ETM) for real-time trace and debug • Up to 1024 kB flash program memory • Dual-bank memory with read-while-write support • Up to 256 kB RAM data memory • Configuration and event handling of all modules • 2-pin Serial-Wire or 4-pin JTAG debug interface silabs.com | Building a more connected world. Rev. 1.2 | 12 EFM32JG12 Family Data Sheet System Overview 3.10.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.10.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. 3.10.4 Bootloader All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area. silabs.com | Building a more connected world. Rev. 1.2 | 13 EFM32JG12 Family Data Sheet System Overview 3.11 Memory Map The EFM32JG12 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFM32JG12 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.2 | 14 EFM32JG12 Family Data Sheet System Overview Figure 3.3. EFM32JG12 Memory Map — Peripherals silabs.com | Building a more connected world. Rev. 1.2 | 15 EFM32JG12 Family Data Sheet System Overview 3.12 Configuration Summary The features of the EFM32JG12 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. Table 3.2. Configuration Summary Module Configuration Pin Connections USART0 IrDA US0_TX, US0_RX, US0_CLK, US0_CS SmartCard USART1 I2S US1_TX, US1_RX, US1_CLK, US1_CS SmartCard USART2 IrDA US2_TX, US2_RX, US2_CLK, US2_CS SmartCard USART3 I2S US3_TX, US3_RX, US3_CLK, US3_CS SmartCard TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] WTIMER1 - WTIM1_CC[3:0] silabs.com | Building a more connected world. Rev. 1.2 | 16 EFM32JG12 Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range Min Typ Max Unit TSTG -50 — 150 °C Voltage on any supply pin VDDMAX -0.3 — 3.8 V Voltage ramp rate on any supply pin VDDRAMPMAX — — 1 V / µs DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3 -0.3 — Min of 5.25 and IOVDD +2 V Standard GPIO pins -0.3 — IOVDD+0.3 V -0.3 — 1.4 V Voltage on HFXO pins Test Condition VHFXOPIN Total current into VDD power IVDDMAX lines Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C Current for all I/O pins Junction temperature IIOALLMAX TJ Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.2 | 17 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD silabs.com | Building a more connected world. Rev. 1.2 | 18 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit Operating ambient temperature range6 TA -G temperature grade -40 25 85 °C -I temperature grade -40 25 125 °C AVDD supply voltage2 VAVDD 1.8 3.3 3.8 V VREGVDD operating supply voltage2 1 VVREGVDD DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.8 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.8 3.3 3.8 V DCDC in bypass, T ≤ 85 °C — — 200 mA DCDC in bypass, T > 85 °C — — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF — — 0.1 V VSCALE2, MODE = WS1 — — 40 MHz VSCALE0, MODE = WS0 — — 20 MHz VSCALE2 — — 40 MHz VSCALE0 — — 20 MHz VREGVDD current DVDD operating supply voltage IVREGVDD VDVDD IOVDD operating supply volt- VIOVDD age DECOUPLE output capacitor3 4 All IOVDD pins5 CDECOUPLE Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD)2 HFCORECLK frequency HFCLK frequency fCORE fHFCLK Note: 1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. 4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 5. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD. 6. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. silabs.com | Building a more connected world. Rev. 1.2 | 19 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Thermal Resistance THETAJA silabs.com | Building a more connected world. Min Typ Max Unit QFN48 Package, 2-Layer PCB, Air velocity = 0 m/s — 75.7 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 1 m/s — 61.5 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 2 m/s — 55.4 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 0 m/s — 30.2 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 1 m/s — 26.3 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 2 m/s — 24.9 — °C/W BGA125 Package, 2-Layer PCB, Air velocity = 0 m/s — 90.7 — °C/W BGA125 Package, 2-Layer PCB, Air velocity = 1 m/s — 73.7 — °C/W BGA125 Package, 2-Layer PCB, Air velocity = 2 m/s — 66.4 — °C/W BGA125 Package, 4-Layer PCB, Air velocity = 0 m/s — 45 — °C/W BGA125 Package, 4-Layer PCB, Air velocity = 1 m/s — 39.6 — °C/W BGA125 Package, 4-Layer PCB, Air velocity = 2 m/s — 37.6 — °C/W Rev. 1.2 | 20 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC accuracy ACCDC Regulation window4 WINREG Steady-state output ripple VR Output voltage under/overshoot VOV MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V — 3 — mVpp CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — 25 60 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — 45 90 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 40 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 100 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.2 | 21 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive2, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive2, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive2 — — 100 mA Low noise (LN) mode, Light Drive2 — — 50 mA Low power (LP) mode, LPCMPBIASEMxx3 = 0 — — 75 µA Low power (LP) mode, LPCMPBIASEMxx3 = 3 — — 10 mA CDCDC 25% tolerance 1 4.7 4.7 µF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 µH — 1.2 2.5 Ω DCDC nominal output capacitor5 Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. 4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details. silabs.com | Building a more connected world. Rev. 1.2 | 22 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.5 Current Consumption 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C. Table 4.5. Current Consumption 3.3 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 126 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 99 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 99 105 µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 124 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 108 µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 280 435 µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 88 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 234 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 38.4 MHz crystal1 — 76 — µA/MHz 38 MHz HFRCO — 50 54 µA/MHz 26 MHz HFRCO — 52 58 µA/MHz 1 MHz HFRCO — 230 400 µA/MHz 19 MHz HFRCO — 47 — µA/MHz 1 MHz HFRCO — 193 — µA/MHz Full 256 kB RAM retention and RTCC running from LFXO — 2.9 — µA Full 256 kB RAM retention and RTCC running from LFRCO — 3.2 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO2 — 2.1 3.5 µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 256 kB RAM retention and CRYOTIMER running from ULFRCO — 2.56 4.8 µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 1.0 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.45 — µA 128 byte RAM retention, no RTCC — 0.43 0.9 µA Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled IEM4H_VS silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 23 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Current consumption in EM4S mode IEM4S No RAM retention, no RTCC Min Typ Max Unit — 0.04 0.1 µA Note: 1. CMU_HFXOCTRL_LOWPOWER=1. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.2 | 24 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C. Table 4.6. Current Consumption 3.3 V using DC-DC Converter Parameter Symbol Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode2 Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode1 Current consumption in EM0 IACTIVE_LPM mode with all peripherals disabled, DCDC in LP mode3 Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode1 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash4 — 86 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 70 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 70 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 85 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 77 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 636 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash4 — 96 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 81 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 82 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 95 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 95 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1155 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash4 — 80 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 64 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 64 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 79 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 66 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 224 — µA/MHz 19 MHz HFRCO, CPU running while loop from flash — 101 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1128 — µA/MHz Rev. 1.2 | 25 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM0 IACTIVE_LPM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in LP mode3 19 MHz HFRCO, CPU running while loop from flash — 58 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 196 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode2 38.4 MHz crystal4 — 56 — µA/MHz 38 MHz HFRCO — 41 — µA/MHz 26 MHz HFRCO — 48 — µA/MHz 1 MHz HFRCO — 610 — µA/MHz 38.4 MHz crystal4 — 49 — µA/MHz 38 MHz HFRCO — 33 — µA/MHz 26 MHz HFRCO — 35 — µA/MHz 1 MHz HFRCO — 194 — µA/MHz Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode2 19 MHz HFRCO — 52 — µA/MHz 1 MHz HFRCO — 587 — µA/MHz Current consumption in EM1 IEM1_LPM_VS mode with all peripherals disabled and voltage scaling enabled. DCDC in LP mode3 19 MHz HFRCO — 32 — µA/MHz 1 MHz HFRCO — 170 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, DCDC in LP mode3 Full 256 kB RAM retention and RTCC running from LFXO — 2.1 — µA Full 256 kB RAM retention and RTCC running from LFRCO — 2.2 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO5 — 1.5 — µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 256 kB RAM retention and CRYOTIMER running from ULFRCO — 1.81 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.69 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.39 — µA 128 byte RAM retention, no RTCC — 0.39 — µA No RAM retention, no RTCC — 0.06 — µA Current consumption in EM1 IEM1_LPM mode with all peripherals disabled, DCDC in Low Power mode3 Current consumption in EM4S mode IEM4H_VS IEM4S Note: 1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 4. CMU_HFXOCTRL_LOWPOWER=1. 5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.2 | 26 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.5.3 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C. Table 4.7. Current Consumption 1.8 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 126 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 99 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 99 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 124 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 277 — µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 87 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 231 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 38.4 MHz crystal1 — 76 — µA/MHz 38 MHz HFRCO — 50 — µA/MHz 26 MHz HFRCO — 52 — µA/MHz 1 MHz HFRCO — 227 — µA/MHz 19 MHz HFRCO — 47 — µA/MHz 1 MHz HFRCO — 190 — µA/MHz Full 256 kB RAM retention and RTCC running from LFXO — 2.8 — µA Full 256 kB RAM retention and RTCC running from LFRCO — 3.0 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO2 — 1.9 — µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 256 kB RAM retention and CRYOTIMER running from ULFRCO — 2.47 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.91 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.35 — µA 128 byte RAM retention, no RTCC — 0.35 — µA No RAM retention, no RTCC — 0.04 — µA Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Current consumption in EM4S mode IEM4H_VS IEM4S silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 27 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 10.1 — µs Code execution from RAM — 3.2 — µs Code execution from flash — 10.1 — µs Code execution from RAM — 3.2 — µs Note: 1. CMU_HFXOCTRL_LOWPOWER=1. