EFM32 Tiny Gecko Series 1 Family
EFM32TG11 Family Data Sheet
The EFM32 Tiny Gecko Series 1 MCUs are the world’s most energy-friendly microcontrollers, featuring new connectivity interfaces
and rich analog features.
EFM32TG11 includes a powerful and efficient 32-bit ARM® Cortex®-M0+ and provides
robust security via a unique cryptographic hardware engine supporting AES, ECC, SHA,
and True Random Number Generator (TRNG). New features include a CAN bus controller, highly robust capacitive sensing, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current active mode and short
wake-up time from energy-saving modes, make EFM32TG11 microcontrollers well suited
for any battery-powered application, as well as other systems requiring high performance
and low-energy consumption.
Example applications:
ENERGY FRIENDLY FEATURES
• ARM Cortex-M0+ at 48 MHz
• Ultra low energy operation:
• 37 µA/MHz in Energy Mode 0 (EM0)
• 1.30 µA EM2 Deep Sleep current
• CAN 2.0 Bus Controller
• Low energy analog peripherals: ADC,
DAC, OPAMP, Comparator, Segment
LCD
• Hardware cryptographic engine supports
AES, ECC, SHA, and TRNG
• Robust capacitive touch sense
• Smart energy meters
• Industrial and factory automation
• Home automation and security
• Entry-level wearables
• Personal medical devices
• IoT devices
Core / Memory
Clock Management
ARM CortexTM M0+ processor with
MPU
High Frequency
Crystal Oscillator
High Frequency
RC Oscillator
PLL
Auxiliary High
Freq. RC Osc.
Flash Program
Memory
Debug Interface
w/ MTB
Ultra Low Freq.
RC Oscillator
RAM Memory
LDMA
Controller
Low Frequency
Crystal Oscillator
Low Frequency
RC Oscillator
• Footprint compatible with select EFM32
packages
• 5 V tolerant I/O
Energy Management
Voltage
Regulator
Voltage/Temp
Monitor
DC-DC
Converter
Power-On Reset
Brown-Out
Detector
Backup Domain
Other
CRYPTO
CRC
True Random
Number Generator
SMU
32-bit bus
Peripheral Reflex System
Serial Interfaces
I/O Ports
USART
UART
CAN
Low Energy
UARTTM
I2C
External
Interrupts
General
Purpose I/O
Pin Reset
Pin Wakeup
Timers and Triggers
Analog Interfaces
Timer/Counter
Low Energy
Sensor IF
Low Energy LCD
Controller
ADC
Low Energy Timer
Pulse Counter
VDAC
Operational
Amplifier
Watchdog Timer
Real Time Counter
and Calendar
Analog
Comparator
Capacitive
Sensing
CRYOTIMER
Lowest power mode with peripheral operational:
EM0 - Active
EM1 - Sleep
silabs.com | Building a more connected world.
EM2 – Deep Sleep
EM3 - Stop
EM4H - Hibernate
EM4S - Shutoff
Rev. 1.0
EFM32TG11 Family Data Sheet
Feature List
1. Feature List
The EFM32TG11 highlighted features are listed below.
• ARM Cortex-M0+ CPU platform
• High performance 32-bit processor @ up to 48 MHz
• Memory Protection Unit
• Wake-up Interrupt Controller
• Flexible Energy Management System
• 37 μA/MHz in Active Mode (EM0)
• 1.30 μA EM2 Deep Sleep current (8 kB RAM retention and
RTCC running from LFRCO)
• Integrated DC-DC buck converter
• Backup Power Domain
• RTCC and retention registers in a separate power domain,
available in all energy modes
• Operation from backup battery when main power absent/
insufficient
• Up to 128 kB flash program memory
• Up to 32 kB RAM data memory
• Communication Interfaces
• CAN Bus Controller
• Version 2.0A and 2.0B up to 1 Mbps
• 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
• Triple buffered full/half-duplex operation with flow control
• Ultra high speed (24 MHz) operation on one instance
• 1 × Universal Asynchronous Receiver/ Transmitter
• 1 × Low Energy UART
• Autonomous operation with DMA in Deep Sleep Mode
• 2 × I2C Interface with SMBus support
• Address recognition in EM3 Stop Mode
silabs.com | Building a more connected world.
• Up to 67 General Purpose I/O Pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
• Configurable peripheral I/O locations
• 5 V tolerance on select pins
• Asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• Up to 8 Channel DMA Controller
• Up to 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• Hardware Cryptography
• AES 128/256-bit keys
• ECC B/K163, B/K233, P192, P224, P256
• SHA-1 and SHA-2 (SHA-224 and SHA-256)
• True Random Number Generator (TRNG)
• Hardware CRC engine
• Single-cycle computation with 8/16/32-bit data and 16-bit
(programmable)/32-bit (fixed) polynomial
• Security Management Unit (SMU)
• Fine-grained access control for on-chip peripherals
• Integrated Low-energy LCD Controller with up to 8 × 32
segments
• Voltage boost, contrast and autonomous animation
• Patented low-energy LCD driver
• Ultra Low-Power Precision Analog Peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
• On-chip temperature sensor
• 2 × 12-bit 500 ksamples/s Digital to Analog Converter
(VDAC)
• Up to 2 × Analog Comparator (ACMP)
• Up to 4 × Operational Amplifier (OPAMP)
• Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch (CSEN)
• Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
• Supply Voltage Monitor
Rev. 1.0 | 2
EFM32TG11 Family Data Sheet
Feature List
• Timers/Counters
• 2 × 16-bit Timer/Counter
• 3 or 4 Compare/Capture/PWM channels (4 + 4 on one
timer instance)
• Dead-Time Insertion on one timer instance
• 2 × 32-bit Timer/Counter
• 32-bit Real Time Counter and Calendar (RTCC)
• 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup
from any Energy Mode
• 16-bit Low Energy Timer for waveform generation
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator
• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sensors and
capacitive buttons
• Up to 16 inputs
• Ultra efficient Power-on Reset and Brown-Out Detector
• Debug Interface
• 2-pin Serial Wire Debug interface
• 4-pin JTAG interface
• Micro Trace Buffer (MTB)
silabs.com | Building a more connected world.
• Pre-Programmed UART Bootloader
• Wide Operating Range
• 1.8 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• Standard (-40 °C to 85 °C TA) and Extended (-40 °C to 125
°C TJ) temperature grades available
• Packages
• QFN32 (5x5 mm)
• TQFP48 (7x7 mm)
• QFN64 (9x9 mm)
• TQFP64 (10x10 mm)
• QFN80 (9x9 mm)
• TQFP80 (12x12 mm)
Rev. 1.0 | 3
EFM32TG11 Family Data Sheet
Ordering Information
2. Ordering Information
Table 2.1. Ordering Information
Flash
(kB)
RAM
(kB)
DC-DC
Converter
LCD
GPIO
Package
Temp Range
EFM32TG11B520F128GM80-B
128
32
Yes
Yes
67
QFN80
-40 to +85°C
EFM32TG11B520F128GQ80-B
128
32
Yes
Yes
63
QFP80
-40 to +85°C
EFM32TG11B520F128IM80-B
128
32
Yes
Yes
67
QFN80
-40 to +125°C
EFM32TG11B520F128IQ80-B
128
32
Yes
Yes
63
QFP80
-40 to +125°C
EFM32TG11B540F64GM80-B
64
32
Yes
Yes
67
QFN80
-40 to +85°C
EFM32TG11B540F64GQ80-B
64
32
Yes
Yes
63
QFP80
-40 to +85°C
EFM32TG11B540F64IM80-B
64
32
Yes
Yes
67
QFN80
-40 to +125°C
EFM32TG11B540F64IQ80-B
64
32
Yes
Yes
63
QFP80
-40 to +125°C
EFM32TG11B520F128GM64-B
128
32
Yes
Yes
53
QFN64
-40 to +85°C
EFM32TG11B520F128GQ64-B
128
32
Yes
Yes
50
QFP64
-40 to +85°C
EFM32TG11B520F128IM64-B
128
32
Yes
Yes
53
QFN64
-40 to +125°C
EFM32TG11B520F128IQ64-B
128
32
Yes
Yes
50
QFP64
-40 to +125°C
EFM32TG11B540F64GM64-B
64
32
Yes
Yes
53
QFN64
-40 to +85°C
EFM32TG11B540F64GQ64-B
64
32
Yes
Yes
50
QFP64
-40 to +85°C
EFM32TG11B540F64IM64-B
64
32
Yes
Yes
53
QFN64
-40 to +125°C
EFM32TG11B540F64IQ64-B
64
32
Yes
Yes
50
QFP64
-40 to +125°C
EFM32TG11B520F128GQ48-B
128
32
Yes
Yes
34
QFP48
-40 to +85°C
EFM32TG11B520F128IQ48-B
128
32
Yes
Yes
34
QFP48
-40 to +125°C
EFM32TG11B540F64GQ48-B
64
32
Yes
Yes
34
QFP48
-40 to +85°C
EFM32TG11B540F64IQ48-B
64
32
Yes
Yes
34
QFP48
-40 to +125°C
EFM32TG11B520F128GM32-B
128
32
Yes
Yes
22
QFN32
-40 to +85°C
EFM32TG11B520F128IM32-B
128
32
Yes
Yes
22
QFN32
-40 to +125°C
EFM32TG11B540F64GM32-B
64
32
Yes
Yes
22
QFN32
-40 to +85°C
EFM32TG11B540F64IM32-B
64
32
Yes
Yes
22
QFN32
-40 to +125°C
EFM32TG11B320F128GM64-B
128
32
No
Yes
56
QFN64
-40 to +85°C
EFM32TG11B320F128GQ64-B
128
32
No
Yes
53
QFP64
-40 to +85°C
EFM32TG11B320F128IM64-B
128
32
No
Yes
56
QFN64
-40 to +125°C
EFM32TG11B320F128IQ64-B
128
32
No
Yes
53
QFP64
-40 to +125°C
EFM32TG11B340F64GM64-B
64
32
No
Yes
56
QFN64
-40 to +85°C
EFM32TG11B340F64GQ64-B
64
32
No
Yes
53
QFP64
-40 to +85°C
EFM32TG11B340F64IM64-B
64
32
No
Yes
56
QFN64
-40 to +125°C
EFM32TG11B340F64IQ64-B
64
32
No
Yes
53
QFP64
-40 to +125°C
Ordering Code
silabs.com | Building a more connected world.
Rev. 1.0 | 4
EFM32TG11 Family Data Sheet
Ordering Information
Flash
(kB)
RAM
(kB)
DC-DC
Converter
LCD
GPIO
Package
Temp Range
EFM32TG11B320F128GQ48-B
128
32
No
Yes
37
QFP48
-40 to +85°C
EFM32TG11B320F128IQ48-B
128
32
No
Yes
37
QFP48
-40 to +125°C
EFM32TG11B340F64GQ48-B
64
32
No
Yes
37
QFP48
-40 to +85°C
EFM32TG11B340F64IQ48-B
64
32
No
Yes
37
QFP48
-40 to +125°C
EFM32TG11B120F128GM64-B
128
32
No
No
56
QFN64
-40 to +85°C
EFM32TG11B120F128GQ64-B
128
32
No
No
53
QFP64
-40 to +85°C
EFM32TG11B120F128IM64-B
128
32
No
No
56
QFN64
-40 to +125°C
EFM32TG11B120F128IQ64-B
128
32
No
No
53
QFP64
-40 to +125°C
EFM32TG11B140F64GM64-B
64
32
No
No
56
QFN64
-40 to +85°C
EFM32TG11B140F64GQ64-B
64
32
No
No
53
QFP64
-40 to +85°C
EFM32TG11B140F64IM64-B
64
32
No
No
56
QFN64
-40 to +125°C
EFM32TG11B140F64IQ64-B
64
32
No
No
53
QFP64
-40 to +125°C
EFM32TG11B120F128GQ48-B
128
32
No
No
37
QFP48
-40 to +85°C
EFM32TG11B120F128IQ48-B
128
32
No
No
37
QFP48
-40 to +125°C
EFM32TG11B140F64GQ48-B
64
32
No
No
37
QFP48
-40 to +85°C
EFM32TG11B140F64IQ48-B
64
32
No
No
37
QFP48
-40 to +125°C
EFM32TG11B120F128GM32-B
128
32
No
No
24
QFN32
-40 to +85°C
EFM32TG11B120F128IM32-B
128
32
No
No
24
QFN32
-40 to +125°C
EFM32TG11B140F64GM32-B
64
32
No
No
24
QFN32
-40 to +85°C
EFM32TG11B140F64IM32-B
64
32
No
No
24
QFN32
-40 to +125°C
Ordering Code
silabs.com | Building a more connected world.
Rev. 1.0 | 5
EFM32TG11 Family Data Sheet
Ordering Information
EFM32 T G 1 1 B 520 F 128 G M 80 – A R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), Q (QFP)
Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code
Performance Grade – B (Basic)
Device Configuration
Series
Gecko
Family – T (Tiny)
Energy Friendly Microcontroller 32-bit
Figure 2.1. Ordering Code Key
silabs.com | Building a more connected world.
Rev. 1.0 | 6
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Introduction .
.
.
.
.
.
.
.
10
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
3.2 Power . . . . . . . . . . .
3.2.1 Energy Management Unit (EMU)
3.2.2 DC-DC Converter . . . . .
3.2.3 EM2 and EM3 Power Domains .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.11
.11
3.3 General Purpose Input/Output (GPIO) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
3.4 Clocking . . . . . . . . . .
3.4.1 Clock Management Unit (CMU) .
3.4.2 Internal and External Oscillators.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.12
.12
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.12
.12
.12
.13
.13
.13
.13
3.6 Communications and Other Digital Peripherals . . . . . . . . . .
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.6.2 Universal Asynchronous Receiver/Transmitter (UART) . . . . . .
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.6.4 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.6.5 Controller Area Network (CAN) . . . . . . . . . . . . . .
3.6.6 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.6.7 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
.13
.13
.13
.13
.14
.14
.14
3.7 Security Features . . . . . . . . . . . . . .
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)
3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . .
3.7.3 True Random Number Generator (TRNG) . . . .
3.7.4 Security Management Unit (SMU) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
.14
.14
.14
3.8 Analog. . . . . . . . . . . .
3.8.1 Analog Port (APORT) . . . . .
3.8.2 Analog Comparator (ACMP) . . .
3.8.3 Analog to Digital Converter (ADC) .
3.8.4 Capacitive Sense (CSEN) . . . .
3.8.5 Digital to Analog Converter (VDAC)
3.8.6 Operational Amplifiers . . . . .
3.8.7 Liquid Crystal Display Driver (LCD).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
.15
.15
.15
.15
.15
.15
3.9 Reset Management Unit (RMU) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
.
.
.
3.5 Counters/Timers and PWM . . . . . . . . .
3.5.1 Timer/Counter (TIMER) . . . . . . . .
3.5.2 Wide Timer/Counter (WTIMER) . . . . . .
3.5.3 Real Time Counter and Calendar (RTCC) . .
3.5.4 Low Energy Timer (LETIMER) . . . . . .
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.5.6 Pulse Counter (PCNT) . . . . . . . . .
3.5.7 Watchdog Timer (WDOG) . . . . . . . .
silabs.com | Building a more connected world.
.
.
Rev. 1.0 | 7
3.10 Core and Memory . . . . . . . . . . . .
3.10.1 Processor Core . . . . . . . . . . . .
3.10.2 Memory System Controller (MSC) . . . . .
3.10.3 Linked Direct Memory Access Controller (LDMA)
3.10.4 Bootloader . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.16
.16
.16
.16
.16
3.11 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.17
3.12 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
4. Electrical Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Electrical Characteristics . . . . .
4.1.1 Absolute Maximum Ratings . . .
4.1.2 Operating Conditions . . . . .
4.1.3 Thermal Characteristics . . . .
4.1.4 DC-DC Converter . . . . . .
4.1.5 Backup Supply Domain . . . .
4.1.6 Current Consumption . . . . .
4.1.7 Wake Up Times . . . . . . .
4.1.8 Brown Out Detector (BOD) . . .
4.1.9 Oscillators . . . . . . . . .
4.1.10 Flash Memory Characteristics . .
4.1.11 General-Purpose I/O (GPIO) . .
4.1.12 Voltage Monitor (VMON) . . . .
4.1.13 Analog to Digital Converter (ADC)
4.1.14 Analog Comparator (ACMP) . .
4.1.15 Digital to Analog Converter (VDAC)
4.1.16 Capacitive Sense (CSEN) . . .
4.1.17 Operational Amplifier (OPAMP) .
4.1.18 LCD Driver . . . . . . . .
4.1.19 Pulse Counter (PCNT) . . . .
4.1.20 Analog Port (APORT) . . . . .
4.1.21 I2C . . . . . . . . . . .
4.1.22 USART SPI . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.19
.19
.20
.22
.23
.25
.26
.33
.34
.35
.41
.42
.44
.45
.47
.50
.53
.55
.58
.59
.59
.60
.63
4.2 Typical Performance Curves .
4.2.1 Supply Current . . . .
4.2.2 DC-DC Converter . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
.65
.70
.
.
.
.
.
.
.
.
.
