EFM8SB20F64G-B-QFN32 数据手册
EFM8 Sleepy Bee Family
EFM8SB2 Data Sheet
The EFM8SB2, part of the Sleepy Bee family of MCUs, is the
world’s most energy friendly 8-bit microcontrollers with a comprehensive feature set in small packages.
ENERGY FRIENDLY FEATURES
• Lowest MCU sleep current with supply
brownout detection (50 nA)
These devices offer lowest power consumption by combining innovative low energy techniques and short wakeup times from energy saving modes into small packages, making
them well-suited for any battery operated applications. With an efficient 8051 core, 6-bit
current reference, and precision analog, the EFM8SB2 family is also optimal for embedded applications.
• Lowest MCU active current with these
features (170 μA / MHz at 24.5 MHz clock
rate)
EFM8SB2 applications include the following:
• Ultra-fast wake up for digital and analog
peripherals (< 2 μs)
• Battery-operated consumer electronics
• Sensor interfaces
• Hand-held devices
• Industrial controls
Core / Memory
RAM Memory
(4352 bytes)
(up to 64 KB)
• Integrated low drop out (LDO) voltage
regulator to maintain ultra-low active
current at all voltages
Clock Management
CIP-51 8051 Core
(25 MHz)
Flash Program
Memory
• Lowest MCU sleep current using internal
RTC operating and supply brownout
detection ( 14 MHz
—
120
—
µA/MHz
VDD = 1.8–3.6 V, fSYSCLK = 24.5
MHz
—
2.5
3.0
mA
VDD = 1.8–3.6 V, fSYSCLK = 20
MHz
—
1.8
—
mA
VDD = 1.8–3.6 V, fSYSCLK = 32.768
kHz
—
84
—
µA
Idle Mode Supply Current Frequen- IDDFREQ
cy Sensitivity1 ,6
VDD = 1.8–3.6 V, T = 25 °C
—
95
—
µA/MHz
Suspend Mode Supply Current
IDD
VDD = 1.8–3.6 V
—
77
—
µA
Sleep Mode Supply Current with
RTC running from 32.768 kHz
crystal
IDD
1.8 V, T = 25 °C
—
0.60
—
µA
3.6 V, T = 25 °C
—
0.85
—
µA
1.8 V, T = 85 °C
—
1.30
—
µA
3.6 V, T = 85 °C
—
1.90
—
µA
1.8 V, T = 25 °C
—
0.05
—
µA
3.6 V, T = 25 °C
—
0.12
—
µA
1.8 V, T = 85 °C
—
0.75
—
µA
3.6 V, T = 85 °C
—
1.20
—
µA
—
7
—
µA
Digital Supply Current
Normal Mode supply current - Full
speed with code executing from
flash 3 , 4 , 5
Normal Mode supply current frequency sensitivity1, 3, 5
Idle Mode supply current - Core
halted with peripherals running4 , 6
Sleep Mode Supply Current (RTC
off)
IDDFREQ
IDD
IDD
VDD Monitor Supply Current
IVMON
Oscillator Supply Current
IHFOSC0
25 °C
—
300
—
µA
ADC0 Always-on Power Supply
Current7
IADC
300 ksps
—
800
—
µA
—
680
—
µA
VDD = 3.0 V
Tracking
VDD = 3.0 V
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 13
EFM8SB2 Data Sheet
Electrical Specifications
Parameter
Symbol
Comparator 0 (CMP0) Supply Cur- ICMP
rent
Conditions
Min
Typ
Max
Units
CPMD = 11
—
0.4
—
µA
CPMD = 10
—
2.6
—
µA
CPMD = 01
—
8.8
—
µA
CPMD = 00
—
23
—
µA
Internal Fast-settling 1.65V ADC0
Reference, Always-on8
IVREFFS
—
200
—
µA
On-chip Precision Reference
IVREFP
—
15
—
µA
Temp sensor Supply Current
ITSENSE
—
35
—
µA
Programmable Current Reference
(IREF0) Supply Current9
IIREF
Current Source, Either Power
Mode, Any Output Code
—
10
—
µA
Low Power Mode, Current Sink
—
1
—
µA
—
11
—
µA
—
12
—
µA
—
81
—
µA
IREF0DAT = 000001
Low Power Mode, Current Sink
IREF0DAT = 111111
High Current Mode, Current Sink
IREF0DAT = 000001
High Current Mode, Current Sink
IREF0DAT = 111111
Note:
1. Based on device characterization data; Not production tested.
2. SYSCLK must be at least 32 kHz to enable debugging.
3. Digital Supply Current depends upon the particular code being executed. The values in this table are obtained with the CPU executing an “sjmp $” loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the
flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the sjmp instruction and
the number of flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the sjmp loop
straddles a 128-byte flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 128-byte address boundaries.