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 4.1.6 Wake Up Times Table 4.8. Wake Up Times Parameter Symbol Wakeup time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 tEM3_WU Test Condition Wake up from EM4H1 tEM4H_WU Executing from flash — 80 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 291 — µs Time from release of reset source to first instruction execution tRESET Soft Pin Reset released — 43 — µs Any other reset released — 350 — µs Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK = 19 MHz4 2 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz3 — 4.3 — µs Note: 1. Time from wakeup request until first instruction is executed. Wakeup results in device reset. 2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. 4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. silabs.com | Building a more connected world. Rev. 1.2 | 28 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.7 Brown Out Detector (BOD) Table 4.9. Brown Out Detector (BOD) Parameter Symbol Test Condition Min Typ Max Unit DVDD BOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling (EM0/EM1) 1.35 — — V DVDD falling (EM2/EM3) 1.3 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 18 — mV DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs AVDD BOD threshold VAVDDBOD — — 1.8 V AVDD falling (EM0/EM1) 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V AVDD rising AVDD BOD hysteresis VAVDDBOD_HYST — 20 — mV AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 25 — mV — 300 — µs EM4 BOD hysteresis VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/µs rate Rev. 1.2 | 29 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.8 Oscillators 4.1.8.1 Low-Frequency Crystal Oscillator (LFXO) Table 4.10. Low-Frequency Crystal Oscillator (LFXO) Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.2 | 30 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.8.2 High-Frequency Crystal Oscillator (HFXO) Table 4.11. High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Crystal frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO_38M4 Supported range of crystal load capacitance 1 CHFXO_CL On-chip tuning cap range 2 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO Frequency tolerance for the crystal FTHFXO Min Typ Max Unit 38 38.4 40 MHz — — 60 Ω 6 — 12 pF 9 20 25 pF — 0.04 — pF 38.4 MHz, ESR = 50 Ohm, CL = 10 pF — 300 — µs 38.4 MHz, ESR = 50 Ohm, CL = 10 pF -40 — 40 ppm Crystal frequency 38.4 MHz On each of HFXTAL_N and HFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.8.3 Low-Frequency RC Oscillator (LFRCO) Table 4.12. Low-Frequency RC Oscillator (LFRCO) Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF2 = 1 31.3 32.768 33.6 kHz ENVREF2 = 1, T > 85 °C 31.6 32.768 36.8 kHz ENVREF2 = 0 31.3 32.768 33.4 kHz ENVREF2 = 0, T > 85 °C 30.0 32.768 33.4 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 370 — nA ENVREF = 0 in CMU_LFRCOCTRL — 520 — nA Startup time tLFRCO Current consumption 1 ILFRCO Note: 1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 2. In CMU_LFRCOCTRL register. silabs.com | Building a more connected world. Rev. 1.2 | 31 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.8.4 High-Frequency RC Oscillator (HFRCO) Table 4.13. High-Frequency RC Oscillator (HFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs Maximum DPLL lock time1 tDPLL_LOCK fREF = 32.768 kHz, fHFRCO = 39.98 MHz, N = 1219, M = 0 — 183 — µs Current consumption on all supplies IHFRCO fHFRCO = 38 MHz — 244 265 µA fHFRCO = 32 MHz — 204 222 µA fHFRCO = 26 MHz — 173 188 µA fHFRCO = 19 MHz — 143 156 µA fHFRCO = 16 MHz — 123 136 µA fHFRCO = 13 MHz — 110 124 µA fHFRCO = 7 MHz — 85 94 µA fHFRCO = 4 MHz — 32 37 µA fHFRCO = 2 MHz — 28 34 µA fHFRCO = 1 MHz — 26 31 µA fHFRCO = 40 MHz, DPLL enabled — 423 470 µA fHFRCO = 32 MHz, DPLL enabled — 338 375 µA fHFRCO = 16 MHz, DPLL enabled — 192 220 µA fHFRCO = 4 MHz, DPLL enabled — 51 75 µA fHFRCO = 1 MHz, DPLL enabled — 36 50 µA — 0.8 — % Coarse trim step size (% of period) SSHFRCO_COARS E Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS Note: 1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period. silabs.com | Building a more connected world. Rev. 1.2 | 32 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.8.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.14. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Parameter Symbol Test Condition Frequency accuracy fAUXHFRCO_ACC Start-up time tAUXHFRCO Current consumption on all supplies IAUXHFRCO Coarse trim step size (% of period) CO_COARSE Fine trim step size (% of period) CO_FINE Period jitter PJAUXHFRCO Min Typ Max Unit At production calibrated frequencies, across supply voltage and temperature -3 — 3 % fAUXHFRCO ≥ 19 MHz — 400 — ns 4 < fAUXHFRCO < 19 MHz — 1.4 — µs fAUXHFRCO ≤ 4 MHz — 2.5 — µs fAUXHFRCO = 38 MHz — 193 213 µA fAUXHFRCO = 32 MHz — 157 175 µA fAUXHFRCO = 26 MHz — 135 151 µA fAUXHFRCO = 19 MHz — 108 122 µA fAUXHFRCO = 16 MHz — 100 113 µA fAUXHFRCO = 13 MHz — 77 88 µA fAUXHFRCO = 7 MHz — 53 63 µA fAUXHFRCO = 4 MHz — 29 36 µA fAUXHFRCO = 2 MHz — 28 34 µA fAUXHFRCO = 1 MHz — 27 31 µA — 0.8 — % — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.95 1 1.07 kHz SSAUXHFRSSAUXHFR- 4.1.8.6 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.15. Ultra-low Frequency RC Oscillator (ULFRCO) Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 33 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.9 Flash Memory Characteristics5 Table 4.16. Flash Memory Characteristics5 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Test Condition Min Typ Max Unit 10000 — — cycles T ≤ 85 °C 10 — — years T ≤ 125 °C 10 — — years Burst write, 128 words, average time per word 20 24.4 30 µs Single word 60 68.4 80 µs Page erase time4 tPERASE 20 26.4 35 ms Mass erase time1 tMERASE 20 26.5 35 ms Device erase time2 3 tDERASE T ≤ 85 °C — 82 100 ms T ≤ 125 °C — 82 110 ms Page Erase — — 1.6 mA Erase current6 IERASE Write current6 IWRITE — — 3.8 mA Supply voltage during flash erase and write VFLASH 1.62 — 3.6 V Note: 1. Mass erase is issued by the CPU and erases all flash. 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 5. Flash data retention information is published in the Quarterly Quality and Reliability Report. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.2 | 34 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.10 General-Purpose I/O (GPIO) Table 4.17. General-Purpose I/O (GPIO) Parameter Symbol Test Condition Min Typ Max Unit Input low voltage VIL GPIO pins — — IOVDD*0.3 V Input high voltage VIH GPIO pins IOVDD*0.7 — — V Output high voltage relative to IOVDD VOH Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 30 nA LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 50 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C — — 110 nA LFXO Pins, GPIO ≤ IOVDD, T > 85 °C — — 250 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA 30 40 65 kΩ 15 25 45 ns DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up/pull-down resistor RPUD Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.2 | 35 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Note: 1. In GPIO_Pn_CTRL register. silabs.com | Building a more connected world. Rev. 1.2 | 36 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.11 Voltage Monitor (VMON) Table 4.18. Voltage Monitor (VMON) Parameter Symbol Test Condition Supply current (including I_SENSE) IVMON Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Min Typ Max Unit In EM0 or EM1, 1 supply monitored, T ≤ 85 °C — 6.3 10 µA In EM0 or EM1, 1 supply monitored, T > 85 °C — — 14 µA In EM0 or EM1, 4 supplies monitored, T ≤ 85 °C — 12.5 17 µA In EM0 or EM1, 4 supplies monitored, T > 85 °C — — 21 µA In EM2, EM3 or EM4, 1 supply monitored and above threshold — 62 — nA In EM2, EM3 or EM4, 1 supply monitored and below threshold — 62 — nA In EM2, EM3 or EM4, 4 supplies monitored and all above threshold — 99 — nA In EM2, EM3 or EM4, 4 supplies monitored and all below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV Rev. 1.2 | 37 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.12 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.19. Analog to Digital Converter (ADC) Parameter Symbol Resolution VRESOLUTION Input voltage range5 VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits — — VFS V -VFS/2 — VFS/2 V 1 — VAVDD V Power supply rejection2 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 270 315 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 3 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 3 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL SPROG = 0, GPBIASACC = 1 3 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 70 — µA Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP Continous operation. WARMUPMODE4 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 3 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 3 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL SPROG = 0, GPBIASACC = 0 3 — 85 — µA — 16 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 160 — µA Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP Continous operation. WARMUPMODE4 = KEEPADCWARM IADC_CLK silabs.com | Building a more connected world. Rev. 1.2 | 38 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol ADC clock frequency Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time1 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE4 = NORMAL — — 5 µs WARMUPMODE4 = KEEPINSTANDBY — — 2 µs WARMUPMODE4 = KEEPINSLOWACC — — 1 µs Internal reference7, differential measurement 58 67 — dB External reference6, differential measurement — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz Temperature sensor slope tADCSTART SNDRADC VTS_SLOPE Test Condition Note: 1. Derived from ADCCLK. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_BIASPROG register. 4. In ADCn_CNTL register. 5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. 7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. silabs.com | Building a more connected world. Rev. 1.2 | 39 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.13 Analog Comparator (ACMP) Table 4.20. Analog Comparator (ACMP) Parameter Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Active current not including voltage reference2 IACMP Current consumption of inter- IACMPREF nal voltage reference2 silabs.com | Building a more connected world. Min Typ Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG4 ≤ 0x10 or FULLBIAS4 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG4 ≤ 0x20 and FULLBIAS4 = 1 2.1 BIASPROG4 = 1, FULLBIAS4 = 0 — 50 — nA BIASPROG4 = 0x10, FULLBIAS4 =0 — 306 — nA BIASPROG4 = 0x02, FULLBIAS4 =1 — 6.5 — µA BIASPROG4 = 0x20, FULLBIAS4 =1 — 75 92 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA MAX — VVREGVDD_ V MAX Rev. 1.2 | 40 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Hysteresis (VCM = 1.25 V, BIASPROG4 = 0x10, FULLBIAS4 = 1) VACMPHYST Comparator delay3 tACMPDELAY Min Typ Max Unit HYSTSEL5 = HYST0 -3 0 3 mV HYSTSEL5 = HYST1 5 18 27 mV HYSTSEL5 = HYST2 12 33 50 mV HYSTSEL5 = HYST3 17 46 65 mV HYSTSEL5 = HYST4 23 57 82 mV HYSTSEL5 = HYST5 26 68 98 mV HYSTSEL5 = HYST6 30 79 130 mV HYSTSEL5 = HYST7 34 90 150 mV HYSTSEL5 = HYST8 -3 0 3 mV HYSTSEL5 = HYST9 -27 -18 -5 mV HYSTSEL5 = HYST10 -50 -33 -12 mV HYSTSEL5 = HYST11 -65 -45 -17 mV HYSTSEL5 = HYST12 -82 -57 -23 mV HYSTSEL5 = HYST13 -98 -67 -26 mV HYSTSEL5 = HYST14 -130 -78 -30 mV HYSTSEL5 = HYST15 -150 -88 -34 mV BIASPROG4 = 1, FULLBIAS4 = 0 — 30 — µs BIASPROG4 = 0x10, FULLBIAS4 =0 — 3.7 — µs BIASPROG4 = 0x02, FULLBIAS4 =1 — 360 — ns BIASPROG4 = 0x20, FULLBIAS4 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG4 =0x10, FULLBIAS4 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 2 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 100 — kΩ CSRESSEL6 = 6 — 162 — kΩ CSRESSEL6 = 7 — 235 — kΩ Capacitive sense internal re- RCSRES sistance silabs.com | Building a more connected world. Rev. 1.2 | 41 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. 