5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 EFM32TG11B5xx in QFP80 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.72
5.2 EFM32TG11B5xx in QFN80 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.75
5.3 EFM32TG11B5xx in QFP64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.78
5.4 EFM32TG11B3xx in QFP64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.80
5.5 EFM32TG11B1xx in QFP64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.82
5.6 EFM32TG11B5xx in QFN64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.84
5.7 EFM32TG11B3xx in QFN64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.86
5.8 EFM32TG11B1xx in QFN64 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.88
silabs.com | Building a more connected world.
Rev. 1.0 | 8
5.9 EFM32TG11B5xx in QFP48 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.90
5.10 EFM32TG11B3xx in QFP48 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.92
5.11 EFM32TG11B1xx in QFP48 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.94
5.12 EFM32TG11B5xx in QFN32 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.96
5.13 EFM32TG11B1xx in QFN32 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.98
5.14 GPIO Functionality Table
.
.
.
.
.
5.15 Alternate Functionality Overview
.
.
5.16 Analog Port (APORT) Client Maps .
6. TQFP80 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 100
.
.
. 104
.
.
. 115
. . . . . . . . . . . . . . . . . . . . . . .125
6.1 TQFP80 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 125
6.2 TQFP80 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 127
.
6.3 TQFP80 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 128
7. QFN80 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 129
7.1 QFN80 Package Dimensions
7.2 QFN80 PCB Land Pattern
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 129
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.131
.
7.3 QFN80 Package Marking
.
.
.
8. TQFP64 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.133
. . . . . . . . . . . . . . . . . . . . . . .134
8.1 TQFP64 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 134
8.2 TQFP64 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 136
.
8.3 TQFP64 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 137
9. QFN64 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 138
9.1 QFN64 Package Dimensions
9.2 QFN64 PCB Land Pattern
9.3 QFN64 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 138
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.140
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.142
10. TQFP48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 143
10.1 TQFP48 Package Dimensions
10.2 TQFP48 PCB Land Pattern
.
10.3 TQFP48 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.143
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.145
.
11. QFN32 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1. 46
. . . . . . . . . . . . . . . . . . . . . . .147
11.1 QFN32 Package Dimensions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 147
11.2 QFN32 PCB Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 149
11.3 QFN32 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 151
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
silabs.com | Building a more connected world.
Rev. 1.0 | 9
EFM32TG11 Family Data Sheet
System Overview
3. System Overview
3.1 Introduction
The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description
can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet
or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document.
A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features,
consult Ordering Information.
Energy Management
Port I/O Configuration
Voltage
Monitor
DVDD
Digital Peripherals
bypass
Voltage
Regulator
DECOUPLE
BU_VIN
Backup Domain
Debug Signals
(shared w/GPIO)
Brown Out /
Power-On
Reset
ARM Cortex-M0+ Core
Reset
Management
Unit
Up to 32 KB RAM
Memory Protection Unit
Serial Wire
Debug /
Programming
Security Management
LDMA Controller
Clock Management
ULFRCO
AUXHFRCO
LFXTAL_P
HFXTAL_N
I2C
RTCC
CRC
CRYPTO
LESENSE
LFRCO
LFXO
HFRCO + DPLL
HFXO
Port A
Drivers
PAn
Port B
Drivers
PBn
Port C
Drivers
PCn
Port D
Drivers
PDn
Port E
Drivers
PEn
Port F
Drivers
PFn
TRNG
Up to 128 KB ISP Flash
Program Memory
Watchdog
Timer
LFXTAL_N
HFXTAL_P
LEUART
PCNT
A A
H P
B B
Analog Peripherals
VDAC
Internal
Reference
12-bit ADC
Mux & FB
RESETn
To
BU_STAT
BU_VOUT GPIO
CRYOTIMER
Input Mux
VREGSW
DC-DC
Converter
CAN
USART / UART
+
-
VREGVDD
LETIMER
TIMER / WTIMER
Op-Amp
Digital Port Mapper
AVDD
IOVDD0
Analog Port (APORT)
IOVDD0
VDD
Temp
Sense
Capacitive
Touch
+
Analog Comparator
Low-Energy LCD, up to 8x32
configuration
Figure 3.1. Detailed EFM32TG11 Block Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 10
EFM32TG11 Family Data Sheet
System Overview
3.2 Power
The EFM32TG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only
a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator
can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
The EFM32TG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.
AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.2.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has
fallen below a chosen threshold.
3.2.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable
current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input
voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a
low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.2.3 EM2 and EM3 Power Domains
The EFM32TG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and
can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3
Peripheral Power Subdomains on page 11. If all of the peripherals in a peripheral power domain are unused, the power domain for
that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and
EM3.
Table 3.1. EM2 and EM3 Peripheral Power Subdomains
Peripheral Power Domain 1
Peripheral Power Domain 2
ACMP0
ACMP1
PCNT0
CSEN
ADC0
VDAC0
LETIMER0
LEUART0
LESENSE
I2C0
APORT
I2C1
-
IDAC
-
LCD
silabs.com | Building a more connected world.
Rev. 1.0 | 11
EFM32TG11 Family Data Sheet
System Overview
3.3 General Purpose Input/Output (GPIO)
EFM32TG11 has up to 67 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or
input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.
3.4 Clocking
3.4.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFM32TG11. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows
software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.
3.4.2 Internal and External Oscillators
The EFM32TG11 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 48 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal
energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve
higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
3.5 Counters/Timers and PWM
3.5.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.5.2 Wide Timer/Counter (WTIMER)
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.
3.5.3 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.
silabs.com | Building a more connected world.
Rev. 1.0 | 12
EFM32TG11 Family Data Sheet
System Overview
3.5.4 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.5.6 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep,
EM2 Deep Sleep, and EM3 Stop.
3.5.7 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.6 Communications and Other Digital Peripherals
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
3.6.2 Universal Asynchronous Receiver/Transmitter (UART)
The Universal Asynchronous Receiver/Transmitter is a subset of the USART peripheral, supporting full duplex asynchronous UART
communication with hardware flow control and RS-485.
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.6.4 Inter-Integrated Circuit Interface (I2C)
The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave
and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates
from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system.
The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated
transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
silabs.com | Building a more connected world.
Rev. 1.0 | 13
EFM32TG11 Family Data Sheet
System Overview
3.6.5 Controller Area Network (CAN)
The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32
message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in
order to support Time Triggered CAN applications.
3.6.6 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in
turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied
by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.6.7 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy
budget.
3.7 Security Features
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.7.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Tiny Gecko Series 1
devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2
(SHA-224 and SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.7.3 True Random Number Generator (TRNG)
The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22
and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).
3.7.4 Security Management Unit (SMU)
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and
can optionally generate an interrupt.
3.8 Analog
3.8.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
silabs.com | Building a more connected world.
Rev. 1.0 | 14
EFM32TG11 Family Data Sheet
System Overview
3.8.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
3.8.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.8.4 Capacitive Sense (CSEN)
The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a
switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in
adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin
or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the
combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.
3.8.5 Digital to Analog Converter (VDAC)
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any
CPU intervention. The VDAC is available in all energy modes down to and including EM3.
3.8.6 Operational Amplifiers
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to
rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB
space, and cost as compared with standalone opamps because they are integrated on-chip.
3.8.7 Liquid Crystal Display Driver (LCD)
The LCD driver is capable of driving a segmented LCD display with up to 8x32 segments. A voltage boost function enables it to provide
the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD
peripheral supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any
CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can
wake-up the device on a regular basis for updating data.
3.9 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFM32TG11. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
silabs.com | Building a more connected world.
Rev. 1.0 | 15
EFM32TG11 Family Data Sheet
System Overview
3.10 Core and Memory
3.10.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M0+ RISC processor
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Micro-Trace Buffer (MTB)
• Up to 128 kB flash program memory
• Up to 32 kB RAM data memory
• Configuration and event handling of all peripherals
• 2-pin Serial-Wire debug interface
3.10.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.10.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
3.10.4 Bootloader
All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More
information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the
Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area.
silabs.com | Building a more connected world.
Rev. 1.0 | 16
EFM32TG11 Family Data Sheet
System Overview
3.11 Memory Map
The EFM32TG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFM32TG11 Memory Map — Core Peripherals and Code Space
silabs.com | Building a more connected world.
Rev. 1.0 | 17
EFM32TG11 Family Data Sheet
System Overview
Figure 3.3. EFM32TG11 Memory Map — Peripherals
3.12 Configuration Summary
The features of the EFM32TG11 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining peripherals support full configuration.
Table 3.2. Configuration Summary
Peripheral
Configuration
Pin Connections
USART0
IrDA, SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
I2S, SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
IrDA, SmartCard, High-Speed
US2_TX, US2_RX, US2_CLK, US2_CS
USART3
I2S, SmartCard
US3_TX, US3_RX, US3_CLK, US3_CS
TIMER0
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
-
TIM1_CC[3:0]
WTIMER0
with DTI
WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1
-
WTIM1_CC[3:0]
silabs.com | Building a more connected world.
Rev. 1.0 | 18
EFM32TG11 Family Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
Test Condition
Min
Typ
Max
Unit
TSTG
-50
—
150
°C
Voltage on any supply pin
VDDMAX
-0.3
—
3.8
V
Voltage ramp rate on any
supply pin
VDDRAMPMAX
—
—
1
V / µs
DC voltage on any GPIO pin
VDIGPIN
5V tolerant GPIO pins1 2 3
-0.3
—
Min of 5.25
and IOVDD
+2
V
LCD pins3
-0.3
—
Min of 3.8
and IOVDD
+2
V
Standard GPIO pins
-0.3
—
IOVDD+0.3
V
Total current into VDD power IVDDMAX
lines
Source
—
—
200
mA
Total current into VSS
ground lines
IVSSMAX
Sink
—
—
200
mA
Current per I/O pin
IIOMAX
Sink
—
—
50
mA
Source
—
—
50
mA
Sink
—
—
200
mA
Source
—
—
200
mA
-G grade devices
-40
—
105
°C
-I grade devices
-40
—
125
°C
Current for all I/O pins
Junction temperature
IIOALLMAX
TJ
Note:
1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD.
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the
maximum IO current specifications.
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.
silabs.com | Building a more connected world.
Rev. 1.0 | 19
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
silabs.com | Building a more connected world.
Rev. 1.0 | 20
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Operating ambient temperature range1
TA
-G temperature grade
-40
25
85
°C
-I temperature grade
-40
25
125
°C
AVDD supply voltage2
VAVDD
1.8
3.3
3.8
V
VREGVDD operating supply
voltage2 3
VVREGVDD
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.8
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.8
3.3
3.8
V
DCDC in bypass, T ≤ 85 °C
—
—
200
mA
DCDC in bypass, T > 85 °C
—
—
100
mA
1.62
—
VVREGVDD
V
1.62
—
VVREGVDD
V
0.75
1.0
2.75
µF
VSCALE2, MODE = WS1
—
—
48
MHz
VSCALE2, MODE = WS0
—
—
25
MHz
VSCALE0, MODE = WS1
—
—
20
MHz
VSCALE0, MODE = WS0
—
—
10
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
48
MHz
VSCALE0
—
—
20
MHz
VREGVDD current
DVDD operating supply voltage
IVREGVDD
VDVDD
IOVDD operating supply volt- VIOVDD
age
DECOUPLE output capacitor5 6
CDECOUPLE
HFCORECLK frequency
fCORE
HFCLK frequency
HFSRCCLK frequency
HFBUSCLK frequency
HFPERCLK frequency
HFPERBCLK frequency
HFPERCCLK frequency
fHFCLK
fHFSRCCLK
fHFBUSCLK
fHFPERCLK
fHFPERBCLK
fHFPERCCLK
silabs.com | Building a more connected world.
All IOVDD pins4
Rev. 1.0 | 21
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal
Characteristics table for TJ and THETAJA.
2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
3. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max.
4. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD.
5. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
6. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70
mA (with a 2.7 µF capacitor).
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Thermal resistance, QFN32
Package
THETAJA_QFN32 4-Layer PCB, Air velocity = 0 m/s
—
25.7
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
23.2
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
21.3
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
44.1
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
43.5
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
42.3
—
°C/W
THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s
—
20.9
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
18.2
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
16.4
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
37.3
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
35.6
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
33.8
—
°C/W
THETAJA_QFN80 4-Layer PCB, Air velocity = 0 m/s
—
20.9
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
18.2
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
16.4
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
49.3
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
44.5
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
42.6
—
°C/W
Thermal resistance, TQFP48 THEPackage
TAJA_TQFP48
Thermal resistance, QFN64
Package
Thermal resistance, TQFP64 THEPackage
TAJA_TQFP64
Thermal resistance, QFN80
Package
Thermal resistance, TQFP80 THEPackage
TAJA_TQFP80
silabs.com | Building a more connected world.
Rev. 1.0 | 22
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3
V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.8
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC accuracy
ACCDC
Regulation window2
WINREG
Steady-state output ripple
VR
Output voltage under/overshoot
VOV
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low Noise (LN) mode, 1.8 V target output
1.7
—
1.9
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA
1.63
—
2.2
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
—
3
—
mVpp
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
25
60
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
45
90
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
40
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
100
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Building a more connected world.
Rev. 1.0 | 23
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive4, T ≤ 85 °C
—
—
200
mA
Low noise (LN) mode, Heavy
Drive4, T > 85 °C
—
—
100
mA
Low noise (LN) mode, Medium
Drive4
—
—
100
mA
Low noise (LN) mode, Light
Drive4
—
—
50
mA
Low power (LP) mode,
LPCMPBIASEMxx3 = 0
—
—
75
µA
Low power (LP) mode,
LPCMPBIASEMxx3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
4.7
4.7
µF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
µH
—
1.2
2.5
Ω
DCDC nominal output capacitor5
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD.
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the
EMU_DCDCLOEM01CFG register, depending on the energy mode.
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL
must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details.
silabs.com | Building a more connected world.
Rev. 1.0 | 24
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.5 Backup Supply Domain
Table 4.5. Backup Supply Domain
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1.8
—
3.8
V
EMU_BUCTRL_PWRRES =
RES0
3400
3900
4400
Ω
EMU_BUCTRL_PWRRES =
RES1
1450
1800
2150
Ω
EMU_BUCTRL_PWRRES =
RES2
1000
1330
1700
Ω
EMU_BUCTRL_PWRRES =
RES3
525
815
1100
Ω
EMU_BUCTRL_VOUTRES =
STRONG
35
110
185
Ω
EMU_BUCTRL_VOUTRES =
MED
475
775
1075
Ω
EMU_BUCTRL_VOUTRES =
WEAK
5600
6500
7400
Ω
BU_VIN not powering backup domain, 25 °C
—
10
100
nA
BU_VIN powering backup domain, 25 °C 2
—
450
2500
nA
Backup supply voltage range VBU_VIN
PWRRES resistor
Output impedance between
BU_VIN and BU_VOUT 1
Supply current
RPWRRES
RBU_VOUT
IBU_VIN
Note:
1. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability.
2. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup
regulator. Does not include supply current required for backed-up circuitry.
silabs.com | Building a more connected world.
Rev. 1.0 | 25
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.6 Current Consumption
4.1.6.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.6. Current Consumption 3.3 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
48 MHz crystal, CPU running
while loop from flash
—
45
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
44
50
µA/MHz
48 MHz HFRCO, CPU running
Prime from flash
—
57
—
µA/MHz
48 MHz HFRCO, CPU running
CoreMark loop from flash
—
71
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
45
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
46
52
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
50
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
161
240
µA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
41
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
145
—
µA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
48 MHz crystal
—
34
—
µA/MHz
48 MHz HFRCO
—
33
36
µA/MHz
32 MHz HFRCO
—
34
—
µA/MHz
26 MHz HFRCO
—
35
40
µA/MHz
16 MHz HFRCO
—
39
—
µA/MHz
1 MHz HFRCO
—
150
210
µA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
32
—
µA/MHz
1 MHz HFRCO
—
136
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 32 kB RAM retention and
RTCC running from LFXO
—
1.48
—
µA
Full 32 kB RAM retention and
RTCC running from LFRCO
—
1.86
—
µA
8 kB (1 bank) RAM retention and
RTCC running from LFRCO1
—
1.59
2.8
µA
Full 32 kB RAM retention and
CRYOTIMER running from ULFRCO
—
1.23
2.5
µA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 26
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS
128 byte RAM retention, RTCC
running from LFXO
—
0.82
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.45
—
µA
128 byte RAM retention, no RTCC
—
0.45
1
µA
Current consumption in
EM4S mode
IEM4S
No RAM retention, no RTCC
—
0.07
0.1
µA
Current consumption of peripheral power domain 1,
with voltage scaling enabled
IPD1_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled2
—
0.18
—
µA
Current consumption of peripheral power domain 2,
with voltage scaling enabled
IPD2_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled2
—
0.18
—
µA
Note:
1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
silabs.com | Building a more connected world.
Rev. 1.0 | 27
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.6.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C.
Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.7. Current Consumption 3.3 V using DC-DC Converter
Parameter
Symbol
Current consumption in EM0 IACTIVE_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode1
Current consumption in EM0 IACTIVE_CCM
mode with all peripherals disabled, DCDC in Low Noise
CCM mode2
Current consumption in EM0 IACTIVE_LPM
mode with all peripherals disabled, DCDC in LP mode3
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
48 MHz crystal, CPU running
while loop from flash
—
38
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
37
—
µA/MHz
48 MHz HFRCO, CPU running
Prime from flash
—
45
—
µA/MHz
48 MHz HFRCO, CPU running
CoreMark loop from flash
—
53
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
43
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
47
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
61
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
587
—
µA/MHz
48 MHz crystal, CPU running
while loop from flash
—
49
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
48
—
µA/MHz
48 MHz HFRCO, CPU running
Prime from flash
—
55
—
µA/MHz
48 MHz HFRCO, CPU running
CoreMark loop from flash
—
63
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
60
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
68
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
96
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1157
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
32
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
33
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
36
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
156
—
µA/MHz
Rev. 1.0 | 28
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in EM0 IACTIVE_CCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise CCM mode2
19 MHz HFRCO, CPU running
while loop from flash
—
81
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1147
—
µA/MHz
Current consumption in EM0 IACTIVE_LPM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in LP mode3
19 MHz HFRCO, CPU running
while loop from flash
—
30
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
144
—
µA/MHz
Current consumption in EM1 IEM1_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode1
48 MHz crystal
—
31
—
µA/MHz
48 MHz HFRCO
—
30
—
µA/MHz
32 MHz HFRCO
—
36
—
µA/MHz
26 MHz HFRCO
—
41
—
µA/MHz
16 MHz HFRCO
—
54
—
µA/MHz
1 MHz HFRCO
—
581
—
µA/MHz
32 MHz HFRCO
—
25
—
µA/MHz
26 MHz HFRCO
—
26
—
µA/MHz
16 MHz HFRCO
—
29
—
µA/MHz
1 MHz HFRCO
—
153
—
µA/MHz
Current consumption in EM1 IEM1_DCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise DCM mode1
19 MHz HFRCO
—
46
—
µA/MHz
1 MHz HFRCO
—
573
—
µA/MHz
Current consumption in EM1 IEM1_LPM_VS
mode with all peripherals disabled and voltage scaling
enabled. DCDC in LP mode3
19 MHz HFRCO
—
25
—
µA/MHz
1 MHz HFRCO
—
140
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled, DCDC in LP mode3
Full 32 kB RAM retention and
RTCC running from LFXO
—
1.26
—
µA
Full 32 kB RAM retention and
RTCC running from LFRCO
—
1.54
—
µA
8 kB (1 bank) RAM retention and
RTCC running from LFRCO4
—
1.30
—
µA
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Full 32 kB RAM retention and
CRYOTIMER running from ULFRCO
—
0.93
—
µA
Current consumption in
EM4H mode, with voltage
scaling enabled
128 byte RAM retention, RTCC
running from LFXO
—
0.78
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.50
—
µA
128 byte RAM retention, no RTCC
—
0.50
—
µA
No RAM retention, no RTCC
—
0.06
—
µA
Current consumption in EM1 IEM1_LPM
mode with all peripherals disabled, DCDC in Low Power
mode3
Current consumption in
EM4S mode
IEM4H_VS
IEM4S
silabs.com | Building a more connected world.
Rev. 1.0 | 29
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption of peIPD1_VS
ripheral power domain 1,
with voltage scaling enabled,
DCDC in LP mode3
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled5
—
0.18
—
µA
Current consumption of peIPD2_VS
ripheral power domain 2,
with voltage scaling enabled,
DCDC in LP mode3
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled5
—
0.18
—
µA
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
2. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
3. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.
4. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
5. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
silabs.com | Building a more connected world.
Rev. 1.0 | 30
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.6.3 Current Consumption 1.8 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.8. Current Consumption 1.8 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
48 MHz crystal, CPU running
while loop from flash
—
45
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
44
—
µA/MHz
48 MHz HFRCO, CPU running
Prime from flash
—
57
—
µA/MHz
48 MHz HFRCO, CPU running
CoreMark loop from flash
—
71
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
45
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
46
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
49
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
158
—
µA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
41
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
142
—
µA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
48 MHz crystal
—
34
—
µA/MHz
48 MHz HFRCO
—
33
—
µA/MHz
32 MHz HFRCO
—
34
—
µA/MHz
26 MHz HFRCO
—
35
—
µA/MHz
16 MHz HFRCO
—
39
—
µA/MHz
1 MHz HFRCO
—
147
—
µA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
32
—
µA/MHz
1 MHz HFRCO
—
133
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 32 kB RAM retention and
RTCC running from LFXO
—
1.39
—
µA
Full 32 kB RAM retention and
RTCC running from LFRCO
—
1.63
—
µA
8 kB (1 bank) RAM retention and
RTCC running from LFRCO1
—
1.37
—
µA
Full 32 kB RAM retention and
CRYOTIMER running from ULFRCO
—
1.10
—
µA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 31
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS
128 byte RAM retention, RTCC
running from LFXO
—
0.75
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.37
—
µA
128 byte RAM retention, no RTCC
—
0.37
—
µA
Current consumption in
EM4S mode
IEM4S
No RAM retention, no RTCC
—
0.05
—
µA
Current consumption of peripheral power domain 1,
with voltage scaling enabled
IPD1_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled2
—
0.18
—
µA
Current consumption of peripheral power domain 2,
with voltage scaling enabled
IPD2_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled2
—
0.18
—
µA
Note:
1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
silabs.com | Building a more connected world.
Rev. 1.0 | 32
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.7 Wake Up Times
Table 4.9. Wake Up Times
Parameter
Symbol
Wake up time from EM1
tEM1_WU
Wake up from EM2
tEM2_WU
Wake up from EM3
tEM3_WU
Test Condition
Min
Typ
Max
Unit
—
3
—
AHB
Clocks
Code execution from flash
—
10.1
—
µs
Code execution from RAM
—
3.1
—
µs
Code execution from flash
—
10.1
—
µs
Code execution from RAM
—
3.1
—
µs
Wake up from EM4H1
tEM4H_WU
Executing from flash
—
88
—
µs
Wake up from EM4S1
tEM4S_WU
Executing from flash
—
282
—
µs
Time from release of reset
source to first instruction execution
tRESET
Soft Pin Reset released
—
50
—
µs
Any other reset released
—
352
—
µs
Power mode scaling time
tSCALE
VSCALE0 to VSCALE2, HFCLK =
19 MHz2 3
—
31.8
—
µs
VSCALE2 to VSCALE0, HFCLK =
19 MHz4
—
4.3
—
µs
Note:
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.
2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.
3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA
(with a 2.7 µF capacitor).
4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.
silabs.com | Building a more connected world.
Rev. 1.0 | 33
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.8 Brown Out Detector (BOD)
Table 4.10. Brown Out Detector (BOD)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DVDD BOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling (EM0/EM1)
1.35
—
—
V
DVDD falling (EM2/EM3)
1.3
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
18
—
mV
DVDD BOD response time
tDVDDBOD_DELAY Supply drops at 0.1V/µs rate
—
2.4
—
µs
AVDD BOD threshold
VAVDDBOD
—
—
1.8
V
AVDD falling (EM0/EM1)
1.62
—
—
V
AVDD falling (EM2/EM3)
1.53
—
—
V
AVDD rising
AVDD BOD hysteresis
VAVDDBOD_HYST
—
20
—
mV
AVDD BOD response time
tAVDDBOD_DELAY Supply drops at 0.1V/µs rate
—
2.4
—
µs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
25
—
mV
—
300
—
µs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 BOD response time
tEM4BOD_DELAY
silabs.com | Building a more connected world.
Supply drops at 0.1V/µs rate
Rev. 1.0 | 34
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.9 Oscillators
4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)
Table 4.11. Low-Frequency Crystal Oscillator (LFXO)
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4. In CMU_LFXOCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 35
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.9.2 High-Frequency Crystal Oscillator (HFXO)
Table 4.12. High-Frequency Crystal Oscillator (HFXO)
Parameter
Symbol
Test Condition
Crystal frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Nominal on-chip tuning cap
range1
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Current consumption after
startup
IHFXO
Min
Typ
Max
Unit
No clock doubling
4
—
48
MHz
48 MHz crystal
—
—
50
Ω
24 MHz crystal
—
—
150
Ω
4 MHz crystal
—
—
180
Ω
On each of HFXTAL_N and
HFXTAL_P pins
8.7
—
51.7
pF
—
0.084
—
pF
48 MHz crystal, ESR = 50 Ohm,
CL = 8 pF
—
350
—
µs
24 MHz crystal, ESR = 150 Ohm,
CL = 6 pF
—
700
—
µs
4 MHz crystal, ESR = 180 Ohm,
CL = 18 pF
—
3
—
ms
48 MHz crystal
—
480
—
µA
24 MHz crystal
—
240
—
µA
4 MHz crystal
—
50
—
µA
Note:
1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
silabs.com | Building a more connected world.
Rev. 1.0 | 36
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.9.3 Low-Frequency RC Oscillator (LFRCO)
Table 4.13. Low-Frequency RC Oscillator (LFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF1 = 1, T ≤ 85 °C
31.3
32.768
33.6
kHz
ENVREF1 = 1, T > 85 °C
31
32.768
36.8
kHz
ENVREF1 = 0, T ≤ 85 °C
31.3
32.768
33.4
kHz
ENVREF1 = 0, T > 85 °C
30
32.768
33.6
kHz
—
500
—
µs
ENVREF = 1 in
CMU_LFRCOCTRL
—
370
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
520
—
nA
Startup time
tLFRCO
Current consumption 2
ILFRCO
Note:
1. In CMU_LFRCOCTRL register.
2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 37
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.9.4 High-Frequency RC Oscillator (HFRCO)
Table 4.14. High-Frequency RC Oscillator (HFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency accuracy
fHFRCO_ACC
At production calibrated frequencies, across supply voltage and
temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
µs
fHFRCO ≤ 4 MHz
—
2.5
—
µs
Maximum DPLL lock time1
tDPLL_LOCK
fREF = 32.768 kHz, fHFRCO =
39.98 MHz, N = 1219, M = 0
—
183
—
µs
Current consumption on all
supplies
IHFRCO
fHFRCO = 48 MHz
—
258
320
µA
fHFRCO = 38 MHz
—
218
280
µA
fHFRCO = 32 MHz
—
182
220
µA
fHFRCO = 26 MHz
—
156
200
µA
fHFRCO = 19 MHz
—
130
160
µA
fHFRCO = 16 MHz
—
112
130
µA
fHFRCO = 13 MHz
—
101
120
µA
fHFRCO = 7 MHz
—
80
100
µA
fHFRCO = 4 MHz
—
29
45
µA
fHFRCO = 2 MHz
—
26
40
µA
fHFRCO = 1 MHz
—
24
35
µA
fHFRCO = 40 MHz, DPLL enabled
—
393
450
µA
fHFRCO = 32 MHz, DPLL enabled
—
313
350
µA
fHFRCO = 16 MHz, DPLL enabled
—
180
220
µA
fHFRCO = 4 MHz, DPLL enabled
—
46
60
µA
fHFRCO = 1 MHz, DPLL enabled
—
33
45
µA
—
0.8
—
%
Coarse trim step size (% of
period)
SSHFRCO_COARS
E
Fine trim step size (% of period)
SSHFRCO_FINE
—
0.1
—
%
Period jitter
PJHFRCO
—
0.2
—
% RMS
silabs.com | Building a more connected world.
Rev. 1.0 | 38
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency limits
fHFRCO_BAND
FREQRANGE = 0, FINETUNINGEN = 0
2
—
8
MHz
FREQRANGE = 3, FINETUNINGEN = 0
4
—
14
MHz
FREQRANGE = 6, FINETUNINGEN = 0
9
—
21
MHz
FREQRANGE = 7, FINETUNINGEN = 0
10
—
27
MHz
FREQRANGE = 8, FINETUNINGEN = 0
13
—
33
MHz
FREQRANGE = 10, FINETUNINGEN = 0
15
—
46
MHz
FREQRANGE = 11, FINETUNINGEN = 0
23
—
54
MHz
FREQRANGE = 12, FINETUNINGEN = 0
29
—
64
MHz
FREQRANGE = 13, FINETUNINGEN = 0
36
—
78
MHz
Note:
1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period.
silabs.com | Building a more connected world.
Rev. 1.0 | 39
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.9.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Table 4.15. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Parameter
Symbol
Test Condition
Frequency accuracy
fAUXHFRCO_ACC
Start-up time
tAUXHFRCO
Current consumption on all
supplies
Coarse trim step size (% of
period)
IAUXHFRCO
Min
Typ
Max
Unit
At production calibrated frequencies, across supply voltage and
temperature
-3
—
3
%
fAUXHFRCO ≥ 19 MHz
—
400
—
ns
4 < fAUXHFRCO < 19 MHz
—
1.4
—
µs
fAUXHFRCO ≤ 4 MHz
—
2.5
—
µs
fAUXHFRCO = 48 MHz
—
238
280
µA
fAUXHFRCO = 38 MHz
—
196
225
µA
fAUXHFRCO = 32 MHz
—
160
190
µA
fAUXHFRCO = 26 MHz
—
137
165
µA
fAUXHFRCO = 19 MHz
—
110
135
µA
fAUXHFRCO = 16 MHz
—
101
125
µA
fAUXHFRCO = 13 MHz
—
78
100
µA
fAUXHFRCO = 7 MHz
—
54
75
µA
fAUXHFRCO = 4 MHz
—
30
45
µA
fAUXHFRCO = 2 MHz
—
27
40
µA
fAUXHFRCO = 1 MHz
—
25
37
µA
—
0.8
—
%
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.88
1
1.12
kHz
SSAUXHFRCO_COARSE
Fine trim step size (% of period)
SSAUXHFRCO_FINE
Period jitter
PJAUXHFRCO
4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO)
Table 4.16. Ultra-low Frequency RC Oscillator (ULFRCO)
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 40
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.10 Flash Memory Characteristics1
Table 4.17. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Word (32-bit) programming
time
tW_PROG
Test Condition
Min
Typ
Max
Unit
10000
—
—
cycles
T ≤ 85 °C
10
—
—
years
T ≤ 125 °C
10
—
—
years
Burst write, 128 words, average
time per word
20
26
32
µs
Single word
59
68
83
µs
Page erase time2
tPERASE
20
27
35
ms
Mass erase time3
tMERASE
20
27
35
ms
Device erase time4 5
tDERASE
T ≤ 85 °C
—
54
70
ms
T ≤ 125 °C
—
54
75
ms
Page Erase
—
—
1.7
mA
Mass or Device Erase
—
—
2.0
mA
Erase current6
IERASE
Write current6
IWRITE
—
—
3.5
mA
Supply voltage during flash
erase and write
VFLASH
1.62
—
3.6
V
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
3. Mass erase is issued by the CPU and erases all flash.
4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW).
5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
6. Measured at 25 °C.
silabs.com | Building a more connected world.
Rev. 1.0 | 41
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.11 General-Purpose I/O (GPIO)
Table 4.18. General-Purpose I/O (GPIO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input low voltage
VIL
GPIO pins
—
—
IOVDD*0.3
V
Input high voltage
VIH
GPIO pins
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VOH
Sourcing 3 mA, IOVDD ≥ 3 V,
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD, T ≤ 85 °C
—
0.1
40
nA
LFXO Pins, GPIO ≤ IOVDD, T ≤
85 °C
—
0.1
60
nA
All GPIO except LFXO pins, GPIO
≤ IOVDD, T > 85 °C
—
—
150
nA
LFXO Pins, GPIO ≤ IOVDD, T >
85 °C
—
—
300
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
µA
30
40
65
kΩ
15
25
45
ns
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up/pull-down resistor
RPUD
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Building a more connected world.
Rev. 1.0 | 42
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Note:
1. In GPIO_Pn_CTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 43
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.12 Voltage Monitor (VMON)
Table 4.19. Voltage Monitor (VMON)
Parameter
Symbol
Test Condition
Supply current (including
I_SENSE)
IVMON
Loading of monitored supply
ISENSE
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
In EM0 or EM1, 1 active channel,
T ≤ 85 °C
—
6.3
11
µA
In EM0 or EM1, All channels active, T ≤ 85 °C
—
12.5
20
µA
In EM2, EM3 or EM4, 1 channel
active and above threshold
—
62
—
nA
In EM2, EM3 or EM4, 1 channel
active and below threshold
—
62
—
nA
In EM2, EM3 or EM4, All channels
active and above threshold
—
99
—
nA
In EM2, EM3 or EM4, All channels
active and below threshold
—
99
—
nA
In EM0 or EM1
—
2
—
µA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/µs rate
—
460
—
ns
—
26
—
mV
Rev. 1.0 | 44
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.13 Analog to Digital Converter (ADC)
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.
Table 4.20. Analog to Digital Converter (ADC)
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range1
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
—
—
VFS
V
-VFS/2
—
VFS/2
V
1
—
VAVDD
V
Power supply rejection2
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
270
350
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4
—
125
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4
—
80
—
µA
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 1 4
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL
SPROG = 0, GPBIASACC = 1 4
—
45
—
µA
—
8
—
µA
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
105
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
70
—
µA
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP
Continuous operation. WARMUPMODE3 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
325
—
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4
—
175
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4
—
125
—
µA
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 0 4
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL
SPROG = 0, GPBIASACC = 0 4
—
85
—
µA
—
16
—
µA
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP
Continuous operation. WARMUPMODE3 = KEEPADCWARM
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
160
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
125
—
µA
Current from HFPERCLK
HFPERCLK = 16 MHz
—
166
—
µA
IADC_CLK
silabs.com | Building a more connected world.