4. Includes supply current from regulator and oscillator source (24.5 MHz high-frequency oscillator, 20 MHz low-power oscillator, or
32.768 kHz RTC oscillator).
5. IDD can be estimated for frequencies < 10 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range, then adding an offset of 90 µA. When using these numbers to estimate IDD for > 10 MHz, the estimate should
be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: VDD = 3.0 V;
F = 20 MHz, IDD = 4.1 mA – (25 MHz – 20 MHz) x 0.120 mA/MHz = 3.5 mA assuming the same oscillator setting.
6. Idle IDD can be estimated by taking the current at 25 MHz minus the difference in current indicated by the frequency sensitivity
number. For example: VDD = 3.0 V; F = 5 MHz, Idle IDD = 2.5 mA – (25 MHz – 5 MHz) x 0.095 mA/MHz = 0.6 mA.
7. ADC0 always-on power excludes internal reference supply current.
8. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.
9. IREF0 supply current only. Does not include current sourced or sunk from IREF0 output pin.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 14
EFM8SB2 Data Sheet
Electrical Specifications
4.1.3 Reset and Supply Monitor
Table 4.3. Reset and Supply Monitor
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD Supply Monitor Threshold
VVDDM
Reset Trigger
1.7
1.75
1.8
V
VWARN
Early Warning
1.8
1.85
1.9
V
—
300
—
ns
Initial Power-On (Rising Voltage on
VDD)
—
0.75
—
V
Falling Voltage on VDD
0.7
0.8
0.9
V
Brownout Recovery (Rising Voltage on VDD)
—
0.95
—
V
VDD Supply Monitor Turn-On Time tMON
Power-On Reset (POR) Monitor
Threshold
VPOR
VDD Ramp Time
tRMP
Time to VDD ≥ 1.8 V
—
—
3
ms
Reset Delay from POR
tPOR
Relative to VDD > VPOR
3
10
31
ms
Reset Delay
tRST
Time between release of reset
source and code execution
—
10
—
µs
RST Low Time to Generate Reset
tRSTL
15
—
—
µs
Missing Clock Detector Response
Time (final rising edge to reset)
tMCD
100
650
1000
µs
Missing Clock Detector Trigger
Frequency
FMCD
—
7
10
kHz
Min
Typ
Max
Units
FSYSCLK > 1 MHz
4.1.4 Flash Memory
Table 4.4. Flash Memory
Parameter
Symbol
Test Condition
Write Time1
tWRITE
One Byte
57
64
71
µs
Erase Time1
tERASE
One Page
28
32
36
ms
Endurance (Write/Erase Cycles)
NWE
1k
30 k
—
Cycles
Note:
1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.
2. Data Retention Information is published in the Quarterly Quality and Reliability Report.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 15
EFM8SB2 Data Sheet
Electrical Specifications
4.1.5 Power Management Timing
Table 4.5. Power Management Timing
Parameter
Symbol
Idle Mode Wake-up Time
tIDLEWK
Suspend Mode Wake-up Time
Test Condition
tSUS-
CLKDIV = 0x00
PENDWK
Precision Osc.
CLKDIV = 0x00
Min
Typ
Max
Units
2
—
3
SYSCLKs
—
400
—
ns
—
1.3
—
µs
—
2
—
µs
Min
Typ
Max
Unit
Low Power Osc.
