EFM32 Pearl Gecko Family
EFM32PG1 Data Sheet
The EFM32 Pearl Gecko MCUs are the world’s most energyfriendly microcontrollers.
ENERGY FRIENDLY FEATURES
EFM32PG1 features a powerful 32-bit ARM® Cortex®-M4 and a wide selection of peripherals, including a unique cryptographic hardware engine supporting AES, ECC, and
SHA. These features, combined with ultra-low current active mode and short wake-up
time from energy-saving modes, make EFM32PG1 microcontrollers well suited for any
battery-powered application, as well as other systems requiring high performance and
low-energy consumption.
• ARM Cortex-M4 at 40 MHz
Example applications:
• Hardware cryptographic engine supports
AES, ECC, and SHA
• Home automation and security
• Industrial and factory automation
• IoT devices and sensors
• Health and fitness
• Smart accessories
• 2.5 μA EM2 DeepSleep current (RTCC
running with state and RAM retention)
• 63 μA/MHz in Energy Mode 0 (EM0)
• Integrated dc-dc converter
• CRYOTIMER operates down to EM4
• 5 V tolerant I/O
Core / Memory
TM
ARM Cortex M4 processor
with DSP extensions and FPU
Flash Program
Memory
• Ultra low energy operation:
• 2.1 μA EM3 Stop current (CRYOTIMER
running with state/RAM retention)
Clock Management
Memory
Protection Unit
RAM Memory
Debug Interface
DMA Controller
Energy Management
High Frequency
Crystal
Oscillator
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
Peripheral Reflex System
Serial Interfaces
I/O Ports
USART
External Interrupts
Timers and Triggers
Low Energy Timer
ADC
CRYPTO
Pulse Counter
Real Time Counter
and Calendar
Analog Comparator
CRC
Watchdog Timer
CRYOTIMER
IDAC
Pin Reset
I2C
Pin Wakeup
Other
Timer/Counter
General Purpose I/O
Low Energy UARTTM
Analog Interfaces
Lowest power mode with peripheral operational:
EM0 - Active
EM1 - Sleep
silabs.com | Building a more connected world.
EM2 – Deep Sleep
EM3 - Stop
Copyright © 2022 by Silicon Laboratories
EM4 - Hibernate
EM4 - Shutoff
Rev. 1.2
EFM32PG1 Data Sheet
Feature List
1. Feature List
The EFM32PG1 highlighted features are listed below.
• ARM Cortex-M4 CPU platform
• High performance 32-bit processor @ up to 40 MHz
• DSP instruction support and Floating Point Unit
• Memory Protection Unit
• Wake-up Interrupt Controller
• Flexible Energy Management System
• 63 μA/MHz in Energy Mode 0 (EM0)
• 2.5 μA EM2 DeepSleep current (RTCC running with state
and RAM retention)
• 0.58 μA EM4H Hibernate Mode (128 byte RAM retention)
• Up to 256 kB flash program memory
• 32 kB RAM data memory
• Up to 32 General Purpose I/O Pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
• Configurable peripheral I/O locations
• Asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• Hardware Cryptography
• AES 128/256-bit keys
• ECC B/K163, B/K233, P192, P224, P256
• SHA-1 and SHA-2 (SHA-224 and SHA-256)
• Timers/Counters
• 2× 16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 1× 32-bit Real Time Counter and Calendar
• 1× 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
• 16-bit Low Energy Timer for waveform generation
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator
silabs.com | Building a more connected world.
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• Communication Interfaces
• 2× Universal Synchronous/Asynchronous Receiver/ Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
• Triple buffered full/half-duplex operation with flow control
• Low Energy UART
• Autonomous operation with DMA in Deep Sleep Mode
2
• I C Interface with SMBus support
•
•
•
•
• Address recognition in EM3 Stop Mode
Ultra Low-Power Precision Analog Peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter
• 2× Analog Comparator
• Digital to Analog Current Converter
• Up to 32 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
Ultra efficient Power-on Reset and Brown-Out Detector
Debug Interface
• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer
• JTAG (programming only)
Wide Operating Range
• 1.85 V to 3.8 V single power supply
• Integrated dc-dc, down to 1.8 V output with up to 200 mA
load current for system
• Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to
125 °C TJ) temperature grades available
• Packages
• 7 mm × 7 mm QFN48
• 5 mm × 5 mm QFN32
• Pre-Programmed UART Bootloader
• Full Software Support
• CMSIS register definitions
• Low-power Hardware Abstraction Layer (HAL)
• Portable software components
• Third-party middleware
• Free and available example code
Rev. 1.2 | 2
EFM32PG1 Data Sheet
Ordering Information
2. Ordering Information
Ordering Code
Flash
(kB)
RAM (kB)
DC-DC Converter
GPIO
Package
Temp
Range
EFM32PG1B200F256GM48-C0
256
32
Yes
32
QFN48
-40 to +85
EFM32PG1B200F256IM48-C0
256
32
Yes
32
QFN48
-40 to +125
EFM32PG1B200F128GM48-C0
128
32
Yes
32
QFN48
-40 to +85
EFM32PG1B200F256GM32-C0
256
32
Yes
20
QFN32
-40 to +85
EFM32PG1B200F256IM32-C0
256
32
Yes
20
QFN32
-40 to +125
EFM32PG1B200F128GM32-C0
128
32
Yes
20
QFN32
-40 to +85
EFM32PG1B100F256GM32-C0
256
32
No
24
QFN32
-40 to +85
EFM32PG1B100F256IM32-C0
256
32
No
24
QFN32
-40 to +125
EFM32PG1B100F128GM32-C0
128
32
No
24
QFN32
-40 to +85
EFM32 J G 1 B 200 F 256 G M 32 – C0 R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN)
Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code
Performance Grade – P (Performance), B (Basic), V (Value)
Series
Gecko
Family – J (Jade), P (Pearl)
Energy Friendly Microcontroller 32-bit
Figure 2.1. OPN Decoder
silabs.com | Building a more connected world.
Rev. 1.2 | 3
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Introduction .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
3.2 Power . . . . . . . . . . .
3.2.1 Energy Management Unit (EMU)
3.2.2 DC-DC Converter . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.3 General Purpose Input/Output (GPIO) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
3.4 Clocking . . . . . . . . . .
3.4.1 Clock Management Unit (CMU) .
3.4.2 Internal and External Oscillators.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.6 Communications and Other Digital Peripherals . . . . . . . . . .
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.6.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.6.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
.10
.10
.10
3.7 Security Features . . . . . . . . . . . . . . .
3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) .
3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
3.8 Analog. . . . . . . . . . . . . .
3.8.1 Analog Port (APORT) . . . . . . .
3.8.2 Analog Comparator (ACMP) . . . . .
3.8.3 Analog to Digital Converter (ADC) . . .
3.8.4 Digital to Analog Current Converter (IDAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.11
.11
3.9 Reset Management Unit (RMU) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.10 Core and Memory . . . . . . . . . . . .
3.10.1 Processor Core . . . . . . . . . . . .
3.10.2 Memory System Controller (MSC) . . . . .
3.10.3 Linked Direct Memory Access Controller (LDMA)
3.10.4 Bootloader . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.11
.11
.11
3.11 Memory Map .
.
.
.
3.5 Counters/Timers and PWM . . . . . . . . .
3.5.1 Timer/Counter (TIMER) . . . . . . . .
3.5.2 Real Time Counter and Calendar (RTCC) . .
3.5.3 Low Energy Timer (LETIMER) . . . . . .
3.5.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.5.5 Pulse Counter (PCNT) . . . . . . . . .
3.5.6 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
9
9
9
9
9
9
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
3.12 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
4. Electrical Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Electrical Characteristics
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
Rev. 1.2 | 4
4.1.1 Absolute Maximum Ratings .
4.1.2 Operating Conditions . . .
4.1.3 Thermal Characteristics . .
4.1.4 DC-DC Converter . . . .
4.1.5 Current Consumption . . .
4.1.6 Wake up times . . . . .
4.1.7 Brown Out Detector . . . .
4.1.8 Oscillators . . . . . . .
4.1.9 Flash Memory Characteristics
4.1.10 GPIO . . . . . . . .
4.1.11 VMON . . . . . . . .
4.1.12 ADC . . . . . . . .
4.1.13 IDAC . . . . . . . .
4.1.14 Analog Comparator (ACMP)
4.1.15 I2C . . . . . . . . .
4.1.16 USART SPI . . . . . .
4.2 Typical Performance Curves
4.2.1 Supply Current . . .
4.2.2 DC-DC Converter . .
4.2.3 Internal Oscillators . .
.
.
.
.
5. Typical Connection Diagrams
5.1 Power .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.15
.16
.17
.19
.23
.23
.24
.27
.28
.29
.30
.33
.35
.37
.40
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.41
.42
.44
.46
. . . . . . . . . . . . . . . . . . . . . . . . 52
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.52
5.2 Other Connections.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.52
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1 EFM32PG1 QFN48 with DC-DC Definition . . . .
6.1.1 EFM32PG1 QFN48 with DC-DC GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.53
.63
6.2 EFM32PG1 QFN32 without DC-DC Definition . . . .
6.2.1 EFM32PG1 QFN32 without DC-DC GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
.72
6.3 EFM32PG1 QFN32 with DC-DC Definition . . . .
6.3.1 EFM32PG1 QFN32 with DC-DC GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
.80
6.4 Alternate Functionality Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.81
6.5 Analog Port (APORT) Client Maps .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.87
7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . .
90
7.1 QFN48 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.90
7.2 QFN48 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.92
7.3 QFN48 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.94
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . .
95
.
8.1 QFN32 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.95
8.2 QFN32 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.97
8.3 QFN32 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.99
9. Revision History
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
silabs.com | Building a more connected world.
Rev. 1.2 | 5
9.1 Revision 1.2 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 100
9.2 Revision 1.1 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 100
9.3 Revision 1.0 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 100
9.4 Revision 0.95
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.100
9.5 Revision 0.31
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.100
9.6 Revision 0.3 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
9.7 Revision 0.2 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
9.8 Revision 0.1 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
silabs.com | Building a more connected world.
Rev. 1.2 | 6
EFM32PG1 Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFM32PG1 product family is well suited for any battery operated application as well as other systems requiring high performance
and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be
found in the EFM32PG1 Reference Manual.
A block diagram of the EFM32PG1 family is shown in Figure 3.1 Detailed EFM32PG1 Block Diagram on page 7. The diagram shows
a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.
ARM Cortex-M4 Core
Digital Peripherals
Up to 256 KB ISP Flash
Program Memory
Reset
LETIMER
Reset
Management
Unit
CRYOTIMER
Memory Protection Unit
Voltage
Monitor / Brown
Out Detector
PCNT
RTC / RTCC
DMA Controller
LEUART
bypass
VREGVDD
VREGSW
DC-DC
Converter
A A
H P
B B
CRYPTO
CRC
Clock Configuration
Analog Peripherals
VSS
ULFRCO
LFXTAL_N
(shared w/ GPIO)
LFXO
Internal
Reference
VDD
HFXTAL_P
Port B
Drivers
PBn
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
HFRCO
HFXO
AUXHFRCO
LFRCO
IDAC
VREF
12-bit ADC
HFXTAL_N
PAn
I2C
Watchdog
Timer
VREGVSS
LFXTAL_P
Port A
Drivers
Port
Mapper
USART
Power Net
DVDD
IOVDD
TIMER
Up to 32 KB RAM
VDD
APORT
RESETn
Port I/O Configuration
Input MUX
Serial Wire
(shared w/ GPIO)
Debug /
Programming
Hardware
Temp
Sensor
+
Analog Comparator
Figure 3.1. Detailed EFM32PG1 Block Diagram
silabs.com | Building a more connected world.
Rev. 1.2 | 7
EFM32PG1 Data Sheet
System Overview
3.2 Power
The EFM32PG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An optional integrated dc-dc buck regulator can
be utilized to further reduce the current consumption. The dc-dc regulator requires one external inductor and one external capacitor.
AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.
3.2.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has
fallen below a chosen threshold.
3.2.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable
current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input
voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a
low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.3 General Purpose Input/Output (GPIO)
EFM32PG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.4 Clocking
3.4.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFM32PG1. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows
software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.
3.4.2 Internal and External Oscillators
The EFM32PG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire Viewer port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
silabs.com | Building a more connected world.
Rev. 1.2 | 8
EFM32PG1 Data Sheet
System Overview
3.5 Counters/Timers and PWM
3.5.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.5.2 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.
3.5.3 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.5.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.5.5 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep,
EM2 Deep Sleep, and EM3 Stop.
3.5.6 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.6 Communications and Other Digital Peripherals
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
silabs.com | Building a more connected world.
Rev. 1.2 | 9
EFM32PG1 Data Sheet
System Overview
3.6.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.6.3 Inter-Integrated Circuit Interface (I2C)
The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave
and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates
from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system.