Rev. 1.0 | 45
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
ADC clock frequency
Min
Typ
Max
Unit
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time5
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE3 = NORMAL
—
—
5
µs
WARMUPMODE3 = KEEPINSTANDBY
—
—
2
µs
WARMUPMODE3 = KEEPINSLOWACC
—
—
1
µs
Internal reference6, differential
measurement
58
67
—
dB
External reference7, differential
measurement
—
68
—
dB
Spurious-free dynamic range SFDRADC
(SFDR)
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No missing codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Offset error
VADCOFFSETERR
-3
0
3
LSB
Gain error in ADC
VADCGAIN
Using internal reference
—
-0.2
3.5
%
Using external reference
—
-1
—
%
—
-1.84
—
mV/°C
Startup time of reference
generator and ADC core
SNDR at 1Msps and fIN =
10kHz
Temperature sensor slope
tADCSTART
SNDRADC
VTS_SLOPE
Test Condition
Note:
1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_CNTL register.
4. In ADCn_BIASPROG register.
5. Derived from ADCCLK.
6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum
value is production-tested using sine wave input at 1.5 dB lower than full scale.
7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential
input range with this configuration is ± 1.25 V.
silabs.com | Building a more connected world.
Rev. 1.0 | 46
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.14 Analog Comparator (ACMP)
Table 4.21. Analog Comparator (ACMP)
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
Supply voltage
VACMPVDD
Active current not including
voltage reference3
IACMP
Current consumption of inter- IACMPREF
nal voltage reference3
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
—
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.8
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 1, FULLBIAS2 = 0
—
50
—
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x02, FULLBIAS2
=1
—
6.5
—
µA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
100
µA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
µA
VADIV selected as input using
VDD/1
—
2.4
—
µA
MAX
—
VVREGVDD_
V
MAX
Rev. 1.0 | 47
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
VACMPHYST
Comparator delay5
tACMPDELAY
Min
Typ
Max
Unit
HYSTSEL4 = HYST0
-3
0
3
mV
HYSTSEL4 = HYST1
5
18
27
mV
HYSTSEL4 = HYST2
12
33
50
mV
HYSTSEL4 = HYST3
17
46
67
mV
HYSTSEL4 = HYST4
23
57
92
mV
HYSTSEL4 = HYST5
26
68
108
mV
HYSTSEL4 = HYST6
30
79
140
mV
HYSTSEL4 = HYST7
34
90
160
mV
HYSTSEL4 = HYST8
-3
0
3
mV
HYSTSEL4 = HYST9
-27
-18
-5
mV
HYSTSEL4 = HYST10
-50
-33
-12
mV
HYSTSEL4 = HYST11
-67
-45
-17
mV
HYSTSEL4 = HYST12
-92
-57
-23
mV
HYSTSEL4 = HYST13
-108
-67
-26
mV
HYSTSEL4 = HYST14
-140
-78
-30
mV
HYSTSEL4 = HYST15
-160
-88
-34
mV
BIASPROG2 = 1, FULLBIAS2 = 0
—
30
—
µs
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
—
µs
BIASPROG2 = 0x02, FULLBIAS2
=1
—
360
—
ns
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
1.98
2.5
2.8
V
CSRESSEL6 = 0
—
infinite
—
kΩ
CSRESSEL6 = 1
—
15
—
kΩ
CSRESSEL6 = 2
—
27
—
kΩ
CSRESSEL6 = 3
—
39
—
kΩ
CSRESSEL6 = 4
—
51
—
kΩ
CSRESSEL6 = 5
—
100
—
kΩ
CSRESSEL6 = 6
—
162
—
kΩ
CSRESSEL6 = 7
—
235
—
kΩ
Capacitive sense internal re- RCSRES
sistance
silabs.com | Building a more connected world.
Rev. 1.0 | 48
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.
2. In ACMPn_CTRL register.
3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP +
IACMPREF.
4. In ACMPn_HYSTERESIS registers.
5. ± 100 mV differential drive.
6. In ACMPn_INPUTSEL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 49
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.15 Digital to Analog Converter (VDAC)
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.22. Digital to Analog Converter (VDAC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output voltage
VDACOUT
Single-Ended
0
—
VVREF
V
-VVREF
—
VVREF
V
500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4
—
396
—
µA
44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4
—
72
—
µA
200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4,
SETTLETIME = 0x02, WARMUPTIME = 0x0A
—
2
—
µA
Differential1
Current consumption including references (2 channels)2
IDAC
Current from HFPERCLK3
IDAC_CLK
—
5.8
—
µA/MHz
Sample rate
SRDAC
—
—
500
ksps
DAC clock frequency
fDAC
—
—
1
MHz
Conversion time
tDACCONV
fDAC = 1MHz
2
—
—
µs
Settling time
tDACSETTLE
50% fs step settling to 5 LSB
—
2.5
—
µs
Startup time
tDACSTARTUP
Enable to 90% fs output, settling
to 10 LSB
—
—
12
µs
Output impedance
ROUT
DRIVESTRENGTH = 2, 0.4 V ≤
VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 2, 0.1 V ≤
VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Full supply range
—
2
—
Ω
Vout = 50% fs. DC
—
65.5
—
dB
Power supply rejection ratio4 PSRR
silabs.com | Building a more connected world.
Rev. 1.0 | 50
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
500 ksps, single-ended, internal
1.25V reference
—
60.4
—
dB
500 ksps, single-ended, internal
2.5V reference
—
61.6
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
64.0
—
dB
500 ksps, differential, internal
1.25V reference
—
63.3
—
dB
500 ksps, differential, internal
2.5V reference
—
64.4
—
dB
500 ksps, differential, 3.3V VDD
reference
—
65.8
—
dB
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal
ratio (1 kHz sine wave),
1.25V reference
Noise band limited to 22 kHz
500 ksps, single-ended, internal
2.5V reference
—
65.3
—
dB
—
66.7
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
70.0
—
dB
500 ksps, differential, internal
1.25V reference
—
67.8
—
dB
500 ksps, differential, internal
2.5V reference
—
69.0
—
dB
500 ksps, differential, 3.3V VDD
reference
—
68.5
—
dB
—
70.2
—
dB
Signal to noise and distortion SNDRDAC
ratio (1 kHz sine wave),
Noise band limited to 250
kHz
Test Condition
Total harmonic distortion
THD
Differential non-linearity5
DNLDAC
-1.5
—
1.5
LSB
Intergral non-linearity
INLDAC
-4
—
4
LSB
Offset error6
VOFFSET
T = 25 °C
-8
—
8
mV
Across operating temperature
range
-25
—
25
mV
T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-2.5
—
2.5
%
Across operating temperature
range, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-3.5
—
3.5
%
—
—
75
pF
Gain error6
External load capactiance,
OUTSCALE=0
VGAIN
CLOAD
silabs.com | Building a more connected world.
Rev. 1.0 | 51
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is
limited to the single-ended range.
2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive
the load.
3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when
the clock to the DAC peripheral is enabled in the CMU.
4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale
5. Entire range is monotonic and has no missing codes.
6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.
silabs.com | Building a more connected world.
Rev. 1.0 | 52
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.16 Capacitive Sense (CSEN)
Table 4.23. Capacitive Sense (CSEN)
Parameter
Symbol
Test Condition
Single conversion time (1x
accumulation)
tCNV
Maximum external capacitive CEXTMAX
load
Min
Typ
Max
Unit
12-bit SAR Conversions
—
20.2
—
µs
16-bit SAR Conversions
—
26.4
—
µs
Delta Modulation Conversion (single comparison)
—
1.55
—
µs
IREFPROG=7 (Gain = 1x), including routing parasitics
—
68
—
pF
IREFPROG=0 (Gain = 10x), including routing parasitics
—
680
—
pF
—
1
—
kΩ
12-bit SAR conversions, 20 ms
conversion rate, IREFPROG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
326
—
nA
Delta Modulation conversions, 20
ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
226
—
nA
12-bit SAR conversions, 200 ms
conversion rate, IREFPROG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
33
—
nA
Delta Modulation conversions,
200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
25
—
nA
12-bit SAR conversions, 20 ms
scan rate, IREFPROG=0 (Gain =
10x), 8 samples per scan1
—
690
—
nA
Delta Modulation conversions, 20
ms scan rate, 8 comparisons per
sample (DMCR = 1, DMR = 2),
IREFPROG=0 (Gain = 10x), 8
samples per scan1
—
515
—
nA
12-bit SAR conversions, 200 ms
scan rate, IREFPROG=0 (Gain =
10x), 8 samples per scan1
—
79
—
nA
Delta Modulation conversions,
200 ms scan rate, 8 comparisons
per sample (DMCR = 1, DMR =
2), IREFPROG=0 (Gain = 10x), 8
samples per scan1
—
57
—
nA
Maximum external series im- REXTMAX
pedance
Supply current, EM2 bonded ICSEN_BOND
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
Supply current, EM2 scan
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
ICSEN_EM2
silabs.com | Building a more connected world.
Rev. 1.0 | 53
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Supply current, continuous
conversions, WARMUPMODE=KEEPCSENWARM
ICSEN_ACTIVE
SAR or Delta Modulation conversions of 33 pF capacitor, IREFPROG=0 (Gain = 10x), always
on
—
90.5
—
µA
HFPERCLK supply current
ICSEN_HFPERCLK Current contribution from
HFPERCLK when clock to CSEN
block is enabled.
—
2.25
—
µA/MHz
Note:
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a
specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).
silabs.com | Building a more connected world.
Rev. 1.0 | 54
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.17 Operational Amplifier (OPAMP)
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as
specified in table footnotes1 2.
Table 4.24. Operational Amplifier (OPAMP)
Parameter
Symbol
Test Condition
Supply voltage (from AVDD)
VOPA
HCMDIS = 0, Rail-to-rail input
range
Input voltage
VIN
Min
Typ
Max
Unit
2
—
3.8
V
HCMDIS = 1
1.62
—
3.8
V
HCMDIS = 0, Rail-to-rail input
range
VVSS
—
VOPA
V
HCMDIS = 1
VVSS
—
VOPA-1.2
V
Input impedance
RIN
100
—
—
MΩ
Output voltage
VOUT
VVSS
—
VOPA
V
Load capacitance3
CLOAD
OUTSCALE = 0
—
—
75
pF
OUTSCALE = 1
—
—
37.5
pF
DRIVESTRENGTH = 2 or 3, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Buffer connection,
Full supply range
—
0.25
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Buffer connection,
Full supply range
—
0.6
—
Ω
DRIVESTRENGTH = 2 or 3, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Buffer connection,
Full supply range
—
0.4
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Buffer connection,
Full supply range
—
1
—
Ω
Buffer connection
0.99
1
1.01
-
3x Gain connection
2.93
2.99
3.05
-
16x Gain connection
15.07
15.7
16.33
-
DRIVESTRENGTH = 3, OUTSCALE = 0
—
580
—
µA
DRIVESTRENGTH = 2, OUTSCALE = 0
—
176
—
µA
DRIVESTRENGTH = 1, OUTSCALE = 0
—
13
—
µA
DRIVESTRENGTH = 0, OUTSCALE = 0
—
4.7
—
µA
Output impedance
Internal closed-loop gain
Active current4
ROUT
GCL
IOPA
silabs.com | Building a more connected world.
Rev. 1.0 | 55
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Open-loop gain
GOL
Loop unit-gain frequency5
Phase margin
Output voltage noise
UGF
PM
NOUT
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
DRIVESTRENGTH = 3
—
135
—
dB
DRIVESTRENGTH = 2
—
137
—
dB
DRIVESTRENGTH = 1
—
121
—
dB
DRIVESTRENGTH = 0
—
109
—
dB
DRIVESTRENGTH = 3, Buffer
connection
—
3.38
—
MHz
DRIVESTRENGTH = 2, Buffer
connection
—
0.9
—
MHz
DRIVESTRENGTH = 1, Buffer
connection
—
132
—
kHz
DRIVESTRENGTH = 0, Buffer
connection
—
34
—
kHz
DRIVESTRENGTH = 3, 3x Gain
connection
—
2.57
—
MHz
DRIVESTRENGTH = 2, 3x Gain
connection
—
0.71
—
MHz
DRIVESTRENGTH = 1, 3x Gain
connection
—
113
—
kHz
DRIVESTRENGTH = 0, 3x Gain
connection
—
28
—
kHz
DRIVESTRENGTH = 3, Buffer
connection
—
67
—
°
DRIVESTRENGTH = 2, Buffer
connection
—
69
—
°
DRIVESTRENGTH = 1, Buffer
connection
—
63
—
°
DRIVESTRENGTH = 0, Buffer
connection
—
68
—
°
DRIVESTRENGTH = 3, Buffer
connection, 10 Hz - 10 MHz
—
146
—
µVrms
DRIVESTRENGTH = 2, Buffer
connection, 10 Hz - 10 MHz
—
163
—
µVrms
DRIVESTRENGTH = 1, Buffer
connection, 10 Hz - 1 MHz
—
170
—
µVrms
DRIVESTRENGTH = 0, Buffer
connection, 10 Hz - 1 MHz
—
176
—
µVrms
DRIVESTRENGTH = 3, 3x Gain
connection, 10 Hz - 10 MHz
—
313
—
µVrms
DRIVESTRENGTH = 2, 3x Gain
connection, 10 Hz - 10 MHz
—
271
—
µVrms
DRIVESTRENGTH = 1, 3x Gain
connection, 10 Hz - 1 MHz
—
247
—
µVrms
DRIVESTRENGTH = 0, 3x Gain
connection, 10 Hz - 1 MHz
—
245
—
µVrms
Rev. 1.0 | 56
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Slew rate6
SR
DRIVESTRENGTH = 3,
INCBW=17
—
4.7
—
V/µs
DRIVESTRENGTH = 3,
INCBW=0
—
1.5
—
V/µs
DRIVESTRENGTH = 2,
INCBW=17
—
1.27
—
V/µs
DRIVESTRENGTH = 2,
INCBW=0
—
0.42
—
V/µs
DRIVESTRENGTH = 1,
INCBW=17
—
0.17
—
V/µs
DRIVESTRENGTH = 1,
INCBW=0
—
0.058
—
V/µs
DRIVESTRENGTH = 0,
INCBW=17
—
0.044
—
V/µs
DRIVESTRENGTH = 0,
INCBW=0
—
0.015
—
V/µs
Startup time8
TSTART
DRIVESTRENGTH = 2
—
—
12
µs
Input offset voltage
VOSI
DRIVESTRENGTH = 2 or 3, T =
25 °C
-3
—
3
mV
DRIVESTRENGTH = 1 or 0, T =
25 °C
-3
—
3
mV
DRIVESTRENGTH = 2 or 3,
across operating temperature
range
-12
—
12
mV
DRIVESTRENGTH = 1 or 0,
across operating temperature
range
-30
—
30
mV
DC power supply rejection
ratio9
PSRRDC
Input referred
—
70
—
dB
DC common-mode rejection
ratio9
CMRRDC
Input referred
—
70
—
dB
Total harmonic distortion
THDOPA
DRIVESTRENGTH = 2, 3x Gain
connection, 1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
DRIVESTRENGTH = 0, 3x Gain
connection, 0.1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
silabs.com | Building a more connected world.
Rev. 1.0 | 57
EFM32TG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,
VOUTPUT = 0.5 V.
2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5
V. Nominal voltage gain is 3.
3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.
5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth
product of the OPAMP and 1/3 attenuation of the feedback network.
6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.
7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,
or the OPAMP may not be stable.
8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR
and CMRR specifications do not apply to this transition region.
4.1.18 LCD Driver
Table 4.25. LCD Driver
Parameter
Symbol
Frame rate
Min
Typ
Max
Unit
fLCDFR
30
—
100
Hz
LCD supply range1
VLCDIN
1.8
—
3.8
V
LCD output voltage range
VLCD
Current source mode, No external
LCD capacitor
2.0
—
VLCDIN-0.4
V
Step-down mode with external
LCD capacitor
2.0
—
VLCDIN
V
Charge pump mode with external
LCD capacitor
2.0
—
Min of 3.8
and 1.9 *
VLCDIN
V
Current source mode
—
64
—
mV
Charge pump or Step-down mode
—
43
—
mV
—
+/-4
—
%
Contrast control step size
STEPCONTRAST
Contrast control step accura- ACCCONTRAST
cy2
Test Condition
Note:
1. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.
2. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.
silabs.com | Building a more connected world.
Rev. 1.0 | 58
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.19 Pulse Counter (PCNT)
Table 4.26. Pulse Counter (PCNT)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input frequency
FIN
Asynchronous Single and Quadrature Modes
—
—
20
MHz
Sampled Modes with Debounce
filter set to 0.
—
—
8
kHz
Min
Typ
Max
Unit
4.1.20 Analog Port (APORT)
Table 4.27. Analog Port (APORT)
Parameter
Symbol
Test Condition
Supply current1 2
IAPORT
Operation in EM0/EM1
—
7
—
µA
Operation in EM2/EM3
—
65
—
nA
Note:
1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current.