Sleep Mode Wake-up Time
tSLEEPWK
4.1.6 Internal Oscillators
Table 4.6. Internal Oscillators
Parameter
Symbol
Test Condition
High Frequency Oscillator 0 (24.5 MHz)
Oscillator Frequency
fHFOSC0
Full Temperature and Supply
Range
24
24.5
25
MHz
fLPOSC
Full Temperature and Supply
Range
18
20
22
MHz
fLFOSC
Bias Off
—
12 ± 5
—
kHz
Bias On
—
25 ± 10
—
kHz
Min
Typ
Max
Unit
0.02
-
25
MHz
Low Power Oscillator (20 MHz)
Oscillator Frequency
RTC in Self-Oscillate Mode
Oscillator Frequency
4.1.7 Crystal Oscillator
Table 4.7. Crystal Oscillator
Parameter
Symbol
Crystal Frequency
fXTAL
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.2 | 16
EFM8SB2 Data Sheet
Electrical Specifications
4.1.8 External Clock Input
Table 4.8. External Clock Input
Parameter
Symbol
External Input CMOS Clock
Test Condition
Min
Typ
Max
Unit
fCMOS
0
—
25
MHz
External Input CMOS Clock High
Time
tCMOSH
18
—
—
ns
External Input CMOS Clock Low
Time
tCMOSL
18
—
—
ns
Frequency (at EXTCLK pin)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 17
EFM8SB2 Data Sheet
Electrical Specifications
4.1.9 ADC
Table 4.9. ADC
Parameter
Symbol
Test Condition
Min
Typ
Max
Resolution
Nbits
Throughput Rate
fS
—
—
300
ksps
Tracking Time
tTRK
1.5
—
—
µs
Power-On Time
tPWR
1.5
—
—
µs
SAR Clock Frequency
fSAR
—
—
8.33
MHz
Conversion Time
TCNV
13
—
—
Clocks
Sample/Hold Capacitor
CSAR
Gain = 1
—
30
—
pF
Gain = 0.5
—
28
—
pF
10
High Speed Mode,
Unit
Bits
Input Pin Capacitance
CIN
—
20
—
pF
Input Mux Impedance
RMUX
—
5
—
kΩ
Voltage Reference Range
VREF
1
—
VDD
V
Input Voltage Range1
VIN
Gain = 1
0
—
VREF
V
Gain = 0.5
0
—
2 x VREF
V
PSRRADC Internal High Speed VREF
—
67
—
dB
External VREF
—
74
—
dB
Power Supply Rejection Ratio
DC Performance
Integral Nonlinearity
INL
—
±0.5
±1
LSB
Differential Nonlinearity (Guaranteed Monotonic)
DNL
—
±0.5
±1
LSB
Offset Error
EOFF
–2
0
2
LSB
Offset Temperature Coefficient
TCOFF
—
0.004
—
LSB/°C
Slope Error
EM
—
±0.06
±0.24
%
VREF = 1.65 V
Dynamic Performance 10 kHz Sine Wave Input 1dB below full scale, Max throughput
Signal-to-Noise
SNR
54
58
—
dB
Signal-to-Noise Plus Distortion
SNDR
54
58
—
dB
Total Harmonic Distortion (Up to
5th Harmonic)
THD
—
-73
—
dB
Spurious-Free Dynamic Range
SFDR
—
75
—
dB
Note:
1. Absolute input pin voltage is limited by the VDD supply.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 18
EFM8SB2 Data Sheet
Electrical Specifications
4.1.10 Voltage References
Table 4.10. Voltage References
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1.60
1.65
1.70
V
Internal Fast Settling Reference
Output Voltage
VREFFS
Temperature Coefficient
TCREFFS
—
50
—
ppm/°C
Turn-on Time
tVREFFS
—
—
1.5
µs
Power Supply Rejection
PSRRREF
—
400
—
ppm/V
1.645
1.68
1.715
V
4.7 µF tantalum + 0.1 µF ceramic
bypass on VREF pin
—
15
—
ms
0.1 µF ceramic bypass on VREF
pin
—
300
—
µs
No bypass on VREF pin
—
25
—
µs
Load = 0 to 200 µA to GND
—
400
—
µV / µA
FS
On-chip Precision Reference