3. ± 100 mV differential drive. 4. In ACMPn_CTRL register. 5. In ACMPn_HYSTERESIS registers. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.2 | 42 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.14 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.21. Digital to Analog Converter (VDAC) Parameter Symbol Test Condition Min Typ Max Unit Output voltage VDACOUT Single-Ended 0 — VVREF V -VVREF — VVREF V 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 396 — µA 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 72 — µA 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WARMUPTIME = 0x02 — 1.2 — µA Differential2 Current consumption including references (2 channels)1 IDAC Current from HFPERCLK4 IDAC_CLK — 5.8 — µA/MHz Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB Power supply rejection ratio6 PSRR silabs.com | Building a more connected world. Rev. 1.2 | 43 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 500 ksps, single-ended, internal 1.25V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5V reference — 61.6 — dB 500 ksps, single-ended, 3.3V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25V reference — 63.3 — dB 500 ksps, differential, internal 2.5V reference — 64.4 — dB 500 ksps, differential, 3.3V VDD reference — 65.8 — dB Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal ratio (1 kHz sine wave), 1.25V reference Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5V reference — 65.3 — dB — 66.7 — dB 500 ksps, single-ended, 3.3V VDD reference — 70.0 — dB 500 ksps, differential, internal 1.25V reference — 67.8 — dB 500 ksps, differential, internal 2.5V reference — 69.0 — dB 500 ksps, differential, 3.3V VDD reference — 68.5 — dB — 70.2 — dB Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition Total harmonic distortion THD Differential non-linearity3 DNLDAC -0.99 — 1 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error5 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % T = 25 °C, Internal reference (REFSEL = 1V25 or 2V5) -5 — 5 % T = 25 °C, External reference (REFSEL = VDD or EXT) -1.8 — 1.8 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % Across operating temperature range, Internal reference (REFSEL = 1V25 or 2V5) -7.5 — 7.5 % Across operating temperature range, External reference (REFSEL = VDD or EXT) -2.0 — 2.0 % Gain error5 VGAIN silabs.com | Building a more connected world. Rev. 1.2 | 44 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol External load capactiance, OUTSCALE=0 CLOAD Test Condition Min Typ Max Unit — — 75 pF Note: 1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 3. Entire range is monotonic and has no missing codes. 4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC module is enabled in the CMU. 5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. 6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale silabs.com | Building a more connected world. Rev. 1.2 | 45 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.15 Current Digital to Analog Converter (IDAC) Table 4.22. Current Digital to Analog Converter (IDAC) Parameter Symbol Number of ranges NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total accuracy, STEPSEL1 = ACCIDAC 0x10 Start up time tIDAC_SU silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — ranges RANGSEL1 = RANGE0 0.05 — 1.6 µA RANGSEL1 = RANGE1 1.6 — 4.7 µA RANGSEL1 = RANGE2 0.5 — 16 µA RANGSEL1 = RANGE3 2 — 64 µA — 32 — steps RANGSEL1 = RANGE0 — 50 — nA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -3 — 3 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % Output within 1% of steady state value — 5 — µs Rev. 1.2 | 46 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Current consumption2 IIDAC Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Test Condition Min Typ Max Unit Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 11 18 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 13 21 µA EM2 or EM3 Source mode, excluding output current, T = 25 °C — 0.023 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — 0.041 — µA EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 11 — µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 13 — µA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mv) — 0.11 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.06 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.04 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.03 — % RANGESEL1=0, output voltage = 100 mV — 0.12 — % RANGESEL1=1, output voltage = 100 mV — 0.05 — % RANGESEL1=2, output voltage = 150 mV — 0.04 — % RANGESEL1=3, output voltage = 250 mV — 0.03 — % Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.2 | 47 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.16 Capacitive Sense (CSEN) Table 4.23. Capacitive Sense (CSEN) Parameter Symbol Test Condition Single conversion time (1x accumulation) tCNV Maximum external capacitive CEXTMAX load Min Typ Max Unit 12-bit SAR Conversions — 20.2 — µs 16-bit SAR Conversions — 26.4 — µs Delta Modulation Conversion (single comparison) — 1.55 — µs CS0CG=7 (Gain = 1x), including routing parasitics — 68 — pF CS0CG=0 (Gain = 10x), including routing parasitics — 680 — pF — 1 — kΩ 12-bit SAR conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 326 — nA Delta Modulation conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 226 — nA 12-bit SAR conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 33 — nA Delta Modulation conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 25 — nA 12-bit SAR conversions, 20 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan1 — 690 — nA Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan1 — 515 — nA 12-bit SAR conversions, 200 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan1 — 79 — nA Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan1 — 57 — nA Maximum external series im- REXTMAX pedance Supply current, EM2 bonded ICSEN_BOND conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 ICSEN_EM2 silabs.com | Building a more connected world. Rev. 1.2 | 48 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Supply current, continuous conversions, WARMUPMODE=KEEPCSENWARM ICSEN_ACTIVE SAR or Delta Modulation conversions of 33 pF capacitor, CS0CG=0 (Gain = 10x), always on — 90.5 — µA HFPERCLK supply current ICSEN_HFPERCLK Current contribution from HFPERCLK when clock to CSEN block is enabled. — 2.25 — µA/MHz Note: 1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). silabs.com | Building a more connected world. Rev. 1.2 | 49 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.17 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes8 1. Table 4.24. Operational Amplifier (OPAMP) Parameter Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range Input voltage VIN Min Typ Max Unit 2 — 3.8 V HCMDIS = 1 1.62 — 3.8 V HCMDIS = 0, Rail-to-rail input range VVSS — VOPA V HCMDIS = 1 VVSS — VOPA-1.2 V Input impedance RIN 100 — — MΩ Output voltage VOUT VVSS — VOPA V Load capacitance2 CLOAD OUTSCALE = 0 — — 75 pF OUTSCALE = 1 — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA Output impedance Internal closed-loop gain Active current4 ROUT GCL IOPA silabs.com | Building a more connected world. Rev. 1.2 | 50 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Open-loop gain GOL Loop unit-gain frequency7 Phase margin Output voltage noise UGF PM NOUT silabs.com | Building a more connected world. Min Typ Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — 3.38 — MHz DRIVESTRENGTH = 2, Buffer connection — 0.9 — MHz DRIVESTRENGTH = 1, Buffer connection — 132 — kHz DRIVESTRENGTH = 0, Buffer connection — 34 — kHz DRIVESTRENGTH = 3, 3x Gain connection — 2.57 — MHz DRIVESTRENGTH = 2, 3x Gain connection — 0.71 — MHz DRIVESTRENGTH = 1, 3x Gain connection — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms Rev. 1.2 | 51 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Slew rate5 SR DRIVESTRENGTH = 3, INCBW=13 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=13 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — 0.42 — V/µs DRIVESTRENGTH = 1, INCBW=13 — 0.17 — V/µs DRIVESTRENGTH = 1, INCBW=0 — 0.058 — V/µs DRIVESTRENGTH = 0, INCBW=13 — 0.044 — V/µs DRIVESTRENGTH = 0, INCBW=0 — 0.015 — V/µs Startup time6 TSTART DRIVESTRENGTH = 2 — — 12 µs Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C -2 — 2 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -2 — 2 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV DC power supply rejection ratio9 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB silabs.com | Building a more connected world. Rev. 1.2 | 52 EFM32JG12 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. 6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. 4.1.18 Pulse Counter (PCNT) Table 4.25. Pulse Counter (PCNT) Parameter Symbol Test Condition Min Typ Max Unit Input frequency FIN Asynchronous Single and Quadrature Modes — — 20 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit 4.1.19 Analog Port (APORT) Table 4.26. Analog Port (APORT) Parameter Symbol Test Condition Supply current2 1 IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 67 — nA Note: 1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. 2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current. silabs.com | Building a more connected world. Rev. 1.2 | 53 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.20 I2C 4.1.20.1 I2C Standard-mode (Sm)1 Table 4.27. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — µs SCL clock high time tHIGH 4 — — µs SDA set-up time tSU_DAT 250 — — ns SDA hold time3 tHD_DAT 100 — 3450 ns Repeated START condition set-up time tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time tSU_STO 4 — — µs Bus free time between a STOP and START condition tBUF 4.7 — — µs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.2 | 54 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.20.2 I2C Fast-mode (Fm)1 Table 4.28. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs STOP condition set-up time tSU_STO 0.6 — — µs Bus free time between a STOP and START condition tBUF 1.3 — — µs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.2 | 55 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.20.3 I2C Fast-mode Plus (Fm+)1 Table 4.29. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs STOP condition set-up time tSU_STO 0.26 — — µs Bus free time between a STOP and START condition tBUF 0.5 — — µs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.2 | 56 EFM32JG12 Family Data Sheet Electrical Specifications 4.1.21 USART SPI SPI Master Timing Table 4.30. SPI Master Timing Parameter Symbol SCLK period 1 3 2 tSCLK CS to MOSI 1 3 Test Condition Min Typ Max Unit 2* tHFPERCLK — — ns tCS_MO -14.5 — 13.5 ns SCLK to MOSI 1 3 tSCLK_MO -8.5 — 8 ns MISO setup time 1 3 tSU_MI IOVDD = 1.62 V 92 — — ns IOVDD = 3.0 V 42 — — ns -10 — — ns tH_MI MISO hold time 1 3 Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. tHFPERCLK is one period of the selected HFPERCLK. 3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 57 EFM32JG12 Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.31. SPI Slave Timing Parameter Symbol SCLK period 1 3 2 Test Condition Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 3 2 tSCLK_HI 2.5 * tHFPERCLK — — ns SCLK low time1 3 2 tSCLK_LO 2.5 * tHFPERCLK — — ns CS active to MISO 1 3 tCS_ACT_MI 4 — 70 ns CS disable to MISO 1 3 tCS_DIS_MI 4 — 50 ns MOSI setup time 1 3 tSU_MO 8 — — ns MOSI hold time 1 3 2 tH_MO 7 — — ns SCLK to MISO 1 3 2 tSCLK_MI 10 + 1.5 * tHFPERCLK — 65 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. tHFPERCLK is one period of the selected HFPERCLK. 