The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated
transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.6.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in
turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied
by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.7 Security Features
3.7.1 General Purpose Cyclic Redundancy Check (GPCRC)
The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.7.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFM32PG1 devices
support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224
and SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.8 Analog
3.8.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.8.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
silabs.com | Building a more connected world.
Rev. 1.2 | 10
EFM32PG1 Data Sheet
System Overview
3.8.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.8.4 Digital to Analog Current Converter (IDAC)
The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC
input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of
various step sizes.
3.9 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFM32PG1. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.10 Core and Memory
3.10.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• DSP instruction support and Floating Point Unit
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• Configuration and event handling of all peripherals
• 2-pin Serial-Wire debug interface
3.10.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.10.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
3.10.4 Bootloader
All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More
information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the
Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area.
silabs.com | Building a more connected world.
Rev. 1.2 | 11
EFM32PG1 Data Sheet
System Overview
3.11 Memory Map
The EFM32PG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFM32PG1 Memory Map — Core Peripherals and Code Space
silabs.com | Building a more connected world.
Rev. 1.2 | 12
EFM32PG1 Data Sheet
System Overview
Figure 3.3. EFM32PG1 Memory Map — Peripherals
3.12 Configuration Summary
The features of the EFM32PG1 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.1. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA
US0_TX, US0_RX, US0_CLK, US0_CS
SmartCard
USART1
I2S
US1_TX, US1_RX, US1_CLK, US1_CS
SmartCard
TIMER0
TIMER1
silabs.com | Building a more connected world.
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIM1_CC[3:0]
Rev. 1.2 | 13
EFM32PG1 Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to Table 4.2 General Operating Conditions on page 15 for more details about operational supply and temperature limits.
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
TSTG
Min
Typ
Max
Unit
-50
—
150
°C
External main supply voltage VDDMAX
0
—
3.8
V
External main supply voltage VDDRAMPMAX
ramp rate
—
—
1
V / μs
-0.3
—
Min of 5.25
and IOVDD
+2
V
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
Total current into VDD power IVDDMAX
lines (source)
—
—
200
mA
Total current into VSS
ground lines (sink)
IVSSMAX
—
—
200
mA
Current per I/O pin (sink)
IIOMAX
—
—
50
mA
—
—
50
mA
—
—
200
mA
—
—
200
mA
Voltage on any 5V tolerant
GPIO pin1
VDIGPIN
Voltage on non-5V tolerant
GPIO pins
Voltage on HFXO pins
VHFXOPIN
Current per I/O pin (source)
Current for all I/O pins (sink)
IIOALLMAX
Current for all I/O pins
(source)
Test Condition
Voltage difference between
AVDD and VREGVDD
ΔVDD
—
—
0.3
V
Junction Temperature for -G
grade devices
TJ
-40
—
105
°C
-40
—
125
°C
Junction Temperature for -I
grade devices
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Building a more connected world.
Rev. 1.2 | 14
EFM32PG1 Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-G temperature grade, Ambient
Temperature
-40
25
85
°C
-I temperature grade, Junction
Temperature
-40
25
125
°C
1.85
3.3
3.8
V
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.85
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.85
3.3
3.8
V
DCDC in bypass, Tamb ≤ 85 °C
—
—
200
mA
DCDC in bypass, Tamb > 85 °C
—
—
100
mA
DVDD Operating supply volt- VDVDD
age
1.62
—
VVREGVDD
V
IOVDD Operating supply
voltage
1.62
—
VVREGVDD
V
—
—
0.1
V
0 wait-states (MODE = WS0) 3
—
—
26
MHz
1 wait-states (MODE = WS1) 3
—
—
40
MHz
Operating temperature range TOP
AVDD Supply voltage1
VAVDD
VREGVDD Operating supply VVREGVDD
voltage1 2
VREGVDD Current
IVREGVDD
VIOVDD
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
HFCLK frequency
fCORE
Note:
1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max
3. In MSC_READCTRL register
silabs.com | Building a more connected world.
Rev. 1.2 | 15
EFM32PG1 Data Sheet
Electrical Specifications
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Thermal Resistance
THETAJA
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
QFN32 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
79
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
62.2
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
54.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
32
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
28.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
26.9
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
64.5
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
51.6
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
47.7
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
26.2
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
23.1
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
22.1
—
°C/W
Rev. 1.2 | 16
EFM32PG1 Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V,
VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.85
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC Accuracy
ACCDC
Regulation Window2
WINREG
Steady-state output ripple
VR
Output voltage under/overshoot
VOV
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low noise (LN) mode, 1.8 V target
output
1.7
—
1.9
V
Low power (LP) mode,
LPCMPBIAS3 = 0, 1.8 V target
output, IDCDC_LOAD ≤ 75 μA
1.63
—
2.2
V
Low power (LP) mode,
LPCMPBIAS3 = 3, 1.8 V target
output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
—
3
—
mVpp
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
—
150
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
—
150
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
50
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
125
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Building a more connected world.
Rev. 1.2 | 17
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive4, Tamb ≤ 85 °C
—
—
200
mA
Low noise (LN) mode, Heavy
Drive4, Tamb > 85 °C
—
—
100
mA
Low noise (LN) mode, Medium
Drive4
—
—
100
mA
Low noise (LN) mode, Light
Drive4
—
—
50
mA
Low power (LP) mode,
LPCMPBIAS3 = 0
—
—
75
μA
Low power (LP) mode,
LPCMPBIAS3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
1
1
μF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
μH
—
1.2
2.5
Ω
DCDC nominal output capacitor
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits
3. In EMU_DCDCMISCCTRL register
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
silabs.com | Building a more connected world.
Rev. 1.2 | 18
EFM32PG1 Data Sheet
Electrical Specifications
4.1.5 Current Consumption
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values
sent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFM32PG1
Circuit, Direct Supply, No DC-DC Converter on page 52.
TOP = 25 °C.
in this table repreTypical Application
Table 4.5. Current Consumption 3.3V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
127
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
105
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
106
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
222
350
μA/MHz
38.4 MHz crystal1
—
61
—
μA/MHz
38 MHz HFRCO
—
35
38
μA/MHz
26 MHz HFRCO
—
37
41
μA/MHz
1 MHz HFRCO
—
157
275
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.3
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
3
6.3
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.8
6
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1.1
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.65
—
μA
128 byte RAM retention, no RTCC
—
0.65
1.3
μA
no RAM retention, no RTCC
—
0.04
0.11
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
Test Condition
Note:
1. CMU_HFXOCTRL_LOWPOWER=1
silabs.com | Building a more connected world.
Rev. 1.2 | 19
EFM32PG1 Data Sheet
Electrical Specifications
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. TOP = 25 °C.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.
See Figure 5.2 EFM32PG1 Typical Application Circuit Using the DC-DC Converter on page 52.
Table 4.6. Current Consumption 3.3V with DC-DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash2
—
86
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
63
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
71
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
78
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
76
—
μA/MHz
38.4 MHz crystal, CPU running
while loop from flash2
—
96
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
75
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
81
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
88
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
μA/MHz
38.4 MHz crystal2
—
47
—
μA/MHz
38 MHz HFRCO
—
32
—
μA/MHz
26 MHz HFRCO
—
38
—
μA/MHz
38.4 MHz crystal2
—
59
—
μA/MHz
38 MHz HFRCO
—
45
—
μA/MHz
26 MHz HFRCO
—
58
—
μA/MHz
Current consumption in EM2 IEM2
Deep Sleep mode. DCDC in
Low Power mode4.
Full RAM retention and RTCC
running from LFXO
—
2.5
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
2.2
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.1
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
0.86
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.58
—
μA
128 byte RAM retention, no RTCC
—
0.58
—
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Current consumption in EM0
Active mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Current consumption in EM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
IEM4
silabs.com | Building a more connected world.
Test Condition
Rev. 1.2 | 20
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
EM4S Shutoff mode
IEM4S
no RAM retention, no RTCC
Min
Typ
Max
Unit
—
0.04
—
μA
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD
2. CMU_HFXOCTRL_LOWPOWER=1
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD
4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD
silabs.com | Building a more connected world.
Rev. 1.2 | 21
EFM32PG1 Data Sheet
Electrical Specifications
4.1.5.3 Current Consumption 1.85 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.85 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFM32PG1 Typical Application
Circuit, Direct Supply, No DC-DC Converter on page 52.
Table 4.7. Current Consumption 1.85V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
127
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
220
—
μA/MHz
38.4 MHz crystal1
—
61
—
μA/MHz
38 MHz HFRCO
—
35
—
μA/MHz
26 MHz HFRCO
—
37
—
μA/MHz
1 MHz HFRCO
—
154
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.2
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
2.8
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.7
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.62
—
μA
128 byte RAM retention, no RTCC
—
0.62
—
μA
No RAM retention, no RTCC
—
0.02
—
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
Test Condition
Note:
1. CMU_HFXOCTRL_LOWPOWER=1
silabs.com | Building a more connected world.
Rev. 1.2 | 22
EFM32PG1 Data Sheet
Electrical Specifications
4.1.6 Wake up times
Table 4.8. Wake up times
Parameter
Symbol
Test Condition
Wake up from EM2 Deep
Sleep
tEM2_WU
Wakeup time from EM1
Sleep
tEM1_WU
Wake up from EM3 Stop
tEM3_WU
Wake up from EM4H Hibernate1
tEM4H_WU
Wake up from EM4S Shutoff1
tEM4S_WU
Min
Typ
Max
Unit
Code execution from flash
—
10.7
—
μs
Code execution from RAM
—
3
—
μs
Executing from flash
—
3
—
AHB
Clocks
Executing from RAM
—
3
—
AHB
Clocks
Executing from flash
—
10.7
—
μs
Executing from RAM
—
3
—
μs
Executing from flash
—
60
—
μs
—
290
—
μs
Min
Typ
Max
Unit
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
4.1.7 Brown Out Detector
Table 4.9. Brown Out Detector
Parameter
Symbol
Test Condition
DVDDBOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling
1.35
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
24
—
mV
DVDD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
AVDD rising
—
—
1.85
V
AVDD falling
1.62
—
—
V
AVDD BOD hysteresis
VAVDDBOD_HYST
—
21
—
mV
AVDD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
46
—
mV
—
300
—
μs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
silabs.com | Building a more connected world.
Supply drops at 0.1V/μs rate
Rev. 1.2 | 23
EFM32PG1 Data Sheet
Electrical Specifications
4.1.8 Oscillators
4.1.8.1 LFXO
Table 4.10. LFXO
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kΩ, CL = 7 pF, GAIN4 =
3, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR=70 kΩ, CL = 7 pF, GAIN4 =
2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
silabs.com | Building a more connected world.
Rev. 1.2 | 24
EFM32PG1 Data Sheet
Electrical Specifications
4.1.8.2 HFXO
Table 4.11. HFXO
Parameter
Symbol
Crystal Frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Supported range of crystal
load capacitance 1
CHFXO_CL
On-chip tuning cap range 2
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Frequency Tolerance for the
crystal
FTHFXO
Test Condition
Min
Typ
Max
Unit
38
38.4
40
MHz
—
—
60
Ω
6
—
12
pF
9
20
25
pF
—
0.04
—
pF
38.4 MHz, ESR = 50 Ω, CL = 10
pF
—
300
—
μs
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
—
40
ppm
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
4.1.8.3 LFRCO
Table 4.12. LFRCO
Parameter
Symbol
Test Condition
Oscillation frequency
fLFRCO
Startup time
tLFRCO
Current consumption 1
ILFRCO
Min
Typ
Max
Unit
ENVREF = 1 in
CMU_LFRCOCTRL, TAMB ≤ 85
°C
30.474
32.768
34.243
kHz
ENVREF = 1 in
CMU_LFRCOCTRL, TAMB > 85
°C
30.474
—
39.7
kHz
ENVREF = 0 in
CMU_LFRCOCTRL
30.474
32.768
33.915
kHz
—
500
—
μs
ENVREF = 1 in
CMU_LFRCOCTRL
—
342
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
494
—
nA
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
silabs.com | Building a more connected world.
Rev. 1.2 | 25
EFM32PG1 Data Sheet
Electrical Specifications
4.1.8.4 HFRCO and AUXHFRCO
Table 4.13. HFRCO and AUXHFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency Accuracy
fHFRCO_ACC
Any frequency band, across supply voltage and temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
204
228
μA
fHFRCO = 32 MHz
—
171
190
μA
fHFRCO = 26 MHz
—
147
164
μA
fHFRCO = 19 MHz
—
126
138
μA
fHFRCO = 16 MHz
—
110
120
μA
fHFRCO = 13 MHz
—
100
110
μA
fHFRCO = 7 MHz
—
81
91
μA
fHFRCO = 4 MHz
—
33
35
μA
fHFRCO = 2 MHz
—
31
35
μA
fHFRCO = 1 MHz
—
30
35
μA
Coarse (% of period)
—
0.8
—
%
Fine (% of period)
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.95
1
1.07
kHz
Current consumption on all
supplies
Step size
Period Jitter
IHFRCO
SSHFRCO
PJHFRCO
4.1.8.5 ULFRCO
Table 4.14. ULFRCO
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Building a more connected world.
