0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32JG1B200F128GM48-C0R

EFM32JG1B200F128GM48-C0R

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    QFN48_7X7MM_EP

  • 描述:

    IC MCU 32BIT 128KB FLASH 48QFN

  • 数据手册
  • 价格&库存
EFM32JG1B200F128GM48-C0R 数据手册
EFM32 Jade Gecko Family EFM32JG1 Data Sheet The EFM32 Jade Gecko MCUs are the world’s most energyfriendly microcontrollers. ENERGY FRIENDLY FEATURES EFM32JG1 features a powerful 32-bit ARM® Cortex®-M3 and a wide selection of peripherals, including a unique cryptographic hardware engine supporting AES, ECC, and SHA. These features, combined with ultra-low current active mode and short wake-up time from energy-saving modes, make EFM32JG1 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and low-energy consumption. • ARM Cortex-M3 at 40 MHz Example applications: • Hardware cryptographic engine supports AES, ECC, and SHA • Home automation and security • Industrial and factory automation • IoT devices and sensors • Health and fitness • Smart accessories ARM Cortex • 63 μA/MHz in Energy Mode 0 (EM0) • Integrated dc-dc converter • CRYOTIMER operates down to EM4 Clock Management Memory Protection Unit M3 processor Flash Program Memory • 2.5 μA EM2 DeepSleep current (RTCC running with state and RAM retention) • 5 V tolerant I/O Core / Memory TM • Ultra low energy operation: • 2.1 μA EM3 Stop current (CRYOTIMER running with state/RAM retention) RAM Memory Debug Interface DMA Controller Energy Management High Frequency Crystal Oscillator High Frequency RC Oscillator Voltage Regulator Voltage Monitor Low Frequency RC Oscillator Auxiliary High Frequency RC Oscillator DC-DC Converter Power-On Reset Low Frequency Crystal Oscillator Ultra Low Frequency RC Oscillator Brown-Out Detector 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports USART External Interrupts Timers and Triggers Low Energy Timer ADC CRYPTO Pulse Counter Real Time Counter and Calendar Analog Comparator CRC Watchdog Timer CRYOTIMER IDAC Pin Reset I2C Pin Wakeup Other Timer/Counter General Purpose I/O Low Energy UARTTM Analog Interfaces Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop Copyright © 2022 by Silicon Laboratories EM4 - Hibernate EM4 - Shutoff Rev. 1.2 EFM32JG1 Data Sheet Feature List 1. Feature List The EFM32JG1 highlighted features are listed below. • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 40 MHz • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 63 μA/MHz in Energy Mode 0 (EM0) • 2.5 μA EM2 DeepSleep current (RTCC running with state and RAM retention) • 0.58 μA EM4H Hibernate Mode (128 byte RAM retention) • Up to 256 kB flash program memory • 32 kB RAM data memory • Up to 32 General Purpose I/O Pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • Asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • Hardware Cryptography • AES 128/256-bit keys • ECC B/K163, B/K233, P192, P224, P256 • SHA-1 and SHA-2 (SHA-224 and SHA-256) • Timers/Counters • 2× 16-bit Timer/Counter • 3 + 4 Compare/Capture/PWM channels • 1× 32-bit Real Time Counter and Calendar • 1× 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode • 16-bit Low Energy Timer for waveform generation • 16-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator silabs.com | Building a more connected world. • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Communication Interfaces • 2× Universal Synchronous/Asynchronous Receiver/ Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN • Triple buffered full/half-duplex operation with flow control • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • I C Interface with SMBus support • • • • • Address recognition in EM3 Stop Mode Ultra Low-Power Precision Analog Peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 2× Analog Comparator • Digital to Analog Current Converter • Up to 32 pins connected to analog channels (APORT) shared between Analog Comparators, ADC, and IDAC Ultra efficient Power-on Reset and Brown-Out Detector Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • JTAG (programming only) Wide Operating Range • 1.85 V to 3.8 V single power supply • Integrated dc-dc, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to 125 °C TJ) temperature grades available • Packages • 7 mm × 7 mm QFN48 • 5 mm × 5 mm QFN32 • Pre-Programmed UART Bootloader • Full Software Support • CMSIS register definitions • Low-power Hardware Abstraction Layer (HAL) • Portable software components • Third-party middleware • Free and available example code Rev. 1.2 | 2 EFM32JG1 Data Sheet Ordering Information 2. Ordering Information Ordering Code Flash (kB) RAM (kB) DC-DC Converter GPIO Package Temp Range EFM32JG1B200F256GM48-C0 256 32 Yes 32 QFN48 -40 to +85 EFM32JG1B200F256IM48-C0 256 32 Yes 32 QFN48 -40 to +125 EFM32JG1B200F128GM48-C0 128 32 Yes 32 QFN48 -40 to +85 EFM32JG1B200F256GM32-C0 256 32 Yes 20 QFN32 -40 to +85 EFM32JG1B200F256IM32-C0 256 32 Yes 20 QFN32 -40 to +125 EFM32JG1B200F128GM32-C0 128 32 Yes 20 QFN32 -40 to +85 EFM32JG1B100F256GM32-C0 256 32 No 24 QFN32 -40 to +85 EFM32JG1B100F256IM32-C0 256 32 No 24 QFN32 -40 to +125 EFM32JG1B100F128GM32-C0 128 32 No 24 QFN32 -40 to +85 EFM32 J G 1 B 200 F 256 G M 32 – C0 R Tape and Reel (Optional) Revision Pin Count Package – M (QFN) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code Performance Grade – P (Performance), B (Basic), V (Value) Series Gecko Family – J (Jade), P (Pearl) Energy Friendly Microcontroller 32-bit Figure 2.1. OPN Decoder silabs.com | Building a more connected world. Rev. 1.2 | 3 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Power . . . . . . . . . . . 3.2.1 Energy Management Unit (EMU) 3.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 . 8 3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . 8 3.4 Clocking . . . . . . . . . . 3.4.1 Clock Management Unit (CMU) . 3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Communications and Other Digital Peripherals . . . . . . . . . . 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.6.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.6.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 .10 .10 .10 3.7 Security Features . . . . . . . . . . . . . . . 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) . 3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .10 3.8 Analog. . . . . . . . . . . . . . 3.8.1 Analog Port (APORT) . . . . . . . 3.8.2 Analog Comparator (ACMP) . . . . . 3.8.3 Analog to Digital Converter (ADC) . . . 3.8.4 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 .10 .10 .11 .11 3.9 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . .11 3.10 Core and Memory . . . . . . . . . . . . 3.10.1 Processor Core . . . . . . . . . . . . 3.10.2 Memory System Controller (MSC) . . . . . 3.10.3 Linked Direct Memory Access Controller (LDMA) 3.10.4 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .11 .11 3.11 Memory Map . . . . 3.5 Counters/Timers and PWM . . . . . . . . . 3.5.1 Timer/Counter (TIMER) . . . . . . . . 3.5.2 Real Time Counter and Calendar (RTCC) . . 3.5.3 Low Energy Timer (LETIMER) . . . . . . 3.5.4 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.5.5 Pulse Counter (PCNT) . . . . . . . . . 3.5.6 Watchdog Timer (WDOG) . . . . . . . . . . . . . . 9 9 9 9 9 9 9 . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.12 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .13 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Electrical Characteristics silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . .14 Rev. 1.2 | 4 4.1.1 Absolute Maximum Ratings . 4.1.2 Operating Conditions . . . 4.1.3 Thermal Characteristics . . 4.1.4 DC-DC Converter . . . . 4.1.5 Current Consumption . . . 4.1.6 Wake up times . . . . . 4.1.7 Brown Out Detector . . . . 4.1.8 Oscillators . . . . . . . 4.1.9 Flash Memory Characteristics 4.1.10 GPIO . . . . . . . . 4.1.11 VMON . . . . . . . . 4.1.12 ADC . . . . . . . . 4.1.13 IDAC . . . . . . . . 4.1.14 Analog Comparator (ACMP) 4.1.15 I2C . . . . . . . . . 4.1.16 USART SPI . . . . . . 4.2 Typical Performance Curves 4.2.1 Supply Current . . . 4.2.2 DC-DC Converter . . 4.2.3 Internal Oscillators . . . . . . 5. Typical Connection Diagrams 5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .15 .16 .17 .19 .23 .23 .24 .27 .28 .29 .30 .33 .35 .37 .40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 .42 .44 .46 . . . . . . . . . . . . . . . . . . . . . . . . 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 5.2 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1 EFM32JG1 QFN48 with DC-DC Definition . . . . . 6.1.1 EFM32JG1 QFN48 with DC-DC GPIO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 .63 6.2 EFM32JG1 QFN32 without DC-DC Definition. . . . . 6.2.1 EFM32JG1 QFN32 without DC-DC GPIO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 .72 6.3 EFM32JG1 QFN32 with DC-DC Definition . . . . . 6.3.1 EFM32JG1 QFN32 with DC-DC GPIO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 .80 6.4 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . . .81 6.5 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . . .87 7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 90 7.1 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .90 7.2 QFN48 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.3 QFN48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . .94 8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 95 . 8.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .95 8.2 QFN32 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .97 8.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . .99 9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 silabs.com | Building a more connected world. Rev. 1.2 | 5 9.1 Revision 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.2 Revision 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.3 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.4 Revision 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 9.5 Revision 0.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 9.6 Revision 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.7 Revision 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.8 Revision 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 silabs.com | Building a more connected world. Rev. 1.2 | 6 EFM32JG1 Data Sheet System Overview 3. System Overview 3.1 Introduction The EFM32JG1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the EFM32JG1 Reference Manual. A block diagram of the EFM32JG1 family is shown in Figure 3.1 Detailed EFM32JG1 Block Diagram on page 7. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. ARM Cortex-M3 Core Digital Peripherals Up to 256 KB ISP Flash Program Memory Reset LETIMER Reset Management Unit CRYOTIMER Memory Protection Unit Voltage Monitor / Brown Out Detector PCNT RTC / RTCC DMA Controller LEUART bypass VREGVDD VREGSW DC-DC Converter A A H P B B CRYPTO CRC Clock Configuration Analog Peripherals VSS ULFRCO LFXTAL_N (shared w/ GPIO) LFXO Internal Reference VDD HFXTAL_P Port B Drivers PBn Port C Drivers PCn Port D Drivers PDn Port F Drivers PFn HFRCO HFXO AUXHFRCO LFRCO IDAC VREF 12-bit ADC HFXTAL_N PAn I2C Watchdog Timer VREGVSS LFXTAL_P Port A Drivers Port Mapper USART Power Net DVDD IOVDD TIMER Up to 32 KB RAM VDD APORT RESETn Port I/O Configuration Input MUX Serial Wire (shared w/ GPIO) Debug / Programming Hardware Temp Sensor + Analog Comparator Figure 3.1. Detailed EFM32JG1 Block Diagram silabs.com | Building a more connected world. Rev. 1.2 | 7 EFM32JG1 Data Sheet System Overview 3.2 Power The EFM32JG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated dc-dc buck regulator can be utilized to further reduce the current consumption. The dc-dc regulator requires one external inductor and one external capacitor. AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.2.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.2.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.3 General Purpose Input/Output (GPIO) EFM32JG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.4 Clocking 3.4.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFM32JG1. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.4.2 Internal and External Oscillators The EFM32JG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. silabs.com | Building a more connected world. Rev. 1.2 | 8 EFM32JG1 Data Sheet System Overview 3.5 Counters/Timers and PWM 3.5.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.5.2 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. 3.5.3 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.5.4 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.5.5 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.5.6 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.6 Communications and Other Digital Peripherals 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S silabs.com | Building a more connected world. Rev. 1.2 | 9 EFM32JG1 Data Sheet System Overview 3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.6.3 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.6.4 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.7 Security Features 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.7.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFM32JG1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.8 Analog 3.8.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.8.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. silabs.com | Building a more connected world. Rev. 1.2 | 10 EFM32JG1 Data Sheet System Overview 3.8.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.8.4 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.9 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFM32JG1. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.10 Core and Memory 3.10.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M3 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • Configuration and event handling of all peripherals • 2-pin Serial-Wire debug interface 3.10.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.10.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. 3.10.4 Bootloader All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area. silabs.com | Building a more connected world. Rev. 1.2 | 11 EFM32JG1 Data Sheet System Overview 3.11 Memory Map The EFM32JG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFM32JG1 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.2 | 12 EFM32JG1 Data Sheet System Overview Figure 3.3. EFM32JG1 Memory Map — Peripherals 3.12 Configuration Summary The features of the EFM32JG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. Table 3.1. Configuration Summary Module Configuration Pin Connections USART0 IrDA US0_TX, US0_RX, US0_CLK, US0_CS SmartCard USART1 I2S US1_TX, US1_RX, US1_CLK, US1_CS SmartCard TIMER0 TIMER1 silabs.com | Building a more connected world. with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIM1_CC[3:0] Rev. 1.2 | 13 EFM32JG1 Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to Table 4.2 General Operating Conditions on page 15 for more details about operational supply and temperature limits. 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range TSTG Min Typ Max Unit -50 — 150 °C External main supply voltage VDDMAX 0 — 3.8 V External main supply voltage VDDRAMPMAX ramp rate — — 1 V / μs -0.3 — Min of 5.25 and IOVDD +2 V -0.3 — IOVDD+0.3 V -0.3 — 1.4 V Total current into VDD power IVDDMAX lines (source) — — 200 mA Total current into VSS ground lines (sink) IVSSMAX — — 200 mA Current per I/O pin (sink) IIOMAX — — 50 mA — — 50 mA — — 200 mA — — 200 mA Voltage on any 5V tolerant GPIO pin1 VDIGPIN Voltage on non-5V tolerant GPIO pins Voltage on HFXO pins VHFXOPIN Current per I/O pin (source) Current for all I/O pins (sink) IIOALLMAX Current for all I/O pins (source) Test Condition Voltage difference between AVDD and VREGVDD ΔVDD — — 0.3 V Junction Temperature for -G grade devices TJ -40 — 105 °C -40 — 125 °C Junction Temperature for -I grade devices Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. silabs.com | Building a more connected world. Rev. 1.2 | 14 EFM32JG1 Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be the highest voltage in the system • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit -G temperature grade, Ambient Temperature -40 25 85 °C -I temperature grade, Junction Temperature -40 25 125 °C 1.85 3.3 3.8 V DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.85 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.85 3.3 3.8 V DCDC in bypass, Tamb ≤ 85 °C — — 200 mA DCDC in bypass, Tamb > 85 °C — — 100 mA DVDD Operating supply volt- VDVDD age 1.62 — VVREGVDD V IOVDD Operating supply voltage 1.62 — VVREGVDD V — — 0.1 V 0 wait-states (MODE = WS0) 3 — — 26 MHz 1 wait-states (MODE = WS1) 3 — — 40 MHz Operating temperature range TOP AVDD Supply voltage1 VAVDD VREGVDD Operating supply VVREGVDD voltage1 2 VREGVDD Current IVREGVDD VIOVDD Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD) HFCLK frequency fCORE Note: 1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max 3. In MSC_READCTRL register silabs.com | Building a more connected world. Rev. 1.2 | 15 EFM32JG1 Data Sheet Electrical Specifications 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Thermal Resistance THETAJA silabs.com | Building a more connected world. Min Typ Max Unit QFN32 Package, 2-Layer PCB, Air velocity = 0 m/s — 79 — °C/W QFN32 Package, 2-Layer PCB, Air velocity = 1 m/s — 62.2 — °C/W QFN32 Package, 2-Layer PCB, Air velocity = 2 m/s — 54.1 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 0 m/s — 32 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 1 m/s — 28.1 — °C/W QFN32 Package, 4-Layer PCB, Air velocity = 2 m/s — 26.9 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 0 m/s — 64.5 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 1 m/s — 51.6 — °C/W QFN48 Package, 2-Layer PCB, Air velocity = 2 m/s — 47.7 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 0 m/s — 26.2 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 1 m/s — 23.1 — °C/W QFN48 Package, 4-Layer PCB, Air velocity = 2 m/s — 22.1 — °C/W Rev. 1.2 | 16 EFM32JG1 Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V, VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.85 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC Accuracy ACCDC Regulation Window2 WINREG Steady-state output ripple VR Output voltage under/overshoot VOV MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low power (LP) mode, LPCMPBIAS3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 μA 1.63 — 2.2 V Low power (LP) mode, LPCMPBIAS3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V — 3 — mVpp CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — — 150 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — — 150 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 50 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 125 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.2 | 17 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4, Tamb ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive4, Tamb > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — — 50 mA Low power (LP) mode, LPCMPBIAS3 = 0 — — 75 μA Low power (LP) mode, LPCMPBIAS3 = 3 — — 10 mA CDCDC 25% tolerance 1 1 1 μF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 μH — 1.2 2.5 Ω DCDC nominal output capacitor Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits 3. In EMU_DCDCMISCCTRL register 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. silabs.com | Building a more connected world. Rev. 1.2 | 18 EFM32JG1 Data Sheet Electrical Specifications 4.1.5 Current Consumption 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values sent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFM32JG1 Circuit, Direct Supply, No DC-DC Converter on page 52. TOP = 25 °C. in this table repreTypical Application Table 4.5. Current Consumption 3.3V without DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 127 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 88 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 100 105 μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 112 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 106 μA/MHz 1 MHz HFRCO, CPU running while loop from flash — 222 350 μA/MHz 38.4 MHz crystal1 — 61 — μA/MHz 38 MHz HFRCO — 35 38 μA/MHz 26 MHz HFRCO — 37 41 μA/MHz 1 MHz HFRCO — 157 275 μA/MHz Full RAM retention and RTCC running from LFXO — 3.3 — μA 4 kB RAM retention and RTCC running from LFRCO — 3 6.3 μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 2.8 6 μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 1.1 