3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.2 | 58 EFM32JG12 Family Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.2 | 59 EFM32JG12 Family Data Sheet Electrical Specifications Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.2 | 60 EFM32JG12 Family Data Sheet Electrical Specifications Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.2 | 61 EFM32JG12 Family Data Sheet Electrical Specifications Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.2 | 62 EFM32JG12 Family Data Sheet Electrical Specifications Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply silabs.com | Building a more connected world. Rev. 1.2 | 63 EFM32JG12 Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.8. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.2 | 64 EFM32JG12 Family Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 20mV/div offset:1.8V 100mA VSW ILOAD 1mA 2V/div offset:1.8V 100μs/div 10μs/div Figure 4.9. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.2 | 65 EFM32JG12 Family Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Power Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in Figure 5.1 EFM32JG12 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 66. VDD Main Supply + – VREGVDD AVDD_0 IOVDD AVDD_1 VREGSW HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE Figure 5.1. EFM32JG12 Typical Application Circuit, Direct Supply, No DC-DC Converter A typical application circuit using the internal DC-DC converter is shown in Figure 5.2 EFM32JG12 Typical Application Circuit Using the DC-DC Converter on page 66. The MCU operates from the DC-DC converter supply. VDD Main Supply + – VREGVDD VDCDC AVDD_0 IOVDD AVDD_1 VREGSW VREGVSS DVDD HFXTAL_N HFXTAL_P LFXTAL_N LFXTAL_P DECOUPLE Figure 5.2. EFM32JG12 Typical Application Circuit Using the DC-DC Converter 5.2 Other Connections Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes). silabs.com | Building a more connected world. Rev. 1.2 | 66 EFM32JG12 Family Data Sheet Pin Definitions 6. Pin Definitions 6.1 EFM32JG12B5xx in BGA125 Device Pinout Figure 6.1. EFM32JG12B5xx in BGA125 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.3 GPIO Functionality Table or 6.4 Alternate Functionality Overview. Table 6.1. EFM32JG12B5xx in BGA125 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PF3 A1 GPIO (5V) PF1 A2 GPIO (5V) PC5 A3 GPIO (5V) PC3 A4 GPIO (5V) PC0 A5 GPIO (5V) PC11 A6 GPIO (5V) PC9 A7 GPIO (5V) PC7 A8 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 67 EFM32JG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description DECOUPLE A9 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. VREGVDD A11 Voltage regulator VDD input VREGVSS A13 B11 B12 PF2 Pin Name Pin(s) Description DVDD A10 Digital power supply. VREGSW A12 DCDC regulator switching node Voltage regulator VSS PF8 B1 GPIO (5V) B2 GPIO (5V) PF0 B3 GPIO (5V) PC4 B4 GPIO (5V) PC1 B5 GPIO (5V) PJ14 B6 GPIO (5V) PC10 B7 GPIO (5V) PC8 B8 GPIO (5V) PC6 B9 GPIO (5V) IOVDD B10 F2 F11 M12 Digital IO power supply. AVDD B13 J1 J2 Analog power supply. PF11 C1 GPIO (5V) PF10 C2 GPIO (5V) PF9 C3 GPIO (5V) PC2 C5 GPIO (5V) PJ15 C6 GPIO (5V) PB15 C10 GPIO PB14 C11 GPIO PB13 C12 GPIO PB12 C13 GPIO PF14 D1 GPIO (5V) PF13 D2 GPIO (5V) PF12 D3 GPIO (5V) PB11 D11 GPIO PB10 D12 GPIO (5V) PB9 D13 GPIO (5V) PK1 E1 GPIO (5V) PK0 E2 GPIO PF15 E3 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 68 EFM32JG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VSS E5 E6 E7 E8 E9 F5 F6 F7 F8 F9 G5 G6 G7 G8 G9 H5 H6 H7 H8 H9 J5 J6 J7 J8 J9 K2 L2 M2 M3 M4 M5 M6 M7 N5 Ground PB8 E12 GPIO (5V) PB7 E13 GPIO (5V) PK2 F1 GPIO (5V) PB6 F12 GPIO (5V) PI3 F13 GPIO (5V) PF5 G1 GPIO (5V) PF4 G2 GPIO (5V) PI2 G11 GPIO (5V) PI1 G12 GPIO (5V) PI0 G13 GPIO (5V) PF7 H1 GPIO (5V) PF6 H2 GPIO (5V) PA9 H12 GPIO (5V) PA8 H13 GPIO (5V) PA7 J11 GPIO (5V) PA6 J12 GPIO (5V) PA5 J13 GPIO (5V) HFXTAL_N K1 High Frequency Crystal input pin. PA4 K12 GPIO PA3 K13 GPIO HFXTAL_P L1 High Frequency Crystal output pin. BODEN L10 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PA2 L12 GPIO M1 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PA1 L13 GPIO silabs.com | Building a more connected world. RESETn Rev. 1.2 | 69 EFM32JG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description NC M8 N1 N2 N3 N4 N6 N7 N8 No Connect. PD9 M9 GPIO (5V) PD11 M10 GPIO (5V) PD13 M11 GPIO PA0 M13 GPIO PD8 N9 GPIO (5V) PD10 N10 GPIO (5V) PD12 N11 GPIO (5V) PD14 N12 GPIO PD15 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 70 EFM32JG12 Family Data Sheet Pin Definitions 6.2 EFM32JG12B5xx in QFN48 Device Pinout Figure 6.2. EFM32JG12B5xx in QFN48 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.3 GPIO Functionality Table or 6.4 Alternate Functionality Overview. Table 6.2. EFM32JG12B5xx in QFN48 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) AVDD 9 34 Analog power supply. HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. silabs.com | Building a more connected world. Rev. 1.2 | 71 EFM32JG12 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description No Connect. RESETn 12 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PD8 17 GPIO (5V) PD9 18 GPIO (5V) PD10 19 GPIO (5V) PD11 20 GPIO (5V) PD12 21 GPIO (5V) PD13 22 GPIO PD14 23 GPIO PD15 24 GPIO PA0 25 GPIO PA1 26 GPIO PA2 27 GPIO PA3 28 GPIO PA4 29 GPIO PA5 30 GPIO (5V) PB11 31 GPIO PB12 32 GPIO PB13 33 GPIO PB14 35 GPIO PB15 36 GPIO VREGVSS 37 Voltage regulator VSS VREGSW 38 DCDC regulator switching node VREGVDD 39 Voltage regulator VDD input DVDD 40 Digital power supply. DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) NC 13 14 15 16 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The PD8 GPIO pin is not available (no-connect) on other device families, and should not be used if direct pin compatibility across multiple families is required. silabs.com | Building a more connected world. Rev. 1.2 | 72 EFM32JG12 Family Data Sheet Pin Definitions 6.3 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 6.4 Alternate Functionality Overview for a list of GPIO locations available for each function. Table 6.3. GPIO Functionality Table GPIO Name PF3 PF1 Pin Alternate Functionality / Description Analog Timers BUSAY BUSBX TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 WTIM0_CDTI2 #31 WTIM1_CC0 #27 WTIM1_CC1 #25 WTIM1_CC2 #23 WTIM1_CC3 #21 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS CMU_CLK1 #6 PRS_CH0 #24 US1_CTS #23 #3 PRS_CH1 #2 US1_RTS #22 US2_TX PRS_CH2 #1 PRS_CH3 #16 US2_RX #15 #0 ACMP0_O #27 US2_CLK #14 US2_CS ACMP1_O #27 DBG_TDI #13 US2_CTS #12 US2_RTS #11 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 WTIM0_CDTI1 #31 WTIM0_CDTI2 #29 WTIM1_CC0 #25 WTIM1_CC1 #23 WTIM1_CC2 #21 WTIM1_CC3 #19 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 US2_TX #15 US2_RX #14 US2_CLK #13 US2_CS #12 US2_CTS #11 US2_RTS #10 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 silabs.com | Building a more connected world. Communication Other PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS BOOT_RX Rev. 1.2 | 73 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PC5 PC3 PC0 Pin Alternate Functionality / Description Analog Timers Communication BUSAY BUSBX WTIM0_CC0 #25 WTIM0_CC1 #23 WTIM0_CC2 #21 WTIM0_CDTI0 #17 WTIM0_CDTI1 #15 WTIM0_CDTI2 #13 WTIM1_CC0 #9 WTIM1_CC1 #7 WTIM1_CC2 #5 WTIM1_CC3 #3 PCNT1_S0IN #18 PCNT1_S1IN #17 PCNT2_S0IN #18 PCNT2_S1IN #17 US3_TX #23 US3_RX #22 US3_CLK #21 US3_CS #20 US3_CTS #19 US3_RTS #18 I2C1_SDA #18 I2C1_SCL #17 BUSAY BUSBX WTIM0_CC0 #23 WTIM0_CC1 #21 WTIM0_CC2 #19 WTIM0_CDTI0 #15 WTIM0_CDTI1 #13 WTIM0_CDTI2 #11 WTIM1_CC0 #7 WTIM1_CC1 #5 WTIM1_CC2 #3 WTIM1_CC3 #1 PCNT1_S0IN #16 PCNT1_S1IN #15 PCNT2_S0IN #16 PCNT2_S1IN #15 US3_TX #21 US3_RX #20 US3_CLK #19 US3_CS #18 US3_CTS #17 US3_RTS #16 I2C1_SDA #16 I2C1_SCL #15 BUSBY BUSAX WTIM0_CC0 #20 WTIM0_CC1 #18 WTIM0_CC2 #16 WTIM0_CDTI0 #12 WTIM0_CDTI1 #10 WTIM0_CDTI2 #8 WTIM1_CC0 #4 WTIM1_CC1 #2 WTIM1_CC2 #0 PCNT1_S0IN #13 PCNT1_S1IN #12 PCNT2_S0IN #13 PCNT2_S1IN #12 US3_TX #18 US3_RX #17 US3_CLK #16 US3_CS #15 US3_CTS #14 US3_RTS #13 I2C1_SDA #13 I2C1_SCL #12 silabs.com | Building a more connected world. Other Rev. 1.2 | 74 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PC11 PC9 Pin Alternate Functionality / Description Analog Timers BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 WTIM0_CC0 #31 WTIM0_CC1 #29 WTIM0_CC2 #27 WTIM0_CDTI0 #23 WTIM0_CDTI1 #21 WTIM0_CDTI2 #19 WTIM1_CC0 #15 WTIM1_CC1 #13 WTIM1_CC2 #11 WTIM1_CC3 #9 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 PCNT2_S0IN #20 PCNT2_S1IN #19 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX CMU_CLK0 #3 PRS_CH0 #16 US1_RX #15 #13 PRS_CH9 #16 US1_CLK #14 US1_CS PRS_CH10 #5 #13 US1_CTS #12 PRS_CH11 #4 ACMP0_O US1_RTS #11 LEU0_TX #16 ACMP1_O #16 #16 LEU0_RX #15 DBG_SWO #3 I2C0_SDA #16 I2C0_SCL #15 I2C1_SDA #20 I2C1_SCL #19 BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 WTIM0_CC0 #29 WTIM0_CC1 #27 WTIM0_CC2 #25 WTIM0_CDTI0 #21 WTIM0_CDTI1 #19 WTIM0_CDTI2 #17 WTIM1_CC0 #13 WTIM1_CC1 #11 WTIM1_CC2 #9 WTIM1_CC3 #7 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX PRS_CH0 #11 PRS_CH9 #14 US1_RX #13 #14 PRS_CH10 #3 US1_CLK #12 US1_CS PRS_CH11 #2 ACMP0_O #11 US1_CTS #10 #14 ACMP1_O #14 US1_RTS #9 LEU0_TX ETM_TD2 #3 #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 silabs.com | Building a more connected world. Communication Other Rev. 1.2 | 75 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PC7 PF8 PF2 Pin Alternate Functionality / Description Analog Timers BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 WTIM0_CC0 #27 WTIM0_CC1 #25 WTIM0_CC2 #23 WTIM0_CDTI0 #19 WTIM0_CDTI1 #17 WTIM0_CDTI2 #15 WTIM1_CC0 #11 WTIM1_CC1 #9 WTIM1_CC2 #7 WTIM1_CC3 #5 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 BUSBY BUSAX WTIM1_CC1 #30 WTIM1_CC2 #28 WTIM1_CC3 #26 PCNT1_S0IN #21 PCNT1_S1IN #20 PCNT2_S0IN #21 PCNT2_S1IN #20 BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 WTIM0_CDTI2 #30 WTIM1_CC0 #26 WTIM1_CC1 #24 WTIM1_CC2 #22 WTIM1_CC3 #20 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 silabs.com | Building a more connected world. Communication Other US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 CMU_CLK1 #2 PRS_CH0 US0_RTS #7 US1_TX #9 PRS_CH9 #12 #12 US1_RX #11 PRS_CH10 #1 US1_CLK #10 US1_CS PRS_CH11 #0 ACMP0_O #9 US1_CTS #8 #12 ACMP1_O #12 US1_RTS #7 LEU0_TX ETM_TD0 #3 #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 US2_TX #21 US2_RX #20 US2_CLK #19 US2_CS #18 US2_CTS #17 US2_RTS #16 I2C1_SDA #21 I2C1_SCL #20 ETM_TCLK #0 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS CMU_CLK0 #6 PRS_CH0 #23 US0_CTS #22 #2 PRS_CH1 #1 US0_RTS #21 US1_TX PRS_CH2 #0 PRS_CH3 #26 US1_RX #25 #7 ACMP0_O #26 US1_CLK #24 US1_CS ACMP1_O #26 DBG_TDO #23 US1_CTS #22 DBG_SWO #0 US1_RTS #21 LEU0_TX GPIO_EM4WU0 #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 Rev. 1.2 | 76 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PF0 PC4 PC1 PJ14 Pin Alternate Functionality / Description Analog Timers Communication Other BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 WTIM0_CDTI1 #30 WTIM0_CDTI2 #28 WTIM1_CC0 #24 WTIM1_CC1 #22 WTIM1_CC2 #20 WTIM1_CC3 #18 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 US2_TX #14 US2_RX #13 US2_CLK #12 US2_CS #11 US2_CTS #10 US2_RTS #9 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK BOOT_TX BUSBY BUSAX WTIM0_CC0 #24 WTIM0_CC1 #22 WTIM0_CC2 #20 WTIM0_CDTI0 #16 WTIM0_CDTI1 #14 WTIM0_CDTI2 #12 WTIM1_CC0 #8 WTIM1_CC1 #6 WTIM1_CC2 #4 WTIM1_CC3 #2 PCNT1_S0IN #17 PCNT1_S1IN #16 PCNT2_S0IN #17 PCNT2_S1IN #16 US3_TX #22 US3_RX #21 US3_CLK #20 US3_CS #19 US3_CTS #18 US3_RTS #17 I2C1_SDA #17 I2C1_SCL #16 BUSAY BUSBX WTIM0_CC0 #21 WTIM0_CC1 #19 WTIM0_CC2 #17 WTIM0_CDTI0 #13 WTIM0_CDTI1 #11 WTIM0_CDTI2 #9 WTIM1_CC0 #5 WTIM1_CC1 #3 WTIM1_CC2 #1 PCNT1_S0IN #14 PCNT1_S1IN #13 PCNT2_S0IN #14 PCNT2_S1IN #13 US3_TX #19 US3_RX #18 US3_CLK #17 US3_CS #16 US3_CTS #15 US3_RTS #14 I2C1_SDA #14 I2C1_SCL #13 BUSACMP1Y BUSACMP1X PCNT1_S0IN #11 PCNT1_S1IN #10 PCNT2_S0IN #11 PCNT2_S1IN #10 US3_TX #16 US3_RX #15 US3_CLK #14 US3_CS #13 US3_CTS #12 US3_RTS #11 I2C1_SDA #11 