Test Condition
Rev. 1.2 | 26
EFM32PG1 Data Sheet
Electrical Specifications
4.1.9 Flash Memory Characteristics
Table 4.15. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Test Condition
Min
Typ
Max
Unit
10000
—
—
cycles
TAMB ≤ 85 °C
10
—
—
years
TAMB ≤ 125 °C
10
—
—
years
Word (32-bit) programming
time
tW_PROG
20
26
40
μs
Page erase time
tPERASE
20
27
40
ms
Mass erase time
tMERASE
20
27
40
ms
Device erase time2
tDERASE
TAMB ≤ 85 °C
—
60
74
ms
TAMB ≤ 125 °C
—
60
78
ms
—
—
3
mA
—
—
5
mA
—
—
3
mA
Page erase current3
IERASE
Mass or Device erase current3
Write current3
IWRITE
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW)
3. Measured at 25°C
silabs.com | Building a more connected world.
Rev. 1.2 | 27
EFM32PG1 Data Sheet
Electrical Specifications
4.1.10 GPIO
Table 4.16. GPIO
Parameter
Symbol
Test Condition
Input low voltage
VIOIL
Input high voltage
Output high voltage relative
to IOVDD
VIOIH
VIOOH
Min
Typ
Max
Unit
GPIO pins
—
—
IOVDD*0.3
V
RESETn
—
—
AVDD*0.3
V
GPIO pins
IOVDD*0.7
—
—
V
RESETn
AVDD*0.7
—
—
V
Sourcing 3 mA, IOVDD ≥ 3 V,
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD, Tamb ≤ 85 °C
—
0.1
30
nA
LFXO Pins, GPIO ≤ IOVDD, Tamb
≤ 85 °C
—
0.1
50
nA
All GPIO except LFXO pins, GPIO
≤ IOVDD, TAMB > 85 °C
—
—
110
nA
LFXO Pins, GPIO ≤ IOVDD, TAMB
> 85 °C
—
—
250
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VIOOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up resistor
RPU
30
43
65
kΩ
I/O pin pull-down resistor
RPD
30
43
65
kΩ
20
25
35
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Building a more connected world.
Rev. 1.2 | 28
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
100
—
—
ns
Min
Typ
Max
Unit
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
RESETn low time to ensure
pin reset
TRESET
Note:
1. In GPIO_Pn_CTRL register
4.1.11 VMON
Table 4.17. VMON
Parameter
Symbol
Test Condition
VMON Supply Current
IVMON
In EM0 or EM1, 1 supply monitored
—
5.8
8.26
μA
In EM0 or EM1, 4 supplies monitored
—
11.8
16.8
μA
In EM2, EM3 or EM4, 1 supply
monitored
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored
—
99
—
nA
In EM0 or EM1
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/μs rate
—
460
—
ns
—
26
—
mV
VMON Loading of Monitored ISENSE
Supply
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Building a more connected world.
Rev. 1.2 | 29
EFM32PG1 Data Sheet
Electrical Specifications
4.1.12 ADC
Table 4.18. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
0
—
2*VREF
V
-VREF
—
VREF
V
1
—
VAVDD
V
Power supply rejection1
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK,
—
301
350
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
149
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
91
—
μA
—
51
—
μA
—
9
—
μA
—
117
—
μA
—
79
—
μA
—
345
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
191
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
132
—
μA
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP
Continous operation. WARMUPMODE2 = KEEPADCWARM
BIASPROG = 0, GPBIASACC = 1
3
BIASPROG = 15, GPBIASACC =
13
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 1
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP
Continous operation. WARMUPMODE2 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
BIASPROG = 15, GPBIASACC =
03
silabs.com | Building a more connected world.
Rev. 1.2 | 30
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 0
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
Min
Typ
Max
Unit
—
102
—
μA
—
17
—
μA
—
162
—
μA
—
123
—
μA
—
140
—
μA
BIASPROG = 0, GPBIASACC = 0
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
Current from HFPERCLK
IADC_CLK
ADC Clock Frequency
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time4
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE2 = NORMAL
—
—
5
μs
WARMUPMODE2 = KEEPINSTANDBY
—
—
2
μs
WARMUPMODE2 = KEEPINSLOWACC
—
—
1
μs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
58
67
—
dB
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
—
68
—
dB
Startup time of reference
generator and ADC core
SNDR at 1Msps and fin =
10kHz
tADCSTART
SNDRADC
HFPERCLK = 16 MHz
Spurious-Free Dynamic
Range (SFDR)
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
—
380
—
μV
Offset Error
VADCOFFSETERR
-3
0.25
3
LSB
Gain error in ADC
VADC_GAIN
Using internal reference
—
-0.2
5
%
Using external reference
—
-1
—
%
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No Missing Codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Temperature Sensor Slope
VTS_SLOPE
—
-1.84
—
mV/°C
silabs.com | Building a more connected world.
Rev. 1.2 | 31
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL
2. In ADCn_CNTL register
3. In ADCn_BIASPROG register
4. Derived from ADCCLK
silabs.com | Building a more connected world.
Rev. 1.2 | 32
EFM32PG1 Data Sheet
Electrical Specifications
4.1.13 IDAC
Table 4.19. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
Start up time
tIDAC_SU
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-2
—
2
%
EM0 or EM1
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
—
-0.7
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
Output within 1% of steady state
value
—
5
—
μs
Rev. 1.2 | 33
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
Current consumption in EM0 IIDAC
or EM1 2
Source mode, excluding output
current
—
8.9
13
μA
Sink mode, excluding output current
—
12
16
μA
Source mode, excluding output
current, duty cycle mode, T = 25
°C
—
1.04
—
μA
Sink mode, excluding output current, duty cycle mode, T = 25 °C
—
1.08
—
μA
Source mode, excluding output
current, duty cycle mode, T ≥ 85
°C
—
8.9
—
μA
Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C
—
12
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.04
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.02
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.02
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.02
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.18
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.08
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.02
—
%
Current consumption in EM2
or EM32
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Note:
1. In IDAC_CURPROG register
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Building a more connected world.
Rev. 1.2 | 34
EFM32PG1 Data Sheet
Electrical Specifications
4.1.14 Analog Comparator (ACMP)
Table 4.20. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
Supply Voltage
VACMPVDD
Active current not including
voltage reference
IACMP
Current consumption of inter- IACMPREF
nal voltage reference
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
VACMPHYST
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
0
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.85
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
95
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
HYSTSEL3 = HYST0
-1.75
0
1.75
mV
HYSTSEL3 = HYST1
10
18
26
mV
HYSTSEL3 = HYST2
21
32
46
mV
HYSTSEL3 = HYST3
27
44
63
mV
HYSTSEL3 = HYST4
32
55
80
mV
HYSTSEL3 = HYST5
38
65
100
mV
HYSTSEL3 = HYST6
43
77
121
mV
HYSTSEL3 = HYST7
47
86
148
mV
HYSTSEL3 = HYST8
-4
0
4
mV
HYSTSEL3 = HYST9
-27
-18
-10
mV
HYSTSEL3 = HYST10
-47
-32
-18
mV
HYSTSEL3 = HYST11
-64
-43
-27
mV
HYSTSEL3 = HYST12
-78
-54
-32
mV
HYSTSEL3 = HYST13
-93
-64
-37
mV
HYSTSEL3 = HYST14
-113
-74
-42
mV
HYSTSEL3 = HYST15
-135
-85
-47
mV
MAX
—
VVREGVDD_
V
MAX
Rev. 1.2 | 35
EFM32PG1 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Comparator delay4
tACMPDELAY
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
—
μs
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference Voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
2
2.5
2.8
V
CSRESSEL5 = 0
—
inf
—
kΩ
CSRESSEL5 = 1
—
15
—
kΩ
CSRESSEL5 = 2
—
27
—
kΩ
CSRESSEL5 = 3
—
39
—
kΩ
CSRESSEL5 = 4
—
51
—
kΩ
CSRESSEL5 = 5
—
102
—
kΩ
CSRESSEL5 = 6
—
164
—
kΩ
CSRESSEL5 = 7
—
239
—
kΩ
Capacitive Sense Internal
Resistance
RCSRES
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ±100 mV differential drive
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPTOTAL = IACMP + IACMPREF
IACMPREF is zero if an external voltage reference is used.
silabs.com | Building a more connected world.
Rev. 1.2 | 36
EFM32PG1 Data Sheet
Electrical Specifications
4.1.15 I2C
I2C Standard-mode (Sm)
Table 4.21. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU,DAT
250
—
—
ns
SDA hold time3
tHD,DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU,STA
4.7
—
—
μs
(Repeated) START condition tHD,STA
hold time
4
—
—
μs
STOP condition set-up time
tSU,STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Building a more connected world.
Rev. 1.2 | 37
EFM32PG1 Data Sheet
Electrical Specifications
I2C Fast-mode (Fm)
Table 4.22. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
SDA set-up time
tSU,DAT
100
—
—
ns
SDA hold time3
tHD,DAT
100
—
900
ns
Repeated START condition
set-up time
tSU,STA
0.6
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU,STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Building a more connected world.
Rev. 1.2 | 38
EFM32PG1 Data Sheet
Electrical Specifications
I2C Fast-mode Plus (Fm+)
Table 4.23. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
μs
SCL clock high time
tHIGH
0.26
—
—
μs
SDA set-up time
tSU,DAT
50
—
—
ns
SDA hold time
tHD,DAT
100
—
—
ns
Repeated START condition
set-up time
tSU,STA
0.26
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.26
—
—
μs
STOP condition set-up time
tSU,STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual
silabs.com | Building a more connected world.
Rev. 1.2 | 39
EFM32PG1 Data Sheet
Electrical Specifications
4.1.16 USART SPI
SPI Master Timing
Table 4.24. SPI Master Timing
Parameter
Symbol
SCLK period 1 2
tSCLK
CS to MOSI 1 2
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
0
—
8
ns
SCLK to MOSI 1 2
tSCLK_MO
3
—
20
ns
MISO setup time 1 2
tSU_MI
IOVDD = 1.62 V
56
—
—
ns
IOVDD = 3.0 V
37
—
—
ns
6
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram (SMSDELAY = 0)
CS
tCS_MO
tSCLK_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.2. SPI Master Timing Diagram (SMSDELAY = 1)
silabs.com | Building a more connected world.
Rev. 1.2 | 40
EFM32PG1 Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.25. SPI Slave Timing
Parameter
Symbol
SCKL period 1 2
Test Condition
Min
Typ
Max
Unit
tSCLK_sl
2*
tHFPERCLK
—
—
ns
SCLK high period1 2
tSCLK_hi
3*
tHFPERCLK
—
—
ns
SCLK low period 1 2
tSCLK_lo
3*
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
4
—
50
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2
tH_MO
3+2*
tHFPERCLK
—
—
ns
SCLK to MISO 1 2
tSCLK_MI
16 +
tHFPERCLK
—
66 + 2 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.3. SPI Slave Timing Diagram
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Building a more connected world.
Rev. 1.2 | 41
EFM32PG1 Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.4. EM0 Active Mode Typical Supply Current
Figure 4.5. EM1 Sleep Mode Typical Supply Current
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.2 | 42
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.6. EM2, EM3, EM4H and EM4S Typical Supply Current
silabs.com | Building a more connected world.
Rev. 1.2 | 43
EFM32PG1 Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.7. DC-DC Converter Typical Performance Characteristics
silabs.com | Building a more connected world.
Rev. 1.2 | 44
EFM32PG1 Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
50mV/div
offset:1.8V
100mA
VSW
ILOAD
2V/div
offset:1.8V
1mA
100μs/div
10μs/div
Figure 4.8. DC-DC Converter Transition Waveforms
silabs.com | Building a more connected world.
Rev. 1.2 | 45
EFM32PG1 Data Sheet
Electrical Specifications
4.2.3 Internal Oscillators
Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 38 MHz
Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 32 MHz
silabs.com | Building a more connected world.
Rev. 1.2 | 46
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 26 MHz
Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 19 MHz
silabs.com | Building a more connected world.
Rev. 1.2 | 47
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 16 MHz
Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 13 MHz
silabs.com | Building a more connected world.
Rev. 1.2 | 48
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 7 MHz
Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 4 MHz
silabs.com | Building a more connected world.
Rev. 1.2 | 49
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 2 MHz
Figure 4.18. HFRCO and AUXHFRCO Typical Performance at 1 MHz
silabs.com | Building a more connected world.
Rev. 1.2 | 50
EFM32PG1 Data Sheet
Electrical Specifications
Figure 4.19. LFRCO Typical Performance at 32.768 kHz
Figure 4.20. ULFRCO Typical Performance at 1 kHz
silabs.com | Building a more connected world.
Rev. 1.2 | 51
EFM32PG1 Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal dc-dc converter, are shown in Figure 5.1 EFM32PG1
Typical Application Circuit, Direct Supply, No DC-DC Converter on page 52.