2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of
the requests by the specified continuous current number.
silabs.com | Building a more connected world.
Rev. 1.0 | 59
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.21 I2C
4.1.21.1 I2C Standard-mode (Sm)1
Table 4.28. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
µs
SCL clock high time
tHIGH
4
—
—
µs
SDA set-up time
tSU_DAT
250
—
—
ns
SDA hold time3
tHD_DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU_STA
4.7
—
—
µs
(Repeated) START condition tHD_STA
hold time
4
—
—
µs
STOP condition set-up time
tSU_STO
4
—
—
µs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
µs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 60
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.21.2 I2C Fast-mode (Fm)1
Table 4.29. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
µs
SCL clock high time
tHIGH
0.6
—
—
µs
SDA set-up time
tSU_DAT
100
—
—
ns
SDA hold time3
tHD_DAT
100
—
900
ns
Repeated START condition
set-up time
tSU_STA
0.6
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.6
—
—
µs
STOP condition set-up time
tSU_STO
0.6
—
—
µs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
µs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 61
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.21.3 I2C Fast-mode Plus (Fm+)1
Table 4.30. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
µs
SCL clock high time
tHIGH
0.26
—
—
µs
SDA set-up time
tSU_DAT
50
—
—
ns
SDA hold time
tHD_DAT
100
—
—
ns
Repeated START condition
set-up time
tSU_STA
0.26
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.26
—
—
µs
STOP condition set-up time
tSU_STO
0.26
—
—
µs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
µs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.
silabs.com | Building a more connected world.
Rev. 1.0 | 62
EFM32TG11 Family Data Sheet
Electrical Specifications
4.1.22 USART SPI
SPI Master Timing
Table 4.31. SPI Master Timing
Parameter
Symbol
SCLK period 1 2 3
tSCLK
CS to MOSI 1 2
tCS_MO
SCLK to MOSI 1 2
tSCLK_MO
MISO setup time 1 2
tSU_MI
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
-19.8
—
18.9
ns
-10
—
14.5
ns
IOVDD = 1.62 V
75
—
—
ns
IOVDD = 3.0 V
40
—
—
ns
-10
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
3. tHFPERCLK is one period of the selected HFPERCLK.
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 63
EFM32TG11 Family Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.32. SPI Slave Timing
Parameter
Symbol
SCLK period 1 2 3
Test Condition
Min
Typ
Max
Unit
tSCLK
6*
tHFPERCLK
—
—
ns
SCLK high time1 2 3
tSCLK_HI
2.5 *
tHFPERCLK
—
—
ns
SCLK low time1 2 3
tSCLK_LO
2.5 *
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
20
—
70
ns
CS disable to MISO 1 2
tCS_DIS_MI
15
—
150
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2 3
tH_MO
7
—
—
ns
SCLK to MISO 1 2 3
tSCLK_MI
14 + 1.5 *
tHFPERCLK
—
40 + 2.5 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
3. tHFPERCLK is one period of the selected HFPERCLK.
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Building a more connected world.
Rev. 1.0 | 64
EFM32TG11 Family Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 65
EFM32TG11 Family Data Sheet
Electrical Specifications
Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 66
EFM32TG11 Family Data Sheet
Electrical Specifications
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 67
EFM32TG11 Family Data Sheet
Electrical Specifications
Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 68
EFM32TG11 Family Data Sheet
Electrical Specifications
Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply
silabs.com | Building a more connected world.
Rev. 1.0 | 69
EFM32TG11 Family Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.8. DC-DC Converter Typical Performance Characteristics
silabs.com | Building a more connected world.
Rev. 1.0 | 70
EFM32TG11 Family Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
20mV/div
offset:1.8V
100mA
VSW
ILOAD
1mA
2V/div
offset:1.8V
100μs/div
10μs/div
Figure 4.9. DC-DC Converter Transition Waveforms
silabs.com | Building a more connected world.
Rev. 1.0 | 71
EFM32TG11 Family Data Sheet
Pin Definitions
5. Pin Definitions
5.1 EFM32TG11B5xx in QFP80 Device Pinout
Figure 5.1. EFM32TG11B5xx in QFP80 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.1. EFM32TG11B5xx in QFP80 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
8
33
50
69
Digital IO power supply 0.
PA6
7
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 72
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
9
24
51
70
Ground
PB3
10
GPIO
PB4
11
GPIO
PB5
12
GPIO
PB6
13
GPIO
PC1
14
GPIO (5V)
PC2
15
GPIO (5V)
PC3
16
GPIO (5V)
PC4
17
GPIO
PC5
18
GPIO
PB7
19
GPIO
PB8
20
GPIO
PA8
21
GPIO
PA9
22
GPIO
PA10
23
GPIO
PA12
25
GPIO
PA14
26
GPIO
RESETn
27
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
28
GPIO
PB12
29
GPIO
AVDD
30
34
Analog power supply.
PB13
31
GPIO
PB14
32
GPIO
PD0
35
GPIO (5V)
PD1
36
GPIO
PD3
37
GPIO
PD4
38
GPIO
PD5
39
GPIO
PD6
40
GPIO
PD7
41
GPIO
PD8
42
GPIO
PC6
43
GPIO
PC7
44
GPIO
VREGVSS
45
Voltage regulator VSS
VREGSW
46
DCDC regulator switching node
VREGVDD
47
Voltage regulator VDD input
DVDD
48
Digital power supply.
DECOUPLE
49
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
52
GPIO
PE5
53
GPIO
PE6
54
GPIO
PE7
55
GPIO
PC8
56
GPIO
PC9
57
GPIO
PC10
58
GPIO (5V)
PC11
59
GPIO (5V)
PC13
60
GPIO (5V)
PC14
61
GPIO (5V)
PC15
62
GPIO (5V)
PF0
63
GPIO (5V)
PF1
64
GPIO (5V)
PF2
65
GPIO
PF3
66
GPIO
PF4
67
GPIO
PF5
68
GPIO
PE8
71
GPIO
PE9
72
GPIO
PE10
73
GPIO
PE11
74
GPIO
BODEN
75
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
silabs.com | Building a more connected world.
Rev. 1.0 | 73
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE12
76
GPIO
PE13
77
GPIO
PE14
78
GPIO
PE15
79
GPIO
PA15
80
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 74
EFM32TG11 Family Data Sheet
Pin Definitions
5.2 EFM32TG11B5xx in QFN80 Device Pinout
Figure 5.2. EFM32TG11B5xx in QFN80 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.2. EFM32TG11B5xx in QFN80 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
33
51
70
Digital IO power supply 0.
PB3
9
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 75
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
PC0
13
GPIO (5V)
PC1
14
GPIO (5V)
PC2
15
GPIO (5V)
PC3
16
GPIO (5V)
PC4
17
GPIO
PC5
18
GPIO
PB7
19
GPIO
PB8
20
GPIO
PA8
21
GPIO
PA9
22
GPIO
PA10
23
GPIO
PA12
24
GPIO
PA13
25
GPIO (5V)
PA14
26
GPIO
RESETn
27
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
28
GPIO
PB12
29
GPIO
AVDD
30
34
Analog power supply.
PB13
31
GPIO
PB14
32
GPIO
PD0
35
GPIO (5V)
PD1
36
GPIO
PD2
37
GPIO (5V)
PD3
38
GPIO
PD4
39
GPIO
PD5
40
GPIO
PD6
41
GPIO
PD7
42
GPIO
PD8
43
GPIO
PC6
44
GPIO
PC7
45
GPIO
VREGVSS
46
Voltage regulator VSS
VREGSW
47
DCDC regulator switching node
VREGVDD
48
Voltage regulator VDD input
DVDD
49
Digital power supply.
DECOUPLE
50
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
52
GPIO
PE5
53
GPIO
PE6
54
GPIO
PE7
55
GPIO
PC8
56
GPIO
PC9
57
GPIO
PC10
58
GPIO (5V)
PC11
59
GPIO (5V)
PC12
60
GPIO (5V)
PC13
61
GPIO (5V)
PC14
62
GPIO (5V)
PC15
63
GPIO (5V)
PF0
64
GPIO (5V)
PF1
65
GPIO (5V)
PF2
66
GPIO
PF3
67
GPIO
PF4
68
GPIO
PF5
69
GPIO
PE8
71
GPIO
PE9
72
GPIO
PE10
73
GPIO
PE11
74
GPIO
BODEN
75
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PE12
76
GPIO
PE13
77
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 76
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
PE14
78
GPIO
PA15
80
GPIO
Pin Name
PE15
Pin(s)
79
Description
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 77
EFM32TG11 Family Data Sheet
Pin Definitions
5.3 EFM32TG11B5xx in QFP64 Device Pinout
Figure 5.3. EFM32TG11B5xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.3. EFM32TG11B5xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
27
55
Digital IO power supply 0.
VSS
8
23
56
Ground
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 78
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
24
28
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
29
GPIO (5V)
PD1
30
GPIO
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC7
37
GPIO
VREGVSS
38
Voltage regulator VSS
VREGSW
39
DCDC regulator switching node
VREGVDD
40
Voltage regulator VDD input
DVDD
41
Digital power supply.
DECOUPLE
42
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
43
GPIO
PE5
44
GPIO
PE6
45
GPIO
PE7
46
GPIO
PC12
47
GPIO (5V)
PC13
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 79
EFM32TG11 Family Data Sheet
Pin Definitions
5.4 EFM32TG11B3xx in QFP64 Device Pinout
Figure 5.4. EFM32TG11B3xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.4. EFM32TG11B3xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
26
55
Digital IO power supply 0.
VSS
8
22
56
Ground
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 80
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA12
17
GPIO
PA13
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 81
EFM32TG11 Family Data Sheet
Pin Definitions
5.5 EFM32TG11B1xx in QFP64 Device Pinout
Figure 5.5. EFM32TG11B1xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.5. EFM32TG11B1xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
26
55
Digital IO power supply 0.
VSS
8
22
56
Ground
PC0
9
GPIO (5V)
PC1
10
GPIO (5V)
PC2
11
GPIO (5V)
PC3
12
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 82
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA9
18
GPIO
PA10
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC8
41
GPIO
PC9
42
GPIO
PC10
43
GPIO (5V)
PC11
44
GPIO (5V)
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 83
EFM32TG11 Family Data Sheet
Pin Definitions
5.6 EFM32TG11B5xx in QFN64 Device Pinout
Figure 5.6. EFM32TG11B5xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.6. EFM32TG11B5xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
27
55
Digital IO power supply 0.
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 84
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB6
12
GPIO
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO
PA13
19
GPIO (5V)
PA14
20
GPIO
RESETn
21
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
22
GPIO
PB12
23
GPIO
AVDD
24
28
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
29
GPIO (5V)
PD1
30
GPIO
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC7
37
GPIO
VREGVSS
38
Voltage regulator VSS
VREGSW
39
DCDC regulator switching node
VREGVDD
40
Voltage regulator VDD input
DVDD
41
Digital power supply.
DECOUPLE
42
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
43
GPIO
PE5
44
GPIO
PE6
45
GPIO
PE7
46
GPIO
PC12
47
GPIO (5V)
PC13
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 85
EFM32TG11 Family Data Sheet
Pin Definitions
5.7 EFM32TG11B3xx in QFN64 Device Pinout
Figure 5.7. EFM32TG11B3xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.7. EFM32TG11B3xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
26
55
Digital IO power supply 0.
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 86
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB6
12
GPIO
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA12
17
GPIO
PA13
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 87
EFM32TG11 Family Data Sheet
Pin Definitions
5.8 EFM32TG11B1xx in QFN64 Device Pinout
Figure 5.8. EFM32TG11B1xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.8. EFM32TG11B1xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
26
55
Digital IO power supply 0.
PC0
9
GPIO (5V)
PC1
10
GPIO (5V)
PC2
11
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 88
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC3
12
GPIO (5V)
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA9
18
GPIO
PA10
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC8
41
GPIO
PC9
42
GPIO
PC10
43
GPIO (5V)
PC11
44
GPIO (5V)
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 89
EFM32TG11 Family Data Sheet
Pin Definitions
5.9 EFM32TG11B5xx in QFP48 Device Pinout
Figure 5.9. EFM32TG11B5xx in QFP48 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.9. EFM32TG11B5xx in QFP48 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
IOVDD0
4
21
43
Digital IO power supply 0.
VSS
5
17
44
Ground
PB3
6
GPIO
PB4
7
GPIO
PB5
8
GPIO
PB6
9
GPIO
PB7
10
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 90
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB8
11
GPIO
PA8
12
GPIO
PA12
13
GPIO
PA14
14
GPIO
RESETn
15
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
16
GPIO
AVDD
18
22
Analog power supply.
PB13
19
GPIO
PB14
20
GPIO
PD4
23
GPIO
PD5
24
GPIO
PD6
25
GPIO
PD7
26
GPIO
PD8
27
GPIO
VREGVSS
28
Voltage regulator VSS
VREGSW
29
DCDC regulator switching node
VREGVDD
30
Voltage regulator VDD input
DVDD
31
Digital power supply.
DECOUPLE
32
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
33
GPIO
PE5
34
GPIO
PE6
35
GPIO
PE7
36
GPIO
PF0
37
GPIO (5V)
PF1
38
GPIO (5V)
PF2
39
GPIO
PF3
40
GPIO
PF4
41
GPIO
PF5
42
GPIO
PE10
45
GPIO
PE11
46
GPIO
PE12
47
GPIO
PE13
48
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 91
EFM32TG11 Family Data Sheet
Pin Definitions
5.10 EFM32TG11B3xx in QFP48 Device Pinout
Figure 5.10. EFM32TG11B3xx in QFP48 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.10. EFM32TG11B3xx in QFP48 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
IOVDD0
4
22
43
Digital IO power supply 0.
VSS
5
18
44
Ground
PB3
6
GPIO
PB4
7
GPIO
PB5
8
GPIO
PB6
9
GPIO
PC4
10
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 92
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB7
11
GPIO
PB8
12
GPIO
PA12
13
GPIO
PA13
14
GPIO (5V)
PA14
15
GPIO
RESETn
16
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
17
GPIO
AVDD
19
23
Analog power supply.
PB13
20
GPIO
PB14
21
GPIO
PD4
24
GPIO
PD5
25
GPIO
PD6
26
GPIO
PD7
27
GPIO
DVDD
28
Digital power supply.
DECOUPLE
29
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
30
GPIO
PE5
31
GPIO
PE6
32
GPIO
PE7
33
GPIO
PC13
34
GPIO (5V)
PC14
35
GPIO (5V)
PC15
36
GPIO (5V)
PF0
37
GPIO (5V)
PF1
38
GPIO (5V)
PF2
39
GPIO
PF3
40
GPIO
PF4
41
GPIO
PF5
42
GPIO
PE10
45
GPIO
PE11
46
GPIO
PE12
47
GPIO
PE13
48
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 93
EFM32TG11 Family Data Sheet
Pin Definitions
5.11 EFM32TG11B1xx in QFP48 Device Pinout
Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.11. EFM32TG11B1xx in QFP48 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
IOVDD0
4
22
43
Digital IO power supply 0.
VSS
5
18
44
Ground
PC0
6
GPIO (5V)
PC1
7
GPIO (5V)
PC2
8
GPIO (5V)
PC3
9
GPIO (5V)
PC4
10
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 94
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB7
11
GPIO
PB8
12
GPIO
PA8
13
GPIO
PA9
14
GPIO
PA10
15
GPIO
RESETn
16
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
17
GPIO
AVDD
19
23
Analog power supply.
PB13
20
GPIO
PB14
21
GPIO
PD4
24
GPIO
PD5
25
GPIO
PD6
26
GPIO
PD7
27
GPIO
DVDD
28
Digital power supply.
DECOUPLE
29
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC8
30
GPIO
PC9
31
GPIO
PC10
32
GPIO (5V)
PC11
33
GPIO (5V)
PC13
34
GPIO (5V)
PC14
35
GPIO (5V)
PC15
36
GPIO (5V)
PF0
37
GPIO (5V)
PF1
38
GPIO (5V)
PF2
39
GPIO
PF3
40
GPIO
PF4
41
GPIO
PF5
42
GPIO
PE10
45
GPIO
PE11
46
GPIO
PE12
47
GPIO
PE13
48
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 95
EFM32TG11 Family Data Sheet
Pin Definitions
5.12 EFM32TG11B5xx in QFN32 Device Pinout
Figure 5.12. EFM32TG11B5xx in QFN32 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.12. EFM32TG11B5xx in QFN32 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
IOVDD0
4
14
30
Digital IO power supply 0.
PC0
5
GPIO (5V)
PB7
6
GPIO
PB8
7
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 96
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA14
8
GPIO
RESETn
9
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
10
GPIO
AVDD
11
Analog power supply.
PB13
12
GPIO
PB14
13
GPIO
PD4
15
GPIO
PD5
16
GPIO
PD6
17
GPIO
PD7
18
GPIO
VREGVSS
19
Voltage regulator VSS
VREGSW
20
DCDC regulator switching node
VREGVDD
21
Voltage regulator VDD input
DVDD
22
Digital power supply.