I2C1_SCL #10 silabs.com | Building a more connected world. LES_ALTEX2 Rev. 1.2 | 77 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PC10 PC8 Pin Alternate Functionality / Description Analog Timers BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 WTIM0_CC0 #30 WTIM0_CC1 #28 WTIM0_CC2 #26 WTIM0_CDTI0 #22 WTIM0_CDTI1 #20 WTIM0_CDTI2 #18 WTIM1_CC0 #14 WTIM1_CC1 #12 WTIM1_CC2 #10 WTIM1_CC3 #8 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 PCNT2_S0IN #19 PCNT2_S1IN #18 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 CMU_CLK1 #3 PRS_CH0 US0_RTS #10 US1_TX #12 PRS_CH9 #15 #15 US1_RX #14 PRS_CH10 #4 US1_CLK #13 US1_CS PRS_CH11 #3 ACMP0_O #12 US1_CTS #11 #15 ACMP1_O #15 US1_RTS #10 LEU0_TX ETM_TD3 #3 #15 LEU0_RX #14 GPIO_EM4WU12 I2C0_SDA #15 I2C0_SCL #14 I2C1_SDA #19 I2C1_SCL #18 BUSBY BUSAX TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 WTIM0_CC0 #28 WTIM0_CC1 #26 WTIM0_CC2 #24 WTIM0_CDTI0 #20 WTIM0_CDTI1 #18 WTIM0_CDTI2 #16 WTIM1_CC0 #12 WTIM1_CC1 #10 WTIM1_CC2 #8 WTIM1_CC3 #6 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX PRS_CH0 #10 PRS_CH9 #13 US1_RX #12 #13 PRS_CH10 #2 US1_CLK #11 US1_CS PRS_CH11 #1 ACMP0_O #10 US1_CTS #9 #13 ACMP1_O #13 US1_RTS #8 LEU0_TX ETM_TD1 #3 #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 silabs.com | Building a more connected world. Communication Other Rev. 1.2 | 78 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PC6 PF11 PF10 PF9 Timers Communication Other BUSBY BUSAX TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 US0_TX #11 US0_RX #10 TIM1_CC1 #10 US0_CLK #9 US0_CS #8 TIM1_CC2 #9 TIM1_CC3 CMU_CLK0 #2 US0_CTS #7 US0_RTS #8 WTIM0_CC0 #26 CMU_CLKI0 #2 #6 US1_TX #11 US1_RX WTIM0_CC1 #24 PRS_CH0 #8 PRS_CH9 #10 US1_CLK #9 WTIM0_CC2 #22 #11 PRS_CH10 #0 US1_CS #8 US1_CTS #7 WTIM0_CDTI0 #18 PRS_CH11 #5 ACMP0_O US1_RTS #6 LEU0_TX WTIM0_CDTI1 #16 #11 ACMP1_O #11 #11 LEU0_RX #10 WTIM0_CDTI2 #14 ETM_TCLK #3 I2C0_SDA #11 I2C0_SCL WTIM1_CC0 #10 #10 WTIM1_CC1 #8 WTIM1_CC2 #6 WTIM1_CC3 #4 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 BUSAY BUSBX WTIM1_CC2 #31 WTIM1_CC3 #29 PCNT1_S0IN #24 PCNT1_S1IN #23 PCNT2_S0IN #24 PCNT2_S1IN #23 US2_TX #24 US2_RX #23 US2_CLK #22 US2_CS #21 US2_CTS #20 US2_RTS #19 US3_TX #24 US3_RX #23 US3_CLK #22 US3_CS #21 US3_CTS #20 US3_RTS #19 I2C1_SDA #24 I2C1_SCL #23 ETM_TD2 #0 BUSBY BUSAX WTIM1_CC2 #30 WTIM1_CC3 #28 PCNT1_S0IN #23 PCNT1_S1IN #22 PCNT2_S0IN #23 PCNT2_S1IN #22 US2_TX #23 US2_RX #22 US2_CLK #21 US2_CS #20 US2_CTS #19 US2_RTS #18 I2C1_SDA #23 I2C1_SCL #22 ETM_TD1 #0 BUSAY BUSBX WTIM1_CC1 #31 WTIM1_CC2 #29 WTIM1_CC3 #27 PCNT1_S0IN #22 PCNT1_S1IN #21 PCNT2_S0IN #22 PCNT2_S1IN #21 US2_TX #22 US2_RX #21 US2_CLK #20 US2_CS #19 US2_CTS #18 US2_RTS #17 I2C1_SDA #22 I2C1_SCL #21 ETM_TD0 #0 silabs.com | Building a more connected world. Rev. 1.2 | 79 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PC2 PJ15 PB15 PB14 Pin Alternate Functionality / Description Analog Timers Communication BUSBY BUSAX WTIM0_CC0 #22 WTIM0_CC1 #20 WTIM0_CC2 #18 WTIM0_CDTI0 #14 WTIM0_CDTI1 #12 WTIM0_CDTI2 #10 WTIM1_CC0 #6 WTIM1_CC1 #4 WTIM1_CC2 #2 WTIM1_CC3 #0 PCNT1_S0IN #15 PCNT1_S1IN #14 PCNT2_S0IN #15 PCNT2_S1IN #14 US3_TX #20 US3_RX #19 US3_CLK #18 US3_CS #17 US3_CTS #16 US3_RTS #15 I2C1_SDA #15 I2C1_SCL #14 BUSACMP1Y BUSACMP1X PCNT1_S0IN #12 PCNT1_S1IN #11 PCNT2_S0IN #12 PCNT2_S1IN #11 US3_TX #17 US3_RX #16 US3_CLK #15 US3_CS #14 US3_CTS #13 US3_RTS #12 I2C1_SDA #12 I2C1_SCL #11 BUSCY BUSDX LFXTAL_P TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 WTIM0_CC0 #19 WTIM0_CC1 #17 WTIM0_CC2 #15 WTIM0_CDTI0 #11 WTIM0_CDTI1 #9 WTIM0_CDTI2 #7 WTIM1_CC0 #3 WTIM1_CC1 #1 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS CMU_CLK0 #1 PRS_CH6 #5 US1_TX #10 US1_RX #10 PRS_CH7 #9 #9 US1_CLK #8 US1_CS PRS_CH8 #8 PRS_CH9 #7 US1_CTS #6 #7 ACMP0_O #10 US1_RTS #5 LEU0_TX ACMP1_O #10 #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 BUSDY BUSCX LFXTAL_N TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 WTIM0_CC0 #18 WTIM0_CC1 #16 WTIM0_CC2 #14 WTIM0_CDTI0 #10 WTIM0_CDTI1 #8 WTIM0_CDTI2 #6 WTIM1_CC0 #2 WTIM1_CC1 #0 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS CMU_CLK1 #1 PRS_CH6 #4 US1_TX #9 US1_RX #9 PRS_CH7 #8 #8 US1_CLK #7 US1_CS PRS_CH8 #7 PRS_CH9 #6 US1_CTS #5 #6 ACMP0_O #9 US1_RTS #4 LEU0_TX ACMP1_O #9 #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 silabs.com | Building a more connected world. Other LES_ALTEX3 Rev. 1.2 | 80 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PB13 PB12 PF14 PF13 Pin Alternate Functionality / Description Analog Timers Communication Other BUSCY BUSDX OPA2_N TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 WTIM0_CC0 #17 WTIM0_CC1 #15 WTIM0_CC2 #13 WTIM0_CDTI0 #9 WTIM0_CDTI1 #7 WTIM0_CDTI2 #5 WTIM1_CC0 #1 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 CMU_CLKI0 #0 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 BUSDY BUSCX OPA2_OUT TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 WTIM0_CC0 #16 WTIM0_CC1 #14 WTIM0_CC2 #12 WTIM0_CDTI0 #8 WTIM0_CDTI1 #6 WTIM0_CDTI2 #4 WTIM1_CC0 #0 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 PCNT1_S0IN #27 PCNT1_S1IN #26 PCNT2_S0IN #27 PCNT2_S1IN #26 US2_TX #27 US2_RX #26 US2_CLK #25 US2_CS #24 US2_CTS #23 US2_RTS #22 US3_TX #27 US3_RX #26 US3_CLK #25 US3_CS #24 US3_CTS #23 US3_RTS #22 I2C1_SDA #27 I2C1_SCL #26 WTIM1_CC3 #31 PCNT1_S0IN #26 PCNT1_S1IN #25 PCNT2_S0IN #26 PCNT2_S1IN #25 US2_TX #26 US2_RX #25 US2_CLK #24 US2_CS #23 US2_CTS #22 US2_RTS #21 US3_TX #26 US3_RX #25 US3_CLK #24 US3_CS #23 US3_CTS #22 US3_RTS #21 I2C1_SDA #26 I2C1_SCL #25 BUSBY BUSAX BUSAY BUSBX silabs.com | Building a more connected world. Rev. 1.2 | 81 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PF12 PB11 PB10 PB9 Timers Communication Other BUSBY BUSAX WTIM1_CC3 #30 PCNT1_S0IN #25 PCNT1_S1IN #24 PCNT2_S0IN #25 PCNT2_S1IN #24 US2_TX #25 US2_RX #24 US2_CLK #23 US2_CS #22 US2_CTS #21 US2_RTS #20 US3_TX #25 US3_RX #24 US3_CLK #23 US3_CS #22 US3_CTS #21 US3_RTS #20 I2C1_SDA #25 I2C1_SCL #24 ETM_TD3 #0 BUSCY BUSDX OPA2_P TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 WTIM0_CC0 #15 WTIM0_CC1 #13 WTIM0_CC2 #11 WTIM0_CDTI0 #7 WTIM0_CDTI1 #5 WTIM0_CDTI2 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 US3_TX #15 US3_RX #14 US3_CLK #13 US3_CS #12 US3_CTS #11 US3_RTS #10 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 OPA2_OUTALT #1 BUSDY BUSCX WTIM0_CC0 #14 WTIM0_CC1 #12 WTIM0_CC2 #10 WTIM0_CDTI0 #6 WTIM0_CDTI1 #4 WTIM0_CDTI2 #2 PCNT1_S0IN #10 PCNT1_S1IN #9 PCNT2_S0IN #10 PCNT2_S1IN #9 US2_TX #13 US2_RX #12 US2_CLK #11 US2_CS #10 US2_CTS #9 US2_RTS #8 US3_TX #14 US3_RX #13 US3_CLK #12 US3_CS #11 US3_CTS #10 US3_RTS #9 I2C1_SDA #10 I2C1_SCL #9 OPA2_OUTALT #0 BUSCY BUSDX WTIM0_CC0 #13 WTIM0_CC1 #11 WTIM0_CC2 #9 WTIM0_CDTI0 #5 WTIM0_CDTI1 #3 WTIM0_CDTI2 #1 PCNT1_S0IN #9 PCNT1_S1IN #8 PCNT2_S0IN #9 PCNT2_S1IN #8 US2_TX #12 US2_RX #11 US2_CLK #10 US2_CS #9 US2_CTS #8 US2_RTS #7 US3_TX #13 US3_RX #12 US3_CLK #11 US3_CS #10 US3_CTS #9 US3_RTS #8 I2C1_SDA #9 I2C1_SCL #8 PCNT1_S0IN #30 PCNT1_S1IN #29 PCNT2_S0IN #30 PCNT2_S1IN #29 US2_TX #30 US2_RX #29 US2_CLK #28 US2_CS #27 US2_CTS #26 US2_RTS #25 US3_TX #30 US3_RX #29 US3_CLK #28 US3_CS #27 US3_CTS #26 US3_RTS #25 I2C1_SDA #30 I2C1_SCL #29 PK1 silabs.com | Building a more connected world. Rev. 1.2 | 82 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication PCNT1_S0IN #29 PCNT1_S1IN #28 PCNT2_S0IN #29 PCNT2_S1IN #28 US2_TX #29 US2_RX #28 US2_CLK #27 US2_CS #26 US2_CTS #25 US2_RTS #24 US3_TX #29 US3_RX #28 US3_CLK #27 US3_CS #26 US3_CTS #25 US3_RTS #24 I2C1_SDA #29 I2C1_SCL #28 BUSAY BUSBX PCNT1_S0IN #28 PCNT1_S1IN #27 PCNT2_S0IN #28 PCNT2_S1IN #27 US2_TX #28 US2_RX #27 US2_CLK #26 US2_CS #25 US2_CTS #24 US2_RTS #23 US3_TX #28 US3_RX #27 US3_CLK #26 US3_CS #25 US3_CTS #24 US3_RTS #23 I2C1_SDA #28 I2C1_SCL #27 BUSDY BUSCX WTIM0_CC0 #12 WTIM0_CC1 #10 WTIM0_CC2 #8 WTIM0_CDTI0 #4 WTIM0_CDTI1 #2 WTIM0_CDTI2 #0 PCNT1_S0IN #8 PCNT1_S1IN #7 PCNT2_S0IN #8 PCNT2_S1IN #7 US2_TX #11 US2_RX #10 US2_CLK #9 US2_CS #8 US2_CTS #7 US2_RTS #6 US3_TX #12 US3_RX #11 US3_CLK #10 US3_CS #9 US3_CTS #8 US3_RTS #7 I2C1_SDA #8 I2C1_SCL #7 ETM_TD3 #2 BUSCY BUSDX WTIM0_CC0 #11 WTIM0_CC1 #9 WTIM0_CC2 #7 WTIM0_CDTI0 #3 WTIM0_CDTI1 #1 PCNT1_S0IN #7 PCNT1_S1IN #6 PCNT2_S0IN #7 PCNT2_S1IN #6 US2_TX #10 US2_RX #9 US2_CLK #8 US2_CS #7 US2_CTS #6 US2_RTS #5 US3_TX #11 US3_RX #10 US3_CLK #9 US3_CS #8 US3_CTS #7 US3_RTS #6 I2C1_SDA #7 I2C1_SCL #6 ETM_TD2 #2 PK2 PCNT1_S0IN #31 PCNT1_S1IN #30 PCNT2_S0IN #31 PCNT2_S1IN #30 US2_TX #31 US2_RX #30 US2_CLK #29 US2_CS #28 US2_CTS #27 US2_RTS #26 US3_TX #31 US3_RX #30 US3_CLK #29 US3_CS #28 US3_CTS #27 US3_RTS #26 I2C1_SDA #31 I2C1_SCL #30 PB6 WTIM0_CC0 #10 WTIM0_CC1 #8 WTIM0_CC2 #6 WTIM0_CDTI0 #2 WTIM0_CDTI1 #0 PCNT1_S0IN #6 PCNT1_S1IN #5 PCNT2_S0IN #6 PCNT2_S1IN #5 US2_TX #9 US2_RX #8 US2_CLK #7 US2_CS #6 US2_CTS #5 US2_RTS #4 US3_TX #10 US3_RX CMU_CLKI0 #3 ETM_TD1 #9 US3_CLK #8 US3_CS #2 #7 US3_CTS #6 US3_RTS #5 I2C1_SDA #6 I2C1_SCL #5 PK0 PF15 PB8 PB7 IDAC0_OUT BUSDY BUSCX silabs.com | Building a more connected world. Other Rev. 1.2 | 83 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PI3 PF5 PF4 PI2 PI1 Timers Communication Other BUSADC0Y BUSADC0X PCNT1_S0IN #5 PCNT1_S1IN #4 PCNT2_S0IN #5 PCNT2_S1IN #4 US2_TX #8 US2_RX #7 US2_CLK #6 US2_CS #5 US2_CTS #4 US2_RTS #3 US3_TX #9 US3_RX #8 US3_CLK #7 US3_CS #6 US3_CTS #5 US3_RTS #4 I2C1_SDA #5 I2C1_SCL #4 LES_ALTEX7 ETM_TD0 #2 BUSAY BUSBX TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 WTIM1_CC0 #29 WTIM1_CC1 #27 WTIM1_CC2 #25 WTIM1_CC3 #23 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 US2_TX #18 US2_RX #17 US2_CLK #16 US2_CS #15 US2_CTS #14 US2_RTS #13 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 BUSBY BUSAX TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 WTIM1_CC0 #28 WTIM1_CC1 #26 WTIM1_CC2 #24 WTIM1_CC3 #22 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 US2_TX #17 US2_RX #16 US2_CLK #15 US2_CS #14 US2_CTS #13 US2_RTS #12 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 BUSADC0Y BUSADC0X BUSADC0Y BUSADC0X silabs.com | Building a more connected world. PCNT1_S0IN #4 PCNT1_S1IN #3 PCNT2_S0IN #4 PCNT2_S1IN #3 US2_TX #7 US2_RX #6 US2_CLK #5 US2_CS #4 US2_CTS #3 US2_RTS #2 US3_TX #8 US3_RX LES_ALTEX6 ETM_TCLK #7 US3_CLK #6 US3_CS #2 #5 US3_CTS #4 US3_RTS #3 I2C1_SDA #4 I2C1_SCL #3 US2_TX #6 US2_RX #5 US2_CLK #4 US2_CS #3 US2_CTS #2 US2_RTS #1 LES_ALTEX5 Rev. 1.2 | 84 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PI0 PF7 PF6 PA9 Timers BUSADC0Y BUSADC0X Communication Other US2_TX #5 US2_RX #4 US2_CLK #3 US2_CS #2 US2_CTS #1 US2_RTS #0 LES_ALTEX4 BUSAY BUSBX TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 WTIM1_CC0 #31 WTIM1_CC1 #29 WTIM1_CC2 #27 WTIM1_CC3 #25 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 PCNT1_S0IN #20 PCNT1_S1IN #19 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 CMU_CLKI0 #1 US1_CLK #29 US1_CS CMU_CLK0 #7 PRS_CH0 #28 US1_CTS #27 #7 PRS_CH1 #6 US1_RTS #26 US2_TX PRS_CH2 #5 PRS_CH3 #20 US2_RX #19 #4 ACMP0_O #31 US2_CLK #18 US2_CS ACMP1_O #31 #17 US2_CTS #16 GPIO_EM4WU1 US2_RTS #15 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 BUSBY BUSAX TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 WTIM1_CC0 #30 WTIM1_CC1 #28 WTIM1_CC2 #26 WTIM1_CC3 #24 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 PCNT1_S0IN #19 PCNT1_S1IN #18 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS CMU_CLK1 #7 PRS_CH0 #27 US1_CTS #26 #6 PRS_CH1 #5 US1_RTS #25 US2_TX PRS_CH2 #4 PRS_CH3 #19 US2_RX #18 #3 ACMP0_O #30 US2_CLK #17 US2_CS ACMP1_O #30 #16 US2_CTS #15 US2_RTS #14 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 BUSACMP0Y BUSACMP0X WTIM0_CC0 #9 WTIM0_CC1 #7 WTIM0_CC2 #5 WTIM0_CDTI0 #1 PCNT1_S0IN #3 PCNT1_S1IN #2 PCNT2_S0IN #3 PCNT2_S1IN #2 silabs.com | Building a more connected world. US2_TX #4 US2_RX #3 US2_CLK #2 US2_CS #1 US2_CTS #0 US2_RTS #31 I2C1_SDA #3 I2C1_SCL #2 LES_ALTEX1 ETM_TD3 #1 Rev. 1.2 | 85 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PA8 