VDD
Main
Supply
+
–
VREGVDD
AVDD_0
IOVDD
AVDD_1
VREGSW
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
Figure 5.1. EFM32PG1 Typical Application Circuit, Direct Supply, No DC-DC Converter
A typical application circuit using the internal dc-dc converter is shown in Figure 5.2 EFM32PG1 Typical Application Circuit Using the
DC-DC Converter on page 52. The MCU operates from the dc-dc converter supply.
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD_0
IOVDD
AVDD_1
VREGSW
VREGVSS
DVDD
HFXTAL_N
HFXTAL_P
LFXTAL_N
LFXTAL_P
DECOUPLE
Figure 5.2. EFM32PG1 Typical Application Circuit Using the DC-DC Converter
5.2 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
silabs.com | Building a more connected world.
Rev. 1.2 | 52
EFM32PG1 Data Sheet
Pin Definitions
6. Pin Definitions
6.1 EFM32PG1 QFN48 with DC-DC Definition
Figure 6.1. EFM32PG1 QFN48 with DC-DC Pinout
silabs.com | Building a more connected world.
Rev. 1.2 | 53
EFM32PG1 Data Sheet
Pin Definitions
Table 6.1. QFN48 with DC-DC Device Pinout
QFN48 Pin# and Name
Pin
#
0
1
2
3
Pin Name
RFVSS
PF0
PF1
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
Radio Ground
BUSAX
BUSBY
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24 US0_RX
#23 US0_CLK #22
US0_CS #21 US0_CTS
PRS_CH0 #0 PRS_CH1
#20 US0_RTS #19
#7 PRS_CH2 #6
US1_TX #24 US1_RX
PRS_CH3 #5 ACMP0_O
#23 US1_CLK #22
#24 ACMP1_O #24
US1_CS #21 US1_CTS
DBG_SWCLKTCK #0
#20 US1_RTS #19
BOOT_TX
LEU0_TX #24 LEU0_RX
#23 I2C0_SDA #24
I2C0_SCL #23
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25 US0_RX
#24 US0_CLK #23
US0_CS #22 US0_CTS
PRS_CH0 #1 PRS_CH1
#21 US0_RTS #20
#0 PRS_CH2 #7
US1_TX #25 US1_RX
PRS_CH3 #6 ACMP0_O
#24 US1_CLK #23
#25 ACMP1_O #25
US1_CS #22 US1_CTS
DBG_SWDIOTMS #0
#21 US1_RTS #20
BOOT_RX
LEU0_TX #25 LEU0_RX
#24 I2C0_SDA #25
I2C0_SCL #24
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26 US0_RX
#25 US0_CLK #24
CMU_CLK0 #6
US0_CS #23 US0_CTS
PRS_CH0 #2 PRS_CH1
#22 US0_RTS #21
#1 PRS_CH2 #0
US1_TX #26 US1_RX
PRS_CH3 #7 ACMP0_O
#25 US1_CLK #24
#26 ACMP1_O #26
US1_CS #23 US1_CTS
DBG_TDO #0
#22 US1_RTS #21
DBG_SWO #0
LEU0_TX #26 LEU0_RX
GPIO_EM4WU0
#25 I2C0_SDA #26
I2C0_SCL #25
Rev. 1.2 | 54
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
4
5
6
7
Pin Name
PF3
PF4
PF5
PF6
Pin Alternate Functionality / Description
Analog
BUSAY
BUSBX
BUSAX
BUSBY
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27 US0_RX
#26 US0_CLK #25
US0_CS #24 US0_CTS
CMU_CLK1 #6
#23 US0_RTS #22
PRS_CH0 #3 PRS_CH1
US1_TX #27 US1_RX
#2 PRS_CH2 #1
#26 US1_CLK #25
PRS_CH3 #0 ACMP0_O
US1_CS #24 US1_CTS
#27 ACMP1_O #27
#23 US1_RTS #22
DBG_TDI #0
LEU0_TX #27 LEU0_RX
#26 I2C0_SDA #27
I2C0_SCL #26
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28 US0_RX
#27 US0_CLK #26
US0_CS #25 US0_CTS
#24 US0_RTS #23
PRS_CH0 #4 PRS_CH1
US1_TX #28 US1_RX
#3 PRS_CH2 #2
#27 US1_CLK #26
PRS_CH3 #1 ACMP0_O
US1_CS #25 US1_CTS
#28 ACMP1_O #28
#24 US1_RTS #23
LEU0_TX #28 LEU0_RX
#27 I2C0_SDA #28
I2C0_SCL #27
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29 US0_RX
#28 US0_CLK #27
US0_CS #26 US0_CTS
#25 US0_RTS #24
PRS_CH0 #5 PRS_CH1
US1_TX #29 US1_RX
#4 PRS_CH2 #3
#28 US1_CLK #27
PRS_CH3 #2 ACMP0_O
US1_CS #26 US1_CTS
#29 ACMP1_O #29
#25 US1_RTS #24
LEU0_TX #29 LEU0_RX
#28 I2C0_SDA #29
I2C0_SCL #28
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30 US0_RX
#29 US0_CLK #28
US0_CS #27 US0_CTS
CMU_CLK1 #7
#26 US0_RTS #25
US1_TX #30 US1_RX PRS_CH0 #6 PRS_CH1
#5 PRS_CH2 #4
#29 US1_CLK #28
US1_CS #27 US1_CTS PRS_CH3 #3 ACMP0_O
#30 ACMP1_O #30
#26 US1_RTS #25
LEU0_TX #30 LEU0_RX
#29 I2C0_SDA #30
I2C0_SCL #29
Rev. 1.2 | 55
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
BUSAY
Timers
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
8
PF7
9
AVDD
10
HFXTAL_N
High Frequency Crystal input pin.
11
HFXTAL_P
High Frequency Crystal output pin.
12
RESETn
13
NC
No Connect.
14
NC
No Connect.
15
NC
No Connect.
16
NC
No Connect.
17
NC
No Connect.
18
19
PD9
PD10
BUSBX
Communication
Other
US0_TX #31 US0_RX
#30 US0_CLK #29
US0_CS #28 US0_CTS
CMU_CLK0 #7
#27 US0_RTS #26
PRS_CH0 #7 PRS_CH1
US1_TX #31 US1_RX
#6 PRS_CH2 #5
#30 US1_CLK #29
PRS_CH3 #4 ACMP0_O
US1_CS #28 US1_CTS
#31 ACMP1_O #31
#27 US1_RTS #26
GPIO_EM4WU1
LEU0_TX #31 LEU0_RX
#30 I2C0_SDA #31
I2C0_SCL #30
Analog power supply .
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
BUSCY
BUSDX
BUSCX
BUSDY
silabs.com | Building a more connected world.
TIM0_CC0 #17
TIM0_CC1 #16
TIM0_CC2 #15
TIM0_CDTI0 #14
TIM0_CDTI1 #13
TIM0_CDTI2 #12
TIM1_CC0 #17
TIM1_CC1 #16
TIM1_CC2 #15
TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16
PCNT0_S0IN #17
PCNT0_S1IN #16
US0_TX #17 US0_RX
#16 US0_CLK #15
US0_CS #14 US0_CTS
CMU_CLK0 #4
#13 US0_RTS #12
PRS_CH3 #8 PRS_CH4
US1_TX #17 US1_RX
#0 PRS_CH5 #6
#16 US1_CLK #15
PRS_CH6 #11
US1_CS #14 US1_CTS
ACMP0_O #17
#13 US1_RTS #12
ACMP1_O #17
LEU0_TX #17 LEU0_RX
#16 I2C0_SDA #17
I2C0_SCL #16
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18 US0_RX
#17 US0_CLK #16
US0_CS #15 US0_CTS
CMU_CLK1 #4
#14 US0_RTS #13
PRS_CH3 #9 PRS_CH4
US1_TX #18 US1_RX
#1 PRS_CH5 #0
#17 US1_CLK #16
PRS_CH6 #12
US1_CS #15 US1_CTS
ACMP0_O #18
#14 US1_RTS #13
ACMP1_O #18
LEU0_TX #18 LEU0_RX
#17 I2C0_SDA #18
I2C0_SCL #17
Rev. 1.2 | 56
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
20
21
22
23
Pin Name
PD11
PD12
PD13
PD14
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
BUSCX
BUSDY
BUSCY
BUSDX
BUSCX
BUSDY
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19 US0_RX
#18 US0_CLK #17
US0_CS #16 US0_CTS
PRS_CH3 #10
#15 US0_RTS #14
US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5
#1 PRS_CH6 #13
#18 US1_CLK #17
ACMP0_O #19
US1_CS #16 US1_CTS
ACMP1_O #19
#15 US1_RTS #14
LEU0_TX #19 LEU0_RX
#18 I2C0_SDA #19
I2C0_SCL #18
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20 US0_RX
#19 US0_CLK #18
US0_CS #17 US0_CTS
PRS_CH3 #11
#16 US0_RTS #15
US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5
#2 PRS_CH6 #14
#19 US1_CLK #18
ACMP0_O #20
US1_CS #17 US1_CTS
ACMP1_O #20
#16 US1_RTS #15
LEU0_TX #20 LEU0_RX
#19 I2C0_SDA #20
I2C0_SCL #19
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21 US0_RX
#20 US0_CLK #19
US0_CS #18 US0_CTS
PRS_CH3 #12
#17 US0_RTS #16
US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5
#3 PRS_CH6 #15
#20 US1_CLK #19
ACMP0_O #21
US1_CS #18 US1_CTS
ACMP1_O #21
#17 US1_RTS #16
LEU0_TX #21 LEU0_RX
#20 I2C0_SDA #21
I2C0_SCL #20
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22 US0_RX
#21 US0_CLK #20
CMU_CLK0 #5
US0_CS #19 US0_CTS
PRS_CH3 #13
#18 US0_RTS #17
US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5
#4 PRS_CH6 #16
#21 US1_CLK #20
ACMP0_O #22
US1_CS #19 US1_CTS
ACMP1_O #22
#18 US1_RTS #17
GPIO_EM4WU4
LEU0_TX #22 LEU0_RX
#21 I2C0_SDA #22
I2C0_SCL #21
Rev. 1.2 | 57
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
24
Pin Name
PD15
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
ADC0_EXTN
25
PA0
BUSCX
BUSDY
ADC0_EXTP
26
PA1
BUSCY
BUSDX
27
PA2
BUSCX
BUSDY
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23 US0_RX
#22 US0_CLK #21
CMU_CLK1 #5
US0_CS #20 US0_CTS
PRS_CH3 #14
#19 US0_RTS #18
US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5
#5 PRS_CH6 #17
#22 US1_CLK #21
ACMP0_O #23
US1_CS #20 US1_CTS
ACMP1_O #23
#19 US1_RTS #18
DBG_SWO #2
LEU0_TX #23 LEU0_RX
#22 I2C0_SDA #23
I2C0_SCL #22
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0 US0_RX
#31 US0_CLK #30
US0_CS #29 US0_CTS
#28 US0_RTS #27
US1_TX #0 US1_RX
#31 US1_CLK #30
US1_CS #29 US1_CTS
#28 US1_RTS #27
LEU0_TX #0 LEU0_RX
#31 I2C0_SDA #0
I2C0_SCL #31
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1 US0_RX #0
US0_CLK #31 US0_CS
#30 US0_CTS #29
CMU_CLK0 #0
US0_RTS #28 US1_TX
PRS_CH6 #1 PRS_CH7
#1 US1_RX #0
#0 PRS_CH8 #10
US1_CLK #31 US1_CS
PRS_CH9 #9 ACMP0_O
#30 US1_CTS #29
#1 ACMP1_O #1
US1_RTS #28 LEU0_TX
#1 LEU0_RX #0
I2C0_SDA #1 I2C0_SCL
#0
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2 US0_RX #1
US0_CLK #0 US0_CS
#31 US0_CTS #30
US0_RTS #29 US1_TX PRS_CH6 #2 PRS_CH7
#1 PRS_CH8 #0
#2 US1_RX #1
PRS_CH9 #10
US1_CLK #0 US1_CS
ACMP0_O #2
#31 US1_CTS #30
ACMP1_O #2
US1_RTS #29 LEU0_TX
#2 LEU0_RX #1
I2C0_SDA #2 I2C0_SCL
#1
CMU_CLK1 #0
PRS_CH6 #0 PRS_CH7
#10 PRS_CH8 #9
PRS_CH9 #8 ACMP0_O
#0 ACMP1_O #0
Rev. 1.2 | 58
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
28
29
30
31
Pin Name
PA3
PA4
PA5
