on
C
EFR32BG1 Blue Gecko Bluetooth® Smart
SoC CSP Family Data Sheet
The Blue Gecko Bluetooth Smart family of SoCs is part of the
Wireless Gecko portfolio. Blue Gecko SoCs are ideal for enabling
energy-friendly Bluetooth Smart networking for IoT devices.
KEY FEATURES
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
• Scalable Memory and Radio configuration
options available in footprint-compatible
CSP packaging
Blue Gecko applications include:
• 12-channel Peripheral Reflex System
enabling autonomous interaction of MCU
peripherals
IoT Sensors and End Devices
Health and Wellness
Home and Building Automation
Accessories
Human Interface Devices
Metering
Commercial and Retail Lighting and Sensing
Clock Management
Memory
Protection Unit
RAM Memory
Debug Interface
DMA Controller
Energy Management
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
CRYPTO
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
CRC
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
FRC
DEMOD
LNA
PGA
IFADC
I/O Ports
Timers and Triggers
External
Interrupts
Timer/Counter
Protocol Timer
ADC
Low Energy
UARTTM
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Analog
Comparator
I2C
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
IDAC
AGC
Frequency
Synthesizer
RAC
Q
Analog I/F
USART
RF Frontend
PA
CRC
BALUN
I
BUFC
Serial
Interfaces
l
Radio Transceiver
Other
High Frequency
Crystal
Oscillator
Peripheral Reflex System
RFSENSE
• Integrated DC-DC with RF noise mitigation
tia
Flash Program
Memory
• Integrated 2.4 GHz balun and PA with up
to 19.5 dBm transmit power
• Also Available: Certified modules with
compatible tools and software
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
• Autonomous Hardware Crypto Accelerator
and Random Number Generator
en
•
•
•
•
•
•
•
fid
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup
times, a scalable power amplifier, an integrated balun and no-compromise MCU features.
MOD
Pin Wakeup
Cryotimer
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
EM2—Deep Sleep
EM3—Stop
silabs.com | Smart. Connected. Energy-friendly.
This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Silicon
Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA).
EM4—Hibernate
EM4—Shutoff
Preliminary Rev. 1.1
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Feature List
1. Feature List
The EFR32BG1 highlighted features are listed below.
• Wide selection of MCU peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2× Analog Comparator (ACMP)
• Digital to Analog Current Converter (IDAC)
• Up to 19 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
• Up to 19 General Purpose I/O pins with output state retention and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50nA
• 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUART™)
fid
on
C
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• 2.4 GHz radio operation
• TX power up to 19.5 dBm
• Low Energy Consumption
• 8.7 mA RX current at 2.4 GHz
• 8.2 mA TX current @ 0 dBm output power at 2.4 GHz
• 63 μA/MHz in Active Mode (EM0)
• 2.5 μA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 0.58 μA EM4H Hibernate Mode (128 byte RAM retention)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -91 dBm sensitivity @ 1 Mbit/s GFSK (2.4GHz)
• Supported Modulation Format
• GFSK
• 2-FSK / 4-FSK with fully configurable shaping (EFR32BG1P
OPNs)
• Shaped OQPSK / (G)MSK (EFR32BG1P OPNs)
• Configurable DSSS and FEC (EFR32BG1P OPNs)
• Supported Protocol:
• Bluetooth® Smart
tia
en
• Proprietary Protocols (EFR32BG1P OPNs)
• Support for Internet Security
• General Purpose CRC
• Random Number Generation
• Hardware Cryptographic Acceleration for AES 128/256,
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
• I2C interface with SMBus support and address recognition
in EM3 Stop
• Wide Operating Range
• 1.85 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• -40 °C to 85 °C
• 43-pin CSP 3.3x3.14 mm Package
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 1
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Ordering Information
2. Ordering Information
Ordering Code
Protocol Stack
Frequency Band
Flash
(kB)
RAM (kB)
2.4 GHz @ 19.5 dBm
256
32
@ Max TX Power
EFR32BG1P332F256GJ43-C0
• Bluetooth Smart
• Proprietary
EFR32BG1B232F256GJ43-C0
Bluetooth Smart
2.4 GHz @ 10.5 dBm
256
32
EFR32BG1V132F256GJ43-C0
Bluetooth Smart
2.4 GHz @ 0 dBm
256
16
C
EFR32 X G 1 P 132 F 256 G M 32 – C0 R
on
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), J (CSP)
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)
Flash Memory Size in kB
fid
Memory Type (Flash)
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)
Performance Grade – P (Performance), B (Basic), V (Value)
Series
Gecko
en
Family – M (Mighty), B (Blue), F (Flex)
Wireless Gecko 32-bit
Figure 2.1. OPN Decoder
tia
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 2
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for
any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a
short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.