DECOUPLE
23
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
24
GPIO
PE5
25
GPIO
PC15
26
GPIO (5V)
PF0
27
GPIO (5V)
PF1
28
GPIO (5V)
PF2
29
GPIO
PE11
31
GPIO
PE12
32
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 97
EFM32TG11 Family Data Sheet
Pin Definitions
5.13 EFM32TG11B1xx in QFN32 Device Pinout
Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.
Table 5.13. EFM32TG11B1xx in QFN32 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
IOVDD0
4
14
28
Digital IO power supply 0.
PC0
5
GPIO (5V)
PC1
6
GPIO (5V)
PB7
7
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 98
EFM32TG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB8
8
GPIO
RESETn
9
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
10
GPIO
AVDD
11
15
Analog power supply.
PB13
12
GPIO
PB14
13
GPIO
PD4
16
GPIO
PD5
17
GPIO
PD6
18
GPIO
PD7
19
GPIO
DVDD
20
Digital power supply.
DECOUPLE
21
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC13
22
GPIO (5V)
PC14
23
GPIO (5V)
PC15
24
GPIO (5V)
PF0
25
GPIO (5V)
PF1
26
GPIO (5V)
PF2
27
GPIO
PE10
29
GPIO
PE11
30
GPIO
PE12
31
GPIO
PE13
32
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 99
EFM32TG11 Family Data Sheet
Pin Definitions
5.14 GPIO Functionality Table
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO
pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function.
Table 5.14. GPIO Functionality Table
GPIO Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
PA0
BUSBY BUSAX
LCD_SEG13
TIM0_CC0 #0 TIM0_CC1
#7 PCNT0_S0IN #4
US1_RX #5 US3_TX #0
LEU0_RX #4 I2C0_SDA
#0
CMU_CLK2 #0 PRS_CH0
#0 PRS_CH3 #3
GPIO_EM4WU0
PA1
BUSAY BUSBX
LCD_SEG14
TIM0_CC0 #7 TIM0_CC1
#0 PCNT0_S1IN #4
US3_RX #0 I2C0_SCL #0
CMU_CLK1 #0 PRS_CH1
#0
PA2
BUSBY BUSAX
LCD_SEG15
TIM0_CC2 #0
US1_RX #6 US3_CLK #0
CMU_CLK0 #0
PA3
BUSAY BUSBX
LCD_SEG16
TIM0_CDTI0 #0
US3_CS #0 U0_TX #2
CMU_CLK2 #1
CMU_CLK2 #4
CMU_CLKI0 #1 LES_ALTEX2
PA4
BUSBY BUSAX
LCD_SEG17
TIM0_CDTI1 #0
US3_CTS #0 U0_RX #2
LES_ALTEX3
PA5
BUSAY BUSBX
LCD_SEG18
TIM0_CDTI2 #0
US3_RTS #0 U0_CTS #2
LES_ALTEX4 ACMP1_O
#7
PA6
BUSBY BUSAX
LCD_SEG19
WTIM0_CC0 #1
U0_RTS #2
PRS_CH6 #0 ACMP0_O
#4 GPIO_EM4WU1
PA8
BU_STAT
TIM0_CC0 #6 LETIM0_OUT0 #6
US2_RX #2
PA9
BUSAY BUSBX
LCD_SEG26
TIM0_CC1 #6 LETIM0_OUT1 #6
US2_CLK #2
PA10
BUSBY BUSAX
LCD_SEG27
TIM0_CC2 #6
US2_CS #2
PA12
BU_VOUT
WTIM0_CDTI0 #2
US0_CLK #5 US2_RTS
#2
PA13
BUSAY BUSBX
TIM0_CC2 #7
WTIM0_CDTI1 #2
US0_CS #5 US2_TX #3
PA14
BUSBY BUSAX
LCD_BEXT
WTIM0_CDTI2 #2
US1_TX #6 US2_RX #3
US3_RTS #2
PA15
BUSAY BUSBX
LCD_SEG12
PB3
BUSAY BUSBX
LCD_SEG20 /
LCD_COM4
TIM1_CC3 #2
WTIM0_CC0 #6
US2_TX #1 US3_TX #2
PB4
BUSBY BUSAX
LCD_SEG21 /
LCD_COM5
WTIM0_CC1 #6
US2_RX #1
PB5
BUSAY BUSBX
LCD_SEG22 /
LCD_COM6
WTIM0_CC2 #6
PCNT0_S0IN #6
US0_RTS #4 US2_CLK
#1
silabs.com | Building a more connected world.
CMU_CLK0 #5 ACMP1_O
#3
ACMP1_O #4
US2_CLK #3
ACMP0_O #7
Rev. 1.0 | 100
EFM32TG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
PB6
BUSBY BUSAX
LCD_SEG23 /
LCD_COM7
TIM0_CC0 #3
PCNT0_S1IN #6
US0_CTS #4 US2_CS #1
PB7
LFXTAL_P
TIM0_CDTI0 #4
TIM1_CC0 #3
US0_TX #4 US1_CLK #0
US3_RX #2 U0_CTS #4
PB8
LFXTAL_N
TIM0_CDTI1 #4
TIM1_CC1 #3
US0_RX #4 US1_CS #0
U0_RTS #4
CMU_CLKI0 #2
PB11
BUSAY BUSBX
VDAC0_OUT0 /
OPA0_OUT LCD_SEG28
TIM0_CDTI2 #4
TIM1_CC2 #3 LETIM0_OUT0 #1
PCNT0_S1IN #7
US0_CTS #5 US1_CLK
#5 US2_CS #3 I2C1_SDA
#1
CMU_CLK1 #5
CMU_CLKI0 #7
ACMP0_O #3
GPIO_EM4WU7
PB12
BUSBY BUSAX
VDAC0_OUT1 /
OPA1_OUT LCD_SEG29
TIM1_CC3 #3 LETIM0_OUT1 #1
PCNT0_S0IN #7
US2_CTS #1 I2C1_SCL
#1
PB13
BUSAY BUSBX
HFXTAL_P
WTIM1_CC0 #0
US0_CLK #4 US1_CTS
#5 LEU0_TX #1
CMU_CLKI0 #3
PRS_CH7 #0
PB14
BUSBY BUSAX
HFXTAL_N
WTIM1_CC1 #0
US0_CS #4 US1_RTS #5
LEU0_RX #1
PRS_CH6 #1
PC0
VDAC0_OUT0ALT /
OPA0_OUTALT #0 BUSACMP0Y BUSACMP0X
TIM0_CC1 #3
PCNT0_S0IN #2
CAN0_RX #0 US0_TX #5
US1_TX #0 US1_CS #4
US2_RTS #0 US3_CS #3
I2C0_SDA #4
LES_CH0 PRS_CH2 #0
PC1
VDAC0_OUT0ALT /
OPA0_OUTALT #1 BUSACMP0Y BUSACMP0X
TIM0_CC2 #3
WTIM0_CC0 #7
PCNT0_S1IN #2
CAN0_TX #0 US0_RX #5
US1_TX #4 US1_RX #0
US2_CTS #0 US3_RTS
#1 I2C0_SCL #4
LES_CH1 PRS_CH3 #0
PC2
VDAC0_OUT0ALT /
OPA0_OUTALT #2 BUSACMP0Y BUSACMP0X
TIM0_CDTI0 #3
WTIM0_CC1 #7
US1_RX #4 US2_TX #0
LES_CH2
PC3
VDAC0_OUT0ALT /
OPA0_OUTALT #3 BUSACMP0Y BUSACMP0X
TIM0_CDTI1 #3
WTIM0_CC2 #7
US1_CLK #4 US2_RX #0
LES_CH3
PC4
BUSACMP0Y BUSACMP0X OPA0_P
LCD_SEG24
TIM0_CC0 #5
TIM0_CDTI2 #3 LETIM0_OUT0 #3
US2_CLK #0 U0_TX #4
I2C1_SDA #0
LES_CH4
GPIO_EM4WU6
PC5
BUSACMP0Y BUSACMP0X OPA0_N
LCD_SEG25
TIM0_CC1 #5 LETIM0_OUT1 #3
US2_CS #0 U0_RX #4
I2C1_SCL #0
LES_CH5
PC6
BUSACMP0Y BUSACMP0X OPA3_P
LCD_SEG32
WTIM1_CC3 #2
US0_RTS #2 US1_CTS
#3 I2C0_SDA #2
LES_CH6
PC7
BUSACMP0Y BUSACMP0X OPA3_N
LCD_SEG33
WTIM1_CC0 #3
US0_CTS #2 US1_RTS
#3 I2C0_SCL #2
LES_CH7
PC8
BUSACMP1Y BUSACMP1X LCD_SEG34
US0_CS #2
LES_CH8 PRS_CH4 #0
PC9
BUSACMP1Y BUSACMP1X LCD_SEG35
US0_CLK #2
LES_CH9 PRS_CH5 #0
GPIO_EM4WU2
silabs.com | Building a more connected world.
Other
Rev. 1.0 | 101
EFM32TG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
PC10
BUSACMP1Y BUSACMP1X
US0_RX #2
LES_CH10
PC11
BUSACMP1Y BUSACMP1X
US0_TX #2 I2C1_SDA #4
LES_CH11
PC12
VDAC0_OUT1ALT /
OPA1_OUTALT #0 BUSACMP1Y BUSACMP1X
TIM1_CC3 #0
US0_RTS #3 US1_CTS
#4 US2_CTS #4 U0_RTS
#3
CMU_CLK0 #1
LES_CH12
PC13
VDAC0_OUT1ALT /
OPA1_OUTALT #1 BUSACMP1Y BUSACMP1X
TIM0_CDTI0 #1
TIM1_CC0 #0 TIM1_CC2
#4 PCNT0_S0IN #0
US0_CTS #3 US1_RTS
#4 US2_RTS #4 U0_CTS
#3
LES_CH13
PC14
VDAC0_OUT1ALT /
OPA1_OUTALT #2 BUSACMP1Y BUSACMP1X
TIM0_CDTI1 #1
TIM1_CC1 #0 TIM1_CC3
#4 LETIM0_OUT0 #5
PCNT0_S1IN #0
US0_CS #3 US1_CS #3
US2_RTS #3 US3_CS #2
U0_TX #3 LEU0_TX #5
LES_CH14 PRS_CH0 #2
PC15
VDAC0_OUT1ALT /
OPA1_OUTALT #3 BUSACMP1Y BUSACMP1X
TIM0_CDTI2 #1
TIM1_CC2 #0
WTIM0_CC0 #4 LETIM0_OUT1 #5
US0_CLK #3 US1_CLK
#3 US3_RTS #3 U0_RX
#3 LEU0_RX #5
LES_CH15 PRS_CH1 #2
PD0
VDAC0_OUT0ALT /
OPA0_OUTALT #4
OPA2_OUTALT BUSADC0Y BUSADC0X
WTIM1_CC2 #0
CAN0_RX #2 US1_TX #1
PD1
VDAC0_OUT1ALT /
OPA1_OUTALT #4 BUSADC0Y BUSADC0X
OPA3_OUT
TIM0_CC0 #2
WTIM1_CC3 #0
CAN0_TX #2 US1_RX #1
PD2
BUSADC0Y BUSADC0X
TIM0_CC1 #2
WTIM1_CC0 #1
US1_CLK #1
PD3
BUSADC0Y BUSADC0X
OPA2_N LCD_SEG30
TIM0_CC2 #2
WTIM1_CC1 #1
US1_CS #1
PD4
BUSADC0Y BUSADC0X
OPA2_P LCD_SEG31
WTIM0_CDTI0 #4
WTIM1_CC2 #1
US1_CTS #1 US3_CLK
#2 LEU0_TX #0
I2C1_SDA #3
PD5
BUSADC0Y BUSADC0X
OPA2_OUT
WTIM0_CDTI1 #4
WTIM1_CC3 #1
US1_RTS #1 U0_CTS #5
LEU0_RX #0 I2C1_SCL
#3
PD6
BUSADC0Y BUSADC0X
ADC0_EXTP
VDAC0_EXT OPA1_P
TIM1_CC0 #4
WTIM0_CDTI2 #4
WTIM1_CC0 #2 LETIM0_OUT0 #0
PCNT0_S0IN #3
US0_RTS #5 US1_RX #2
US2_CTS #5 US3_CTS
#2 U0_RTS #5 I2C0_SDA
#1
CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2
ACMP0_O #2
PD7
BUSADC0Y BUSADC0X
ADC0_EXTN OPA1_N
TIM1_CC1 #4
WTIM1_CC1 #2 LETIM0_OUT1 #0
PCNT0_S1IN #3
US1_TX #2 US3_CLK #1
U0_TX #6 I2C0_SCL #1
CMU_CLK0 #2 LES_ALTEX1 ACMP1_O #2
PD8
BU_VIN
WTIM1_CC2 #2
US2_RTS #5
CMU_CLK1 #1
PE4
BUSDY BUSCX
LCD_COM0
WTIM0_CC0 #0
WTIM1_CC1 #4
US0_CS #1 US1_CS #5
US3_CS #1 U0_RX #6
I2C0_SDA #7
silabs.com | Building a more connected world.
CMU_CLKI0 #0
Rev. 1.0 | 102
EFM32TG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
PE5
BUSCY BUSDX
LCD_COM1
WTIM0_CC1 #0
WTIM1_CC2 #4
US0_CLK #1 US1_CLK
#6 US3_CTS #1
I2C0_SCL #7
PE6
BUSDY BUSCX
LCD_COM2
WTIM0_CC2 #0
WTIM1_CC3 #4
US0_RX #1 US3_TX #1
PRS_CH6 #2
PE7
BUSCY BUSDX
LCD_COM3
WTIM1_CC0 #5
US0_TX #1 US3_RX #1
PRS_CH7 #2
PE8
BUSDY BUSCX
LCD_SEG4
PE9
BUSCY BUSDX
LCD_SEG5
PE10
BUSDY BUSCX
LCD_SEG6
TIM1_CC0 #1
WTIM0_CDTI0 #0
US0_TX #0
PRS_CH2 #2
GPIO_EM4WU9
PE11
BUSCY BUSDX
LCD_SEG7
TIM1_CC1 #1
WTIM0_CDTI1 #0
US0_RX #0
LES_ALTEX5 PRS_CH3
#2
PE12
BUSDY BUSCX
LCD_SEG8
TIM1_CC2 #1
WTIM0_CDTI2 #0 LETIM0_OUT0 #4
US0_RX #3 US0_CLK #0
I2C0_SDA #6
CMU_CLK1 #2
CMU_CLKI0 #6 LES_ALTEX6 PRS_CH1 #3
PE13
BUSCY BUSDX
LCD_SEG9
TIM1_CC3 #1 LETIM0_OUT1 #4
US0_TX #3 US0_CS #0
I2C0_SCL #6
LES_ALTEX7 PRS_CH2
#3 ACMP0_O #0
GPIO_EM4WU5
PE14
BUSDY BUSCX
LCD_SEG10
US0_CTS #0 LEU0_TX
#2
PE15
BUSCY BUSDX
LCD_SEG11
US0_RTS #0 LEU0_RX
#2
PF0
BUSDY BUSCX
TIM0_CC0 #4
WTIM0_CC1 #4 LETIM0_OUT0 #2
CAN0_RX #1 US1_CLK
#2 US2_TX #5 LEU0_TX
#3 I2C0_SDA #5
DBG_SWCLKTCK
BOOT_TX
PF1
BUSCY BUSDX
TIM0_CC1 #4
WTIM0_CC2 #4 LETIM0_OUT1 #2
US1_CS #2 US2_RX #5
U0_TX #5 LEU0_RX #3
I2C0_SCL #5
PRS_CH4 #2
DBG_SWDIOTMS
GPIO_EM4WU3
BOOT_RX
PF2
BUSDY BUSCX
LCD_SEG0
TIM0_CC2 #4 TIM1_CC0
#5
CAN0_TX #1 US1_TX #5
US2_CLK #5 U0_RX #5
LEU0_TX #4 I2C1_SCL
#4
CMU_CLK0 #4 PRS_CH0
#3 ACMP1_O #0
DBG_TDO
GPIO_EM4WU4
PF3
BUSCY BUSDX
LCD_SEG1
TIM0_CDTI0 #2
TIM1_CC1 #5
US1_CTS #2
CMU_CLK1 #4 PRS_CH0
#1
PF4
BUSDY BUSCX
LCD_SEG2
TIM0_CDTI1 #2
TIM1_CC2 #5
US1_RTS #2
PRS_CH1 #1
PF5
BUSCY BUSDX
LCD_SEG3
TIM0_CDTI2 #2
TIM1_CC3 #6
US2_CS #5
PRS_CH2 #1 DBG_TDI
silabs.com | Building a more connected world.
Other
PRS_CH3 #1
Rev. 1.0 | 103
EFM32TG11 Family Data Sheet
Pin Definitions
5.15 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO
pin. Refer to 5.14 GPIO Functionality Table for a list of functions available on each GPIO pin.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 5.15. Alternate Functionality Overview
Alternate
Functionality
ACMP0_O
LOCATION
0-3
4-7
0: PE13
4: PA6
2: PD6
7: PB3
Description
Analog comparator ACMP0, digital output.
3: PB11
ACMP1_O
0: PF2
4: PA14
2: PD7
7: PA5
Analog comparator ACMP1, digital output.
3: PA12
ADC0_EXTN
0: PD7
Analog to digital converter ADC0 external reference input negative pin.