PB11
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
BUSCX
BUSDY
BUSCY
BUSDX
BUSCY
BUSDX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3 US0_RX #2
US0_CLK #1 US0_CS
#0 US0_CTS #31
US0_RTS #30 US1_TX PRS_CH6 #3 PRS_CH7
#2 PRS_CH8 #1
#3 US1_RX #2
US1_CLK #1 US1_CS PRS_CH9 #0 ACMP0_O
#3 ACMP1_O #3
#0 US1_CTS #31
GPIO_EM4WU8
US1_RTS #30 LEU0_TX
#3 LEU0_RX #2
I2C0_SDA #3 I2C0_SCL
#2
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4 US0_RX #3
US0_CLK #2 US0_CS
#1 US0_CTS #0
US0_RTS #31 US1_TX
PRS_CH6 #4 PRS_CH7
#4 US1_RX #3
#3 PRS_CH8 #2
US1_CLK #2 US1_CS
PRS_CH9 #1 ACMP0_O
#1 US1_CTS #0
#4 ACMP1_O #4
US1_RTS #31 LEU0_TX
#4 LEU0_RX #3
I2C0_SDA #4 I2C0_SCL
#3
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5 US0_RX #4
US0_CLK #3 US0_CS
#2 US0_CTS #1
US0_RTS #0 US1_TX
PRS_CH6 #5 PRS_CH7
#5 US1_RX #4
#4 PRS_CH8 #3
US1_CLK #3 US1_CS
PRS_CH9 #2 ACMP0_O
#2 US1_CTS #1
#5 ACMP1_O #5
US1_RTS #0 LEU0_TX
#5 LEU0_RX #4
I2C0_SDA #5 I2C0_SCL
#4
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6 US0_RX #5
US0_CLK #4 US0_CS
#3 US0_CTS #2
US0_RTS #1 US1_TX
PRS_CH6 #6 PRS_CH7
#6 US1_RX #5
#5 PRS_CH8 #4
US1_CLK #4 US1_CS
PRS_CH9 #3 ACMP0_O
#3 US1_CTS #2
#6 ACMP1_O #6
US1_RTS #1 LEU0_TX
#6 LEU0_RX #5
I2C0_SDA #6 I2C0_SCL
#5
Rev. 1.2 | 59
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
32
Pin Name
PB12
33
PB13
34
AVDD
Pin Alternate Functionality / Description
Analog
BUSCX
BUSDY
BUSCY
BUSDX
PB14
BUSCX
BUSDY
LFXTAL_P
36
PB15
Communication
Other
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7 US0_RX #6
US0_CLK #5 US0_CS
#4 US0_CTS #3
US0_RTS #2 US1_TX
PRS_CH6 #7 PRS_CH7
#7 US1_RX #6
#6 PRS_CH8 #5
US1_CLK #5 US1_CS
PRS_CH9 #4 ACMP0_O
#4 US1_CTS #3
#7 ACMP1_O #7
US1_RTS #2 LEU0_TX
#7 LEU0_RX #6
I2C0_SDA #7 I2C0_SCL
#6
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8 US0_RX #7
US0_CLK #6 US0_CS
#5 US0_CTS #4
PRS_CH6 #8 PRS_CH7
US0_RTS #3 US1_TX
#7 PRS_CH8 #6
#8 US1_RX #7
PRS_CH9 #5 ACMP0_O
US1_CLK #6 US1_CS
#8 ACMP1_O #8
#5 US1_CTS #4
DBG_SWO #1
US1_RTS #3 LEU0_TX
GPIO_EM4WU9
#8 LEU0_RX #7
I2C0_SDA #8 I2C0_SCL
#7
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9 US0_RX #8
US0_CLK #7 US0_CS
#6 US0_CTS #5
CMU_CLK1 #1
US0_RTS #4 US1_TX
PRS_CH6 #9 PRS_CH7
#9 US1_RX #8
#8 PRS_CH8 #7
US1_CLK #7 US1_CS
PRS_CH9 #6 ACMP0_O
#6 US1_CTS #5
#9 ACMP1_O #9
US1_RTS #4 LEU0_TX
#9 LEU0_RX #8
I2C0_SDA #9 I2C0_SCL
#8
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10 US0_RX
#9 US0_CLK #8
US0_CS #7 US0_CTS
CMU_CLK0 #1
#6 US0_RTS #5
PRS_CH6 #10
US1_TX #10 US1_RX
PRS_CH7 #9 PRS_CH8
#9 US1_CLK #8
#8 PRS_CH9 #7
US1_CS #7 US1_CTS
ACMP0_O #10
#6 US1_RTS #5
ACMP1_O #10
LEU0_TX #10 LEU0_RX
#9 I2C0_SDA #10
I2C0_SCL #9
Analog power supply .
LFXTAL_N
35
Timers
BUSCY
BUSDX
silabs.com | Building a more connected world.
Rev. 1.2 | 60
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin Alternate Functionality / Description
Pin
#
Pin Name
37
VREGVSS
Voltage regulator VSS
38
VREGSW
DCDC regulator switching node
39
VREGVDD
Voltage regulator VDD input
40
DVDD
41
DECOUPLE
42
IOVDD
43
44
45
PC6
PC7
PC8
Analog
Timers
Communication
Other
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
BUSAX
BUSBY
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11 US0_RX
#10 US0_CLK #9
US0_CS #8 US0_CTS
CMU_CLK0 #2
#7 US0_RTS #6
PRS_CH0 #8 PRS_CH9
US1_TX #11 US1_RX
#11 PRS_CH10 #0
#10 US1_CLK #9
PRS_CH11 #5
US1_CS #8 US1_CTS
ACMP0_O #11
#7 US1_RTS #6
ACMP1_O #11
LEU0_TX #11 LEU0_RX
#10 I2C0_SDA #11
I2C0_SCL #10
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12 US0_RX
#11 US0_CLK #10
US0_CS #9 US0_CTS
CMU_CLK1 #2
#8 US0_RTS #7
PRS_CH0 #9 PRS_CH9
US1_TX #12 US1_RX
#12 PRS_CH10 #1
#11 US1_CLK #10
PRS_CH11 #0
US1_CS #9 US1_CTS
ACMP0_O #12
#8 US1_RTS #7
ACMP1_O #12
LEU0_TX #12 LEU0_RX
#11 I2C0_SDA #12
I2C0_SCL #11
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13 US0_RX
#12 US0_CLK #11
US0_CS #10 US0_CTS
#9 US0_RTS #8
US1_TX #13 US1_RX
#12 US1_CLK #11
US1_CS #10 US1_CTS
#9 US1_RTS #8
LEU0_TX #13 LEU0_RX
#12 I2C0_SDA #13
I2C0_SCL #12
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
Rev. 1.2 | 61
EFM32PG1 Data Sheet
Pin Definitions
QFN48 Pin# and Name
Pin
#
46
47
48
Pin Name
PC9
PC10
PC11
Pin Alternate Functionality / Description
Analog
BUSAY
BUSBX
BUSAX
BUSBY
BUSAY
BUSBX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14 US0_RX
#13 US0_CLK #12
US0_CS #11 US0_CTS
#10 US0_RTS #9
US1_TX #14 US1_RX
#13 US1_CLK #12
US1_CS #11 US1_CTS
#10 US1_RTS #9
LEU0_TX #14 LEU0_RX
#13 I2C0_SDA #14
I2C0_SCL #13
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15 US0_RX
#14 US0_CLK #13
US0_CS #12 US0_CTS
#11 US0_RTS #10
US1_TX #15 US1_RX
#14 US1_CLK #13
US1_CS #12 US1_CTS
#11 US1_RTS #10
LEU0_TX #15 LEU0_RX
#14 I2C0_SDA #15
I2C0_SCL #14
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16 US0_RX
#15 US0_CLK #14
US0_CS #13 US0_CTS
#12 US0_RTS #11
US1_TX #16 US1_RX
#15 US1_CLK #14
US1_CS #13 US1_CTS
#12 US1_RTS #11
LEU0_TX #16 LEU0_RX
#15 I2C0_SDA #16
I2C0_SCL #15
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Rev. 1.2 | 62
EFM32PG1 Data Sheet
Pin Definitions
6.1.1 EFM32PG1 QFN48 with DC-DC GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.2. QFN48 with DC-DC GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
PA5
(5V)
PA4
(5V)
PA3
(5V)
PA2
(5V)
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC11 PC10
(5V) (5V)
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
PD9
(5V)
-
-
-
-
-
-
-
-
-
-
-
PF7
(5V)
PF6
(5V)
PF5
(5V)
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Port B
Port C
Port D
Port F
PB15 PB14
-
-
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
-
-
-
-
-
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PA4, PA3, PA2, PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to
preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.2 | 63
EFM32PG1 Data Sheet
Pin Definitions
6.2 EFM32PG1 QFN32 without DC-DC Definition
Figure 6.2. EFM32PG1 QFN32 without DC-DC Pinout
silabs.com | Building a more connected world.
Rev. 1.2 | 64
EFM32PG1 Data Sheet
Pin Definitions
Table 6.3. QFN32 without DC-DC Device Pinout
QFN32 Pin# and Name
Pin
#
Pin Name
0
VREGVSS
1
2
3
PF0
PF1
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
Voltage regulator VSS
BUSAX
BUSBY
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24 US0_RX
#23 US0_CLK #22
US0_CS #21 US0_CTS
PRS_CH0 #0 PRS_CH1
#20 US0_RTS #19
#7 PRS_CH2 #6
US1_TX #24 US1_RX
PRS_CH3 #5 ACMP0_O
#23 US1_CLK #22
#24 ACMP1_O #24
US1_CS #21 US1_CTS
DBG_SWCLKTCK #0
#20 US1_RTS #19
BOOT_TX
LEU0_TX #24 LEU0_RX
#23 I2C0_SDA #24
I2C0_SCL #23
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25 US0_RX
#24 US0_CLK #23
US0_CS #22 US0_CTS
PRS_CH0 #1 PRS_CH1
#21 US0_RTS #20
#0 PRS_CH2 #7
US1_TX #25 US1_RX
PRS_CH3 #6 ACMP0_O
#24 US1_CLK #23
#25 ACMP1_O #25
US1_CS #22 US1_CTS
DBG_SWDIOTMS #0
#21 US1_RTS #20
BOOT_RX
LEU0_TX #25 LEU0_RX
#24 I2C0_SDA #25
I2C0_SCL #24
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26 US0_RX
#25 US0_CLK #24
CMU_CLK0 #6
US0_CS #23 US0_CTS
PRS_CH0 #2 PRS_CH1
#22 US0_RTS #21
#1 PRS_CH2 #0
US1_TX #26 US1_RX
PRS_CH3 #7 ACMP0_O
#25 US1_CLK #24
#26 ACMP1_O #26
US1_CS #23 US1_CTS
DBG_TDO #0
#22 US1_RTS #21
DBG_SWO #0
LEU0_TX #26 LEU0_RX
GPIO_EM4WU0
#25 I2C0_SDA #26
I2C0_SCL #25
Rev. 1.2 | 65
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
4
Pin Name
PF3
Pin Alternate Functionality / Description
Analog
BUSAY
BUSBX
BUSAX
Timers
US0_TX #27 US0_RX
#26 US0_CLK #25
US0_CS #24 US0_CTS
CMU_CLK1 #6
#23 US0_RTS #22
PRS_CH0 #3 PRS_CH1
US1_TX #27 US1_RX
#2 PRS_CH2 #1
#26 US1_CLK #25
PRS_CH3 #0 ACMP0_O
US1_CS #24 US1_CTS
#27 ACMP1_O #27
#23 US1_RTS #22
DBG_TDI #0
LEU0_TX #27 LEU0_RX
#26 I2C0_SDA #27
I2C0_SCL #26
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28 US0_RX
#27 US0_CLK #26
US0_CS #25 US0_CTS
#24 US0_RTS #23
PRS_CH0 #4 PRS_CH1
US1_TX #28 US1_RX
#3 PRS_CH2 #2
#27 US1_CLK #26
PRS_CH3 #1 ACMP0_O
US1_CS #25 US1_CTS
#28 ACMP1_O #28
#24 US1_RTS #23
LEU0_TX #28 LEU0_RX
#27 I2C0_SDA #28
I2C0_SCL #27
PF4
6
AVDD
7
HFXTAL_N
High Frequency Crystal input pin.
8
HFXTAL_P
High Frequency Crystal output pin.
9
RESETn
10
PD9
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
5
BUSBY
Communication
Analog power supply .
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
BUSCY
BUSDX
silabs.com | Building a more connected world.
