0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32ZG108F32-B-QFN24R

EFM32ZG108F32-B-QFN24R

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    VQFN24

  • 描述:

    IC MCU 32BIT 32KB FLASH 24QFN

  • 详情介绍
  • 数据手册
  • 价格&库存
EFM32ZG108F32-B-QFN24R 数据手册
EFM32 Zero Gecko Family EFM32ZG Data Sheet The EFM32 Zero Gecko MCUs are the world’s most energy-friendly microcontrollers. The EFM32ZG offers unmatched performance and ultra low power consumption in both active and sleep modes. EFM32ZG devices consume as little as 0.5 μA in Stop mode and 114 μA/MHz in Run mode. It also features autonomous peripherals, high overall chip and analog integration, and the performance of the industry standard 32-bit ARM CortexM0+ processor, making it perfect for battery-powered systems and systems with highperformance, low-energy requirements. • ARM Cortex-M0+ at 24 MHz • Ultra low power operation • 0.5 μA current in Stop (EM3), with brown-out detection and RAM retention • 48 μA/MHz in EM1 • 114 μA/MHz in Run mode (EM0) • Fast wake-up time of 2 µs EFM32ZG applications include the following: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories KEY FEATURES • Alarm and security systems • Industrial and home automation Core / Memory Clock Management ARM CortexTM M0+ processor High Frequency Crystal Oscillator High Frequency RC Oscillator Flash Program Memory RAM Memory Auxiliary High Freq. RC Osc. Low Freq. RC Oscillator Debug Interface DMA Controller Low Frequency Crystal Oscillator Ultra Low Freq. RC Oscillator • Hardware cryptography (AES) • Up to 32 kB of Flash and 4 kB of RAM Energy Management Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES 32-bit bus Peripheral Reflex System Serial Interfaces USART I2C Low Energy UARTTM I/O Ports Timers and Triggers Analog Interfaces External Interrupts General Purpose I/O Timer/Counter Real Time Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC Analog Comparator Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop EM4 - Shutoff Rev. 2.10 EFM32ZG Data Sheet Feature List 1. Feature List • ARM Cortex-M0+ CPU platform • High Performance 32-bit processor @ up to 24 MHz • Wake-up Interrupt Controller • SysTick System Timer • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.5 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 48 µA/MHz @ 3 V Sleep Mode • 114 µA/MHz @ 3 V Run Mode, with code executed from flash • 32/16/8/4 kB Flash • 4/2 kB RAM • Up to 37 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • Up to 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 4 Channel DMA Controller • 4 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128-bit keys in 54 cycles • Timers/Counters • 2× 16-bit Timer/Counter • 2×3 Compare/Capture/PWM channels • 1× 24-bit Real-Time Counter • 1× 16-bit Pulse Counter • Watchdog Timer with dedicated RC oscillator @ 50 nA • Communication interfaces • Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • Triple buffered full/half-duplex operation • Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode • I2C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog-to-Digital Converter • 4 single-ended channels/2 differential channels • On-chip temperature sensor • Current Digital-to-Analog Converter • Selectable current range between 0.05 and 64 µA • 1× Analog Comparator • Capacitive sensing with up to 5 inputs • Supply Voltage Comparator • Ultra efficient Power-on Reset and Brown-Out Detector • 2-pin Serial Wire Debug interface • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V silabs.com | Building a more connected world. Rev. 2.10 | 2 EFM32ZG Data Sheet Feature List • Packages: • QFN24 (5×5 mm) • QFN32 (6×6 mm) • TQFP48 (7×7 mm) silabs.com | Building a more connected world. Rev. 2.10 | 3 EFM32ZG Data Sheet Ordering Information 2. Ordering Information The following table shows the available EFM32ZG devices. Table 2.1. Ordering Information Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32ZG108F4-B-QFN24 4 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F8-B-QFN24 8 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F16-B-QFN24 16 4 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG108F32-B-QFN24 32 4 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG110F4-B-QFN24 4 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG110F8-B-QFN24 8 2 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG110F16-B-QFN24 16 4 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG110F32-B-QFN24 32 4 24 1.98 - 3.8 -40 - 85 QFN24 EFM32ZG210F4-B-QFN32 4 2 24 1.98 - 3.8 -40 - 85 QFN32 EFM32ZG210F8-B-QFN32 8 2 24 1.98 - 3.8 -40 - 85 QFN32 EFM32ZG210F16-B-QFN32 16 4 24 1.98 - 3.8 -40 - 85 QFN32 EFM32ZG210F32-B-QFN32 32 4 24 1.98 - 3.8 -40 - 85 QFN32 EFM32ZG222F4-B-QFP48 4 2 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F8-B-QFP48 8 2 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F16-B-QFP48 16 4 24 1.98 - 3.8 -40 - 85 TQFP48 EFM32ZG222F32-B-QFP48 32 4 24 1.98 - 3.8 -40 - 85 TQFP48 Ordering Code EFM32 ZG 222 F 32 – B – QFP 48 T Tray (Optional) Pin Count Package Revision Memory Size in kB Memory Type (Flash) Feature Set Code Zero Gecko Energy Friendly Microcontroller 32-bit Figure 2.1. Ordering Code Decoder Adding the suffix 'T' to the part number (e.g. EFM32ZG222F32-B-QFP48T) denotes tray. Visit http://www.silabs.com for information on global distributors and representatives. silabs.com | Building a more connected world. Rev. 2.10 | 4 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. System Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 System Introduction . . . . . . . . . . . . . . . . . . . 