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.65 — μA 128 byte RAM retention, no RTCC — 0.65 1.3 μA no RAM retention, no RTCC — 0.04 0.11 μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled Current consumption in EM2 IEM2 Deep Sleep mode. Current consumption in EM4S Shutoff mode IEM4 IEM4S Test Condition Note: 1. CMU_HFXOCTRL_LOWPOWER=1 silabs.com | Building a more connected world. Rev. 1.2 | 19 EFM32JG1 Data Sheet Electrical Specifications 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.2 EFM32JG1 Typical Application Circuit Using the DC-DC Converter on page 52. Table 4.6. Current Consumption 3.3V with DC-DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash2 — 86 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 63 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 71 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 78 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 76 — μA/MHz 38.4 MHz crystal, CPU running while loop from flash2 — 96 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 75 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 81 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 88 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 94 — μA/MHz 38.4 MHz crystal2 — 47 — μA/MHz 38 MHz HFRCO — 32 — μA/MHz 26 MHz HFRCO — 38 — μA/MHz 38.4 MHz crystal2 — 59 — μA/MHz 38 MHz HFRCO — 45 — μA/MHz 26 MHz HFRCO — 58 — μA/MHz Current consumption in EM2 IEM2 Deep Sleep mode. DCDC in Low Power mode4. Full RAM retention and RTCC running from LFXO — 2.5 — μA 4 kB RAM retention and RTCC running from LFRCO — 2.2 — μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 2.1 — μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 0.86 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.58 — μA 128 byte RAM retention, no RTCC — 0.58 — μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled, DCDC in Low Noise DCM mode1. Current consumption in EM0 Active mode with all peripherals disabled, DCDC in Low Noise CCM mode3. Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled, DCDC in Low Noise DCM mode1. Current consumption in EM1 Sleep mode with all peripherals disabled, DCDC in Low Noise CCM mode3. IEM4 silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 20 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Current consumption in EM4S Shutoff mode IEM4S no RAM retention, no RTCC Min Typ Max Unit — 0.04 — μA Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD 2. CMU_HFXOCTRL_LOWPOWER=1 3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD 4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD silabs.com | Building a more connected world. Rev. 1.2 | 21 EFM32JG1 Data Sheet Electrical Specifications 4.1.5.3 Current Consumption 1.85 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.85 V. TOP = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 52. Table 4.7. Current Consumption 1.85V without DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash1 — 127 — μA/MHz 38 MHz HFRCO, CPU running Prime from flash — 88 — μA/MHz 38 MHz HFRCO, CPU running while loop from flash — 100 — μA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 112 — μA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 — μA/MHz 1 MHz HFRCO, CPU running while loop from flash — 220 — μA/MHz 38.4 MHz crystal1 — 61 — μA/MHz 38 MHz HFRCO — 35 — μA/MHz 26 MHz HFRCO — 37 — μA/MHz 1 MHz HFRCO — 154 — μA/MHz Full RAM retention and RTCC running from LFXO — 3.2 — μA 4 kB RAM retention and RTCC running from LFRCO — 2.8 — μA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO — 2.7 — μA Current consumption in EM4H Hibernate mode 128 byte RAM retention, RTCC running from LFXO — 1 — μA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.62 — μA 128 byte RAM retention, no RTCC — 0.62 — μA No RAM retention, no RTCC — 0.02 — μA Current consumption in EM0 IACTIVE Active mode with all peripherals disabled Current consumption in EM1 IEM1 Sleep mode with all peripherals disabled Current consumption in EM2 IEM2 Deep Sleep mode Current consumption in EM4S Shutoff mode IEM4 IEM4S Test Condition Note: 1. CMU_HFXOCTRL_LOWPOWER=1 silabs.com | Building a more connected world. Rev. 1.2 | 22 EFM32JG1 Data Sheet Electrical Specifications 4.1.6 Wake up times Table 4.8. Wake up times Parameter Symbol Test Condition Wake up from EM2 Deep Sleep tEM2_WU Wakeup time from EM1 Sleep tEM1_WU Wake up from EM3 Stop tEM3_WU Wake up from EM4H Hibernate1 tEM4H_WU Wake up from EM4S Shutoff1 tEM4S_WU Min Typ Max Unit Code execution from flash — 10.7 — μs Code execution from RAM — 3 — μs Executing from flash — 3 — AHB Clocks Executing from RAM — 3 — AHB Clocks Executing from flash — 10.7 — μs Executing from RAM — 3 — μs Executing from flash — 60 — μs — 290 — μs Min Typ Max Unit Note: 1. Time from wakeup request until first instruction is executed. Wakeup results in device reset. 4.1.7 Brown Out Detector Table 4.9. Brown Out Detector Parameter Symbol Test Condition DVDDBOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling 1.35 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 24 — mV DVDD response time tDVDDBOD_DELAY Supply drops at 0.1V/μs rate — 2.4 — μs AVDD BOD threshold VAVDDBOD AVDD rising — — 1.85 V AVDD falling 1.62 — — V AVDD BOD hysteresis VAVDDBOD_HYST — 21 — mV AVDD response time tAVDDBOD_DELAY Supply drops at 0.1V/μs rate — 2.4 — μs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 46 — mV — 300 — μs EM4 BOD hysteresis VEM4BOD_HYST EM4 response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/μs rate Rev. 1.2 | 23 EFM32JG1 Data Sheet Electrical Specifications 4.1.8 Oscillators 4.1.8.1 LFXO Table 4.10. LFXO Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kΩ, CL = 7 pF, GAIN4 = 3, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR=70 kΩ, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register 4. In CMU_LFXOCTRL register silabs.com | Building a more connected world. Rev. 1.2 | 24 EFM32JG1 Data Sheet Electrical Specifications 4.1.8.2 HFXO Table 4.11. HFXO Parameter Symbol Crystal Frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO Supported range of crystal load capacitance 1 CHFXO_CL On-chip tuning cap range 2 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO Frequency Tolerance for the crystal FTHFXO Test Condition Min Typ Max Unit 38 38.4 40 MHz — — 60 Ω 6 — 12 pF 9 20 25 pF — 0.04 — pF 38.4 MHz, ESR = 50 Ω, CL = 10 pF — 300 — μs 38.4 MHz, ESR = 50 Ω, CL = 10 pF -40 — 40 ppm Crystal frequency 38.4 MHz On each of HFXTAL_N and HFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.8.3 LFRCO Table 4.12. LFRCO Parameter Symbol Test Condition Oscillation frequency fLFRCO Startup time tLFRCO Current consumption 1 ILFRCO Min Typ Max Unit ENVREF = 1 in CMU_LFRCOCTRL, TAMB ≤ 85 °C 30.474 32.768 34.243 kHz ENVREF = 1 in CMU_LFRCOCTRL, TAMB > 85 °C 30.474 — 39.7 kHz ENVREF = 0 in CMU_LFRCOCTRL 30.474 32.768 33.915 kHz — 500 — μs ENVREF = 1 in CMU_LFRCOCTRL — 342 — nA ENVREF = 0 in CMU_LFRCOCTRL — 494 — nA Note: 1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register silabs.com | Building a more connected world. Rev. 1.2 | 25 EFM32JG1 Data Sheet Electrical Specifications 4.1.8.4 HFRCO and AUXHFRCO Table 4.13. HFRCO and AUXHFRCO Parameter Symbol Test Condition Min Typ Max Unit Frequency Accuracy fHFRCO_ACC Any frequency band, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — μs fHFRCO ≤ 4 MHz — 2.5 — μs fHFRCO = 38 MHz — 204 228 μA fHFRCO = 32 MHz — 171 190 μA fHFRCO = 26 MHz — 147 164 μA fHFRCO = 19 MHz — 126 138 μA fHFRCO = 16 MHz — 110 120 μA fHFRCO = 13 MHz — 100 110 μA fHFRCO = 7 MHz — 81 91 μA fHFRCO = 4 MHz — 33 35 μA fHFRCO = 2 MHz — 31 35 μA fHFRCO = 1 MHz — 30 35 μA Coarse (% of period) — 0.8 — % Fine (% of period) — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.95 1 1.07 kHz Current consumption on all supplies Step size Period Jitter IHFRCO SSHFRCO PJHFRCO 4.1.8.5 ULFRCO Table 4.14. ULFRCO Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 26 EFM32JG1 Data Sheet Electrical Specifications 4.1.9 Flash Memory Characteristics Table 4.15. Flash Memory Characteristics1 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Test Condition Min Typ Max Unit 10000 — — cycles TAMB ≤ 85 °C 10 — — years TAMB ≤ 125 °C 10 — — years Word (32-bit) programming time tW_PROG 20 26 40 μs Page erase time tPERASE 20 27 40 ms Mass erase time tMERASE 20 27 40 ms Device erase time2 tDERASE TAMB ≤ 85 °C — 60 74 ms TAMB ≤ 125 °C — 60 78 ms — — 3 mA — — 5 mA — — 3 mA Page erase current3 IERASE Mass or Device erase current3 Write current3 IWRITE Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW) 3. Measured at 25°C silabs.com | Building a more connected world. Rev. 1.2 | 27 EFM32JG1 Data Sheet Electrical Specifications 4.1.10 GPIO Table 4.16. GPIO Parameter Symbol Test Condition Input low voltage VIOIL Input high voltage Output high voltage relative to IOVDD VIOIH VIOOH Min Typ Max Unit GPIO pins — — IOVDD*0.3 V RESETn — — AVDD*0.3 V GPIO pins IOVDD*0.7 — — V RESETn AVDD*0.7 — — V Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, Tamb ≤ 85 °C — 0.1 30 nA LFXO Pins, GPIO ≤ IOVDD, Tamb ≤ 85 °C — 0.1 50 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, TAMB > 85 °C — — 110 nA LFXO Pins, GPIO ≤ IOVDD, TAMB > 85 °C — — 250 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 μA DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VIOOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up resistor RPU 30 43 65 kΩ I/O pin pull-down resistor RPD 30 43 65 kΩ 20 25 35 ns Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.2 | 28 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns 100 — — ns Min Typ Max Unit DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 RESETn low time to ensure pin reset TRESET Note: 1. In GPIO_Pn_CTRL register 4.1.11 VMON Table 4.17. VMON Parameter Symbol Test Condition VMON Supply Current IVMON In EM0 or EM1, 1 supply monitored — 5.8 8.26 μA In EM0 or EM1, 4 supplies monitored — 11.8 16.8 μA In EM2, EM3 or EM4, 1 supply monitored — 62 — nA In EM2, EM3 or EM4, 4 supplies monitored — 99 — nA In EM0 or EM1 — 2 — μA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/μs rate — 460 — ns — 26 — mV VMON Loading of Monitored ISENSE Supply Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Rev. 1.2 | 29 EFM32JG1 Data Sheet Electrical Specifications 4.1.12 ADC Table 4.18. ADC Parameter