TIM0_CC0 #17
TIM0_CC1 #16
TIM0_CC2 #15
TIM0_CDTI0 #14
TIM0_CDTI1 #13
TIM0_CDTI2 #12
TIM1_CC0 #17
TIM1_CC1 #16
TIM1_CC2 #15
TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16
PCNT0_S0IN #17
PCNT0_S1IN #16
US0_TX #17 US0_RX
#16 US0_CLK #15
US0_CS #14 US0_CTS
CMU_CLK0 #4
#13 US0_RTS #12
PRS_CH3 #8 PRS_CH4
US1_TX #17 US1_RX
#0 PRS_CH5 #6
#16 US1_CLK #15
PRS_CH6 #11
US1_CS #14 US1_CTS
ACMP0_O #17
#13 US1_RTS #12
ACMP1_O #17
LEU0_TX #17 LEU0_RX
#16 I2C0_SDA #17
I2C0_SCL #16
Rev. 1.2 | 66
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
11
12
13
14
Pin Name
PD10
PD11
PD12
PD13
Pin Alternate Functionality / Description
Analog
BUSCX
BUSDY
BUSCY
BUSDX
BUSCX
BUSDY
BUSCY
BUSDX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18 US0_RX
#17 US0_CLK #16
US0_CS #15 US0_CTS
CMU_CLK1 #4
#14 US0_RTS #13
PRS_CH3 #9 PRS_CH4
US1_TX #18 US1_RX
#1 PRS_CH5 #0
#17 US1_CLK #16
PRS_CH6 #12
US1_CS #15 US1_CTS
ACMP0_O #18
#14 US1_RTS #13
ACMP1_O #18
LEU0_TX #18 LEU0_RX
#17 I2C0_SDA #18
I2C0_SCL #17
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19 US0_RX
#18 US0_CLK #17
US0_CS #16 US0_CTS
PRS_CH3 #10
#15 US0_RTS #14
US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5
#1 PRS_CH6 #13
#18 US1_CLK #17
ACMP0_O #19
US1_CS #16 US1_CTS
ACMP1_O #19
#15 US1_RTS #14
LEU0_TX #19 LEU0_RX
#18 I2C0_SDA #19
I2C0_SCL #18
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20 US0_RX
#19 US0_CLK #18
US0_CS #17 US0_CTS
PRS_CH3 #11
#16 US0_RTS #15
US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5
#2 PRS_CH6 #14
#19 US1_CLK #18
ACMP0_O #20
US1_CS #17 US1_CTS
ACMP1_O #20
#16 US1_RTS #15
LEU0_TX #20 LEU0_RX
#19 I2C0_SDA #20
I2C0_SCL #19
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21 US0_RX
#20 US0_CLK #19
US0_CS #18 US0_CTS
PRS_CH3 #12
#17 US0_RTS #16
US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5
#3 PRS_CH6 #15
#20 US1_CLK #19
ACMP0_O #21
US1_CS #18 US1_CTS
ACMP1_O #21
#17 US1_RTS #16
LEU0_TX #21 LEU0_RX
#20 I2C0_SDA #21
I2C0_SCL #20
Rev. 1.2 | 67
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
15
16
Pin Name
PD14
PD15
Pin Alternate Functionality / Description
Analog
BUSCX
BUSDY
BUSCY
BUSDX
ADC0_EXTN
17
PA0
BUSCX
BUSDY
ADC0_EXTP
18
PA1
BUSCY
BUSDX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22 US0_RX
#21 US0_CLK #20
CMU_CLK0 #5
US0_CS #19 US0_CTS
PRS_CH3 #13
#18 US0_RTS #17
US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5
#4 PRS_CH6 #16
#21 US1_CLK #20
ACMP0_O #22
US1_CS #19 US1_CTS
ACMP1_O #22
#18 US1_RTS #17
GPIO_EM4WU4
LEU0_TX #22 LEU0_RX
#21 I2C0_SDA #22
I2C0_SCL #21
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23 US0_RX
#22 US0_CLK #21
CMU_CLK1 #5
US0_CS #20 US0_CTS
PRS_CH3 #14
#19 US0_RTS #18
US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5
#5 PRS_CH6 #17
#22 US1_CLK #21
ACMP0_O #23
US1_CS #20 US1_CTS
ACMP1_O #23
#19 US1_RTS #18
DBG_SWO #2
LEU0_TX #23 LEU0_RX
#22 I2C0_SDA #23
I2C0_SCL #22
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0 US0_RX
#31 US0_CLK #30
US0_CS #29 US0_CTS
#28 US0_RTS #27
US1_TX #0 US1_RX
#31 US1_CLK #30
US1_CS #29 US1_CTS
#28 US1_RTS #27
LEU0_TX #0 LEU0_RX
#31 I2C0_SDA #0
I2C0_SCL #31
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1 US0_RX #0
US0_CLK #31 US0_CS
#30 US0_CTS #29
CMU_CLK0 #0
US0_RTS #28 US1_TX
PRS_CH6 #1 PRS_CH7
#1 US1_RX #0
#0 PRS_CH8 #10
US1_CLK #31 US1_CS
PRS_CH9 #9 ACMP0_O
#30 US1_CTS #29
#1 ACMP1_O #1
US1_RTS #28 LEU0_TX
#1 LEU0_RX #0
I2C0_SDA #1 I2C0_SCL
#0
CMU_CLK1 #0
PRS_CH6 #0 PRS_CH7
#10 PRS_CH8 #9
PRS_CH9 #8 ACMP0_O
#0 ACMP1_O #0
Rev. 1.2 | 68
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
19
20
Pin Name
PB11
PB12
21
PB13
22
AVDD
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
BUSCX
BUSDY
BUSCY
BUSDX
PB14
Communication
Other
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6 US0_RX #5
US0_CLK #4 US0_CS
#3 US0_CTS #2
US0_RTS #1 US1_TX
PRS_CH6 #6 PRS_CH7
#6 US1_RX #5
#5 PRS_CH8 #4
US1_CLK #4 US1_CS
PRS_CH9 #3 ACMP0_O
#3 US1_CTS #2
#6 ACMP1_O #6
US1_RTS #1 LEU0_TX
#6 LEU0_RX #5
I2C0_SDA #6 I2C0_SCL
#5
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7 US0_RX #6
US0_CLK #5 US0_CS
#4 US0_CTS #3
US0_RTS #2 US1_TX
PRS_CH6 #7 PRS_CH7
#7 US1_RX #6
#6 PRS_CH8 #5
US1_CLK #5 US1_CS
PRS_CH9 #4 ACMP0_O
#4 US1_CTS #3
#7 ACMP1_O #7
US1_RTS #2 LEU0_TX
#7 LEU0_RX #6
I2C0_SDA #7 I2C0_SCL
#6
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8 US0_RX #7
US0_CLK #6 US0_CS
#5 US0_CTS #4
PRS_CH6 #8 PRS_CH7
US0_RTS #3 US1_TX
#7 PRS_CH8 #6
#8 US1_RX #7
PRS_CH9 #5 ACMP0_O
US1_CLK #6 US1_CS
#8 ACMP1_O #8
#5 US1_CTS #4
DBG_SWO #1
US1_RTS #3 LEU0_TX
GPIO_EM4WU9
#8 LEU0_RX #7
I2C0_SDA #8 I2C0_SCL
#7
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9 US0_RX #8
US0_CLK #7 US0_CS
#6 US0_CTS #5
CMU_CLK1 #1
US0_RTS #4 US1_TX
PRS_CH6 #9 PRS_CH7
#9 US1_RX #8
#8 PRS_CH8 #7
US1_CLK #7 US1_CS
PRS_CH9 #6 ACMP0_O
#6 US1_CTS #5
#9 ACMP1_O #9
US1_RTS #4 LEU0_TX
#9 LEU0_RX #8
I2C0_SDA #9 I2C0_SCL
#8
Analog power supply .
LFXTAL_N
23
Timers
BUSCX
BUSDY
silabs.com | Building a more connected world.
Rev. 1.2 | 69
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
LFXTAL_P
24
PB15
BUSCY
BUSDX
25
DVDD
26
DECOUPLE
27
IOVDD
28
29
PC7
PC8
Timers
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
Communication
Other
US0_TX #10 US0_RX
#9 US0_CLK #8
US0_CS #7 US0_CTS
CMU_CLK0 #1
#6 US0_RTS #5
PRS_CH6 #10
US1_TX #10 US1_RX
PRS_CH7 #9 PRS_CH8
#9 US1_CLK #8
#8 PRS_CH9 #7
US1_CS #7 US1_CTS
ACMP0_O #10
#6 US1_RTS #5
ACMP1_O #10
LEU0_TX #10 LEU0_RX
#9 I2C0_SDA #10
I2C0_SCL #9
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12 US0_RX
#11 US0_CLK #10
US0_CS #9 US0_CTS
CMU_CLK1 #2
#8 US0_RTS #7
PRS_CH0 #9 PRS_CH9
US1_TX #12 US1_RX
#12 PRS_CH10 #1
#11 US1_CLK #10
PRS_CH11 #0
US1_CS #9 US1_CTS
ACMP0_O #12
#8 US1_RTS #7
ACMP1_O #12
LEU0_TX #12 LEU0_RX
#11 I2C0_SDA #12
I2C0_SCL #11
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13 US0_RX
#12 US0_CLK #11
US0_CS #10 US0_CTS
#9 US0_RTS #8
US1_TX #13 US1_RX
#12 US1_CLK #11
US1_CS #10 US1_CTS
#9 US1_RTS #8
LEU0_TX #13 LEU0_RX
#12 I2C0_SDA #13
I2C0_SCL #12
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
Rev. 1.2 | 70
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
30
31
32
Pin Name
PC9
PC10
PC11
Pin Alternate Functionality / Description
Analog
BUSAY
BUSBX
BUSAX
BUSBY
BUSAY
BUSBX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14 US0_RX
#13 US0_CLK #12
US0_CS #11 US0_CTS
#10 US0_RTS #9
US1_TX #14 US1_RX
#13 US1_CLK #12
US1_CS #11 US1_CTS
#10 US1_RTS #9
LEU0_TX #14 LEU0_RX
#13 I2C0_SDA #14
I2C0_SCL #13
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15 US0_RX
#14 US0_CLK #13
US0_CS #12 US0_CTS
#11 US0_RTS #10
US1_TX #15 US1_RX
#14 US1_CLK #13
US1_CS #12 US1_CTS
#11 US1_RTS #10
LEU0_TX #15 LEU0_RX
#14 I2C0_SDA #15
I2C0_SCL #14
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16 US0_RX
#15 US0_CLK #14
US0_CS #13 US0_CTS
#12 US0_RTS #11
US1_TX #16 US1_RX
#15 US1_CLK #14
US1_CS #13 US1_CTS
#12 US1_RTS #11
LEU0_TX #16 LEU0_RX
#15 I2C0_SDA #16
I2C0_SCL #15
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Rev. 1.2 | 71
EFM32PG1 Data Sheet
Pin Definitions
6.2.1 EFM32PG1 QFN32 without DC-DC GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.4. QFN32 without DC-DC GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC11 PC10
(5V) (5V)
PC9
(5V)
PC8
(5V)
PC7
(5V)
-
-
-
-
-
-
-
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
PD9
(5V)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Port B
Port C
Port D
Port F
PB15 PB14
-
-
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
-
-
-
-
-
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade
options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.2 | 72
EFM32PG1 Data Sheet
Pin Definitions
6.3 EFM32PG1 QFN32 with DC-DC Definition
Figure 6.3. EFM32PG1 QFN32 with DC-DC Pinout
silabs.com | Building a more connected world.
Rev. 1.2 | 73
EFM32PG1 Data Sheet
Pin Definitions
Table 6.5. QFN32 with DC-DC Device Pinout
QFN32 Pin# and Name
Pin
#
0
1
2
3
Pin Alternate Functionality / Description
Pin Name
VSS
PF0
PF1
PF2
Analog
Timers
Communication
Other
Ground
BUSAX
BUSBY
BUSAY
BUSBX
BUSAX
BUSBY
silabs.com | Building a more connected world.
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24 US0_RX
#23 US0_CLK #22
US0_CS #21 US0_CTS
PRS_CH0 #0 PRS_CH1
#20 US0_RTS #19
#7 PRS_CH2 #6
US1_TX #24 US1_RX
PRS_CH3 #5 ACMP0_O
#23 US1_CLK #22
#24 ACMP1_O #24
US1_CS #21 US1_CTS
DBG_SWCLKTCK #0
#20 US1_RTS #19
BOOT_TX
LEU0_TX #24 LEU0_RX
#23 I2C0_SDA #24
I2C0_SCL #23
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25 US0_RX
#24 US0_CLK #23
US0_CS #22 US0_CTS
PRS_CH0 #1 PRS_CH1
#21 US0_RTS #20
#0 PRS_CH2 #7
US1_TX #25 US1_RX
PRS_CH3 #6 ACMP0_O
#24 US1_CLK #23
#25 ACMP1_O #25
US1_CS #22 US1_CTS
DBG_SWDIOTMS #0
#21 US1_RTS #20
BOOT_RX
LEU0_TX #25 LEU0_RX
#24 I2C0_SDA #25
I2C0_SCL #24
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26 US0_RX
#25 US0_CLK #24
CMU_CLK0 #6
US0_CS #23 US0_CTS
PRS_CH0 #2 PRS_CH1
#22 US0_RTS #21
#1 PRS_CH2 #0
US1_TX #26 US1_RX
PRS_CH3 #7 ACMP0_O
#25 US1_CLK #24
#26 ACMP1_O #26
US1_CS #23 US1_CTS
DBG_TDO #0
#22 US1_RTS #21
DBG_SWO #0
LEU0_TX #26 LEU0_RX
GPIO_EM4WU0
#25 I2C0_SDA #26
I2C0_SCL #25
Rev. 1.2 | 74
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
BUSAY
Timers
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
4
PF3
5
AVDD
6
HFXTAL_N
High Frequency Crystal input pin.