3.1.1 ARM Cortex-M0+ Core . . . . . . . . . . . . . . . . . 3.1.2 Debug Interface (DBG) . . . . . . . . . . . . . . . . . 3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . . 3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . . 3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . . 3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . 3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . . 3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . 3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.1.10 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . 3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 3.1.12 Pre-Programmed UART Bootloader . . . . . . . . . . . . 3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) 3.1.14 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . 3.1.15 Real Time Counter (RTC) . . . . . . . . . . . . . . . 3.1.16 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . 3.1.17 Analog Comparator (ACMP) . . . . . . . . . . . . . . 3.1.18 Voltage Comparator (VCMP) . . . . . . . . . . . . . . 3.1.19 Analog to Digital Converter (ADC) . . . . . . . . . . . . 3.1.20 Current Digital to Analog Converter (IDAC) . . . . . . . . . 3.1.21 Advanced Encryption Standard Accelerator (AES) . . . . . . . 3.1.22 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 .10 .10 .10 .10 .10 .10 .10 .10 3.2 Configuration Summary 3.2.1 EFM32ZG108 . . 3.2.2 EFM32ZG110 . . 3.2.3 EFM32ZG210 . . 3.2.4 EFM32ZG222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .12 .13 .14 3.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . .15 . . . 4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Test Conditions . . . . . . . . 4.1.1 Typical Values . . . . . . 4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .17 4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .17 4.3 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .17 4.4 Current Consumption . . . . 4.4.1 EM0 Current Consumption 4.4.2 EM1 Current Consumption 4.4.3 EM2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .20 .23 .25 silabs.com | Building a more connected world. Rev. 2.10 | 5 4.4.4 EM3 Current Consumption 4.4.5 EM4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 .26 4.5 Transition between Energy Modes . . . . . . . . . . . . . . . . . . . . . . .27 4.6 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 4.7 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 4.8 General Purpose Input Output . . . . . . . . . . . . . . . . . . . . . . . . .29 4.9 Oscillators . . 4.9.1 LFXO. . . 4.9.2 HFXO . . 4.9.3 LFRCO . . 4.9.4 HFRCO . . 4.9.5 AUXHFRCO 4.9.6 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 .37 .37 .38 .39 .42 .42 4.10 Analog Digital Converter (ADC) . 4.10.1 Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 .49 4.11 Current Digital Analog Converter (IDAC) . . . . . . . . . . . . . . . . . . . . .54 4.12 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . . .60 4.13 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . . . .62 4.14 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4.15 Digital Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1 EFM32ZG108 (QFN24) . . . . 5.1.1 Pinout . . . . . . . . 5.1.2 Alternate Functionality Pinout 5.1.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 .65 .68 .69 5.2 EFM32ZG110 (QFN24) . . . . 5.2.1 Pinout . . . . . . . . 5.2.2 Alternate Functionality Pinout 5.2.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 .70 .72 .73 5.3 EFM32ZG210 (QFN32) . . . . 5.3.1 Pinout . . . . . . . . 5.3.2 Alternate Functionality Pinout 5.3.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 .74 .77 .79 5.4 EFM32ZG222 (TQFP48) . . . 5.4.1 Pinout . . . . . . . . 5.4.2 Alternate Functionality Pinout 5.4.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 .80 .83 .85 6. QFN24 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 86 6.1 QFN24 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .86 6.2 QFN24 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 6.3 QFN24 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .89 silabs.com | Building a more connected world. Rev. 2.10 | 6 7. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 90 7.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .90 7.2 QFN32 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 7.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .93 8. TQFP48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 94 8.1 TQFP48 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . .94 8.2 TQFP48 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . .96 8.3 TQFP48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .98 9. Chip Revision, Solder Information, Errata. . . . . . . . . . . . . . . . . . . . 99 9.1 Chip Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 9.2 Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 9.3 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 . . . . . . . 10. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 silabs.com | Building a more connected world. Rev. 2.10 | 7 EFM32ZG Data Sheet System Summary 3. System Summary 3.