ADC0_EXTP
0: PD6
Analog to digital converter ADC0 external reference input positive pin.
BOOT_RX
0: PF1
Bootloader RX.
BOOT_TX
0: PF0
Bootloader TX.
BU_STAT
0: PA8
Backup Power Domain status, whether or not the system is in backup mode.
BU_VIN
0: PD8
Battery input for Backup Power Domain.
BU_VOUT
0: PA12
Power output for Backup Power Domain.
0: PC0
CAN0_RX
1: PF0
CAN0 RX.
2: PD0
0: PC1
CAN0_TX
1: PF2
CAN0 TX.
2: PD1
CMU_CLK0
0: PA2
4: PF2
1: PC12
5: PA12
Clock Management Unit, clock output number 0.
2: PD7
CMU_CLK1
0: PA1
4: PF3
1: PD8
5: PB11
Clock Management Unit, clock output number 1.
2: PE12
0: PA0
CMU_CLK2
4: PA3
1: PA3
Clock Management Unit, clock output number 2.
2: PD6
silabs.com | Building a more connected world.
Rev. 1.0 | 104
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
CMU_CLKI0
LOCATION
0-3
4-7
0: PD4
6: PE12
1: PA3
7: PB11
2: PB8
Description
Clock Management Unit, clock input number 0.
3: PB13
DBG_SWCLKTCK
DBG_SWDIOTMS
0: PF0
Debug-interface Serial Wire clock input and JTAG Test Clock.
Note that this function is enabled to the pin out of reset, and has a built-in pull down.
0: PF1
Debug-interface Serial Wire data input / output and JTAG Test Mode Select.
Note that this function is enabled to the pin out of reset, and has a built-in pull up.
0: PF5
Debug-interface JTAG Test Data In.
DBG_TDI
Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.
0: PF2
Debug-interface JTAG Test Data Out.
DBG_TDO
Note that this function becomes available after the first valid JTAG command is received.
GPIO_EM4WU0
0: PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU1
0: PA6
Pin can be used to wake the system up from EM4
GPIO_EM4WU2
0: PC9
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
0: PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
0: PF2
Pin can be used to wake the system up from EM4
GPIO_EM4WU5
0: PE13
Pin can be used to wake the system up from EM4
GPIO_EM4WU6
0: PC4
Pin can be used to wake the system up from EM4
GPIO_EM4WU7
0: PB11
Pin can be used to wake the system up from EM4
GPIO_EM4WU9
0: PE10
Pin can be used to wake the system up from EM4
HFXTAL_N
0: PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
0: PB13
High Frequency Crystal positive pin.
I2C0_SCL
0: PA1
4: PC1
1: PD7
5: PF1
2: PC7
6: PE13
I2C0 Serial Clock Line input / output.
7: PE5
I2C0_SDA
0: PA0
4: PC0
1: PD6
5: PF0
2: PC6
6: PE12
I2C0 Serial Data input / output.
7: PE4
0: PC5
I2C1_SCL
4: PF2
1: PB12
I2C1 Serial Clock Line input / output.
3: PD5
silabs.com | Building a more connected world.
Rev. 1.0 | 105
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
0: PC4
I2C1_SDA
4-7
Description
4: PC11
1: PB11
I2C1 Serial Data input / output.
3: PD4
0: PA14
LCD external supply bypass in step down or charge pump mode. If using the LCD in
step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and
VSS is required.
To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD
segment capacitance may be used.
LCD_BEXT
If using the LCD with the internal supply source, this pin may be left unconnected or
used as a GPIO.
LCD_COM0
0: PE4
LCD driver common line number 0.
LCD_COM1
0: PE5
LCD driver common line number 1.
LCD_COM2
0: PE6
LCD driver common line number 2.
LCD_COM3
0: PE7
LCD driver common line number 3.
LCD_SEG0
0: PF2
LCD segment line 0.
LCD_SEG1
0: PF3
LCD segment line 1.
LCD_SEG2
0: PF4
LCD segment line 2.
LCD_SEG3
0: PF5
LCD segment line 3.
LCD_SEG4
0: PE8
LCD segment line 4.
LCD_SEG5
0: PE9
LCD segment line 5.
LCD_SEG6
0: PE10
LCD segment line 6.
LCD_SEG7
0: PE11
LCD segment line 7.
LCD_SEG8
0: PE12
LCD segment line 8.
LCD_SEG9
0: PE13
LCD segment line 9.
LCD_SEG10
0: PE14
LCD segment line 10.
LCD_SEG11
0: PE15
LCD segment line 11.
LCD_SEG12
0: PA15
LCD segment line 12.
LCD_SEG13
0: PA0
LCD segment line 13.
LCD_SEG14
0: PA1
LCD segment line 14.
LCD_SEG15
0: PA2
LCD segment line 15.
LCD_SEG16
0: PA3
LCD segment line 16.
LCD_SEG17
0: PA4
LCD segment line 17.
LCD_SEG18
0: PA5
LCD segment line 18.
LCD_SEG19
0: PA6
LCD segment line 19.
LCD_SEG20 /
LCD_COM4
0: PB3
LCD_SEG21 /
LCD_COM5
0: PB4
silabs.com | Building a more connected world.
LCD segment line 20. This pin may also be used as LCD COM line 4
LCD segment line 21. This pin may also be used as LCD COM line 5
Rev. 1.0 | 106
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
LCD_SEG22 /
LCD_COM6
0: PB5
LCD_SEG23 /
LCD_COM7
0: PB6
LCD_SEG24
0: PC4
LCD segment line 24.
LCD_SEG25
0: PC5
LCD segment line 25.
LCD_SEG26
0: PA9
LCD segment line 26.
LCD_SEG27
0: PA10
LCD segment line 27.
LCD_SEG28
0: PB11
LCD segment line 28.
LCD_SEG29
0: PB12
LCD segment line 29.
LCD_SEG30
0: PD3
LCD segment line 30.
LCD_SEG31
0: PD4
LCD segment line 31.
LCD_SEG32
0: PC6
LCD segment line 32.
LCD_SEG33
0: PC7
LCD segment line 33.
LCD_SEG34
0: PC8
LCD segment line 34.
LCD_SEG35
0: PC9
LCD segment line 35.
LES_ALTEX0
0: PD6
LESENSE alternate excite output 0.
LES_ALTEX1
0: PD7
LESENSE alternate excite output 1.
LES_ALTEX2
0: PA3
LESENSE alternate excite output 2.
LES_ALTEX3
0: PA4
LESENSE alternate excite output 3.
LES_ALTEX4
0: PA5
LESENSE alternate excite output 4.
LES_ALTEX5
0: PE11
LESENSE alternate excite output 5.
LES_ALTEX6
0: PE12
LESENSE alternate excite output 6.
LES_ALTEX7
0: PE13
LESENSE alternate excite output 7.
LES_CH0
0: PC0
LESENSE channel 0.
LES_CH1
0: PC1
LESENSE channel 1.
LES_CH2
0: PC2
LESENSE channel 2.
LES_CH3
0: PC3
LESENSE channel 3.
LES_CH4
0: PC4
LESENSE channel 4.
LES_CH5
0: PC5
LESENSE channel 5.
LES_CH6
0: PC6
LESENSE channel 6.
LES_CH7
0: PC7
LESENSE channel 7.
LES_CH8
0: PC8
LESENSE channel 8.
LES_CH9
0: PC9
LESENSE channel 9.
LES_CH10
0: PC10
LESENSE channel 10.
LES_CH11
0: PC11
LESENSE channel 11.
LES_CH12
0: PC12
LESENSE channel 12.
silabs.com | Building a more connected world.
LCD segment line 22. This pin may also be used as LCD COM line 6
LCD segment line 23. This pin may also be used as LCD COM line 7
Rev. 1.0 | 107
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
LES_CH13
0: PC13
LESENSE channel 13.
LES_CH14
0: PC14
LESENSE channel 14.
LES_CH15
0: PC15
LESENSE channel 15.
LETIM0_OUT0
0: PD6
4: PE12
1: PB11
5: PC14
2: PF0
6: PA8
Low Energy Timer LETIM0, output channel 0.
3: PC4
LETIM0_OUT1
0: PD7
4: PE13
1: PB12
5: PC15
2: PF1
6: PA9
Low Energy Timer LETIM0, output channel 1.
3: PC5
LEU0_RX
0: PD5
4: PA0
1: PB14
5: PC15
2: PE15
LEUART0 Receive input.
3: PF1
LEU0_TX
0: PD4
4: PF2
1: PB13
5: PC14
2: PE14
LEUART0 Transmit output. Also used as receive input in half duplex communication.
3: PF0
0: PB8
Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P
0: PB7
Low Frequency Crystal (typically 32.768 kHz) positive pin.
OPA0_N
0: PC5
Operational Amplifier 0 external negative input.
OPA0_P
0: PC4
Operational Amplifier 0 external positive input.
OPA1_N
0: PD7
Operational Amplifier 1 external negative input.
OPA1_P
0: PD6
Operational Amplifier 1 external positive input.
OPA2_N
0: PD3
Operational Amplifier 2 external negative input.
OPA2_OUT
0: PD5
Operational Amplifier 2 output.
OPA2_OUTALT
0: PD0
Operational Amplifier 2 alternative output.
OPA2_P
0: PD4
Operational Amplifier 2 external positive input.
OPA3_N
0: PC7
Operational Amplifier 3 external negative input.
OPA3_OUT
0: PD1
Operational Amplifier 3 output.
OPA3_P
0: PC6
Operational Amplifier 3 external positive input.
LFXTAL_N
PCNT0_S0IN
0: PC13
4: PA0
2: PC0
6: PB5
3: PD6
7: PB12
silabs.com | Building a more connected world.
Pulse Counter PCNT0 input number 0.
Rev. 1.0 | 108
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
PCNT0_S1IN
LOCATION
0-3
4-7
0: PC14
4: PA1
2: PC1
6: PB6
3: PD7
7: PB11
Description
Pulse Counter PCNT0 input number 1.
0: PA0
PRS_CH0
1: PF3
Peripheral Reflex System PRS, channel 0.
2: PC14
3: PF2
0: PA1
PRS_CH1
1: PF4
Peripheral Reflex System PRS, channel 1.
2: PC15
3: PE12
0: PC0
PRS_CH2
1: PF5
Peripheral Reflex System PRS, channel 2.
2: PE10
3: PE13
0: PC1
PRS_CH3
1: PE8
Peripheral Reflex System PRS, channel 3.
2: PE11
3: PA0
PRS_CH4
PRS_CH5
0: PC8
Peripheral Reflex System PRS, channel 4.
2: PF1
0: PC9
Peripheral Reflex System PRS, channel 5.
2: PD6
0: PA6
PRS_CH6
1: PB14
Peripheral Reflex System PRS, channel 6.
2: PE6
PRS_CH7
TIM0_CC0
0: PB13
Peripheral Reflex System PRS, channel 7.
2: PE7
0: PA0
4: PF0
2: PD1
5: PC4
3: PB6
6: PA8
Timer 0 Capture Compare input / output channel 0.
7: PA1
TIM0_CC1
0: PA1
4: PF1
2: PD2
5: PC5
3: PC0
6: PA9
Timer 0 Capture Compare input / output channel 1.
7: PA0
silabs.com | Building a more connected world.
Rev. 1.0 | 109
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
TIM0_CC2
TIM0_CDTI0
LOCATION
0-3
4-7
0: PA2
4: PF2
2: PD3
6: PA10
3: PC1
7: PA13
0: PA3
4: PB7
1: PC13
Description
Timer 0 Capture Compare input / output channel 2.
Timer 0 Complimentary Dead Time Insertion channel 0.
2: PF3
3: PC2
0: PA4
TIM0_CDTI1
4: PB8
1: PC14
Timer 0 Complimentary Dead Time Insertion channel 1.
2: PF4
3: PC3
0: PA5
TIM0_CDTI2
4: PB11
1: PC15
Timer 0 Complimentary Dead Time Insertion channel 2.
2: PF5
3: PC4
TIM1_CC0
0: PC13
4: PD6
1: PE10
5: PF2
Timer 1 Capture Compare input / output channel 0.
3: PB7
TIM1_CC1
0: PC14
4: PD7
1: PE11
5: PF3
Timer 1 Capture Compare input / output channel 1.
3: PB8
TIM1_CC2
0: PC15
4: PC13
1: PE12
5: PF4
Timer 1 Capture Compare input / output channel 2.
3: PB11
TIM1_CC3
0: PC12
4: PC14
1: PE13
6: PF5
2: PB3
Timer 1 Capture Compare input / output channel 3.
3: PB12
U0_CTS
U0_RTS
U0_RX
2: PA5
4: PB7
3: PC13
5: PD5
2: PA6
4: PB8
3: PC12
5: PD6
2: PA4
4: PC5
3: PC15
5: PF2
UART0 Clear To Send hardware flow control input.
UART0 Request To Send hardware flow control output.
UART0 Receive input.
6: PE4
silabs.com | Building a more connected world.
Rev. 1.0 | 110
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
U0_TX
LOCATION
0-3
4-7
2: PA3
4: PC4
3: PC14
5: PF1
Description
UART0 Transmit output. Also used as receive input in half duplex communication.
6: PD7
US0_CLK
0: PE12
4: PB13
1: PE5
5: PA12
2: PC9
USART0 clock input / output.
3: PC15
US0_CS
0: PE13
4: PB14
1: PE4
5: PA13
2: PC8
USART0 chip select input / output.
3: PC14
US0_CTS
0: PE14
4: PB6
2: PC7
5: PB11
USART0 Clear To Send hardware flow control input.
3: PC13
US0_RTS
0: PE15
4: PB5
2: PC6
5: PD6
USART0 Request To Send hardware flow control output.
3: PC12
US0_RX
0: PE11
4: PB8
1: PE6
5: PC1
2: PC10
USART0 Asynchronous Receive.
USART0 Synchronous mode Master Input / Slave Output (MISO).
3: PE12
US0_TX
0: PE10
4: PB7
1: PE7
5: PC0
2: PC11
USART0 Asynchronous Transmit. Also used as receive input in half duplex communication.
USART0 Synchronous mode Master Output / Slave Input (MOSI).
3: PE13
US1_CLK
0: PB7
4: PC3
1: PD2
5: PB11
2: PF0
6: PE5
USART1 clock input / output.
3: PC15
US1_CS
0: PB8
4: PC0
1: PD3
5: PE4
2: PF1
USART1 chip select input / output.
3: PC14
US1_CTS
1: PD4
4: PC12
2: PF3
5: PB13
USART1 Clear To Send hardware flow control input.
3: PC6
silabs.com | Building a more connected world.
Rev. 1.0 | 111
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
US1_RTS
LOCATION
0-3
4-7
1: PD5
4: PC13
2: PF4
5: PB14
Description
USART1 Request To Send hardware flow control output.
3: PC7
US1_RX
US1_TX
US2_CLK
0: PC1
4: PC2
1: PD1
5: PA0
2: PD6
6: PA2
0: PC0
4: PC1
1: PD0
5: PF2
USART1 Asynchronous Transmit. Also used as receive input in half duplex communication.
2: PD7
6: PA14
USART1 Synchronous mode Master Output / Slave Input (MOSI).
0: PC4
5: PF2
1: PB5
USART1 Asynchronous Receive.
USART1 Synchronous mode Master Input / Slave Output (MISO).
USART2 clock input / output.
2: PA9
3: PA15
0: PC5
US2_CS
5: PF5
1: PB6
USART2 chip select input / output.
2: PA10
3: PB11
US2_CTS
US2_RTS
0: PC1
4: PC12
1: PB12
5: PD6
0: PC0
4: PC13
2: PA12
5: PD8
USART2 Clear To Send hardware flow control input.
USART2 Request To Send hardware flow control output.
3: PC14
0: PC3
US2_RX
5: PF1
1: PB4
USART2 Asynchronous Receive.
2: PA8
USART2 Synchronous mode Master Input / Slave Output (MISO).
3: PA14
0: PC2
US2_TX
5: PF0
1: PB3
USART2 Asynchronous Transmit. Also used as receive input in half duplex communication.
3: PA13
USART2 Synchronous mode Master Output / Slave Input (MOSI).
0: PA2
US3_CLK
1: PD7
USART3 clock input / output.
2: PD4
0: PA3
US3_CS
1: PE4
2: PC14
USART3 chip select input / output.
3: PC0
silabs.com | Building a more connected world.
Rev. 1.0 | 112
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PA4
US3_CTS
USART3 Clear To Send hardware flow control input.
1: PE5
2: PD6
0: PA5
US3_RTS
1: PC1
USART3 Request To Send hardware flow control output.
2: PA14
3: PC15
0: PA1
US3_RX
USART3 Asynchronous Receive.
1: PE7
USART3 Synchronous mode Master Input / Slave Output (MISO).
2: PB7
0: PA0
1: PE6
USART3 Asynchronous Transmit. Also used as receive input in half duplex communication.
2: PB3
USART3 Synchronous mode Master Output / Slave Input (MOSI).
VDAC0_EXT
0: PD6
Digital to analog converter VDAC0 external reference input pin.
VDAC0_OUT0 /
OPA0_OUT
0: PB11
US3_TX
0: PC0
VDAC0_OUT0ALT
/ OPA0_OUTALT
Digital to Analog Converter DAC0 output channel number 0.