7
HFXTAL_P
High Frequency Crystal output pin.
8
RESETn
9
NC
10
11
PD9
PD10
BUSBX
Communication
Other
US0_TX #27 US0_RX
#26 US0_CLK #25
US0_CS #24 US0_CTS
CMU_CLK1 #6
#23 US0_RTS #22
PRS_CH0 #3 PRS_CH1
US1_TX #27 US1_RX
#2 PRS_CH2 #1
#26 US1_CLK #25
PRS_CH3 #0 ACMP0_O
US1_CS #24 US1_CTS
#27 ACMP1_O #27
#23 US1_RTS #22
DBG_TDI #0
LEU0_TX #27 LEU0_RX
#26 I2C0_SDA #27
I2C0_SCL #26
Analog power supply .
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
No Connect.
BUSCY
BUSDX
BUSCX
BUSDY
silabs.com | Building a more connected world.
TIM0_CC0 #17
TIM0_CC1 #16
TIM0_CC2 #15
TIM0_CDTI0 #14
TIM0_CDTI1 #13
TIM0_CDTI2 #12
TIM1_CC0 #17
TIM1_CC1 #16
TIM1_CC2 #15
TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16
PCNT0_S0IN #17
PCNT0_S1IN #16
US0_TX #17 US0_RX
#16 US0_CLK #15
US0_CS #14 US0_CTS
CMU_CLK0 #4
#13 US0_RTS #12
PRS_CH3 #8 PRS_CH4
US1_TX #17 US1_RX
#0 PRS_CH5 #6
#16 US1_CLK #15
PRS_CH6 #11
US1_CS #14 US1_CTS
ACMP0_O #17
#13 US1_RTS #12
ACMP1_O #17
LEU0_TX #17 LEU0_RX
#16 I2C0_SDA #17
I2C0_SCL #16
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18 US0_RX
#17 US0_CLK #16
US0_CS #15 US0_CTS
CMU_CLK1 #4
#14 US0_RTS #13
PRS_CH3 #9 PRS_CH4
US1_TX #18 US1_RX
#1 PRS_CH5 #0
#17 US1_CLK #16
PRS_CH6 #12
US1_CS #15 US1_CTS
ACMP0_O #18
#14 US1_RTS #13
ACMP1_O #18
LEU0_TX #18 LEU0_RX
#17 I2C0_SDA #18
I2C0_SCL #17
Rev. 1.2 | 75
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
12
13
14
15
Pin Name
PD11
PD12
PD13
PD14
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
BUSCX
BUSDY
BUSCY
BUSDX
BUSCX
BUSDY
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19 US0_RX
#18 US0_CLK #17
US0_CS #16 US0_CTS
PRS_CH3 #10
#15 US0_RTS #14
US1_TX #19 US1_RX PRS_CH4 #2 PRS_CH5
#1 PRS_CH6 #13
#18 US1_CLK #17
ACMP0_O #19
US1_CS #16 US1_CTS
ACMP1_O #19
#15 US1_RTS #14
LEU0_TX #19 LEU0_RX
#18 I2C0_SDA #19
I2C0_SCL #18
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20 US0_RX
#19 US0_CLK #18
US0_CS #17 US0_CTS
PRS_CH3 #11
#16 US0_RTS #15
US1_TX #20 US1_RX PRS_CH4 #3 PRS_CH5
#2 PRS_CH6 #14
#19 US1_CLK #18
ACMP0_O #20
US1_CS #17 US1_CTS
ACMP1_O #20
#16 US1_RTS #15
LEU0_TX #20 LEU0_RX
#19 I2C0_SDA #20
I2C0_SCL #19
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21 US0_RX
#20 US0_CLK #19
US0_CS #18 US0_CTS
PRS_CH3 #12
#17 US0_RTS #16
US1_TX #21 US1_RX PRS_CH4 #4 PRS_CH5
#3 PRS_CH6 #15
#20 US1_CLK #19
ACMP0_O #21
US1_CS #18 US1_CTS
ACMP1_O #21
#17 US1_RTS #16
LEU0_TX #21 LEU0_RX
#20 I2C0_SDA #21
I2C0_SCL #20
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22 US0_RX
#21 US0_CLK #20
CMU_CLK0 #5
US0_CS #19 US0_CTS
PRS_CH3 #13
#18 US0_RTS #17
US1_TX #22 US1_RX PRS_CH4 #5 PRS_CH5
#4 PRS_CH6 #16
#21 US1_CLK #20
ACMP0_O #22
US1_CS #19 US1_CTS
ACMP1_O #22
#18 US1_RTS #17
GPIO_EM4WU4
LEU0_TX #22 LEU0_RX
#21 I2C0_SDA #22
I2C0_SCL #21
Rev. 1.2 | 76
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
16
Pin Name
PD15
Pin Alternate Functionality / Description
Analog
BUSCY
BUSDX
ADC0_EXTN
17
PA0
BUSCX
BUSDY
ADC0_EXTP
18
PA1
BUSCY
BUSDX
19
PB11
BUSCY
BUSDX
silabs.com | Building a more connected world.
Timers
Communication
Other
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23 US0_RX
#22 US0_CLK #21
CMU_CLK1 #5
US0_CS #20 US0_CTS
PRS_CH3 #14
#19 US0_RTS #18
US1_TX #23 US1_RX PRS_CH4 #6 PRS_CH5
#5 PRS_CH6 #17
#22 US1_CLK #21
ACMP0_O #23
US1_CS #20 US1_CTS
ACMP1_O #23
#19 US1_RTS #18
DBG_SWO #2
LEU0_TX #23 LEU0_RX
#22 I2C0_SDA #23
I2C0_SCL #22
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0 US0_RX
#31 US0_CLK #30
US0_CS #29 US0_CTS
#28 US0_RTS #27
US1_TX #0 US1_RX
#31 US1_CLK #30
US1_CS #29 US1_CTS
#28 US1_RTS #27
LEU0_TX #0 LEU0_RX
#31 I2C0_SDA #0
I2C0_SCL #31
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1 US0_RX #0
US0_CLK #31 US0_CS
#30 US0_CTS #29
CMU_CLK0 #0
US0_RTS #28 US1_TX
PRS_CH6 #1 PRS_CH7
#1 US1_RX #0
#0 PRS_CH8 #10
US1_CLK #31 US1_CS
PRS_CH9 #9 ACMP0_O
#30 US1_CTS #29
#1 ACMP1_O #1
US1_RTS #28 LEU0_TX
#1 LEU0_RX #0
I2C0_SDA #1 I2C0_SCL
#0
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6 US0_RX #5
US0_CLK #4 US0_CS
#3 US0_CTS #2
US0_RTS #1 US1_TX
PRS_CH6 #6 PRS_CH7
#6 US1_RX #5
#5 PRS_CH8 #4
US1_CLK #4 US1_CS
PRS_CH9 #3 ACMP0_O
#3 US1_CTS #2
#6 ACMP1_O #6
US1_RTS #1 LEU0_TX
#6 LEU0_RX #5
I2C0_SDA #6 I2C0_SCL
#5
CMU_CLK1 #0
PRS_CH6 #0 PRS_CH7
#10 PRS_CH8 #9
PRS_CH9 #8 ACMP0_O
#0 ACMP1_O #0
Rev. 1.2 | 77
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin
#
20
Pin Name
PB12
21
PB13
22
AVDD
Pin Alternate Functionality / Description
Analog
BUSCX
BUSDY
BUSCY
BUSDX
PB14
BUSCX
BUSDY
LFXTAL_P
24
PB15
Communication
Other
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7 US0_RX #6
US0_CLK #5 US0_CS
#4 US0_CTS #3
US0_RTS #2 US1_TX
PRS_CH6 #7 PRS_CH7
#7 US1_RX #6
#6 PRS_CH8 #5
US1_CLK #5 US1_CS
PRS_CH9 #4 ACMP0_O
#4 US1_CTS #3
#7 ACMP1_O #7
US1_RTS #2 LEU0_TX
#7 LEU0_RX #6
I2C0_SDA #7 I2C0_SCL
#6
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8 US0_RX #7
US0_CLK #6 US0_CS
#5 US0_CTS #4
PRS_CH6 #8 PRS_CH7
US0_RTS #3 US1_TX
#7 PRS_CH8 #6
#8 US1_RX #7
PRS_CH9 #5 ACMP0_O
US1_CLK #6 US1_CS
#8 ACMP1_O #8
#5 US1_CTS #4
DBG_SWO #1
US1_RTS #3 LEU0_TX
GPIO_EM4WU9
#8 LEU0_RX #7
I2C0_SDA #8 I2C0_SCL
#7
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9 US0_RX #8
US0_CLK #7 US0_CS
#6 US0_CTS #5
CMU_CLK1 #1
US0_RTS #4 US1_TX
PRS_CH6 #9 PRS_CH7
#9 US1_RX #8
#8 PRS_CH8 #7
US1_CLK #7 US1_CS
PRS_CH9 #6 ACMP0_O
#6 US1_CTS #5
#9 ACMP1_O #9
US1_RTS #4 LEU0_TX
#9 LEU0_RX #8
I2C0_SDA #9 I2C0_SCL
#8
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10 US0_RX
#9 US0_CLK #8
US0_CS #7 US0_CTS
CMU_CLK0 #1
#6 US0_RTS #5
PRS_CH6 #10
US1_TX #10 US1_RX
PRS_CH7 #9 PRS_CH8
#9 US1_CLK #8
#8 PRS_CH9 #7
US1_CS #7 US1_CTS
ACMP0_O #10
#6 US1_RTS #5
ACMP1_O #10
LEU0_TX #10 LEU0_RX
#9 I2C0_SDA #10
I2C0_SCL #9
Analog power supply .
LFXTAL_N
23
Timers
BUSCY
BUSDX
silabs.com | Building a more connected world.
Rev. 1.2 | 78
EFM32PG1 Data Sheet
Pin Definitions
QFN32 Pin# and Name
Pin Alternate Functionality / Description
Pin
#
Pin Name
25
VREGVSS
Voltage regulator VSS
26
VREGSW
DCDC regulator switching node
27
VREGVDD
Voltage regulator VDD input
28
DVDD
29
DECOUPLE
30
IOVDD
31
32
PC10
PC11
Analog
Timers
Communication
Other
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
BUSAX
BUSBY
BUSAY
BUSBX
silabs.com | Building a more connected world.
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15 US0_RX
#14 US0_CLK #13
US0_CS #12 US0_CTS
#11 US0_RTS #10
US1_TX #15 US1_RX
#14 US1_CLK #13
US1_CS #12 US1_CTS
#11 US1_RTS #10
LEU0_TX #15 LEU0_RX
#14 I2C0_SDA #15
I2C0_SCL #14
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16 US0_RX
#15 US0_CLK #14
US0_CS #13 US0_CTS
#12 US0_RTS #11
US1_TX #16 US1_RX
#15 US1_CLK #14
US1_CS #13 US1_CTS
#12 US1_RTS #11
LEU0_TX #16 LEU0_RX
#15 I2C0_SDA #16
I2C0_SCL #15
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Rev. 1.2 | 79
EFM32PG1 Data Sheet
Pin Definitions
6.3.1 EFM32PG1 QFN32 with DC-DC GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.6. QFN32 with DC-DC GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD9
(5V)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Port B
Port C
Port D
Port F
PB15 PB14
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
-
PC11 PC10
(5V) (5V)
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
-
-
-
-
-
-
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade
options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.2 | 80
EFM32PG1 Data Sheet
Pin Definitions
6.4 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.7. Alternate functionality overview
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
ACMP0_O
0: PA0
1: PA1
2: PA2
3: PA3
ACMP1_O
0: PA0
1: PA1
2: PA2
3: PA3
24 - 27
28 - 31
Description
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP0, digital output.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP1, digital output.
0: PA0
Analog to digital
converter ADC0 external reference input negative pin
0: PA1
Analog to digital
converter ADC0 external reference input positive pin
ADC0_EXTN
ADC0_EXTP
0: PF1
BOOT_RX
Bootloader RX
0: PF0
BOOT_TX
Bootloader TX
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
4: PD9
5: PD14
6: PF2
7: PF7
Clock Management
Unit, clock output
number 0.
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
4: PD10
5: PD15
6: PF3
7: PF6
Clock Management
Unit, clock output
number 1.
0: PF0
DBG_SWCLKTCK
silabs.com | Building a more connected world.
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
Rev. 1.2 | 81
EFM32PG1 Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
0: PF1
DBG_SWDIOTMS
DBG_SWO
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
0: PF2
1: PB13
2: PD15
3: PC11
0: PF3
DBG_TDI
0: PF2
DBG_TDO
Debug-interface
Serial Wire viewer
Output.
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
Debug-interface
JTAG Test Data In.
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
Debug-interface
JTAG Test Data
Out.
Note that this function is enabled to
pin out of reset.