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM CortexM0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32ZG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32ZG devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32ZG Reference Manual. A block diagram of the EFM32ZG is shown in the following figure. Core / Memory Clock Management ARM CortexTM M0+ processor High Frequency Crystal Oscillator High Frequency RC Oscillator Flash Program Memory RAM Memory Auxiliary High Freq. RC Osc. Low Freq. RC Oscillator Debug Interface DMA Controller Low Frequency Crystal Oscillator Ultra Low Freq. RC Oscillator Energy Management Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES 32-bit bus Peripheral Reflex System Serial Interfaces USART Low Energy UARTTM I2C I/O Ports Timers and Triggers Analog Interfaces External Interrupts General Purpose I/O Timer/Counter Real Time Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC Analog Comparator Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep EM2 – Deep Sleep EM3 - Stop EM4 - Shutoff Figure 3.1. Block Diagram 3.1.1 ARM Cortex-M0+ Core The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+ Devices Generic User Guide. 3.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface. 3.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32ZG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 3.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. silabs.com | Building a more connected world. Rev. 2.10 | 8 EFM32ZG Data Sheet System Summary 3.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32ZG. 3.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32ZG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 3.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32ZG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 3.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 3.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 3.1.10 Inter-Integrated Circuit Interface (I2C) The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I2C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 3.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 3.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse- Width Modulation (PWM) output. silabs.com | Building a more connected world. Rev. 2.10 | 9 EFM32ZG Data Sheet System Summary 3.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 3.1.16 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 3.1.17 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.18 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.19 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals. 3.1.20 Current Digital to Analog Converter (IDAC) The current digital to analog converter can source or sink a configurable constant current, which can be output on, or sinked from pin or ADC. The current is configurable with several ranges of various step sizes. 3.1.21 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 3.1.22 General Purpose Input/Output (GPIO) In the EFM32ZG, there are up to 37 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. silabs.com | Building a more connected world. Rev. 2.10 | 10 EFM32ZG Data Sheet System Summary 3.2 Configuration Summary 3.2.1 EFM32ZG108 The features of the EFM32ZG108 is a subset of the feature set described in the EFM32ZG Reference Manual. The following table describes device specific implementation of the features. Table 3.1. EFM32ZG108 Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[1:0], ACMP0_O VCMP Full configuration NA GPIO 17 pins Available pins are shown in 5.1.3 GPIO Pinout Overview silabs.com | Building a more connected world. Rev. 2.10 | 11 EFM32ZG Data Sheet System Summary 3.2.2 EFM32ZG110 The features of the EFM32ZG110 is a subset of the feature set described in the EFM32ZG Reference Manual. The following table describes device specific implementation of the features. Table 3.2. EFM32ZG110 Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[1:0], ACMP0_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[1:0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA GPIO 17 pins Available pins are shown in 5.2.3 GPIO Pinout Overview silabs.com | Building a more connected world. Rev. 2.10 | 12 EFM32ZG Data Sheet System Summary 3.2.3 EFM32ZG210 The features of the EFM32ZG210 is a subset of the feature set described in the EFM32ZG Reference Manual. The following table describes device specific implementation of the features. Table 3.3. EFM32ZG210 Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[1:0], ACMP0_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[3:0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA GPIO 24 pins Available pins are shown in 5.3.3 GPIO Pinout Overview silabs.com | Building a more connected world. Rev. 2.10 | 13 EFM32ZG Data Sheet System Summary 3.2.4 EFM32ZG222 The features of the EFM32ZG222 is a subset of the feature set described in the EFM32ZG Reference Manual. The following table describes device specific implementation of the features. Table 3.4. EFM32ZG222 Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL USART1 Full configuration with I2S and IrDA US1_TX, US1_RX, US1_CLK, US1_CS LEUART0 Full configuration LEU0_TX, LEU0_RX TIMER0 Full configuration TIM0_CC[2:0] TIMER1 Full configuration TIM1_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] ACMP0 Full configuration ACMP0_CH[4:0], ACMP0_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[3:0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA GPIO 37 pins Available pins are shown in 5.4.3 GPIO Pinout Overview silabs.com | Building a more connected world. Rev. 2.10 | 14 EFM32ZG Data Sheet System Summary 3.3 Memory Map The EFM32ZG memory map is shown in the following figure, with RAM and Flash sizes for the largest memory configuration. Figure 3.2. System Address Space with Core and Code Space Listing silabs.com | Building a more connected world. Rev. 2.10 | 15 EFM32ZG Data Sheet System Summary Figure 3.3. System Address Space with Peripheral Listing silabs.com | Building a more connected world. Rev. 2.10 | 16 EFM32ZG Data Sheet Electrical Characteristics 4. Electrical Characteristics 4.1 Test Conditions 4.