Symbol Resolution VRESOLUTION Input voltage range VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits 0 — 2*VREF V -VREF — VREF V 1 — VAVDD V Power supply rejection1 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, — 301 350 μA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3 — 149 — μA 62.5 ksps / 1 MHz ADCCLK, — 91 — μA — 51 — μA — 9 — μA — 117 — μA — 79 — μA — 345 — μA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3 — 191 — μA 62.5 ksps / 1 MHz ADCCLK, — 132 — μA Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP Continous operation. WARMUPMODE2 = KEEPADCWARM BIASPROG = 0, GPBIASACC = 1 3 BIASPROG = 15, GPBIASACC = 13 Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, ing internal reference buffer. BIASPROG = 0, GPBIASACC = 1 Duty-cycled operation. WAR3 2 MUPMODE = NORMAL 5 ksps / 16 MHz ADCCLK BIASPROG = 0, GPBIASACC = 1 3 Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP Continous operation. WARMUPMODE2 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 BIASPROG = 15, GPBIASACC = 03 silabs.com | Building a more connected world. Rev. 1.2 | 30 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, ing internal reference buffer. BIASPROG = 0, GPBIASACC = 0 Duty-cycled operation. WAR3 2 MUPMODE = NORMAL 5 ksps / 16 MHz ADCCLK Min Typ Max Unit — 102 — μA — 17 — μA — 162 — μA — 123 — μA — 140 — μA BIASPROG = 0, GPBIASACC = 0 3 Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 Current from HFPERCLK IADC_CLK ADC Clock Frequency fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time4 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE2 = NORMAL — — 5 μs WARMUPMODE2 = KEEPINSTANDBY — — 2 μs WARMUPMODE2 = KEEPINSLOWACC — — 1 μs Internal reference, 2.5 V full-scale, differential (-1.25, 1.25) 58 67 — dB vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential — 68 — dB Startup time of reference generator and ADC core SNDR at 1Msps and fin = 10kHz tADCSTART SNDRADC HFPERCLK = 16 MHz Spurious-Free Dynamic Range (SFDR) SFDRADC 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Input referred ADC noise, rms VREF_NOISE Including quantization noise and distortion — 380 — μV Offset Error VADCOFFSETERR -3 0.25 3 LSB Gain error in ADC VADC_GAIN Using internal reference — -0.2 5 % Using external reference — -1 — % Differential non-linearity (DNL) DNLADC 12 bit resolution, No Missing Codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Temperature Sensor Slope VTS_SLOPE — -1.84 — mV/°C silabs.com | Building a more connected world. Rev. 1.2 | 31 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL 2. In ADCn_CNTL register 3. In ADCn_BIASPROG register 4. Derived from ADCCLK silabs.com | Building a more connected world. Rev. 1.2 | 32 EFM32JG1 Data Sheet Electrical Specifications 4.1.13 IDAC Table 4.19. IDAC Parameter Symbol Number of Ranges NIDAC_RANGES Output Current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total Accuracy, STEPSEL1 = ACCIDAC 0x10 Start up time tIDAC_SU silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — - RANGSEL1 = RANGE0 0.05 — 1.6 μA RANGSEL1 = RANGE1 1.6 — 4.7 μA RANGSEL1 = RANGE2 0.5 — 16 μA RANGSEL1 = RANGE3 2 — 64 μA — 32 — RANGSEL1 = RANGE0 — 50 — nA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — μA EM0 or EM1, AVDD=3.3 V, T = 25 °C -2 — 2 % EM0 or EM1 -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % Output within 1% of steady state value — 5 — μs Rev. 1.2 | 33 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Settling time, (output settled tIDAC_SETTLE within 1% of steady state value) Range setting is changed — 5 — μs Step value is changed — 1 — μs Current consumption in EM0 IIDAC or EM1 2 Source mode, excluding output current — 8.9 13 μA Sink mode, excluding output current — 12 16 μA Source mode, excluding output current, duty cycle mode, T = 25 °C — 1.04 — μA Sink mode, excluding output current, duty cycle mode, T = 25 °C — 1.08 — μA Source mode, excluding output current, duty cycle mode, T ≥ 85 °C — 8.9 — μA Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C — 12 — μA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mv) — 0.04 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.02 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.02 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.02 — % RANGESEL1=0, output voltage = 100 mV — 0.18 — % RANGESEL1=1, output voltage = 100 mV — 0.12 — % RANGESEL1=2, output voltage = 150 mV — 0.08 — % RANGESEL1=3, output voltage = 250 mV — 0.02 — % Current consumption in EM2 or EM32 Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Note: 1. In IDAC_CURPROG register 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.2 | 34 EFM32JG1 Data Sheet Electrical Specifications 4.1.14 Analog Comparator (ACMP) Table 4.20. ACMP Parameter Symbol Test Condition Input voltage range VACMPIN ACMPVDD = ACMPn_CTRL_PWRSEL 1 Supply Voltage VACMPVDD Active current not including voltage reference IACMP Current consumption of inter- IACMPREF nal voltage reference Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST silabs.com | Building a more connected world. Min Typ Max Unit 0 — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.85 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 0x10, FULLBIAS2 =0 — 306 — nA BIASPROG2 = 0x20, FULLBIAS2 =1 — 74 95 μA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — μA VADIV selected as input using VDD/1 — 2.4 — μA HYSTSEL3 = HYST0 -1.75 0 1.75 mV HYSTSEL3 = HYST1 10 18 26 mV HYSTSEL3 = HYST2 21 32 46 mV HYSTSEL3 = HYST3 27 44 63 mV HYSTSEL3 = HYST4 32 55 80 mV HYSTSEL3 = HYST5 38 65 100 mV HYSTSEL3 = HYST6 43 77 121 mV HYSTSEL3 = HYST7 47 86 148 mV HYSTSEL3 = HYST8 -4 0 4 mV HYSTSEL3 = HYST9 -27 -18 -10 mV HYSTSEL3 = HYST10 -47 -32 -18 mV HYSTSEL3 = HYST11 -64 -43 -27 mV HYSTSEL3 = HYST12 -78 -54 -32 mV HYSTSEL3 = HYST13 -93 -64 -37 mV HYSTSEL3 = HYST14 -113 -74 -42 mV HYSTSEL3 = HYST15 -135 -85 -47 mV MAX — VVREGVDD_ V MAX Rev. 1.2 | 35 EFM32JG1 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Comparator delay4 tACMPDELAY BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 — μs BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference Voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 2 2.5 2.8 V CSRESSEL5 = 0 — inf — kΩ CSRESSEL5 = 1 — 15 — kΩ CSRESSEL5 = 2 — 27 — kΩ CSRESSEL5 = 3 — 39 — kΩ CSRESSEL5 = 4 — 51 — kΩ CSRESSEL5 = 5 — 102 — kΩ CSRESSEL5 = 6 — 164 — kΩ CSRESSEL5 = 7 — 239 — kΩ Capacitive Sense Internal Resistance RCSRES Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD 2. In ACMPn_CTRL register 3. In ACMPn_HYSTERESIS register 4. ±100 mV differential drive 5. In ACMPn_INPUTSEL register The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as: IACMPTOTAL = IACMP + IACMPREF IACMPREF is zero if an external voltage reference is used. silabs.com | Building a more connected world. Rev. 1.2 | 36 EFM32JG1 Data Sheet Electrical Specifications 4.1.15 I2C I2C Standard-mode (Sm) Table 4.21. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — μs SCL clock high time tHIGH 4 — — μs SDA set-up time tSU,DAT 250 — — ns SDA hold time3 tHD,DAT 100 — 3450 ns Repeated START condition set-up time tSU,STA 4.7 — — μs (Repeated) START condition tHD,STA hold time 4 — — μs STOP condition set-up time tSU,STO 4 — — μs Bus free time between a STOP and START condition tBUF 4.7 — — μs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW) silabs.com | Building a more connected world. Rev. 1.2 | 37 EFM32JG1 Data Sheet Electrical Specifications I2C Fast-mode (Fm) Table 4.22. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — μs SCL clock high time tHIGH 0.6 — — μs SDA set-up time tSU,DAT 100 — — ns SDA hold time3 tHD,DAT 100 — 900 ns Repeated START condition set-up time tSU,STA 0.6 — — μs (Repeated) START condition tHD,STA hold time 0.6 — — μs STOP condition set-up time tSU,STO 0.6 — — μs Bus free time between a STOP and START condition tBUF 1.3 — — μs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW) silabs.com | Building a more connected world. Rev. 1.2 | 38 EFM32JG1 Data Sheet Electrical Specifications I2C Fast-mode Plus (Fm+) Table 4.23. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — μs SCL clock high time tHIGH 0.26 — — μs SDA set-up time tSU,DAT 50 — — ns SDA hold time tHD,DAT 100 — — ns Repeated START condition set-up time tSU,STA 0.26 — — μs (Repeated) START condition tHD,STA hold time 0.26 — — μs STOP condition set-up time tSU,STO 0.26 — — μs Bus free time between a STOP and START condition tBUF 0.5 — — μs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual silabs.com | Building a more connected world. Rev. 1.2 | 39 EFM32JG1 Data Sheet Electrical Specifications 4.1.16 USART SPI SPI Master Timing Table 4.24. SPI Master Timing Parameter Symbol SCLK period 1 2 tSCLK CS to MOSI 1 2 Test Condition Min Typ Max Unit 2* tHFPERCLK — — ns tCS_MO 0 — 8 ns SCLK to MOSI 1 2 tSCLK_MO 3 — 20 ns MISO setup time 1 2 tSU_MI IOVDD = 1.62 V 56 — — ns IOVDD = 3.0 V 37 — — ns 6 — — ns tH_MI MISO hold time 1 2 Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD) CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram (SMSDELAY = 0) CS tCS_MO tSCLK_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.2. SPI Master Timing Diagram (SMSDELAY = 1) silabs.com | Building a more connected world. Rev. 1.2 | 40 EFM32JG1 Data Sheet Electrical Specifications SPI Slave Timing Table 4.25. SPI Slave Timing Parameter Symbol SCKL period 1 2 Test Condition Min Typ Max Unit tSCLK_sl 2* tHFPERCLK — — ns SCLK high period1 2 tSCLK_hi 3* tHFPERCLK — — ns SCLK low period 1 2 tSCLK_lo 3* tHFPERCLK — — ns CS active to MISO 1 2 tCS_ACT_MI 4 — 50 ns CS disable to MISO 1 2 tCS_DIS_MI 4 — 50 ns MOSI setup time 1 2 tSU_MO 4 — — ns MOSI hold time 1 2 tH_MO 3+2* tHFPERCLK — — ns SCLK to MISO 1 2 tSCLK_MI 16 + tHFPERCLK — 66 + 2 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD) CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.3. SPI Slave Timing Diagram 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.2 | 41 EFM32JG1 Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.4. EM0 Active Mode Typical Supply Current Figure 4.5. EM1 Sleep Mode Typical Supply Current Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.2 | 42 EFM32JG1 Data Sheet Electrical Specifications Figure 4.6. EM2, EM3, EM4H and EM4S Typical Supply Current silabs.com | Building a more connected world. Rev. 1.2 | 43 EFM32JG1 Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.7. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.2 | 44 EFM32JG1 Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 50mV/div offset:1.8V 100mA VSW ILOAD 2V/div offset:1.8V 1mA 100μs/div 10μs/div Figure 4.8. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.2 | 45 EFM32JG1 Data Sheet Electrical Specifications 4.2.3 Internal Oscillators Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 38 MHz Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 32 MHz silabs.com | Building a more connected world. Rev. 1.2 | 46 EFM32JG1 Data Sheet Electrical Specifications Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 26 MHz Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 19 MHz silabs.com | Building a more connected world. Rev. 1.2 | 47 EFM32JG1 Data Sheet Electrical Specifications Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 16 MHz Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 13 MHz silabs.com | Building a more connected world. Rev. 1.2 | 48 EFM32JG1 Data Sheet Electrical Specifications Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 7 MHz Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 4 MHz silabs.com | Building a more connected world. Rev. 1.2 | 49 EFM32JG1 Data Sheet Electrical Specifications Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 2 MHz Figure 4.18. HFRCO and AUXHFRCO Typical Performance at 1 MHz silabs.com | Building a more connected world. Rev. 1.2 | 50 EFM32JG1 Data Sheet Electrical Specifications Figure 4.19. LFRCO Typical Performance at 32.768 kHz Figure 4.20. ULFRCO Typical Performance at 1 kHz silabs.com | Building a more connected world. Rev. 1.2 | 51 EFM32JG1 Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Power Typical power supply connections for direct supply, without using the internal dc-dc converter, are shown in Figure 5.1 EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 52. VDD Main Supply + – VREGVDD AVDD_0 IOVDD AVDD_1 VREGSW HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE Figure 5.1. EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter A typical application circuit using the internal dc-dc converter is shown in Figure 5.2 EFM32JG1 Typical Application Circuit Using the DC-DC Converter on page 52. The MCU operates from the dc-dc converter supply. VDD Main Supply + – VREGVDD VDCDC AVDD_0 IOVDD AVDD_1 VREGSW VREGVSS DVDD HFXTAL_N HFXTAL_P LFXTAL_N LFXTAL_P DECOUPLE Figure 5.2. EFM32JG1 Typical Application Circuit Using the DC-DC Converter 5.2 Other Connections Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes). silabs.com | Building a more connected world. Rev. 1.2 | 52 EFM32JG1 Data Sheet Pin Definitions 6. Pin Definitions 6.1 EFM32JG1 QFN48 with DC-DC Definition Figure 6.1. EFM32JG1 QFN48 with DC-DC Pinout silabs.com | Building a more connected world. Rev. 1.2 | 53 EFM32JG1 Data Sheet Pin Definitions Table 6.1. QFN48 with DC-DC Device Pinout QFN48 Pin# and Name Pin # 0 1 2 3 Pin Name RFVSS PF0 PF1 PF2 Pin Alternate Functionality / Description Analog Timers Communication Other Radio Ground BUSAX BUSBY BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS PRS_CH0 #0 PRS_CH1 #20 US0_RTS #19 #7 PRS_CH2 #6 US1_TX #24 US1_RX PRS_CH3 #5 ACMP0_O #23 US1_CLK #22 #24 ACMP1_O #24 US1_CS #21 US1_CTS DBG_SWCLKTCK #0 #20 US1_RTS #19 BOOT_TX LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS PRS_CH0 #1 PRS_CH1 #21 US0_RTS #20 #0 PRS_CH2 #7 US1_TX #25 US1_RX PRS_CH3 #6 ACMP0_O #24 US1_CLK #23 #25 ACMP1_O #25 US1_CS #22 US1_CTS DBG_SWDIOTMS #0 #21 US1_RTS #20 BOOT_RX LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 CMU_CLK0 #6 US0_CS #23 US0_CTS PRS_CH0 #2 PRS_CH1 #22 US0_RTS #21 #1 PRS_CH2 #0 US1_TX #26 US1_RX PRS_CH3 #7 ACMP0_O #25 US1_CLK #24 #26 ACMP1_O #26 US1_CS #23 US1_CTS DBG_TDO #0 #22 US1_RTS #21 DBG_SWO #0 LEU0_TX #26 LEU0_RX GPIO_EM4WU0 #25 I2C0_SDA #26 I2C0_SCL #25 Rev. 1.2 | 54 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 4 5 6 7 Pin Name PF3 PF4 PF5 PF6 Pin Alternate Functionality / Description Analog BUSAY BUSBX BUSAX BUSBY BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS CMU_CLK1 #6 #23 US0_RTS #22 PRS_CH0 #3 PRS_CH1 US1_TX #27 US1_RX #2 PRS_CH2 #1 #26 US1_CLK #25 PRS_CH3 #0 ACMP0_O US1_CS #24 US1_CTS #27 ACMP1_O #27 #23 US1_RTS #22 DBG_TDI #0 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 PRS_CH0 #4 PRS_CH1 US1_TX #28 US1_RX #3 PRS_CH2 #2 #27 US1_CLK #26 PRS_CH3 #1 ACMP0_O US1_CS #25 US1_CTS #28 ACMP1_O #28 #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 PRS_CH0 #5 PRS_CH1 US1_TX #29 US1_RX #4 PRS_CH2 #3 #28 US1_CLK #27 PRS_CH3 #2 ACMP0_O US1_CS #26 US1_CTS #29 ACMP1_O #29 #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS CMU_CLK1 #7 #26 US0_RTS #25 US1_TX #30 US1_RX PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 #29 US1_CLK #28 US1_CS #27 US1_CTS PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 Rev. 1.2 | 55 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # Pin Name Pin Alternate Functionality / Description Analog BUSAY Timers TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 8 PF7 9 AVDD 10 HFXTAL_N High Frequency Crystal input pin. 11 HFXTAL_P High Frequency Crystal output pin. 12 RESETn 13 NC No Connect. 14 NC No Connect. 15 NC No Connect. 16 NC No Connect. 17 NC No Connect. 18 19 PD9 PD10 BUSBX Communication Other US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS CMU_CLK0 #7 #27 US0_RTS #26 PRS_CH0 #7 PRS_CH1 US1_TX #31 US1_RX #6 PRS_CH2 #5 #30 US1_CLK #29 PRS_CH3 #4 ACMP0_O US1_CS #28 US1_CTS #31 ACMP1_O #31 #27 US1_RTS #26 GPIO_EM4WU1 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 Analog power supply . Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. BUSCY BUSDX BUSCX BUSDY silabs.com | Building a more connected world. TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16 US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS CMU_CLK0 #4 #13 US0_RTS #12 PRS_CH3 #8 PRS_CH4 US1_TX #17 US1_RX #0 PRS_CH5 #6 #16 US1_CLK #15 PRS_CH6 #11 US1_CS #14 US1_CTS ACMP0_O #17 #13 US1_RTS #12 ACMP1_O #17 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16 TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS CMU_CLK1 #4 #14 US0_RTS #13 PRS_CH3 #9 PRS_CH4 US1_TX #18 US1_RX #1 PRS_CH5 #0 #17 US1_CLK #16 PRS_CH6 #12 US1_CS #15 US1_CTS ACMP0_O #18 #14 US1_RTS #13 ACMP1_O #18 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 Rev. 1.2 | 56 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 20 21 22 23 Pin Name PD11 PD12 PD13 PD14 Pin Alternate Functionality / Description Analog BUSCY BUSDX BUSCX BUSDY BUSCY BUSDX BUSCX BUSDY silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS PRS_CH3 #10 #15 US0_RTS #14 US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 #18 US1_CLK #17 ACMP0_O #19 US1_CS #16 US1_CTS ACMP1_O #19 #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS PRS_CH3 #11 #16 US0_RTS #15 US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 #19 US1_CLK #18 ACMP0_O #20 US1_CS #17 US1_CTS ACMP1_O #20 #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS PRS_CH3 #12 #17 US0_RTS #16 US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 #20 US1_CLK #19 ACMP0_O #21 US1_CS #18 US1_CTS ACMP1_O #21 #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 CMU_CLK0 #5 US0_CS #19 US0_CTS PRS_CH3 #13 #18 US0_RTS #17 US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 #21 US1_CLK #20 ACMP0_O #22 US1_CS #19 US1_CTS ACMP1_O #22 #18 US1_RTS #17 GPIO_EM4WU4 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 Rev. 1.2 | 57 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 24 Pin Name PD15 Pin Alternate Functionality / Description Analog BUSCY BUSDX ADC0_EXTN 25 PA0 BUSCX BUSDY ADC0_EXTP 26 PA1 BUSCY BUSDX 27 PA2 BUSCX BUSDY silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 CMU_CLK1 #5 US0_CS #20 US0_CTS PRS_CH3 #14 #19 US0_RTS #18 US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 #22 US1_CLK #21 ACMP0_O #23 US1_CS #20 US1_CTS ACMP1_O #23 #19 US1_RTS #18 DBG_SWO #2 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 CMU_CLK0 #0 US0_RTS #28 US1_TX PRS_CH6 #1 PRS_CH7 #1 US1_RX #0 #0 PRS_CH8 #10 US1_CLK #31 US1_CS PRS_CH9 #9 ACMP0_O #30 US1_CTS #29 #1 ACMP1_O #1 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 #2 US1_RX #1 PRS_CH9 #10 US1_CLK #0 US1_CS ACMP0_O #2 #31 US1_CTS #30 ACMP1_O #2 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 Rev. 1.2 | 58 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 28 29 30 31 Pin Name PA3 PA4 PA5 PB11 Pin Alternate Functionality / Description Analog BUSCY BUSDX BUSCX BUSDY BUSCY BUSDX BUSCY BUSDX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 #3 US1_RX #2 US1_CLK #1 US1_CS PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 #0 US1_CTS #31 GPIO_EM4WU8 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX PRS_CH6 #4 PRS_CH7 #4 US1_RX #3 #3 PRS_CH8 #2 US1_CLK #2 US1_CS PRS_CH9 #1 ACMP0_O #1 US1_CTS #0 #4 ACMP1_O #4 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX PRS_CH6 #5 PRS_CH7 #5 US1_RX #4 #4 PRS_CH8 #3 US1_CLK #3 US1_CS PRS_CH9 #2 ACMP0_O #2 US1_CTS #1 #5 ACMP1_O #5 US1_RTS #0 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX PRS_CH6 #6 PRS_CH7 #6 US1_RX #5 #5 PRS_CH8 #4 US1_CLK #4 US1_CS PRS_CH9 #3 ACMP0_O #3 US1_CTS #2 #6 ACMP1_O #6 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 Rev. 1.2 | 59 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 32 Pin Name PB12 33 PB13 34 AVDD Pin Alternate Functionality / Description Analog BUSCX BUSDY BUSCY BUSDX PB14 BUSCX BUSDY LFXTAL_P 36 PB15 Communication Other TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX PRS_CH6 #7 PRS_CH7 #7 US1_RX #6 #6 PRS_CH8 #5 US1_CLK #5 US1_CS PRS_CH9 #4 ACMP0_O #4 US1_CTS #3 #7 ACMP1_O #7 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 PRS_CH6 #8 PRS_CH7 US0_RTS #3 US1_TX #7 PRS_CH8 #6 #8 US1_RX #7 PRS_CH9 #5 ACMP0_O US1_CLK #6 US1_CS #8 ACMP1_O #8 #5 US1_CTS #4 DBG_SWO #1 US1_RTS #3 LEU0_TX GPIO_EM4WU9 #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 CMU_CLK1 #1 US0_RTS #4 US1_TX PRS_CH6 #9 PRS_CH7 #9 US1_RX #8 #8 PRS_CH8 #7 US1_CLK #7 US1_CS PRS_CH9 #6 ACMP0_O #6 US1_CTS #5 #9 ACMP1_O #9 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS CMU_CLK0 #1 #6 US0_RTS #5 PRS_CH6 #10 US1_TX #10 US1_RX PRS_CH7 #9 PRS_CH8 #9 US1_CLK #8 #8 PRS_CH9 #7 US1_CS #7 US1_CTS ACMP0_O #10 #6 US1_RTS #5 ACMP1_O #10 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 Analog power supply . LFXTAL_N 35 Timers BUSCY BUSDX silabs.com | Building a more connected world. Rev. 1.2 | 60 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin Alternate Functionality / Description Pin # Pin Name 37 VREGVSS Voltage regulator VSS 38 VREGSW DCDC regulator switching node 39 VREGVDD Voltage regulator VDD input 40 DVDD 41 DECOUPLE 42 IOVDD 43 44 45 PC6 PC7 PC8 Analog Timers Communication Other Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . BUSAX BUSBY BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS CMU_CLK0 #2 #7 US0_RTS #6 PRS_CH0 #8 PRS_CH9 US1_TX #11 US1_RX #11 PRS_CH10 #0 #10 US1_CLK #9 PRS_CH11 #5 US1_CS #8 US1_CTS ACMP0_O #11 #7 US1_RTS #6 ACMP1_O #11 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS CMU_CLK1 #2 #8 US0_RTS #7 PRS_CH0 #9 PRS_CH9 US1_TX #12 US1_RX #12 PRS_CH10 #1 #11 US1_CLK #10 PRS_CH11 #0 US1_CS #9 US1_CTS ACMP0_O #12 #8 US1_RTS #7 ACMP1_O #12 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 Rev. 1.2 | 61 EFM32JG1 Data Sheet Pin Definitions QFN48 Pin# and Name Pin # 46 47 48 Pin Name PC9 PC10 PC11 Pin Alternate Functionality / Description Analog BUSAY BUSBX BUSAX BUSBY BUSAY BUSBX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 Rev. 1.2 | 62 EFM32JG1 Data Sheet Pin Definitions 6.1.1 EFM32JG1 QFN48 with DC-DC GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0. Table 6.2. QFN48 with DC-DC GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - PA5 (5V) PA4 (5V) PA3 (5V) PA2 (5V) PA1 PA0 - - - - - - - - - - - PC11 PC10 (5V) (5V) PC9 (5V) PC8 (5V) PC7 (5V) PC6 (5V) - - - - - - PD15 PD14 PD13 PD12 PD11 PD10 (5V) (5V) (5V) (5V) (5V) (5V) PD9 (5V) - - - - - - - - - - - PF7 (5V) PF6 (5V) PF5 (5V) PF4 (5V) PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Port B Port C Port D Port F PB15 PB14 - - - - PB13 PB12 PB11 (5V) (5V) (5V) - - - - - - Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA4, PA3, PA2, PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 63 EFM32JG1 Data Sheet Pin Definitions 6.2 EFM32JG1 QFN32 without DC-DC Definition Figure 6.2. EFM32JG1 QFN32 without DC-DC Pinout silabs.com | Building a more connected world. Rev. 1.2 | 64 EFM32JG1 Data Sheet Pin Definitions Table 6.3. QFN32 without DC-DC Device Pinout QFN32 Pin# and Name Pin # Pin Name 0 VREGVSS 1 2 3 PF0 PF1 PF2 Pin Alternate Functionality / Description Analog Timers Communication Other Voltage regulator VSS BUSAX BUSBY BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS PRS_CH0 #0 PRS_CH1 #20 US0_RTS #19 #7 PRS_CH2 #6 US1_TX #24 US1_RX PRS_CH3 #5 ACMP0_O #23 US1_CLK #22 #24 ACMP1_O #24 US1_CS #21 US1_CTS DBG_SWCLKTCK #0 #20 US1_RTS #19 BOOT_TX LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS PRS_CH0 #1 PRS_CH1 #21 US0_RTS #20 #0 PRS_CH2 #7 US1_TX #25 US1_RX PRS_CH3 #6 ACMP0_O #24 US1_CLK #23 #25 ACMP1_O #25 US1_CS #22 US1_CTS DBG_SWDIOTMS #0 #21 US1_RTS #20 BOOT_RX LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 CMU_CLK0 #6 US0_CS #23 US0_CTS PRS_CH0 #2 PRS_CH1 #22 US0_RTS #21 #1 PRS_CH2 #0 US1_TX #26 US1_RX PRS_CH3 #7 ACMP0_O #25 US1_CLK #24 #26 ACMP1_O #26 US1_CS #23 US1_CTS DBG_TDO #0 #22 US1_RTS #21 DBG_SWO #0 LEU0_TX #26 LEU0_RX GPIO_EM4WU0 #25 I2C0_SDA #26 I2C0_SCL #25 Rev. 1.2 | 65 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 4 Pin Name PF3 Pin Alternate Functionality / Description Analog BUSAY BUSBX BUSAX Timers US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS CMU_CLK1 #6 #23 US0_RTS #22 PRS_CH0 #3 PRS_CH1 US1_TX #27 US1_RX #2 PRS_CH2 #1 #26 US1_CLK #25 PRS_CH3 #0 ACMP0_O US1_CS #24 US1_CTS #27 ACMP1_O #27 #23 US1_RTS #22 DBG_TDI #0 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 PRS_CH0 #4 PRS_CH1 US1_TX #28 US1_RX #3 PRS_CH2 #2 #27 US1_CLK #26 PRS_CH3 #1 ACMP0_O US1_CS #25 US1_CTS #28 ACMP1_O #28 #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 PF4 6 AVDD 7 HFXTAL_N High Frequency Crystal input pin. 8 HFXTAL_P High Frequency Crystal output pin. 9 RESETn 10 PD9 Other TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 5 BUSBY Communication Analog power supply . Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. BUSCY BUSDX silabs.com | Building a more connected world. TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16 US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS CMU_CLK0 #4 #13 US0_RTS #12 PRS_CH3 #8 PRS_CH4 US1_TX #17 US1_RX #0 PRS_CH5 #6 #16 US1_CLK #15 PRS_CH6 #11 US1_CS #14 US1_CTS ACMP0_O #17 #13 US1_RTS #12 ACMP1_O #17 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16 Rev. 1.2 | 66 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 11 12 13 14 Pin Name PD10 PD11 PD12 PD13 Pin Alternate Functionality / Description Analog BUSCX BUSDY BUSCY BUSDX BUSCX BUSDY BUSCY BUSDX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS CMU_CLK1 #4 #14 US0_RTS #13 PRS_CH3 #9 PRS_CH4 US1_TX #18 US1_RX #1 PRS_CH5 #0 #17 US1_CLK #16 PRS_CH6 #12 US1_CS #15 US1_CTS ACMP0_O #18 #14 US1_RTS #13 ACMP1_O #18 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS PRS_CH3 #10 #15 US0_RTS #14 US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 #18 US1_CLK #17 ACMP0_O #19 US1_CS #16 US1_CTS ACMP1_O #19 #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS PRS_CH3 #11 #16 US0_RTS #15 US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 #19 US1_CLK #18 ACMP0_O #20 US1_CS #17 US1_CTS ACMP1_O #20 #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS PRS_CH3 #12 #17 US0_RTS #16 US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 #20 US1_CLK #19 ACMP0_O #21 US1_CS #18 US1_CTS ACMP1_O #21 #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 Rev. 1.2 | 67 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 15 16 Pin Name PD14 PD15 Pin Alternate Functionality / Description Analog BUSCX BUSDY BUSCY BUSDX ADC0_EXTN 17 PA0 BUSCX BUSDY ADC0_EXTP 18 PA1 BUSCY BUSDX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 CMU_CLK0 #5 US0_CS #19 US0_CTS PRS_CH3 #13 #18 US0_RTS #17 US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 #21 US1_CLK #20 ACMP0_O #22 US1_CS #19 US1_CTS ACMP1_O #22 #18 US1_RTS #17 GPIO_EM4WU4 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 CMU_CLK1 #5 US0_CS #20 US0_CTS PRS_CH3 #14 #19 US0_RTS #18 US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 #22 US1_CLK #21 ACMP0_O #23 US1_CS #20 US1_CTS ACMP1_O #23 #19 US1_RTS #18 DBG_SWO #2 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 CMU_CLK0 #0 US0_RTS #28 US1_TX PRS_CH6 #1 PRS_CH7 #1 US1_RX #0 #0 PRS_CH8 #10 US1_CLK #31 US1_CS PRS_CH9 #9 ACMP0_O #30 US1_CTS #29 #1 ACMP1_O #1 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 Rev. 1.2 | 68 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 19 20 Pin Name PB11 PB12 21 PB13 22 AVDD Pin Alternate Functionality / Description Analog BUSCY BUSDX BUSCX BUSDY BUSCY BUSDX PB14 Communication Other TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX PRS_CH6 #6 PRS_CH7 #6 US1_RX #5 #5 PRS_CH8 #4 US1_CLK #4 US1_CS PRS_CH9 #3 ACMP0_O #3 US1_CTS #2 #6 ACMP1_O #6 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX PRS_CH6 #7 PRS_CH7 #7 US1_RX #6 #6 PRS_CH8 #5 US1_CLK #5 US1_CS PRS_CH9 #4 ACMP0_O #4 US1_CTS #3 #7 ACMP1_O #7 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 PRS_CH6 #8 PRS_CH7 US0_RTS #3 US1_TX #7 PRS_CH8 #6 #8 US1_RX #7 PRS_CH9 #5 ACMP0_O US1_CLK #6 US1_CS #8 ACMP1_O #8 #5 US1_CTS #4 DBG_SWO #1 US1_RTS #3 LEU0_TX GPIO_EM4WU9 #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 CMU_CLK1 #1 US0_RTS #4 US1_TX PRS_CH6 #9 PRS_CH7 #9 US1_RX #8 #8 PRS_CH8 #7 US1_CLK #7 US1_CS PRS_CH9 #6 ACMP0_O #6 US1_CTS #5 #9 ACMP1_O #9 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 Analog power supply . LFXTAL_N 23 Timers BUSCX BUSDY silabs.com | Building a more connected world. Rev. 1.2 | 69 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # Pin Name Pin Alternate Functionality / Description Analog LFXTAL_P 24 PB15 BUSCY BUSDX 25 DVDD 26 DECOUPLE 27 IOVDD 28 29 PC7 PC8 Timers TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 Communication Other US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS CMU_CLK0 #1 #6 US0_RTS #5 PRS_CH6 #10 US1_TX #10 US1_RX PRS_CH7 #9 PRS_CH8 #9 US1_CLK #8 #8 PRS_CH9 #7 US1_CS #7 US1_CTS ACMP0_O #10 #6 US1_RTS #5 ACMP1_O #10 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS CMU_CLK1 #2 #8 US0_RTS #7 PRS_CH0 #9 PRS_CH9 US1_TX #12 US1_RX #12 PRS_CH10 #1 #11 US1_CLK #10 PRS_CH11 #0 US1_CS #9 US1_CTS ACMP0_O #12 #8 US1_RTS #7 ACMP1_O #12 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 Rev. 1.2 | 70 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 30 31 32 Pin Name PC9 PC10 PC11 Pin Alternate Functionality / Description Analog BUSAY BUSBX BUSAX BUSBY BUSAY BUSBX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 Rev. 1.2 | 71 EFM32JG1 Data Sheet Pin Definitions 6.2.1 EFM32JG1 QFN32 without DC-DC GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0. Table 6.4. QFN32 without DC-DC GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - - - - - PA1 PA0 - - - - - - - - - - - PC11 PC10 (5V) (5V) PC9 (5V) PC8 (5V) PC7 (5V) - - - - - - - PD15 PD14 PD13 PD12 PD11 PD10 (5V) (5V) (5V) (5V) (5V) (5V) PD9 (5V) - - - - - - - - - - - - - - PF4 (5V) PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Port B Port C Port D Port F PB15 PB14 - - - - PB13 PB12 PB11 (5V) (5V) (5V) - - - - - - Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 72 EFM32JG1 Data Sheet Pin Definitions 6.3 EFM32JG1 QFN32 with DC-DC Definition Figure 6.3. EFM32JG1 QFN32 with DC-DC Pinout silabs.com | Building a more connected world. Rev. 1.2 | 73 EFM32JG1 Data Sheet Pin Definitions Table 6.5. QFN32 with DC-DC Device Pinout QFN32 Pin# and Name Pin # 0 1 2 3 Pin Alternate Functionality / Description Pin Name VSS PF0 PF1 PF2 Analog Timers Communication Other Ground BUSAX BUSBY BUSAY BUSBX BUSAX BUSBY silabs.com | Building a more connected world. TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS PRS_CH0 #0 PRS_CH1 #20 US0_RTS #19 #7 PRS_CH2 #6 US1_TX #24 US1_RX PRS_CH3 #5 ACMP0_O #23 US1_CLK #22 #24 ACMP1_O #24 US1_CS #21 US1_CTS DBG_SWCLKTCK #0 #20 US1_RTS #19 BOOT_TX LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS PRS_CH0 #1 PRS_CH1 #21 US0_RTS #20 #0 PRS_CH2 #7 US1_TX #25 US1_RX PRS_CH3 #6 ACMP0_O #24 US1_CLK #23 #25 ACMP1_O #25 US1_CS #22 US1_CTS DBG_SWDIOTMS #0 #21 US1_RTS #20 BOOT_RX LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 CMU_CLK0 #6 US0_CS #23 US0_CTS PRS_CH0 #2 PRS_CH1 #22 US0_RTS #21 #1 PRS_CH2 #0 US1_TX #26 US1_RX PRS_CH3 #7 ACMP0_O #25 US1_CLK #24 #26 ACMP1_O #26 US1_CS #23 US1_CTS DBG_TDO #0 #22 US1_RTS #21 DBG_SWO #0 LEU0_TX #26 LEU0_RX GPIO_EM4WU0 #25 I2C0_SDA #26 I2C0_SCL #25 Rev. 1.2 | 74 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # Pin Name Pin Alternate Functionality / Description Analog BUSAY Timers TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 4 PF3 5 AVDD 6 HFXTAL_N High Frequency Crystal input pin. 7 HFXTAL_P High Frequency Crystal output pin. 8 RESETn 9 NC 10 11 PD9 PD10 BUSBX Communication Other US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS CMU_CLK1 #6 #23 US0_RTS #22 PRS_CH0 #3 PRS_CH1 US1_TX #27 US1_RX #2 PRS_CH2 #1 #26 US1_CLK #25 PRS_CH3 #0 ACMP0_O US1_CS #24 US1_CTS #27 ACMP1_O #27 #23 US1_RTS #22 DBG_TDI #0 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 Analog power supply . Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. No Connect. BUSCY BUSDX BUSCX BUSDY silabs.com | Building a more connected world. TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16 US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS CMU_CLK0 #4 #13 US0_RTS #12 PRS_CH3 #8 PRS_CH4 US1_TX #17 US1_RX #0 PRS_CH5 #6 #16 US1_CLK #15 PRS_CH6 #11 US1_CS #14 US1_CTS ACMP0_O #17 #13 US1_RTS #12 ACMP1_O #17 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16 TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS CMU_CLK1 #4 #14 US0_RTS #13 PRS_CH3 #9 PRS_CH4 US1_TX #18 US1_RX #1 PRS_CH5 #0 #17 US1_CLK #16 PRS_CH6 #12 US1_CS #15 US1_CTS ACMP0_O #18 #14 US1_RTS #13 ACMP1_O #18 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 Rev. 1.2 | 75 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 12 13 14 15 Pin Name PD11 PD12 PD13 PD14 Pin Alternate Functionality / Description Analog BUSCY BUSDX BUSCX BUSDY BUSCY BUSDX BUSCX BUSDY silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS PRS_CH3 #10 #15 US0_RTS #14 US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 #18 US1_CLK #17 ACMP0_O #19 US1_CS #16 US1_CTS ACMP1_O #19 #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS PRS_CH3 #11 #16 US0_RTS #15 US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 #19 US1_CLK #18 ACMP0_O #20 US1_CS #17 US1_CTS ACMP1_O #20 #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS PRS_CH3 #12 #17 US0_RTS #16 US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 #20 US1_CLK #19 ACMP0_O #21 US1_CS #18 US1_CTS ACMP1_O #21 #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 CMU_CLK0 #5 US0_CS #19 US0_CTS PRS_CH3 #13 #18 US0_RTS #17 US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 #21 US1_CLK #20 ACMP0_O #22 US1_CS #19 US1_CTS ACMP1_O #22 #18 US1_RTS #17 GPIO_EM4WU4 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 Rev. 1.2 | 76 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 16 Pin Name PD15 Pin Alternate Functionality / Description Analog BUSCY BUSDX ADC0_EXTN 17 PA0 BUSCX BUSDY ADC0_EXTP 18 PA1 BUSCY BUSDX 19 PB11 BUSCY BUSDX silabs.com | Building a more connected world. Timers Communication Other TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 CMU_CLK1 #5 US0_CS #20 US0_CTS PRS_CH3 #14 #19 US0_RTS #18 US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 #22 US1_CLK #21 ACMP0_O #23 US1_CS #20 US1_CTS ACMP1_O #23 #19 US1_RTS #18 DBG_SWO #2 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 CMU_CLK0 #0 US0_RTS #28 US1_TX PRS_CH6 #1 PRS_CH7 #1 US1_RX #0 #0 PRS_CH8 #10 US1_CLK #31 US1_CS PRS_CH9 #9 ACMP0_O #30 US1_CTS #29 #1 ACMP1_O #1 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX PRS_CH6 #6 PRS_CH7 #6 US1_RX #5 #5 PRS_CH8 #4 US1_CLK #4 US1_CS PRS_CH9 #3 ACMP0_O #3 US1_CTS #2 #6 ACMP1_O #6 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 Rev. 1.2 | 77 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin # 20 Pin Name PB12 21 PB13 22 AVDD Pin Alternate Functionality / Description Analog BUSCX BUSDY BUSCY BUSDX PB14 BUSCX BUSDY LFXTAL_P 24 PB15 Communication Other TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX PRS_CH6 #7 PRS_CH7 #7 US1_RX #6 #6 PRS_CH8 #5 US1_CLK #5 US1_CS PRS_CH9 #4 ACMP0_O #4 US1_CTS #3 #7 ACMP1_O #7 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 PRS_CH6 #8 PRS_CH7 US0_RTS #3 US1_TX #7 PRS_CH8 #6 #8 US1_RX #7 PRS_CH9 #5 ACMP0_O US1_CLK #6 US1_CS #8 ACMP1_O #8 #5 US1_CTS #4 DBG_SWO #1 US1_RTS #3 LEU0_TX GPIO_EM4WU9 #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 CMU_CLK1 #1 US0_RTS #4 US1_TX PRS_CH6 #9 PRS_CH7 #9 US1_RX #8 #8 PRS_CH8 #7 US1_CLK #7 US1_CS PRS_CH9 #6 ACMP0_O #6 US1_CTS #5 #9 ACMP1_O #9 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS CMU_CLK0 #1 #6 US0_RTS #5 PRS_CH6 #10 US1_TX #10 US1_RX PRS_CH7 #9 PRS_CH8 #9 US1_CLK #8 #8 PRS_CH9 #7 US1_CS #7 US1_CTS ACMP0_O #10 #6 US1_RTS #5 ACMP1_O #10 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 Analog power supply . LFXTAL_N 23 Timers BUSCY BUSDX silabs.com | Building a more connected world. Rev. 1.2 | 78 EFM32JG1 Data Sheet Pin Definitions QFN32 Pin# and Name Pin Alternate Functionality / Description Pin # Pin Name 25 VREGVSS Voltage regulator VSS 26 VREGSW DCDC regulator switching node 27 VREGVDD Voltage regulator VDD input 28 DVDD 29 DECOUPLE 30 IOVDD 31 32 PC10 PC11 Analog Timers Communication Other Digital power supply . Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. Digital IO power supply . BUSAX BUSBY BUSAY BUSBX silabs.com | Building a more connected world. TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 Rev. 1.2 | 79 EFM32JG1 Data Sheet Pin Definitions 6.3.1 EFM32JG1 QFN32 with DC-DC GPIO Overview The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0. Table 6.6. QFN32 with DC-DC GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - - - - - PA1 PA0 - - - - - - - - - - - - - - - - - - - - - PD9 (5V) - - - - - - - - - - - - - - - PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Port B Port C Port D Port F PB15 PB14 - - PB13 PB12 PB11 (5V) (5V) (5V) - - PC11 PC10 (5V) (5V) PD15 PD14 PD13 PD12 PD11 PD10 (5V) (5V) (5V) (5V) (5V) (5V) - - - - - - Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 80 EFM32JG1 Data Sheet Pin Definitions 6.4 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 6.7. Alternate functionality overview Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 ACMP0_O 0: PA0 1: PA1 2: PA2 3: PA3 ACMP1_O 0: PA0 1: PA1 2: PA2 3: PA3 24 - 27 28 - 31 Description 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP0, digital output. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP1, digital output. 0: PA0 Analog to digital converter ADC0 external reference input negative pin 0: PA1 Analog to digital converter ADC0 external reference input positive pin ADC0_EXTN ADC0_EXTP 0: PF1 BOOT_RX Bootloader RX 0: PF0 BOOT_TX Bootloader TX CMU_CLK0 0: PA1 1: PB15 2: PC6 3: PC11 4: PD9 5: PD14 6: PF2 7: PF7 Clock Management Unit, clock output number 0. CMU_CLK1 0: PA0 1: PB14 2: PC7 3: PC10 4: PD10 5: PD15 6: PF3 7: PF6 Clock Management Unit, clock output number 1. 0: PF0 DBG_SWCLKTCK silabs.com | Building a more connected world. Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. Rev. 1.2 | 81 EFM32JG1 Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 0: PF1 DBG_SWDIOTMS DBG_SWO 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. 0: PF2 1: PB13 2: PD15 3: PC11 0: PF3 DBG_TDI 0: PF2 DBG_TDO Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used. Debug-interface JTAG Test Data In. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface JTAG Test Data Out. Note that this function is enabled to pin out of reset. 0: PF2 GPIO_EM4WU0 0: PF7 GPIO_EM4WU1 0: PD14 GPIO_EM4WU4 0: PA3 GPIO_EM4WU8 0: PB13 GPIO_EM4WU9 silabs.com | Building a more connected world. Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 Rev. 1.2 | 82 EFM32JG1 Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PC10 Description Pin can be used to wake the system up from EM4 GPIO_EM4WU12 I2C0_SCL 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 I2C0 Serial Clock Line input / output. I2C0_SDA 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 I2C0 Serial Data input / output. LETIM0_OUT0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Low Energy Timer LETIM0, output channel 1. LEU0_RX 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 LEUART0 Receive input. LEU0_TX 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 LEUART0 Transmit output. Also used as receive input in half duplex communication. Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. 0: PB14 LFXTAL_N 0: PB15 Low Frequency Crystal (typically 32.768 kHz) positive pin. LFXTAL_P PCNT0_S0IN 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Pulse Counter PCNT0 input number 1. PRS_CH0 0: PF0 1: PF1 2: PF2 3: PF3 4: PF4 5: PF5 6: PF6 7: PF7 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 silabs.com | Building a more connected world. Peripheral Reflex System PRS, channel 0. Rev. 1.2 | 83 EFM32JG1 Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description PRS_CH1 0: PF1 1: PF2 2: PF3 3: PF4 4: PF5 5: PF6 6: PF7 7: PF0 Peripheral Reflex System PRS, channel 1. PRS_CH2 0: PF2 1: PF3 2: PF4 3: PF5 4: PF6 5: PF7 6: PF0 7: PF1 Peripheral Reflex System PRS, channel 2. PRS_CH3 0: PF3 1: PF4 2: PF5 3: PF6 4: PF7 5: PF0 6: PF1 7: PF2 PRS_CH4 0: PD9 1: PD10 2: PD11 3: PD12 4: PD13 5: PD14 6: PD15 PRS_CH5 0: PD10 1: PD11 2: PD12 3: PD13 4: PD14 5: PD15 6: PD9 PRS_CH6 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PD9 PRS_CH7 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PA0 PRS_CH8 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PA0 10: PA1 PRS_CH9 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PA0 9: PA1 10: PA2 11: PC6 PRS_CH10 0: PC6 1: PC7 2: PC8 3: PC9 4: PC10 5: PC11 PRS_CH11 0: PC7 1: PC8 2: PC9 3: PC10 4: PC11 5: PC6 TIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 0 Capture Compare input / output channel 1. silabs.com | Building a more connected world. 8: PD9 9: PD10 10: PD11 11: PD12 12: PD13 13: PD14 14: PD15 Peripheral Reflex System PRS, channel 3. Peripheral Reflex System PRS, channel 4. Peripheral Reflex System PRS, channel 5. 