0: PF2
GPIO_EM4WU0
0: PF7
GPIO_EM4WU1
0: PD14
GPIO_EM4WU4
0: PA3
GPIO_EM4WU8
0: PB13
GPIO_EM4WU9
silabs.com | Building a more connected world.
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Rev. 1.2 | 82
EFM32PG1 Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PC10
Description
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU12
I2C0_SCL
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
I2C0 Serial Clock
Line input / output.
I2C0_SDA
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
I2C0 Serial Data input / output.
LETIM0_OUT0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Low Energy Timer
LETIM0, output
channel 0.
LETIM0_OUT1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Low Energy Timer
LETIM0, output
channel 1.
LEU0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
LEUART0 Receive
input.
LEU0_TX
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
0: PB14
LFXTAL_N
0: PB15
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
LFXTAL_P
PCNT0_S0IN
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Pulse Counter
PCNT0 input number 0.
PCNT0_S1IN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Pulse Counter
PCNT0 input number 1.
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
4: PF4
5: PF5
6: PF6
7: PF7
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
silabs.com | Building a more connected world.
Peripheral Reflex
System PRS, channel 0.
Rev. 1.2 | 83
EFM32PG1 Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
4: PF5
5: PF6
6: PF7
7: PF0
Peripheral Reflex
System PRS, channel 1.
PRS_CH2
0: PF2
1: PF3
2: PF4
3: PF5
4: PF6
5: PF7
6: PF0
7: PF1
Peripheral Reflex
System PRS, channel 2.
PRS_CH3
0: PF3
1: PF4
2: PF5
3: PF6
4: PF7
5: PF0
6: PF1
7: PF2
PRS_CH4
0: PD9
1: PD10
2: PD11
3: PD12
4: PD13
5: PD14
6: PD15
PRS_CH5
0: PD10
1: PD11
2: PD12
3: PD13
4: PD14
5: PD15
6: PD9
PRS_CH6
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PD9
PRS_CH7
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PA0
PRS_CH8
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PA0
10: PA1
PRS_CH9
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
10: PA2
11: PC6
PRS_CH10
0: PC6
1: PC7
2: PC8
3: PC9
4: PC10
5: PC11
PRS_CH11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
TIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 0 Capture
Compare input /
output channel 0.
TIM0_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 0 Capture
Compare input /
output channel 1.
silabs.com | Building a more connected world.
8: PD9
9: PD10
10: PD11
11: PD12
12: PD13
13: PD14
14: PD15
Peripheral Reflex
System PRS, channel 3.
Peripheral Reflex
System PRS, channel 4.
Peripheral Reflex
System PRS, channel 5.
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Peripheral Reflex
System PRS, channel 8.
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
Peripheral Reflex
System PRS, channel 11.
Rev. 1.2 | 84
EFM32PG1 Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
TIM0_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
TIM0_CDTI0
0: PA3
1: PA4
2: PA5
3: PB11
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 0 Capture
Compare input /
output channel 2.
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 0 Complimentary Dead Time
Insertion channel 0.
TIM0_CDTI1
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
Timer 0 Complimentary Dead Time
Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
Timer 0 Complimentary Dead Time
Insertion channel 2.
TIM1_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 1 Capture
Compare input /
output channel 0.
TIM1_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 1 Capture
Compare input /
output channel 1.
TIM1_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 2.
TIM1_CC3
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 1 Capture
Compare input /
output channel 3.
US0_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART0 clock input / output.
US0_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART0 chip select input / output.
US0_CTS
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART0 Clear To
Send hardware
flow control input.
US0_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART0 Request
To Send hardware
flow control output.
silabs.com | Building a more connected world.
24 - 27
28 - 31
Description
Rev. 1.2 | 85
EFM32PG1 Data Sheet
Pin Definitions
Alternate
Functionality
US0_RX
LOCATION
0-3
4-7
8 - 11
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12 - 15
16 - 19
20 - 23
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24 - 27
24: PF1
25: PF2
26: PF3
27: PF4
28 - 31
28: PF5
29: PF6
30: PF7
31: PA0
Description
USART0 Asynchronous Receive.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
US1_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART1 clock input / output.
US1_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART1 chip select input / output.
US1_CTS
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART1 Clear To
Send hardware
flow control input.
US1_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART1 Request
To Send hardware
flow control output.
US0_TX
US1_RX
US1_TX
0: PA1
1: PA2
2: PA3
3: PA4
0: PA0
1: PA1
2: PA2
3: PA3
4: PA5
5: PB11
6: PB12
7: PB13
4: PA4
5: PA5
6: PB11
7: PB12
silabs.com | Building a more connected world.
8: PB14
9: PB15
10: PC6
11: PC7
8: PB13
9: PB14
10: PB15
11: PC6
12: PC8
13: PC9
14: PC10
15: PC11
12: PC7
13: PC8
14: PC9
15: PC10
16: PD9
17: PD10
18: PD11
19: PD12
16: PC11
17: PD9
18: PD10
19: PD11
20: PD13
21: PD14
22: PD15
23: PF0
20: PD12
21: PD13
22: PD14
23: PD15
24: PF1
25: PF2
26: PF3
27: PF4
24: PF0
25: PF1
26: PF2
27: PF3
28: PF5
29: PF6
30: PF7
31: PA0
28: PF4
29: PF5
30: PF6
31: PF7
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
USART1 Asynchronous Receive.
USART1 Synchronous mode Master
Input / Slave Output (MISO).
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
Rev. 1.2 | 86
EFM32PG1 Data Sheet
Pin Definitions
6.5 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
CH0
CH1
CH2
CH3
CH4
CH5
CH6
PC6
PD10
PD9
PD11
PD9
PD10
PD12
PD11
PD13
PD13
PD14
PD15
PA0
PD12
PC6
PD14
PD15
PA0
PA1
PA1
PA2
CH7
PC8
PC7
PC7
PC8
PC9
PC10
PA2
PA4
PA3
PA3
PA4
PA5
PA5
CH8
CH9
PC9
PC11
PC11
PF0
PB11
PB11
silabs.com | Building a more connected world.
CH10
PC10
CH11
CH12
CH13
CH14
CH15
PF0
CH16
CH17
PF1
PF1
PF2
PF4
PF3
PF3
PF2
CH18
CH19
PF4
PF5
PF6
PF5
PF7
PF7
PB12
PB12
PB13
PB13
PB14
PB14
PB15
PB15
CH20
CH21
PF6
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
BUSAX
BUSAY
BUSBX
BUSBY
BUSCX
BUSCY
BUSDX
BUSDY
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
Table 6.8. ACMP0 Bus and Pin Mapping
Rev. 1.2 | 87
silabs.com | Building a more connected world.
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA5
PA3
PB11
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFM32PG1 Data Sheet
Pin Definitions
Table 6.9. ACMP1 Bus and Pin Mapping
Rev. 1.2 | 88
silabs.com | Building a more connected world.
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
BUSCY
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT1Y APORT1X Port
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFM32PG1 Data Sheet
Pin Definitions
Table 6.10. ADC0 Bus and Pin Mapping
Table 6.11. IDAC0 Bus and Pin Mapping
Rev. 1.2 | 89
EFM32PG1 Data Sheet
QFN48 Package Specifications
7. QFN48 Package Specifications
7.1 QFN48 Package Dimensions
Figure 7.1. QFN48 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.2 | 90
EFM32PG1 Data Sheet
QFN48 Package Specifications
Table 7.1. QFN48 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D
6.90
7.00
7.10
E
6.90
7.00
7.10
D2
4.60
4.70
4.80
E2
4.60
4.70
4.80
e
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.2 | 91
EFM32PG1 Data Sheet
QFN48 Package Specifications
7.2 QFN48 PCB Land Pattern
Figure 7.2. QFN48 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.2 | 92
EFM32PG1 Data Sheet
QFN48 Package Specifications
Table 7.2. QFN48 PCB Land Pattern Dimensions
Dimension
Typ
S1
6.01
S
6.01
L1
4.70
W1
4.70
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Note: Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use
different parameters and fine tune their SMT process as required for their application and tooling.
silabs.com | Building a more connected world.
Rev. 1.2 | 93
EFM32PG1 Data Sheet
QFN48 Package Specifications
7.3 QFN48 Package Marking
EFM32
PPPPPPPPP
TTTTTT
YYWW #
Figure 7.3. QFN48 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• # – Reserved for future use. Current value is 0.
silabs.com | Building a more connected world.
Rev. 1.2 | 94
EFM32PG1 Data Sheet
QFN32 Package Specifications
8. QFN32 Package Specifications
8.1 QFN32 Package Dimensions
Figure 8.1. QFN32 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.2 | 95
EFM32PG1 Data Sheet
QFN32 Package Specifications
Table 8.1. QFN32 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D/E
4.90
5.00
5.10
D2/E2
3.40
3.50
3.60
E
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.2 | 96
EFM32PG1 Data Sheet
QFN32 Package Specifications
8.2 QFN32 PCB Land Pattern
Figure 8.2. QFN32 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.2 | 97
EFM32PG1 Data Sheet
QFN32 Package Specifications
Table 8.2. QFN32 PCB Land Pattern Dimensions
Dimension
Typ
S1
4.01
S
4.01
L1
3.50
W1
3.50
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Note: Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use
different parameters and fine tune their SMT process as required for their application and tooling.
silabs.com | Building a more connected world.
Rev. 1.2 | 98
EFM32PG1 Data Sheet
QFN32 Package Specifications
8.3 QFN32 Package Marking
EFM32
PPPPPPPPP
TTTTTT
YYWW #
Figure 8.3. QFN32 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• # – Reserved for future use. Current value is 0.
silabs.com | Building a more connected world.
Rev. 1.2 | 99
EFM32PG1 Data Sheet
Revision History
9. Revision History
9.1 Revision 1.2
June, 2022
•
•
•
•
•
In the front page block diagram, updated the lowest energy mode for LETIMER.
Updated 3.5.2 Real Time Counter and Calendar (RTCC) to remove AUXHFRCO as a clock source.
Updated 3.5.3 Low Energy Timer (LETIMER) lowest energy mode.
Added 3.10.4 Bootloader section to the System Overview.
Added timing specifications for RESETn low time and clarified VIL and VIH logic levels for RESETn pins in Table 4.16 GPIO on page
28.
• Removed BIASPROG = 1, FULLBIAS = 0 specifications from 4.1.14 Analog Comparator (ACMP).
• Added Figure 4.2 SPI Master Timing Diagram (SMSDELAY = 1) on page 40.
• Added a note to Table 7.2 QFN48 PCB Land Pattern Dimensions on page 93 and Table 8.2 QFN32 PCB Land Pattern Dimensions
on page 98.
9.2 Revision 1.1
2016-Oct-26
•
•
•
•
System Overview Sections: Minor wording and typographical error fixes.
Electrical Characteristics: Minor wording and typographical error fixes.
"HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC.
Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
• Updated APORT client map sections.
9.3 Revision 1.0
2016-Jul-22
• Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
• Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
• Absolute Maximum Ratings
• General Operating Conditions
• DC-DC Converter
• LFRCO
• HFRCO and AUXHFRCO
• ADC
• IDAC
• Updated Typical Performance Graphs.
• Added note for 5V tolerance to pinout GPIO Overview sections.
• Updated OPN decoder with latest revision.
• Updated Package Marking text with latest descriptions.
9.4 Revision 0.95
2016-04-11
• All OPNs changed to rev C0.
• Electrical specification tables updated with latest characterization data and production test limits.
9.5 Revision 0.31
• Engineering samples note added to ordering information table.
silabs.com | Building a more connected world.
Rev. 1.2 | 100
EFM32PG1 Data Sheet
Revision History
9.6 Revision 0.3
•
•
•
•
•
•
•
•
Re-formatted ordering information table and OPN decoder.
Removed extraneous sections from dc-dc from system overview.
Updated table formatting for electrical specifications.
Updated electrical specifications with latest available data.
Added I2C and USART SPI timing tables.
Moved dc-dc graph to typical performance curves.
Updated APORT tables and APORT references to correct nomenclature.
Updated top marking description.
9.7 Revision 0.2
Updated ordering table.
Changed "1.62 V to 3.8 V Single Power Supply" to "1.62 V to 3.8 V Power Supply" in the Feature List.
9.8 Revision 0.1
Initial release.
silabs.com | Building a more connected world.
Rev. 1.2 | 101
Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support & Community
www.silabs.com/community
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project
Trademark Information
Silicon Laboratories Inc. ® , Silicon Laboratories ® , Silicon Labs ® , SiLabs ® and the Silicon Labs logo ® , Bluegiga ® , Bluegiga Logo ® , EFM ® , EFM32 ® , EFR, Ember® , Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ® , WiSeConnect , n-Link, ThreadArch ® , EZLink® , EZRadio ® , EZRadioPRO ® ,
Gecko ® , Gecko OS, Gecko OS Studio, Precision32 ® , Simplicity Studio ® , Telegesis, the Telegesis Logo ® , USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ® , and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
www.silabs.com