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in 4.3 General Operating Conditions, unless otherwise specified. 4.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in 4.3 General Operating Conditions, unless otherwise specified. 4.2 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range TSTG Maximum soldering temperature TS External main supply voltage VDDMAX Voltage on any I/O pin VIOPIN Current per I/O pin (sink) Current per I/O pin (source) Test Condition Min Typ Max Unit -40 — 150 °C — — 260 °C 0 — 3.8 V -0.3 — VDD+0.3 V IIOMAX_SINK — — 100 mA IIOMAX_SOURCE — — -100 mA Latest IPC/JEDEC JSTD-020 Standard 4.3 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Min Typ Max Unit Ambient temperature range TAMB -40 — 85 °C Operating supply voltage VDDOP 1.98 — 3.8 V Internal APB clock frequency fAPB — — 24 MHz Internal AHB clock frequency fAHB — — 24 MHz silabs.com | Building a more connected world. Rev. 2.10 | 17 EFM32ZG Data Sheet Electrical Characteristics 4.4 Current Consumption Table 4.3. Current Consumption Parameter Symbol Test Condition EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) IEM0 silabs.com | Building a more connected world. Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 115 132 µA/MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 117 136 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 114 128 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 116 132 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 117 131 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 118 133 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 118 133 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 120 135 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 124 139 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 125 142 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 155 177 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 162 181 µA/MHz Rev. 2.10 | 18 EFM32ZG Data Sheet Electrical Characteristics Parameter Symbol Test Condition EM1 current (Production test condition = 14 MHz) IEM1 EM2 current EM3 current EM4 current IEM2 IEM3 IEM4 silabs.com | Building a more connected world. Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 48 57 µA/MHz 24 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 49 59 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 48 52 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 49 53 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 50 54 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 51 56 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 52 56 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 53 58 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 57 63 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 59 66 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C — 89 99 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C — 92 103 µA/MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C — 0.9 1.25 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C — 1.7 2.35 µA EM3 current (ULFRCO enabled, LFRCO/ LFXO disabled), VDD= 3.0 V, TAMB=25°C — 0.5 0.9 µA EM3 current (ULFRCO enabled, LFRCO/ LFXO disabled), VDD= 3.0 V, TAMB=85°C — 1.3 2.0 µA VDD= 3.0 V, TAMB=25°C — 0.02 0.035 µA VDD= 3.0 V, TAMB=85°C — 0.29 0.700 µA Rev. 2.10 | 19 EFM32ZG Data Sheet Electrical Characteristics 4.4.1 EM0 Current Consumption 2.84 2.80 Idd [mA] 2.78 2.82 2.80 2.78 Idd [mA] 2.82 2.84 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.76 2.76 2.74 2.74 2.72 2.72 2.70 2.70 2.68 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.68 –40 3.8 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V –15 5 25 Temperature [°C] 45 65 85 Figure 4.1. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 24 MHz 2.45 2.40 2.40 Idd [mA] Idd [mA] 2.45 2.35 2.35 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 2.30 2.0 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.30 3.8 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.2. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 21 MHz silabs.com | Building a more connected world. Rev. 2.10 | 20 EFM32ZG Data Sheet 1.68 1.68 1.66 1.66 1.64 1.64 1.62 1.62 Idd [mA] Idd [mA] Electrical Characteristics 1.60 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.58 1.56 1.54 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 1.60 1.58 1.56 1.54 –40 3.8 –15 5 25 Temperature [°C] 45 65 85 1.34 1.34 1.32 1.32 1.30 1.30 Idd [mA] Idd [mA] Figure 4.3. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 14 MHz 1.28 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.26 1.24 1.22 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 1.28 1.26 1.24 3.8 1.22 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.4. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 11 MHz silabs.com | Building a more connected world. Rev. 2.10 | 21 EFM32ZG Data Sheet 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81 Idd [mA] Idd [mA] Electrical Characteristics 0.80 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.79 0.78 0.77 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.80 0.79 0.78 3.8 0.77 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.5. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 6.6 MHz silabs.com | Building a more connected world. Rev. 2.10 | 22 EFM32ZG Data Sheet Electrical Characteristics 4.4.2 EM1 Current Consumption 1.20 1.18 1.20 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.18 Idd [mA] 1.16 Idd [mA] 1.16 1.14 1.14 1.12 1.12 1.10 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.10 –40 3.8 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V –15 5 25 Temperature [°C] 45 65 85 1.04 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 Idd [mA] Idd [mA] Figure 4.6. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 24 MHz 0.99 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.98 0.97 0.96 0.95 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.99 0.98 0.97 0.96 3.8 0.95 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.7. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 21 MHz silabs.com | Building a more connected world. Rev. 2.10 | 23 EFM32ZG Data Sheet 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 Idd [mA] Idd [mA] Electrical Characteristics 0.69 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.68 0.67 0.66 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.69 0.68 0.67 0.66 –40 3.8 –15 5 25 Temperature [°C] 45 65 85 0.59 0.59 0.58 0.58 0.57 0.57 Idd [mA] Idd [mA] Figure 4.8. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 14 MHz 0.56 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.55 0.54 0.53 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.56 0.55 0.54 3.8 0.53 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.9. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 11 MHz silabs.com | Building a more connected world. Rev. 2.10 | 24 EFM32ZG Data Sheet 0.395 0.395 0.390 0.390 0.385 0.385 0.380 0.380 0.375 0.375 Idd [mA] Idd [mA] Electrical Characteristics 0.370 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.365 0.360 0.355 0.350 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.370 0.365 0.360 0.355 3.8 0.350 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.10. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 6.6 MHz 4.4.3 EM2 Current Consumption 2.0 2.0 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.8 1.6 1.4 Idd [uA] Idd [uA] 1.6 1.8 1.2 1.4 1.2 1.0 1.0 0.8 0.8 0.6 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 3.8 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V 0.6 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.11. EM2 Current Consumption, RTC prescaled to 1 kHz, 32.768 kHz LFRCO silabs.com | Building a more connected world. Rev. 2.10 | 25 EFM32ZG Data Sheet Electrical Characteristics 4.4.4 EM3 Current Consumption 1.6 1.6 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 1.4 1.2 Idd [uA] Idd [uA] 1.2 1.4 1.0 1.0 0.8 0.8 0.6 0.6 0.4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 0.4 –40 3.8 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V –15 5 25 Temperature [°C] 45 65 85 5 25 Temperature [°C] 45 65 85 Figure 4.12. EM3 Current Consumption 4.4.5 EM4 Current Consumption 0.5 Idd [uA] 0.3 0.4 0.3 Idd [uA] 0.4 0.5 -40.0°C -15.0°C 5.0°C 25.0°C 45.0°C 65.0°C 85.0°C 0.2 0.2 0.1 0.1 0.0 0.0 –0.1 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 3.8 –0.1 –40 Vdd=2.0V Vdd=2.2V Vdd=2.4V Vdd=2.6V Vdd=2.8V Vdd=3.0V Vdd=3.2V Vdd=3.4V Vdd=3.6V Vdd=3.8V –15 Figure 4.13. EM4 Current Consumption silabs.com | Building a more connected world. Rev. 2.10 | 26 EFM32ZG Data Sheet Electrical Characteristics 4.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 4.4. Energy Modes Transitions Parameter Symbol Min Typ Max Unit Transition time from EM1 to EM0 tEM10 — 0 — HFCORECLK cycles Transition time from EM2 to EM0 tEM20 — 2 — µs Transition time from EM3 to EM0 tEM30 — 2 — µs Transition time from EM4 to EM0 tEM40 — 163 — µs 4.6 Power Management The EFM32ZG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, AN0002 EFM32 Hardware Design Considerations. Table 4.5. Power Management Parameter Symbol BOD threshold on falling external supply voltage BOD threshold on rising external supply voltage Test Condition Min Typ Max Unit VBODextthr- 1.74 — 1.96 V VBODextthr+ — 1.85 — V Delay from reset is released un- tRESET til program execution starts Applies to Power-on Reset, Brownout Reset and pin reset. — 163 — µs Voltage regulator decoupling capacitor. X5R capacitor recommended. Apply between DECOUPLE pin and GROUND — 1 — µF CDECOUPLE silabs.com | Building a more connected world. Rev. 2.10 | 27 EFM32ZG Data Sheet Electrical Characteristics 4.7 Flash Table 4.6. Flash Parameter Symbol Flash erase cycles before failure ECFLASH Flash word write cycles between erase WWCFLASH Flash data retention RETFLASH Test Condition Min Typ Max Unit 20000 — — cycles — — 21 cycles TAMB
EFM32ZG108F32-B-QFN24R
物料型号:EFM32ZG系列,包括不同的子型号,如EFM32ZG108F4、EFM32ZG108F8等,具体型号根据Flash存储容量和RAM大小来区分。