PA7 PA6 PA5 PA4 Pin Alternate Functionality / Description Analog Timers Communication Other BUSACMP0Y BUSACMP0X WTIM0_CC0 #8 WTIM0_CC1 #6 WTIM0_CC2 #4 WTIM0_CDTI0 #0 PCNT1_S0IN #2 PCNT1_S1IN #1 PCNT2_S0IN #2 PCNT2_S1IN #1 US2_TX #3 US2_RX #2 US2_CLK #1 US2_CS #0 US2_CTS #31 US2_RTS #30 I2C1_SDA #2 I2C1_SCL #1 LES_ALTEX0 ETM_TD2 #1 BUSCY BUSDX WTIM0_CC0 #7 WTIM0_CC1 #5 WTIM0_CC2 #3 PCNT1_S0IN #1 PCNT1_S1IN #0 PCNT2_S0IN #1 PCNT2_S1IN #0 US2_TX #2 US2_RX #1 US2_CLK #0 US2_CS #31 US2_CTS #30 US2_RTS #29 I2C1_SDA #1 I2C1_SCL #0 LES_CH15 ETM_TD1 #1 BUSDY BUSCX WTIM0_CC0 #6 WTIM0_CC1 #4 WTIM0_CC2 #2 PCNT1_S0IN #0 PCNT1_S1IN #31 PCNT2_S0IN #0 PCNT2_S1IN #31 US2_TX #1 US2_RX #0 US2_CLK #31 US2_CS #30 US2_CTS #29 US2_RTS #28 I2C1_SDA #0 I2C1_SCL #31 LES_CH14 ETM_TD0 #1 VDAC0_OUT0ALT / OPA0_OUTALT #0 BUSCY BUSDX TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 WTIM0_CC0 #5 WTIM0_CC1 #3 WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 US2_TX #0 US2_RX #31 US2_CLK #30 US2_CS #29 US2_CTS #28 US2_RTS #27 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 CMU_CLKI0 #4 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 LES_CH13 ETM_TCLK #1 VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSDY BUSCX OPA0_N TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 WTIM0_CC0 #4 WTIM0_CC1 #2 WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 LES_CH12 silabs.com | Building a more connected world. Rev. 1.2 | 86 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PA3 PA2 PA1 Pin Alternate Functionality / Description Analog Timers Communication Other BUSCY BUSDX VDAC0_OUT0 / OPA0_OUT TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 WTIM0_CC0 #3 WTIM0_CC1 #1 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 LES_CH11 GPIO_EM4WU8 VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSDY BUSCX OPA0_P TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 WTIM0_CC0 #2 WTIM0_CC1 #0 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 PRS_CH6 #2 PRS_CH7 US0_RTS #29 US1_TX #1 PRS_CH8 #0 #2 US1_RX #1 US1_CLK PRS_CH9 #10 ACMP0_O #0 US1_CS #31 #2 ACMP1_O #2 US1_CTS #30 US1_RTS LES_CH10 #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 BUSCY BUSDX ADC0_EXTP VDAC0_EXT TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 CMU_CLK0 #0 PRS_CH6 US0_RTS #28 US1_TX #1 PRS_CH7 #0 #1 US1_RX #0 US1_CLK PRS_CH8 #10 PRS_CH9 #31 US1_CS #30 #9 ACMP0_O #1 US1_CTS #29 US1_RTS ACMP1_O #1 LES_CH9 #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 silabs.com | Building a more connected world. Rev. 1.2 | 87 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PD9 PD11 Pin Alternate Functionality / Description Analog Timers BUSCY BUSDX TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 WTIM0_CC1 #31 WTIM0_CC2 #29 WTIM0_CDTI0 #25 WTIM0_CDTI1 #23 WTIM0_CDTI2 #21 WTIM1_CC0 #17 WTIM1_CC1 #15 WTIM1_CC2 #13 WTIM1_CC3 #11 LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16 US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 CMU_CLK0 #4 PRS_CH3 US1_CLK #15 US1_CS #8 PRS_CH4 #0 #14 US1_CTS #13 PRS_CH5 #6 PRS_CH6 US1_RTS #12 US3_TX #11 ACMP0_O #17 #1 US3_RX #0 US3_CLK ACMP1_O #17 LES_CH1 #31 US3_CS #30 US3_CTS #29 US3_RTS #28 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16 BUSCY BUSDX TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 WTIM0_CC2 #31 WTIM0_CDTI0 #27 WTIM0_CDTI1 #25 WTIM0_CDTI2 #23 WTIM1_CC0 #19 WTIM1_CC1 #17 WTIM1_CC2 #15 WTIM1_CC3 #13 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 PRS_CH3 #10 PRS_CH4 US1_CLK #17 US1_CS #2 PRS_CH5 #1 #16 US1_CTS #15 PRS_CH6 #13 ACMP0_O US1_RTS #14 US3_TX #19 ACMP1_O #19 #3 US3_RX #2 US3_CLK LES_CH3 #1 US3_CS #0 US3_CTS #31 US3_RTS #30 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 silabs.com | Building a more connected world. Communication Other Rev. 1.2 | 88 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PD13 PA0 PD8 Pin Alternate Functionality / Description Analog Timers VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSCY BUSDX OPA1_P TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 WTIM0_CDTI0 #29 WTIM0_CDTI1 #27 WTIM0_CDTI2 #25 WTIM1_CC0 #21 WTIM1_CC1 #19 WTIM1_CC2 #17 WTIM1_CC3 #15 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 WTIM0_CC0 #0 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 LES_CH8 BUSDY BUSCX WTIM0_CC1 #30 WTIM0_CC2 #28 WTIM0_CDTI0 #24 WTIM0_CDTI1 #22 WTIM0_CDTI2 #20 WTIM1_CC0 #16 WTIM1_CC1 #14 WTIM1_CC2 #12 WTIM1_CC3 #10 US3_TX #0 US3_RX #31 US3_CLK #30 US3_CS #29 US3_CTS #28 US3_RTS #27 LES_CH0 silabs.com | Building a more connected world. Communication Other US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 PRS_CH3 #12 PRS_CH4 US1_CLK #19 US1_CS #4 PRS_CH5 #3 #18 US1_CTS #17 PRS_CH6 #15 ACMP0_O US1_RTS #16 US3_TX #21 ACMP1_O #21 #5 US3_RX #4 US3_CLK LES_CH5 #3 US3_CS #2 US3_CTS #1 US3_RTS #0 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 Rev. 1.2 | 89 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PD10 PD12 Pin Alternate Functionality / Description Analog Timers BUSDY BUSCX TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 WTIM0_CC2 #30 WTIM0_CDTI0 #26 WTIM0_CDTI1 #24 WTIM0_CDTI2 #22 WTIM1_CC0 #18 WTIM1_CC1 #16 WTIM1_CC2 #14 WTIM1_CC3 #12 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 CMU_CLK1 #4 PRS_CH3 US1_CLK #16 US1_CS #9 PRS_CH4 #1 #15 US1_CTS #14 PRS_CH5 #0 PRS_CH6 US1_RTS #13 US3_TX #12 ACMP0_O #18 #2 US3_RX #1 US3_CLK ACMP1_O #18 LES_CH2 #0 US3_CS #31 US3_CTS #30 US3_RTS #29 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSDY BUSCX TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 WTIM0_CDTI0 #28 WTIM0_CDTI1 #26 WTIM0_CDTI2 #24 WTIM1_CC0 #20 WTIM1_CC1 #18 WTIM1_CC2 #16 WTIM1_CC3 #14 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 PRS_CH3 #11 PRS_CH4 US1_CLK #18 US1_CS #3 PRS_CH5 #2 #17 US1_CTS #16 PRS_CH6 #14 ACMP0_O US1_RTS #15 US3_TX #20 ACMP1_O #20 #4 US3_RX #3 US3_CLK LES_CH4 #2 US3_CS #1 US3_CTS #0 US3_RTS #31 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 silabs.com | Building a more connected world. Communication Other Rev. 1.2 | 90 EFM32JG12 Family Data Sheet Pin Definitions GPIO Name PD14 PD15 Pin Alternate Functionality / Description Analog Timers BUSDY BUSCX VDAC0_OUT1 / OPA1_OUT TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 WTIM0_CDTI0 #30 WTIM0_CDTI1 #28 WTIM0_CDTI2 #26 WTIM1_CC0 #22 WTIM1_CC1 #20 WTIM1_CC2 #18 WTIM1_CC3 #16 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 CMU_CLK0 #5 PRS_CH3 US1_CLK #20 US1_CS #13 PRS_CH4 #5 #19 US1_CTS #18 PRS_CH5 #4 PRS_CH6 US1_RTS #17 US3_TX #16 ACMP0_O #22 #6 US3_RX #5 US3_CLK ACMP1_O #22 LES_CH6 #4 US3_CS #3 US3_CTS GPIO_EM4WU4 #2 US3_RTS #1 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSCY BUSDX OPA1_N TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 WTIM0_CDTI0 #31 WTIM0_CDTI1 #29 WTIM0_CDTI2 #27 WTIM1_CC0 #23 WTIM1_CC1 #21 WTIM1_CC2 #19 WTIM1_CC3 #17 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 CMU_CLK1 #5 PRS_CH3 US1_CLK #21 US1_CS #14 PRS_CH4 #6 #20 US1_CTS #19 PRS_CH5 #5 PRS_CH6 US1_RTS #18 US3_TX #17 ACMP0_O #23 #7 US3_RX #6 US3_CLK ACMP1_O #23 LES_CH7 #5 US3_CS #4 US3_CTS DBG_SWO #2 #3 US3_RTS #2 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 silabs.com | Building a more connected world. Communication Other Rev. 1.2 | 91 EFM32JG12 Family Data Sheet Pin Definitions 6.4 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 6.3 GPIO Functionality Table for a list of functions available on each GPIO pin. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 6.4. Alternate Functionality Overview Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 ACMP0_O 0: PA0 1: PA1 2: PA2 3: PA3 ACMP1_O 0: PA0 1: PA1 2: PA2 3: PA3 24 - 27 28 - 31 Description 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP0, digital output. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP1, digital output. 0: PA0 Analog to digital converter ADC0 external reference input negative pin. 0: PA1 Analog to digital converter ADC0 external reference input positive pin. ADC0_EXTN ADC0_EXTP 0: PF1 BOOT_RX Bootloader RX. 0: PF0 BOOT_TX Bootloader TX. CMU_CLK0 0: PA1 1: PB15 2: PC6 3: PC11 4: PD9 5: PD14 6: PF2 7: PF7 Clock Management Unit, clock output number 0. CMU_CLK1 0: PA0 1: PB14 2: PC7 3: PC10 4: PD10 5: PD15 6: PF3 7: PF6 Clock Management Unit, clock output number 1. 4: PA5 CMU_CLKI0 0: PB13 1: PF7 2: PC6 3: PB6 silabs.com | Building a more connected world. Clock Management Unit, clock input number 0. Rev. 1.2 | 92 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 0: PF0 DBG_SWCLKTCK 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 DBG_SWDIOTMS Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. 0: PF2 1: PB13 2: PD15 3: PC11 Debug-interface Serial Wire viewer Output. 0: PF3 Debug-interface JTAG Test Data In. DBG_SWO Note that this function is not enabled after reset, and must be enabled by software to be used. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. DBG_TDI 0: PF2 Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. DBG_TDO ETM_TCLK 8 - 11 0: PF8 1: PA5 2: PI2 3: PC6 silabs.com | Building a more connected world. Embedded Trace Module ETM clock . Rev. 1.2 | 93 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description ETM_TD0 0: PF9 1: PA6 2: PI3 3: PC7 Embedded Trace Module ETM data 0. ETM_TD1 0: PF10 1: PA7 2: PB6 3: PC8 Embedded Trace Module ETM data 1. ETM_TD2 0: PF11 1: PA8 2: PB7 3: PC9 Embedded Trace Module ETM data 2. ETM_TD3 0: PF12 1: PA9 2: PB8 3: PC10 Embedded Trace Module ETM data 3. 0: PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU0 0: PF7 Pin can be used to wake the system up from EM4 GPIO_EM4WU1 0: PD14 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 0: PA3 Pin can be used to wake the system up from EM4 GPIO_EM4WU8 0: PB13 Pin can be used to wake the system up from EM4 GPIO_EM4WU9 0: PC10 Pin can be used to wake the system up from EM4 GPIO_EM4WU12 I2C0_SCL 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 I2C0 Serial Clock Line input / output. I2C0_SDA 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 I2C0 Serial Data input / output. I2C1_SCL 0: PA7 1: PA8 2: PA9 3: PI2 4: PI3 5: PB6 6: PB7 7: PB8 8: PB9 9: PB10 10: PJ14 11: PJ15 12: PC0 13: PC1 14: PC2 15: PC3 16: PC4 17: PC5 18: PC10 19: PC11 20: PF8 21: PF9 22: PF10 23: PF11 24: PF12 25: PF13 26: PF14 27: PF15 28: PK0 29: PK1 30: PK2 31: PA6 I2C1 Serial Clock Line input / output. silabs.com | Building a more connected world. Rev. 1.2 | 94 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality I2C1_SDA LOCATION 0-3 4-7 0: PA6 1: PA7 2: PA8 3: PA9 4: PI2 5: PI3 6: PB6 7: PB7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description 8: PB8 9: PB9 10: PB10 11: PJ14 12: PJ15 13: PC0 14: PC1 15: PC2 16: PC3 17: PC4 18: PC5 19: PC10 20: PC11 21: PF8 22: PF9 23: PF10 24: PF11 25: PF12 26: PF13 27: PF14 28: PF15 29: PK0 30: PK1 31: PK2 I2C1 Serial Data input / output. 0: PK0 IDAC0_OUT IDAC0 output. 0: PA8 LESENSE alternate excite output 0. LES_ALTEX0 0: PA9 LESENSE alternate excite output 1. LES_ALTEX1 0: PJ14 LESENSE alternate excite output 2. LES_ALTEX2 0: PJ15 LESENSE alternate excite output 3. LES_ALTEX3 0: PI0 LESENSE alternate excite output 4. LES_ALTEX4 0: PI1 LESENSE alternate excite output 5. LES_ALTEX5 0: PI2 LESENSE alternate excite output 6. LES_ALTEX6 0: PI3 LESENSE alternate excite output 7. LES_ALTEX7 0: PD8 LESENSE channel 0. LES_CH0 0: PD9 LESENSE channel 1. LES_CH1 0: PD10 LES_CH2 silabs.com | Building a more connected world. LESENSE channel 2. Rev. 1.2 | 95 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description 0: PD11 LESENSE channel 3. LES_CH3 0: PD12 LESENSE channel 4. LES_CH4 0: PD13 LESENSE channel 5. LES_CH5 0: PD14 LESENSE channel 6. LES_CH6 0: PD15 LESENSE channel 7. LES_CH7 0: PA0 LESENSE channel 8. LES_CH8 0: PA1 LESENSE channel 9. LES_CH9 0: PA2 LESENSE channel 10. LES_CH10 0: PA3 LESENSE channel 11. LES_CH11 0: PA4 LESENSE channel 12. LES_CH12 0: PA5 LESENSE channel 13. LES_CH13 0: PA6 LESENSE channel 14. LES_CH14 0: PA7 LES_CH15 silabs.com | Building a more connected world. LESENSE channel 15. Rev. 1.2 | 96 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 LETIM0_OUT0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Low Energy Timer LETIM0, output channel 1. LEU0_RX 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 LEUART0 Receive input. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 LEU0_TX 24 - 27 28 - 31 Description LEUART0 Transmit output. Also used as receive input in half duplex communication. 0: PB14 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. 0: PB15 Low Frequency Crystal (typically 32.768 kHz) positive pin. LFXTAL_N LFXTAL_P 0: PA4 OPA0_N 0: PA2 OPA0_P 0: PD15 OPA1_N 0: PD13 OPA1_P 0: PB13 OPA2_N Operational Amplifier 0 external negative input. Operational Amplifier 0 external positive input. Operational Amplifier 1 external negative input. Operational Amplifier 1 external positive input. Operational Amplifier 2 external negative input. 0: PB12 OPA2_OUT silabs.com | Building a more connected world. Operational Amplifier 2 output. Rev. 1.2 | 97 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality OPA2_OUTALT LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PB9 1: PB10 Description Operational Amplifier 2 alternative output. 0: PB11 Operational Amplifier 2 external positive input. OPA2_P PCNT0_S0IN 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Pulse Counter PCNT0 input number 1. PCNT1_S0IN 0: PA6 1: PA7 2: PA8 3: PA9 4: PI2 5: PI3 6: PB6 7: PB7 8: PB8 9: PB9 10: PB10 11: PJ14 12: PJ15 13: PC0 14: PC1 15: PC2 16: PC3 17: PC4 18: PC5 19: PF6 20: PF7 21: PF8 22: PF9 23: PF10 24: PF11 25: PF12 26: PF13 27: PF14 28: PF15 29: PK0 30: PK1 31: PK2 Pulse Counter PCNT1 input number 0. PCNT1_S1IN 0: PA7 1: PA8 2: PA9 3: PI2 4: PI3 5: PB6 6: PB7 7: PB8 8: PB9 9: PB10 10: PJ14 11: PJ15 12: PC0 13: PC1 14: PC2 15: PC3 16: PC4 17: PC5 18: PF6 19: PF7 20: PF8 21: PF9 22: PF10 23: PF11 24: PF12 25: PF13 26: PF14 27: PF15 28: PK0 29: PK1 30: PK2 31: PA6 Pulse Counter PCNT1 input number 1. PCNT2_S0IN 0: PA6 1: PA7 2: PA8 3: PA9 4: PI2 5: PI3 6: PB6 7: PB7 8: PB8 9: PB9 10: PB10 11: PJ14 12: PJ15 13: PC0 14: PC1 15: PC2 16: PC3 17: PC4 18: PC5 19: PC10 20: PC11 21: PF8 22: PF9 23: PF10 24: PF11 25: PF12 26: PF13 27: PF14 28: PF15 29: PK0 30: PK1 31: PK2 Pulse Counter PCNT2 input number 0. PCNT2_S1IN 0: PA7 1: PA8 2: PA9 3: PI2 4: PI3 5: PB6 6: PB7 7: PB8 8: PB9 9: PB10 10: PJ14 11: PJ15 12: PC0 13: PC1 14: PC2 15: PC3 16: PC4 17: PC5 18: PC10 19: PC11 20: PF8 21: PF9 22: PF10 23: PF11 24: PF12 25: PF13 26: PF14 27: PF15 28: PK0 29: PK1 30: PK2 31: PA6 Pulse Counter PCNT2 input number 1. PRS_CH0 0: PF0 1: PF1 2: PF2 3: PF3 4: PF4 5: PF5 6: PF6 7: PF7 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 PRS_CH1 0: PF1 1: PF2 2: PF3 3: PF4 4: PF5 5: PF6 6: PF7 7: PF0 Peripheral Reflex System PRS, channel 1. PRS_CH2 0: PF2 1: PF3 2: PF4 3: PF5 4: PF6 5: PF7 6: PF0 7: PF1 Peripheral Reflex System PRS, channel 2. PRS_CH3 0: PF3 1: PF4 2: PF5 3: PF6 4: PF7 5: PF0 6: PF1 7: PF2 PRS_CH4 0: PD9 1: PD10 2: PD11 3: PD12 4: PD13 5: PD14 6: PD15 silabs.com | Building a more connected world. 8: PD9 9: PD10 10: PD11 11: PD12 12: PD13 13: PD14 14: PD15 Peripheral Reflex System PRS, channel 0. Peripheral Reflex System PRS, channel 3. Peripheral Reflex System PRS, channel 4. Rev. 1.2 | 98 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description PRS_CH5 0: PD10 1: PD11 2: PD12 3: PD13 4: PD14 5: PD15 6: PD9 PRS_CH6 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PD9 PRS_CH7 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PA0 PRS_CH8 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PA0 10: PA1 PRS_CH9 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PA0 9: PA1 10: PA2 11: PC6 PRS_CH10 0: PC6 1: PC7 2: PC8 3: PC9 4: PC10 5: PC11 PRS_CH11 0: PC7 1: PC8 2: PC9 3: PC10 4: PC11 5: PC6 TIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 0 Complimentary Dead Time Insertion channel 0. TIM0_CDTI1 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 Timer 0 Complimentary Dead Time Insertion channel 1. TIM0_CDTI2 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 Timer 0 Complimentary Dead Time Insertion channel 2. silabs.com | Building a more connected world. Peripheral Reflex System PRS, channel 5. 12: PD10 13: PD11 14: PD12 15: PD13 16: PD14 17: PD15 Peripheral Reflex System PRS, channel 6. Peripheral Reflex System PRS, channel 7. Peripheral Reflex System PRS, channel 8. 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. Rev. 1.2 | 99 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 TIM1_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 1 Capture Compare input / output channel 2. TIM1_CC3 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 1 Capture Compare input / output channel 3. US0_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART0 clock input / output. US0_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART0 chip select input / output. US0_CTS 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART0 Clear To Send hardware flow control input. US0_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART0 Request To Send hardware flow control output. 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART0 Asynchronous Receive. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. US0_RX 24 - 27 28 - 31 US0_TX Description USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 silabs.com | Building a more connected world. 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART1 clock input / output. Rev. 1.2 | 100 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 US1_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 US1_CTS 0: PA4 1: PA5 2: PB11 3: PB12 US1_RTS US1_RX 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART1 chip select input / output. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART1 Clear To Send hardware flow control input. 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART1 Request To Send hardware flow control output. 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART1 Asynchronous Receive. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. US1_TX Description USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Synchronous mode Master Output / Slave Input (MOSI). US2_CLK 0: PA7 1: PA8 2: PA9 3: PI0 4: PI1 5: PI2 6: PI3 7: PB6 8: PB7 9: PB8 10: PB9 11: PB10 12: PF0 13: PF1 14: PF3 15: PF4 16: PF5 17: PF6 18: PF7 19: PF8 20: PF9 21: PF10 22: PF11 23: PF12 24: PF13 25: PF14 26: PF15 27: PK0 28: PK1 29: PK2 30: PA5 31: PA6 USART2 clock input / output. US2_CS 0: PA8 1: PA9 2: PI0 3: PI1 4: PI2 5: PI3 6: PB6 7: PB7 8: PB8 9: PB9 10: PB10 11: PF0 12: PF1 13: PF3 14: PF4 15: PF5 16: PF6 17: PF7 18: PF8 19: PF9 20: PF10 21: PF11 22: PF12 23: PF13 24: PF14 25: PF15 26: PK0 27: PK1 28: PK2 29: PA5 30: PA6 31: PA7 USART2 chip select input / output. US2_CTS 0: PA9 1: PI0 2: PI1 3: PI2 4: PI3 5: PB6 6: PB7 7: PB8 8: PB9 9: PB10 10: PF0 11: PF1 12: PF3 13: PF4 14: PF5 15: PF6 16: PF7 17: PF8 18: PF9 19: PF10 20: PF11 21: PF12 22: PF13 23: PF14 24: PF15 25: PK0 26: PK1 27: PK2 28: PA5 29: PA6 30: PA7 31: PA8 USART2 Clear To Send hardware flow control input. US2_RTS 0: PI0 1: PI1 2: PI2 3: PI3 4: PB6 5: PB7 6: PB8 7: PB9 8: PB10 9: PF0 10: PF1 11: PF3 12: PF4 13: PF5 14: PF6 15: PF7 16: PF8 17: PF9 18: PF10 19: PF11 20: PF12 21: PF13 22: PF14 23: PF15 24: PK0 25: PK1 26: PK2 27: PA5 28: PA6 29: PA7 30: PA8 31: PA9 USART2 Request To Send hardware flow control output. 0: PA6 1: PA7 2: PA8 3: PA9 4: PI0 5: PI1 6: PI2 7: PI3 8: PB6 9: PB7 10: PB8 11: PB9 12: PB10 13: PF0 14: PF1 15: PF3 16: PF4 17: PF5 18: PF6 19: PF7 20: PF8 21: PF9 22: PF10 23: PF11 24: PF12 25: PF13 26: PF14 27: PF15 28: PK0 29: PK1 30: PK2 31: PA5 US2_RX silabs.com | Building a more connected world. USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). Rev. 1.2 | 101 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 0: PA5 1: PA6 2: PA7 3: PA8 4: PA9 5: PI0 6: PI1 7: PI2 8: PI3 9: PB6 10: PB7 11: PB8 12: PB9 13: PB10 14: PF0 15: PF1 16 - 19 16: PF3 17: PF4 18: PF5 19: PF6 20 - 23 24 - 27 28 - 31 Description 20: PF7 21: PF8 22: PF9 23: PF10 24: PF11 25: PF12 26: PF13 27: PF14 28: PF15 29: PK0 30: PK1 31: PK2 USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. US2_TX USART2 Synchronous mode Master Output / Slave Input (MOSI). US3_CLK 0: PD10 1: PD11 2: PD12 3: PD13 4: PD14 5: PD15 6: PI2 7: PI3 8: PB6 9: PB7 10: PB8 11: PB9 12: PB10 13: PB11 14: PJ14 15: PJ15 16: PC0 17: PC1 18: PC2 19: PC3 20: PC4 21: PC5 22: PF11 23: PF12 24: PF13 25: PF14 26: PF15 27: PK0 28: PK1 29: PK2 30: PD8 31: PD9 USART3 clock input / output. US3_CS 0: PD11 1: PD12 2: PD13 3: PD14 4: PD15 5: PI2 6: PI3 7: PB6 8: PB7 9: PB8 10: PB9 11: PB10 12: PB11 13: PJ14 14: PJ15 15: PC0 16: PC1 17: PC2 18: PC3 19: PC4 20: PC5 21: PF11 22: PF12 23: PF13 24: PF14 25: PF15 26: PK0 27: PK1 28: PK2 29: PD8 30: PD9 31: PD10 USART3 chip select input / output. US3_CTS 0: PD12 1: PD13 2: PD14 3: PD15 4: PI2 5: PI3 6: PB6 7: PB7 8: PB8 9: PB9 10: PB10 11: PB11 12: PJ14 13: PJ15 14: PC0 15: PC1 16: PC2 17: PC3 18: PC4 19: PC5 20: PF11 21: PF12 22: PF13 23: PF14 24: PF15 25: PK0 26: PK1 27: PK2 28: PD8 29: PD9 30: PD10 31: PD11 USART3 Clear To Send hardware flow control input. US3_RTS 0: PD13 1: PD14 2: PD15 3: PI2 4: PI3 5: PB6 6: PB7 7: PB8 8: PB9 9: PB10 10: PB11 11: PJ14 12: PJ15 13: PC0 14: PC1 15: PC2 16: PC3 17: PC4 18: PC5 19: PF11 20: PF12 21: PF13 22: PF14 23: PF15 24: PK0 25: PK1 26: PK2 27: PD8 28: PD9 29: PD10 30: PD11 31: PD12 USART3 Request To Send hardware flow control output. 0: PD9 1: PD10 2: PD11 3: PD12 4: PD13 5: PD14 6: PD15 7: PI2 8: PI3 9: PB6 10: PB7 11: PB8 12: PB9 13: PB10 14: PB11 15: PJ14 16: PJ15 17: PC0 18: PC1 19: PC2 20: PC3 21: PC4 22: PC5 23: PF11 24: PF12 25: PF13 26: PF14 27: PF15 28: PK0 29: PK1 30: PK2 31: PD8 USART3 Asynchronous Receive. 0: PD8 1: PD9 2: PD10 3: PD11 4: PD12 5: PD13 6: PD14 7: PD15 8: PI2 9: PI3 10: PB6 11: PB7 12: PB8 13: PB9 14: PB10 15: PB11 16: PJ14 17: PJ15 18: PC0 19: PC1 20: PC2 21: PC3 22: PC4 23: PC5 24: PF11 25: PF12 26: PF13 27: PF14 28: PF15 29: PK0 30: PK1 31: PK2 USART3 Asynchronous Transmit. Also used as receive input in half duplex communication. US3_RX US3_TX USART3 Synchronous mode Master Input / Slave Output (MISO). USART3 Synchronous mode Master Output / Slave Input (MOSI). 0: PA1 Digital to analog converter VDAC0 external reference input pin. 0: PA3 Digital to Analog Converter DAC0 output channel number 0. 0: PA5 1: PD13 2: PD15 Digital to Analog Converter DAC0 alternative output for channel 0. VDAC0_EXT VDAC0_OUT0 / OPA0_OUT VDAC0_OUT0AL T / OPA0_OUTALT silabs.com | Building a more connected world. Rev. 1.2 | 102 EFM32JG12 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PD14 Digital to Analog Converter DAC0 output channel number 1. 