Output Voltage
VREFP
Turn-on Time, settling to 0.5 LSB
tVREFP
Load Regulation
LRVREFP
Short-circuit current
ISCVREFP
—
3.5
—
mA
Power Supply Rejection
PSRRVRE
—
140
—
ppm/V
1
—
VDD
V
—
5.25
—
µA
Min
Typ
Max
Unit
FP
External Reference
Input Voltage
VEXTREF
Input Current
IEXTREF
Sample Rate = 300 ksps; VREF =
3.0 V
4.1.11 Temperature Sensor
Table 4.11. Temperature Sensor
Parameter
Symbol
Test Condition
Offset
VOFF
TA = 0 °C
—
940
—
mV
Offset Error1
EOFF
TA = 0 °C
—
18
—
mV
Slope
M
—
3.40
—
mV/°C
Slope Error1
EM
—
40
—
µV/°C
—
±1
—
°C
—
1.8
—
µs
Linearity
Turn-on Time
tPWR
Note:
1. Represents one standard deviation from the mean.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 19
EFM8SB2 Data Sheet
Electrical Specifications
4.1.12 Comparators
Table 4.12. Comparators
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Response Time, CPMD = 00
(Highest Speed)
tRESP0
+100 mV Differential
—
130
—
ns
–100 mV Differential
—
200
—
ns
Response Time, CPMD = 11 (Low- tRESP3
est Power)
+100 mV Differential
—
1.75
—
µs
–100 mV Differential
—
6.2
—
µs
Positive Hysterisis
CPHYP = 00
—
0.4
—
mV
CPHYP = 01
—
8
—
mV
CPHYP = 10
—
16
—
mV
CPHYP = 11
—
32
—
mV
CPHYN = 00
—
-0.4
—
mV
CPHYN = 01
—
–8
—
mV
CPHYN = 10
—
–16
—
mV
CPHYN = 11
—
–32
—
mV
CPHYP = 00
—
0.5
—
mV
CPHYP = 01
—
6
—
mV
CPHYP = 10
—
12
—
mV
CPHYP = 11
—
24
—
mV
CPHYN = 00
—
-0.5
—
mV
CPHYN = 01
—
–6
—
mV
CPHYN = 10
—
–12
—
mV
CPHYN = 11
—
–24
—
mV
CPHYP = 00
—
0.7
—
mV
CPHYP = 01
—
4.5
—
mV
CPHYP = 10
—
9
—
mV
CPHYP = 11
—
18
—
mV
CPHYN = 00
—
-0.6
—
mV
CPHYN = 01
—
–4.5
—
mV
CPHYN = 10
—
–9
—
mV
CPHYN = 11
—
–18
—
mV
CPHYP = 00
—
1.5
—
mV
CPHYP = 01
—
4
—
mV
CPHYP = 10
—
8
—
mV
CPHYP = 11
—
16
—
mV
HYSCP+
Mode 0 (CPMD = 00)
Negative Hysterisis
HYSCP-
Mode 0 (CPMD = 00)
Positive Hysterisis
HYSCP+
Mode 1 (CPMD = 01)
Negative Hysterisis
HYSCP-
Mode 1 (CPMD = 01)
Positive Hysterisis
HYSCP+
Mode 2 (CPMD = 10)
Negative Hysterisis
HYSCP-
Mode 2 (CPMD = 10)
Positive Hysteresis
HYSCP+
Mode 3 (CPMD = 11)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.2 | 20
EFM8SB2 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Negative Hysteresis
HYSCP-
Mode 3 (CPMD = 11)
Min
Typ
Max
Unit
CPHYN = 00
—
-1.5
—
mV
CPHYN = 01
—
–4
—
mV
CPHYN = 10
—
–8
—
mV
CPHYN = 11
—
–16
—
mV
Input Range (CP+ or CP–)
VIN
-0.25
—
VDD+0.25
V
Input Pin Capacitance
CCP
—
12
—
pF
Common-Mode Rejection Ratio
CMRRCP
—
70
—
dB
Power Supply Rejection Ratio
PSRRCP
—
72
—
dB
Input Offset Voltage
VOFF
-10
0
10
mV
Input Offset Tempco
TCOFF
—
3.5
—
µV/°C
Typ
Max
Units
TA = 25 °C
4.1.13 Programmable Current Reference (IREF0)
Table 4.13. Programmable Current Reference (IREF0)
Parameter
Symbol
Conditions
Min
Static Performance
Resolution
Nbits
Output Compliance Range
VIOUT
6
bits
Low Power Mode, Source
0
—
VDD – 0.4
V
High Current Mode, Source
0
—
VDD – 0.8
V
Low Power Mode, Sink
0.3
—
VDD
V
High Current Mode, Sink
0.8
—
VDD
V
Integral Nonlinearity
INL
—