器件简介:EFM32ZG系列微控制器是世界上最节能的微控制器,具有出色的能效和超低功耗特性,适用于电池供电系统和对性能、能耗有高要求的系统。

引脚分配:文档提供了不同封装的引脚分配信息,例如QFN24、QFN32和TQFP48等,每个引脚具有多种可能的备用功能。

参数特性:包括ARM Cortex-M0+处理器、超低功耗运行、快速唤醒时间、硬件加密(AES)、Flash存储和RAM大小等。

功能详解:详细介绍了微控制器的各个功能模块,如能量管理、时钟管理、安全特性、高频RC振荡器、晶体振荡器、比较器、电压调节器、硬件AES、Flash程序存储器、RAM存储器等。

应用信息:EFM32ZG系列微控制器适用于能源、燃气、水和智能计量、报警和安全系统、健康和健身应用、工业和家庭自动化、智能配件等领域。

封装信息:提供了QFN24、QFN32和TQFP48等封装的详细物理尺寸、PCB布局和标记信息。

电气特性:包括工作条件、绝对最大额定值、一般工作条件、电流消耗等详细电气参数。
EFM32ZG108F32-B-QFN24R 价格&库存

很抱歉,暂时无法提供与“EFM32ZG108F32-B-QFN24R”相匹配的价格&库存,您可以联系我们找货

免费人工找货