0: PD12 1: PA2 2: PA4 Digital to Analog Converter DAC0 alternative output for channel 1. VDAC0_OUT1 / OPA1_OUT VDAC0_OUT1AL T / OPA1_OUTALT Description WTIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PA6 7: PA7 8: PA8 9: PA9 10: PB6 11: PB7 12: PB8 13: PB9 14: PB10 15: PB11 16: PB12 17: PB13 18: PB14 19: PB15 20: PC0 21: PC1 22: PC2 23: PC3 24: PC4 25: PC5 26: PC6 27: PC7 28: PC8 29: PC9 30: PC10 31: PC11 Wide timer 0 Capture Compare input / output channel 0. WTIM0_CC1 0: PA2 1: PA3 2: PA4 3: PA5 4: PA6 5: PA7 6: PA8 7: PA9 8: PB6 9: PB7 10: PB8 11: PB9 12: PB10 13: PB11 14: PB12 15: PB13 16: PB14 17: PB15 18: PC0 19: PC1 20: PC2 21: PC3 22: PC4 23: PC5 24: PC6 25: PC7 26: PC8 27: PC9 28: PC10 29: PC11 30: PD8 31: PD9 Wide timer 0 Capture Compare input / output channel 1. WTIM0_CC2 0: PA4 1: PA5 2: PA6 3: PA7 4: PA8 5: PA9 6: PB6 7: PB7 8: PB8 9: PB9 10: PB10 11: PB11 12: PB12 13: PB13 14: PB14 15: PB15 16: PC0 17: PC1 18: PC2 19: PC3 20: PC4 21: PC5 22: PC6 23: PC7 24: PC8 25: PC9 26: PC10 27: PC11 28: PD8 29: PD9 30: PD10 31: PD11 Wide timer 0 Capture Compare input / output channel 2. WTIM0_CDTI0 0: PA8 1: PA9 2: PB6 3: PB7 4: PB8 5: PB9 6: PB10 7: PB11 8: PB12 9: PB13 10: PB14 11: PB15 12: PC0 13: PC1 14: PC2 15: PC3 16: PC4 17: PC5 18: PC6 19: PC7 20: PC8 21: PC9 22: PC10 23: PC11 24: PD8 25: PD9 26: PD10 27: PD11 28: PD12 29: PD13 30: PD14 31: PD15 Wide timer 0 Complimentary Dead Time Insertion channel 0. WTIM0_CDTI1 0: PB6 1: PB7 2: PB8 3: PB9 4: PB10 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC0 11: PC1 12: PC2 13: PC3 14: PC4 15: PC5 16: PC6 17: PC7 18: PC8 19: PC9 20: PC10 21: PC11 22: PD8 23: PD9 24: PD10 25: PD11 26: PD12 27: PD13 28: PD14 29: PD15 30: PF0 31: PF1 Wide timer 0 Complimentary Dead Time Insertion channel 1. WTIM0_CDTI2 0: PB8 1: PB9 2: PB10 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC0 9: PC1 10: PC2 11: PC3 12: PC4 13: PC5 14: PC6 15: PC7 16: PC8 17: PC9 18: PC10 19: PC11 20: PD8 21: PD9 22: PD10 23: PD11 24: PD12 25: PD13 26: PD14 27: PD15 28: PF0 29: PF1 30: PF2 31: PF3 Wide timer 0 Complimentary Dead Time Insertion channel 2. WTIM1_CC0 0: PB12 1: PB13 2: PB14 3: PB15 4: PC0 5: PC1 6: PC2 7: PC3 8: PC4 9: PC5 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD8 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Wide timer 1 Capture Compare input / output channel 0. WTIM1_CC1 0: PB14 1: PB15 2: PC0 3: PC1 4: PC2 5: PC3 6: PC4 7: PC5 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD8 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PF8 31: PF9 Wide timer 1 Capture Compare input / output channel 1. WTIM1_CC2 0: PC0 1: PC1 2: PC2 3: PC3 4: PC4 5: PC5 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD8 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PF8 29: PF9 30: PF10 31: PF11 Wide timer 1 Capture Compare input / output channel 2. WTIM1_CC3 0: PC2 1: PC3 2: PC4 3: PC5 4: PC6 5: PC7 6: PC8 7: PC9 8: PC10 9: PC11 10: PD8 11: PD9 12: PD10 13: PD11 14: PD12 15: PD13 16: PD14 17: PD15 18: PF0 19: PF1 20: PF2 21: PF3 22: PF4 23: PF5 24: PF6 25: PF7 26: PF8 27: PF9 28: PF10 29: PF11 30: PF12 31: PF13 Wide timer 1 Capture Compare input / output channel 3. silabs.com | Building a more connected world. Rev. 1.2 | 103 EFM32JG12 Family Data Sheet Pin Definitions 6.5 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.3 APORT Connection Diagram on page 104 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. ACMP0X ACMP0Y ADC1X ADC1Y DY DX CY CX PC6 PC7 PC8 PC9 PC10 PJ14 PC11 PC0 PJ15 PC1 PC2 PC3 PC4 PC5 1X IDAC0 ACMP1X ACMP1Y PF0 POS PF1 PF2 PF3 ACMP1 PF8 NEG PF9 PF10 POS NEG 0Y 1Y 2Y 3Y 4Y NEXT1 PF13 PF14 ADC0 PF15 PK0 PK1 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 0X 1X 2X 3X 4X NEXT0 NEXT2 PF11 PF12 0X 1X 2X 3X 4X NEXT1 NEXT0 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 1Y PB15 PB14 POS PB13 OPA2_N ACMP0 PB12 OUT2 NEG PB11 OPA2_P VDAC0_OPA2ALT VDAC0_OPA2ALT OUT2ALT OUT2ALT PB9 PB8 PB7 PB6 PI3 PI2 EXTP EXTN PK2 PF4 PF5 POS OPA0_P 1X 2X 3X 4X NEG OPA0_N 1Y 2Y 3Y 4Y PF6 PF7 AX AY BX BY OPA0 OUT OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 POS OPA2_P 1X 2X 3X 4X NEG OPA2_N 1Y 2Y 3Y 4Y OPA2 PB10 PI1 OPA1_P 1X 2X 3X 4X POS OPA1_N 1Y 2Y 3Y 4Y NEG OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 PI0 PA9 PA8 PA7 LESENSE OPA1 PA6 LESENSE OUT OUT0ALT OUT1ALT VDAC0_OUT0ALT VDAC0_OUT1ALT OPA0_N OPA0_INN0 PA5 LESENSE PA4 LESENSE OUT0 OUT1ALT OPA0_OUT VDAC0_OUT1ALT OPA0_P OPA0_INP0 PA3 LESENSE PA2 LESENSE ADC_EXTP ADC_EXTN OUT0ALT ADC0_EXTP ADC0_EXTN PA1 LESENSE PA0 LESENSE OPA0ALT PD15 LESENSE BUSADC0X, BUSADC0Y ACMP0X, ACMP1Y, … BUSACMP0X, BUSACMP1Y, ... CEXT_SENSE 2X 2Y 4X 4Y VDAC0_OUT1ALT OPA1_OUT ADC0X, ADC0Y OPA1_INN0 OUT1 BUSAX, BUSBY, ... CSEN VDAC0_OUT0ALT OPA1_INP0 AX, BY, … ALT0OUT OPA1_P APORTnX, APORTnY OPA1N 1X 1Y 3X 3Y CEXT nX, nY OUT2 OUT2ALT OUT1 OUT2 OUT3 OUT4 NEXT2 ALT1OUT OUT PD14 LESENSE PD13 LESENSE PD11 LESENSE PD12 LESENSE PD9 LESENSE PD10 LESENSE PD8 LESENSE Figure 6.3. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin silabs.com | Building a more connected world. Rev. 1.2 | 104 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PA8 PA9 PA8 PA9 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP0Y BUSACMP0X Bus APORT0Y EFM32JG12 Family Data Sheet Pin Definitions PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. Table 6.5. ACMP0 Bus and Pin Mapping Rev. 1.2 | 105 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PJ14 PJ15 PJ14 PJ15 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP1Y BUSACMP1X Bus APORT0Y EFM32JG12 Family Data Sheet Pin Definitions Table 6.6. ACMP1 Bus and Pin Mapping Rev. 1.2 | 106 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PI0 PI1 PI2 PI3 PI0 PI1 PI2 PI3 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSADC0Y BUSADC0X Bus APORT0Y EFM32JG12 Family Data Sheet Pin Definitions Table 6.7. ADC0 Bus and Pin Mapping Rev. 1.2 | 107 silabs.com | Building a more connected world. PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSDX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX APORT4Y APORT4X APORT2Y APORT2X PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT3Y APORT3X APORT1Y APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32JG12 Family Data Sheet Pin Definitions Table 6.8. CSEN Bus and Pin Mapping CEXT CEXT_SENSE Table 6.9. IDAC0 Bus and Pin Mapping Rev. 1.2 | 108 silabs.com | Building a more connected world. PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4X APORT3X APORT2X APORT1X PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32JG12 Family Data Sheet Pin Definitions Table 6.10. VDAC0 / OPA Bus and Pin Mapping OPA0_N OPA0_P Rev. 1.2 | 109 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4X APORT3X APORT2X APORT1X PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32JG12 Family Data Sheet Pin Definitions OPA1_N OPA1_P OPA2_N Rev. 1.2 | 110 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSDX PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSCX PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSBX PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSAX APORT4X APORT3X APORT2X APORT1X PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32JG12 Family Data Sheet Pin Definitions OPA2_OUT OPA2_P VDAC0_OUT0 / OPA0_OUT Rev. 1.2 | 111 silabs.com | Building a more connected world. PD8 PD10 PD12 PD14 PA0 PA2 PA4 PA6 PB6 PB8 PB10 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA7 PB7 PB9 PB11 PB13 PB15 BUSCY PC0 PC2 PC4 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSBY PC1 PC3 PC5 PC7 PC9 PC11 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32JG12 Family Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.2 | 112 EFM32JG12 Family Data Sheet BGA125 Package Specifications 7. BGA125 Package Specifications 7.1 BGA125 Package Dimensions Figure 7.1. BGA125 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 113 EFM32JG12 Family Data Sheet BGA125 Package Specifications Table 7.1. BGA125 Package Dimensions Dimension Min Typ Max A 0.80 0.87 0.94 A1 0.16 0.21 0.26 A2 0.61 0.66 0.71 c 0.17 0.21 0.25 D 6.90 7.00 7.10 E 6.90 7.00 7.10 D1 — 6.00 — E1 — 6.00 — e — 0.50 — b 0.25 0.30 0.35 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. silabs.com | Building a more connected world. Rev. 1.2 | 114 EFM32JG12 Family Data Sheet BGA125 Package Specifications 7.2 BGA125 PCB Land Pattern Figure 7.2. BGA125 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 115 EFM32JG12 Family Data Sheet BGA125 Package Specifications Table 7.2. BGA125 PCB Land Pattern Dimensions Dimension Min Nom X 0.25 C1 6.00 C2 6.00 E1 0.5 E2 0.5 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 116 EFM32JG12 Family Data Sheet BGA125 Package Specifications 7.3 BGA125 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 7.3. BGA125 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 117 EFM32JG12 Family Data Sheet QFN48 Package Specifications 8. QFN48 Package Specifications 8.1 QFN48 Package Dimensions Figure 8.1. QFN48 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 118 EFM32JG12 Family Data Sheet QFN48 Package Specifications Table 8.1. QFN48 Package Dimensions Dimension Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D 6.90 7.00 7.10 E 6.90 7.00 7.10 D2 5.15 5.30 5.45 E2 5.15 5.30 5.45 e 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — — aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 119 EFM32JG12 Family Data Sheet QFN48 Package Specifications 8.2 QFN48 PCB Land Pattern Figure 8.2. QFN48 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 120 EFM32JG12 Family Data Sheet QFN48 Package Specifications Table 8.2. QFN48 PCB Land Pattern Dimensions Dimension Typ S1 6.01 S 6.01 L1 4.70 W1 4.70 e 0.50 W 0.26 L 0.86 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 121 EFM32JG12 Family Data Sheet QFN48 Package Specifications 8.3 QFN48 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 8.3. QFN48 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 122 EFM32JG12 Family Data Sheet Revision History 9. Revision History Revision 1.2 November, 2019 • • • • In the front page block diagram, updated the lowest energy mode for LETIMER. Updated 3.5.4 Low Energy Timer (LETIMER) lowest energy mode. Added a Note about the operating voltage in 3.7.3 True Random Number Generator (TRNG). Reworded or removed mentions of “modules” in reference to device peripherals in system overview. Revision 1.1 February, 2018 • Updated 2. Ordering Information to revision-C OPNs. • System Overview Updates • Added "4-pin JTAG" to debug interface options in Processor Core section. • Memory maps updated with LE peripherals and new formatting. • 4.1.1 Absolute Maximum Ratings: Added footnotes to clarify VDIGPIN specification for 5V tolerant GPIO. • Table 4.2 General Operating Conditions on page 19: • Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled. • Added footnote for additional information on peak current during voltage scaling operations. • 4.1.4 DC-DC Converter: Expanded footnote on control loop settings to include appnote and register field reference. • Table 4.16 Flash Memory Characteristics5 on page 34: Device Erase Time typical values corrected from 69 to 82 ms. • Table 4.21 Digital to Analog Converter (VDAC) on page 43: Gain Error min/max specifications relaxed for REFSEL on 1V25LN, VDD, and EXT settings. • Table 4.22 Current Digital to Analog Converter (IDAC) on page 46: Total accuracy STEPSEL value setting corrected from 0x80 to 0x10. • Table 4.26 Analog Port (APORT) on page 53: Operation in EM2/EM3 supply current changed from 915 to 67 nA (silicon fix from rev B to C). Revision 1.0 2017-06-30 • • • • Finalized specification tables. All tables were updated with latest characterization data and production test limits. Updated typical performance graphs for DC-DC. Minor typographical, clarity, and consistency improvements. Condensed pin function tables with new formatting. Revision 0.5 2017-02-10 • Updated Feature List and Front Page with latest characterization numbers. • List of OPNs in Ordering Table consolidated. • Electrical Characteristics Table Changes • All specification tables updated with latest characterization data and production test limits. • Split HFRCO/AUXHFRCO table into separate tables for HFRCO and AUXHFRCO. • OPAMP, CSEN, and VDAC specification line items updated to match test conditions. • Added tables for Analog Port (APORT) and Pulse Counter (PCNT). • Added Typical Performance Curves for supply current and DCDC parameters. • Added APORT Connection Diagram. silabs.com | Building a more connected world. Rev. 1.2 | 123 EFM32JG12 Family Data Sheet Revision History Revision 0.2 December 9th, 2016 Initial release. silabs.com | Building a more connected world. Rev. 1.2 | 124 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW Quality Support and Community www.silabs.com/simplicity www.silabs.com/quality community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
EFM32JG12B500F1024GL125-CR 价格&库存

很抱歉,暂时无法提供与“EFM32JG12B500F1024GL125-CR”相匹配的价格&库存,您可以联系我们找货

免费人工找货