12: PD10 13: PD11 14: PD12 15: PD13 16: PD14 17: PD15 Peripheral Reflex System PRS, channel 6. Peripheral Reflex System PRS, channel 7. Peripheral Reflex System PRS, channel 8. 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. Rev. 1.2 | 84 EFM32JG1 Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 TIM0_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 TIM0_CDTI0 0: PA3 1: PA4 2: PA5 3: PB11 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 0 Capture Compare input / output channel 2. 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 0 Complimentary Dead Time Insertion channel 0. TIM0_CDTI1 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 Timer 0 Complimentary Dead Time Insertion channel 1. TIM0_CDTI2 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 Timer 0 Complimentary Dead Time Insertion channel 2. TIM1_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 1 Capture Compare input / output channel 2. TIM1_CC3 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 1 Capture Compare input / output channel 3. US0_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART0 clock input / output. US0_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART0 chip select input / output. US0_CTS 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART0 Clear To Send hardware flow control input. US0_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART0 Request To Send hardware flow control output. silabs.com | Building a more connected world. 24 - 27 28 - 31 Description Rev. 1.2 | 85 EFM32JG1 Data Sheet Pin Definitions Alternate Functionality US0_RX LOCATION 0-3 4-7 8 - 11 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12 - 15 16 - 19 20 - 23 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24 - 27 24: PF1 25: PF2 26: PF3 27: PF4 28 - 31 28: PF5 29: PF6 30: PF7 31: PA0 Description USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 US1_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART1 clock input / output. US1_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART1 chip select input / output. US1_CTS 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART1 Clear To Send hardware flow control input. US1_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART1 Request To Send hardware flow control output. US0_TX US1_RX US1_TX 0: PA1 1: PA2 2: PA3 3: PA4 0: PA0 1: PA1 2: PA2 3: PA3 4: PA5 5: PB11 6: PB12 7: PB13 4: PA4 5: PA5 6: PB11 7: PB12 silabs.com | Building a more connected world. 8: PB14 9: PB15 10: PC6 11: PC7 8: PB13 9: PB14 10: PB15 11: PC6 12: PC8 13: PC9 14: PC10 15: PC11 12: PC7 13: PC8 14: PC9 15: PC10 16: PD9 17: PD10 18: PD11 19: PD12 16: PC11 17: PD9 18: PD10 19: PD11 20: PD13 21: PD14 22: PD15 23: PF0 20: PD12 21: PD13 22: PD14 23: PD15 24: PF1 25: PF2 26: PF3 27: PF4 24: PF0 25: PF1 26: PF2 27: PF3 28: PF5 29: PF6 30: PF7 31: PA0 28: PF4 29: PF5 30: PF6 31: PF7 USART0 Synchronous mode Master Output / Slave Input (MOSI). USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI). Rev. 1.2 | 86 EFM32JG1 Data Sheet Pin Definitions 6.5 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual. Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. CH0 CH1 CH2 CH3 CH4 CH5 CH6 PC6 PD10 PD9 PD11 PD9 PD10 PD12 PD11 PD13 PD13 PD14 PD15 PA0 PD12 PC6 PD14 PD15 PA0 PA1 PA1 PA2 CH7 PC8 PC7 PC7 PC8 PC9 PC10 PA2 PA4 PA3 PA3 PA4 PA5 PA5 CH8 CH9 PC9 PC11 PC11 PF0 PB11 PB11 silabs.com | Building a more connected world. CH10 PC10 CH11 CH12 CH13 CH14 CH15 PF0 CH16 CH17 PF1 PF1 PF2 PF4 PF3 PF3 PF2 CH18 CH19 PF4 PF5 PF6 PF5 PF7 PF7 PB12 PB12 PB13 PB13 PB14 PB14 PB15 PB15 CH20 CH21 PF6 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus BUSAX BUSAY BUSBX BUSBY BUSCX BUSCY BUSDX BUSDY APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port Table 6.8. ACMP0 Bus and Pin Mapping Rev. 1.2 | 87 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA5 PA3 PB11 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFM32JG1 Data Sheet Pin Definitions Table 6.9. ACMP1 Bus and Pin Mapping Rev. 1.2 | 88 silabs.com | Building a more connected world. PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFM32JG1 Data Sheet Pin Definitions Table 6.10. ADC0 Bus and Pin Mapping Table 6.11. IDAC0 Bus and Pin Mapping Rev. 1.2 | 89 EFM32JG1 Data Sheet QFN48 Package Specifications 7. QFN48 Package Specifications 7.1 QFN48 Package Dimensions Figure 7.1. QFN48 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 90 EFM32JG1 Data Sheet QFN48 Package Specifications Table 7.1. QFN48 Package Dimensions Dimension Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D 6.90 7.00 7.10 E 6.90 7.00 7.10 D2 4.60 4.70 4.80 E2 4.60 4.70 4.80 e 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — 0.14 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 91 EFM32JG1 Data Sheet QFN48 Package Specifications 7.2 QFN48 PCB Land Pattern Figure 7.2. QFN48 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 92 EFM32JG1 Data Sheet QFN48 Package Specifications Table 7.2. QFN48 PCB Land Pattern Dimensions Dimension Typ S1 6.01 S 6.01 L1 4.70 W1 4.70 e 0.50 W 0.26 L 0.86 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Note: Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling. silabs.com | Building a more connected world. Rev. 1.2 | 93 EFM32JG1 Data Sheet QFN48 Package Specifications 7.3 QFN48 Package Marking EFM32 PPPPPPPPP TTTTTT YYWW # Figure 7.3. QFN48 Package Marking The package marking consists of: • PPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • # – Reserved for future use. Current value is 0. silabs.com | Building a more connected world. Rev. 1.2 | 94 EFM32JG1 Data Sheet QFN32 Package Specifications 8. QFN32 Package Specifications 8.1 QFN32 Package Dimensions Figure 8.1. QFN32 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 95 EFM32JG1 Data Sheet QFN32 Package Specifications Table 8.1. QFN32 Package Dimensions Dimension Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D/E 4.90 5.00 5.10 D2/E2 3.40 3.50 3.60 E 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — 0.14 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 96 EFM32JG1 Data Sheet QFN32 Package Specifications 8.2 QFN32 PCB Land Pattern Figure 8.2. QFN32 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 97 EFM32JG1 Data Sheet QFN32 Package Specifications Table 8.2. QFN32 PCB Land Pattern Dimensions Dimension Typ S1 4.01 S 4.01 L1 3.50 W1 3.50 e 0.50 W 0.26 L 0.86 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Note: Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different parameters and fine tune their SMT process as required for their application and tooling. silabs.com | Building a more connected world. Rev. 1.2 | 98 EFM32JG1 Data Sheet QFN32 Package Specifications 8.3 QFN32 Package Marking EFM32 PPPPPPPPP TTTTTT YYWW # Figure 8.3. QFN32 Package Marking The package marking consists of: • PPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • # – Reserved for future use. Current value is 0. silabs.com | Building a more connected world. Rev. 1.2 | 99 EFM32JG1 Data Sheet Revision History 9. Revision History 9.1 Revision 1.2 June, 2022 • • • • • In the front page block diagram, updated the lowest energy mode for LETIMER. Updated 3.5.2 Real Time Counter and Calendar (RTCC) to remove AUXHFRCO as a clock source. Updated 3.5.3 Low Energy Timer (LETIMER) lowest energy mode. Added 3.10.4 Bootloader section to the System Overview. Added timing specifications for RESETn low time and clarified VIL and VIH logic levels for RESETn pins in . • Removed BIASPROG = 1, FULLBIAS = 0 specifications from . • Added . • Added a note to Table 7.2 QFN48 PCB Land Pattern Dimensions on page 93 and Table 8.2 QFN32 PCB Land Pattern Dimensions on page 98. 9.2 Revision 1.1 2016-Oct-26 • • • • System Overview Sections: Minor wording and typographical error fixes. Electrical Characteristics: Minor wording and typographical error fixes. "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC. Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections. • Updated APORT client map sections. 9.3 Revision 1.0 2016-Jul-22 • Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range. • Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include: • Absolute Maximum Ratings • General Operating Conditions • DC-DC Converter • LFRCO • HFRCO and AUXHFRCO • ADC • IDAC • Updated Typical Performance Graphs. • Added note for 5V tolerance to pinout GPIO Overview sections. • Updated OPN decoder with latest revision. • Updated Package Marking text with latest descriptions. 9.4 Revision 0.95 2016-04-11 • All OPNs changed to rev C0. • Electrical specification tables updated with latest characterization data and production test limits. 9.5 Revision 0.31 • Engineering samples note added to ordering information table. silabs.com | Building a more connected world. Rev. 1.2 | 100 EFM32JG1 Data Sheet Revision History 9.6 Revision 0.3 • • • • • • • • Re-formatted ordering information table and OPN decoder. Removed extraneous sections from dc-dc from system overview. Updated table formatting for electrical specifications. Updated electrical specifications with latest available data. Added I2C and USART SPI timing tables. Moved dc-dc graph to typical performance curves. Updated APORT tables and APORT references to correct nomenclature. Updated top marking description. 9.7 Revision 0.2 Updated ordering table. Changed "1.62 V to 3.8 V Single Power Supply" to "1.62 V to 3.8 V Power Supply" in the Feature List. 9.8 Revision 0.1 Initial release. silabs.com | Building a more connected world. Rev. 1.2 | 101 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support & Community www.silabs.com/community Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project Trademark Information Silicon Laboratories Inc. ® , Silicon Laboratories ® , Silicon Labs ® , SiLabs ® and the Silicon Labs logo ® , Bluegiga ® , Bluegiga Logo ® , EFM ® , EFM32 ® , EFR, Ember® , Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ® , WiSeConnect , n-Link, ThreadArch ® , EZLink® , EZRadio ® , EZRadioPRO ® , Gecko ® , Gecko OS, Gecko OS Studio, Precision32 ® , Simplicity Studio ® , Telegesis, the Telegesis Logo ® , USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ® , and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA www.silabs.com
EFM32JG1B200F128GM48-C0R 价格&库存

很抱歉,暂时无法提供与“EFM32JG1B200F128GM48-C0R”相匹配的价格&库存,您可以联系我们找货

免费人工找货