4: PD0
1: PC1
Digital to Analog Converter DAC0 alternative output for channel 0.
2: PC2
3: PC3
VDAC0_OUT1 /
OPA1_OUT
0: PB12
0: PC12
VDAC0_OUT1ALT
/ OPA1_OUTALT
Digital to Analog Converter DAC0 output channel number 1.
4: PD1
1: PC13
Digital to Analog Converter DAC0 alternative output for channel 1.
2: PC14
3: PC15
WTIM0_CC0
0: PE4
4: PC15
1: PA6
6: PB3
Wide timer 0 Capture Compare input / output channel 0.
7: PC1
0: PE5
WTIM0_CC1
4: PF0
6: PB4
Wide timer 0 Capture Compare input / output channel 1.
7: PC2
0: PE6
WTIM0_CC2
4: PF1
6: PB5
Wide timer 0 Capture Compare input / output channel 2.
7: PC3
silabs.com | Building a more connected world.
Rev. 1.0 | 113
EFM32TG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
WTIM0_CDTI0
WTIM0_CDTI1
WTIM0_CDTI2
LOCATION
0-3
0: PE10
4: PD4
2: PA12
0: PE11
4: PD5
2: PA13
0: PE12
4: PD6
2: PA14
0: PB13
WTIM1_CC0
4-7
Description
Wide timer 0 Complimentary Dead Time Insertion channel 0.
Wide timer 0 Complimentary Dead Time Insertion channel 1.
Wide timer 0 Complimentary Dead Time Insertion channel 2.
5: PE7
1: PD2
Wide timer 1 Capture Compare input / output channel 0.
2: PD6
3: PC7
0: PB14
WTIM1_CC1
4: PE4
1: PD3
Wide timer 1 Capture Compare input / output channel 1.
2: PD7
0: PD0
WTIM1_CC2
4: PE5
1: PD4
Wide timer 1 Capture Compare input / output channel 2.
2: PD8
0: PD1
WTIM1_CC3
4: PE6
1: PD5
Wide timer 1 Capture Compare input / output channel 3.
2: PC6
silabs.com | Building a more connected world.
Rev. 1.0 | 114
EFM32TG11 Family Data Sheet
Pin Definitions
5.16 Analog Port (APORT) Client Maps
PF0
PF1
PF2
PF3
PF4
PF5
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PA0
PA15
PC15
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 115 shows the APORT routing for this device family (note that available features
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.
POS
0X
1X
2X
3X
4X
NEXT1
NEXT0
NEG
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
ACMP0
PA1
PA2
PA3
POS
PA4
0X
1X
2X
3X
4X
NEXT1
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
OPA0_P
1X
2X
3X
4X
PA5
NEG
OPA0
PB3
OUT
PB4
PB5
PB6
OUT0
OUT0ALT
OUT1
OUT2
OUT3
OUT4
NEXT0
OPA2_P
1X
2X
3X
4X
NEG
OPA2_N
1Y
2Y
3Y
4Y
PC0
OPA0_ALT
OUT
OPA0_ALT
PC2
OUT2
OUT2ALT
OUT1
OUT2
OUT3
OUT4
NEXT2
OPA0_ALT
PC3
OPA0_ALT
NEG
OUT1
OUT1ALT
OUT1
OUT2
OUT3
OUT4
NEXT1
OUT
OPA3_P
1X
2X
3X
4X
POS
OPA3_N
1Y
2Y
3Y
4Y
NEG
OUT3
OUT3ALT
OUT1
OUT2
OUT3
OUT4
NEXT3
OUT
PC12
PC11
OPA1
PE7
PE6
PE5
PE4
OPA3
PC7
OPA2_N
PC6
OPA2_N
POS
PD7
ADC_EXTN
OPA1_N
ADC0
OUT2
EXTP
EXTN
OPA2_P
NEG
OPA2_N
2X
2Y
4X
4Y
OPA1_N
1Y
2Y
3Y
4Y
PC13
ALT0OUT
OUT3
CEXT_SENSE
OUT1
OUT0
OPA0_N
PC11
POS
ALT0OUT
OPA2_ALT
CSEN
OPA0_P
PC5
PC13
PC12
OPA1_P
1X
2X
3X
4X
0X
1X
2X
3X
4X
NEXT2
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT3
NEXT1
PC14
ADC_EXTP
OPA1_P
PC4
1X
1Y
3X
3Y
CEXT
ACMP1
NEG
ADC1Y
ADC1X
ACMP0X
ACMP0Y
POS
OPA2
PC1
OPA0_N
1Y
2Y
3Y
4Y
POS
ACMP1X
ACMP1Y
PA6
OPA1_ALT
CX
CY
DX
DY
BY
BX
AY
AX
PB14
PB13
PB12
PB11
PA14
PA13
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PA9
BUSACMP0X,
BUSACMP1Y, ...
PA10
ACMP0X,
ACMP1Y, …
OPA3_OUT
BUSADC0X,
BUSADC0Y
VDAC0_OUT0ALT
OPA2_ALT
BUSAX, BUSBY, ...
ADC0X,
ADC0Y
OPA0_OUT
APORTnX, APORTnY
AX, BY, …
OPA1_OUT
nX, nY
Figure 5.14. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
silabs.com | Building a more connected world.
Rev. 1.0 | 115
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF5
PF3
BUSCY
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP0Y BUSACMP0X Bus
APORT0Y
EFM32TG11 Family Data Sheet
Pin Definitions
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
Table 5.16. ACMP0 Bus and Pin Mapping
Rev. 1.0 | 116
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF5
PF3
BUSCY
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PC8
PC9
PC10
PC11
PC12
PC13
PC14
PC15
PC8
PC9
PC10
PC11
PC12
PC13
PC14
PC15
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP1Y BUSACMP1X Bus
APORT0Y
EFM32TG11 Family Data Sheet
Pin Definitions
Table 5.17. ACMP1 Bus and Pin Mapping
Rev. 1.0 | 117
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF5
PF3
BUSCY
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSADC0Y BUSADC0X Bus
APORT0Y
EFM32TG11 Family Data Sheet
Pin Definitions
Table 5.18. ADC0 Bus and Pin Mapping
Rev. 1.0 | 118
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSDX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
APORT4Y APORT4X APORT2Y APORT2X
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT3Y APORT3X APORT1Y APORT1X
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
Table 5.19. CSEN Bus and Pin Mapping
CEXT
CEXT_SENSE
Rev. 1.0 | 119
silabs.com | Building a more connected world.
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
Table 5.20. VDAC0 / OPA Bus and Pin Mapping
OPA0_N
OPA0_P
Rev. 1.0 | 120
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
OPA1_N
OPA1_P
OPA2_N
Rev. 1.0 | 121
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
OPA2_OUT
OPA2_P
OPA3_N
Rev. 1.0 | 122
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSDX
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSCX
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSBX
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
OPA3_OUT
OPA3_P
VDAC0_OUT0 / OPA0_OUT
Rev. 1.0 | 123
silabs.com | Building a more connected world.
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
BUSDY
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
BUSCY
PA0
PA2
PA4
PA6
PA10
PA14
PB4
PB6
PB12
PB14
BUSBY
PA1
PA3
PA5
PA9
PA13
PA15
PB3
PB5
PB11
PB13
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32TG11 Family Data Sheet
Pin Definitions
VDAC0_OUT1 / OPA1_OUT
Rev. 1.0 | 124
EFM32TG11 Family Data Sheet
TQFP80 Package Specifications
6. TQFP80 Package Specifications
6.1 TQFP80 Package Dimensions
Figure 6.1. TQFP80 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 125
EFM32TG11 Family Data Sheet
TQFP80 Package Specifications
Table 6.1. TQFP80 Package Dimensions
Dimension
Min
Typ
Max
A
—
—
1.20
A1
0.05
—
0.15
A2
0.95
1.00
1.05
b
0.17
0.20
0.27
c
0.09
—
0.20
D
14.00 BSC
D1
12.00 BSC
e
0.50 BSC
E
14.00 BSC
E1
12.00 BSC
L
0.45
L1
θ
0.60
0.75
1.00 REF
0
3.5
aaa
0.20
bbb
0.20
ccc
0.08
ddd
0.08
eee
0.05
7
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This package outline conforms to JEDEC MS-026, variant ADD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 126
EFM32TG11 Family Data Sheet
TQFP80 Package Specifications
6.2 TQFP80 PCB Land Pattern
Figure 6.2. TQFP80 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 127
EFM32TG11 Family Data Sheet
TQFP80 Package Specifications
Table 6.2. TQFP80 PCB Land Pattern Dimensions
Dimension
Min
Max
C1
13.30
13.40
C2
13.30
13.40
E
0.50 BSC
X
0.20
0.30
Y
1.40
1.50
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
6.3 TQFP80 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 6.3. TQFP80 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 128
EFM32TG11 Family Data Sheet
QFN80 Package Specifications
7. QFN80 Package Specifications
7.1 QFN80 Package Dimensions
Figure 7.1. QFN80 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 129
EFM32TG11 Family Data Sheet
QFN80 Package Specifications
Table 7.1. QFN80 Package Dimensions
Dimension
Min
Typ
Max
A
0.70
0.75
0.80
A1
0.00
—
0.05
b
0.15
0.2
0.25
A3
0.203 REF
D
9.00 BSC
e
0.40 BSC
E
9.00 BSC
D2
7.10
7.20
7.30
E2
7.10
7.20
7.30
L
0.35
0.40
0.45
aaa
0.10
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 130
EFM32TG11 Family Data Sheet
QFN80 Package Specifications
7.2 QFN80 PCB Land Pattern
Figure 7.2. QFN80 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 131
EFM32TG11 Family Data Sheet
QFN80 Package Specifications
Table 7.2. QFN80 PCB Land Pattern Dimensions
Dimension
Typ
C1
8.90
C2
8.90
E
0.40
X1
0.20
Y1
0.85
X2
7.30
Y2
7.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 132
EFM32TG11 Family Data Sheet
QFN80 Package Specifications
7.3 QFN80 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 7.3. QFN80 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 133
EFM32TG11 Family Data Sheet
TQFP64 Package Specifications
8. TQFP64 Package Specifications
8.1 TQFP64 Package Dimensions
Figure 8.1. TQFP64 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 134
EFM32TG11 Family Data Sheet
TQFP64 Package Specifications
Table 8.1. TQFP64 Package Dimensions
Dimension
Min
Typ
Max
A
—
1.15
1.20
A1
0.05
—
0.15
A2
0.95
1.00
1.05
b
0.17
0.22
0.27
b1
0.17
0.20
0.23
c
0.09
—
0.20
c1
0.09
—
0.16
D
12.00 BSC
D1
10.00 BSC
e
0.50 BSC
E
12.00 BSC
E1
10.00 BSC
L
0.45
L1
0.60
0.75
1.00 REF
R1
0.08
—
—
R2
0.08
—
0.20
S
0.20
—
—
θ
0
3.5
7
ϴ1
0
—
0.10
ϴ2
11
12
13
ϴ3
11
12
13
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 135
EFM32TG11 Family Data Sheet
TQFP64 Package Specifications
8.2 TQFP64 PCB Land Pattern
Figure 8.2. TQFP64 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 136
EFM32TG11 Family Data Sheet
TQFP64 Package Specifications
Table 8.2. TQFP64 PCB Land Pattern Dimensions
Dimension
Min
Max
C1
11.30
11.40
C2
11.30
11.40
E
0.50 BSC
X
0.20
0.30
Y
1.40
1.50
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
8.3 TQFP64 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 8.3. TQFP64 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 137
EFM32TG11 Family Data Sheet
QFN64 Package Specifications
9. QFN64 Package Specifications
9.1 QFN64 Package Dimensions
Figure 9.1. QFN64 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 138
EFM32TG11 Family Data Sheet
QFN64 Package Specifications
Table 9.1. QFN64 Package Dimensions
Dimension
Min
Typ
Max
A
0.70
0.75
0.80
A1
0.00
—
0.05
b
0.20
0.25
0.30
A3
0.203 REF
D
9.00 BSC
e
0.50 BSC
E
9.00 BSC
D2
7.10
7.20
7.30
E2
7.10
7.20
7.30
L
0.40
0.45
0.50
L1
0.00
—
0.10
aaa
0.10
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 139
EFM32TG11 Family Data Sheet
QFN64 Package Specifications
9.2 QFN64 PCB Land Pattern
Figure 9.2. QFN64 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 140
EFM32TG11 Family Data Sheet
QFN64 Package Specifications
Table 9.2. QFN64 PCB Land Pattern Dimensions
Dimension
Typ
C1
8.90
C2
8.90
E
0.50
X1
0.30
Y1
0.85
X2
7.30
Y2
7.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 141
EFM32TG11 Family Data Sheet
QFN64 Package Specifications
9.3 QFN64 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 9.3. QFN64 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 142
EFM32TG11 Family Data Sheet
TQFP48 Package Specifications
10. TQFP48 Package Specifications
10.1 TQFP48 Package Dimensions
Figure 10.1. TQFP48 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 143
EFM32TG11 Family Data Sheet
TQFP48 Package Specifications
Table 10.1. TQFP48 Package Dimensions
Dimension
Min
Typ
A
7.00 BSC
A1
3.50 BSC
B
7.00 BSC
B1
3.50 BSC
Max
C
1.00
—
1.20
D
0.17
—
0.27
E
0.95
—
1.05
F
0.17
—
0.23
G
0.50 BSC
H
0.05
—
0.15
J
0.09
—
0.20
K
0.50
—
0.70
L
0
—
7
M
N
12 REF
0.09
P
R
—
0.16
0.25 BSC
0.150
—
S
9.00 BSC
S1
4.50 BSC
V
9.00 BSC
V1
4.50 BSC
W
0.20 BSC
AA
1.00 BSC
0.250
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 144
EFM32TG11 Family Data Sheet
TQFP48 Package Specifications
10.2 TQFP48 PCB Land Pattern
Figure 10.2. TQFP48 PCB Land Pattern Drawing
Table 10.2. TQFP48 PCB Land Pattern Dimensions
Dimension
Typ
C1
8.50
C2
8.50
E
0.50
X
0.30
Y
1.60
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 145
EFM32TG11 Family Data Sheet
TQFP48 Package Specifications
10.3 TQFP48 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 10.3. TQFP48 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 146
EFM32TG11 Family Data Sheet
QFN32 Package Specifications
11. QFN32 Package Specifications
11.1 QFN32 Package Dimensions
Figure 11.1. QFN32 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 147
EFM32TG11 Family Data Sheet
QFN32 Package Specifications
Table 11.1. QFN32 Package Dimensions
Dimension
Min
Typ
Max
A
0.70
0.75
0.80
A1
0.00
—
0.05
A3
b
0.203 REF
0.20
D
D2/E2
0.25
5.0 BSC
3.60
3.70
E
5.0 BSC
e
0.50 BSC
L
0.30
0.35
0.40
aaa
0.10
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
3.80
0.45
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 148
EFM32TG11 Family Data Sheet
QFN32 Package Specifications
11.2 QFN32 PCB Land Pattern
Figure 11.2. QFN32 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 149
EFM32TG11 Family Data Sheet
QFN32 Package Specifications
Table 11.2. QFN32 PCB Land Pattern Dimensions
Dimension
Typ
C1
5.00
C2
5.00
E
0.50
X1
0.30
Y1
0.80
X2
3.80
Y2
3.80
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 150
EFM32TG11 Family Data Sheet
QFN32 Package Specifications
11.3 QFN32 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 11.3. QFN32 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 151
EFM32TG11 Family Data Sheet
Revision History
12. Revision History
Revision 1.0
November, 2018
•
•
•
•
•
•
•
•
•
Table 2.1 Ordering Information on page 4 updated with revision B part numbers.
4.1 Electrical Characteristics updated with final characterization data and production test limits.
4.1 Electrical Characteristics sorted all table footnotes in order of appearance.
Split VSS and VREGVSS pin definitions into separate entries in Table 5.2 EFM32TG11B5xx in QFN80 Device Pinout on page 75,
Table 5.6 EFM32TG11B5xx in QFN64 Device Pinout on page 84, and Table 5.12 EFM32TG11B5xx in QFN32 Device Pinout on
page 96.
Replaced VREGVSS name and description with VSS in Table 5.7 EFM32TG11B3xx in QFN64 Device Pinout on page 86, Table
5.8 EFM32TG11B1xx in QFN64 Device Pinout on page 88, and Table 5.13 EFM32TG11B1xx in QFN32 Device Pinout on page 98.
Table 5.14 GPIO Functionality Table on page 100 sorted by GPIO name in alphabetical order.
Table 5.15 Alternate Functionality Overview on page 104 changed vertical white space.
Table 7.1 QFN80 Package Dimensions on page 130 corrected dimension 'b'.
Figure 7.2 QFN80 PCB Land Pattern Drawing on page 131 corrected dimension 'X1'.
Revision 0.5
February, 2018
•
•
•
•
4.1 Electrical Characteristics updated with latest characterization data and production test limits.
Added 4.1.3 Thermal Characteristics.
Added 4.2 Typical Performance Curves section.
Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 115.
Revision 0.1
May 1st, 2017
Initial release.
silabs.com | Building a more connected world.
Rev. 1.0 | 152
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM
Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com