A block diagram of the EFR32BG1 family is shown in Figure 3.1 Detailed EFR32BG1 Block Diagram on page 3. The diagram shows
a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.
Port I/O Configuration
RF Frontend
I
IFADC
PGA
FRC
DEMOD
BUFC
C
Digital Peripherals
LETIMER
PA
Frequency
Synthesizer
Q
AGC
MOD
Energy Management
RFVDD
Voltage
Monitor
DVDD
USART
Up to 256 KB ISP Flash
Program Memory
LEUART
Memory Protection Unit
Floating Point Unit
bypass
VREGSW
RTC / RTCC
ARM Cortex-M4 Core
DC-DC
Converter
DECOUPLE
RESETn
Watchdog
Timer
Brown Out /
Power-On
Reset
ULFRCO
AUXHFRCO
LFRCO
HFRCO
HFXTAL_P
A A
H P
B B
CRYPTO
CRC
Analog Peripherals
Internal
Reference
VDD
LFXTAL_P / N
LFXO
HFXO
HFXTAL_N
PBn
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
IDAC
VREF
Clock Management
Reset
Management
Unit
Port B
Drivers
en
VSS
VREGVSS
RFVSS
PAVSS
Serial Wire Debug /
Programming
PAn
Port
Mapper
DMA Controller
Voltage
Regulator
Port A
Drivers
I2C
Up to 32 KB RAM
AVDD
VREGVDD
PCNT
fid
IOVDD
CRYOTIMER
12-bit ADC
VDD
APORT
PAVDD
IOVDD
TIMER
RAC
BALUN
CRC
2G4RF_IOP
2G4RF_ION
on
LNA
Input MUX
RFSENSE
Radio Transciever
Temp
Sensor
+
Analog Comparator
tia
Figure 3.1. Detailed EFR32BG1 Block Diagram
3.2 Radio
The Blue Gecko family features a radio transceiver supporting Bluetooth Smart® and proprietary short range wireless protocols.
l
3.2.1 Antenna Interface
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The
2G4RF_ION pin should be grounded externally.
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching
Networks section.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 3
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.2.2 Fractional-N Frequency Synthesizer
The EFR32BG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.2.3 Receiver Architecture
C
The EFR32BG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital
converter (IFADC).
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.
on
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. Devices are production-calibrated to improve image rejection performance.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
3.2.4 Transmitter Architecture
fid
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received
frame and the dynamic RSSI measurement can be monitored throughout reception.
The EFR32BG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.
en
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32BG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.
3.2.5 Wake on Radio
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32BG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.
tia
3.2.6 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
l
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 4
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.2.7 Flexible Frame Handling
3.2.8 Packet and State Trace
fid
on
C
EFR32BG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
The EFR32BG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It
features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
en
3.2.9 Data Buffering
The EFR32BG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.2.10 Radio Controller (RAC)
3.2.11 Random Number Generator
tia
The Radio Controller controls the top level state of the radio subsystem in the EFR32BG1. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
l
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 5
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.3 Power
The EFR32BG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can
be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.3.1 Energy Management Unit (EMU)
C
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen
below a chosen threshold.
on
3.3.2 DC-DC Converter
fid
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.4 General Purpose Input/Output (GPIO)
EFR32BG1 has up to 19 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.5.1 Clock Management Unit (CMU)
en
3.5 Clocking
3.5.2 Internal and External Oscillators
tia
The Clock Management Unit controls oscillators and clocks in the EFR32BG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
l
The EFR32BG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 6
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
C
3.6.2 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes.
on
3.6.3 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
fid
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
en
3.6.5 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.6.6 Watchdog Timer (WDOG)
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
tia
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
l
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 7
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.7.3 Inter-Integrated Circuit Interface (I2C)
C
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
on
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.8 Security Features
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
fid
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and
SHA-256).
en
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.9.1 Analog Port (APORT)
tia
3.9 Analog
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
l
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 8
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.9.4 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with
several ranges consisting of various step sizes.
C
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFR32BG1. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
on
3.11 Core and Memory
3.11.1 Processor Core
fid
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface
3.11.2 Memory System Controller (MSC)
3.11.3 Linked Direct Memory Access Controller (LDMA)
en
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
tia
The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of
software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 9
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
3.12 Memory Map
The EFR32BG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
en
fid
on
C
Figure 3.2. EFR32BG1 Memory Map — Core Peripherals and Code Space
tia
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 10
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
System Overview
en
fid
on
C
Figure 3.3. EFR32BG1 Memory Map — Peripherals
3.13 Configuration Summary
tia
The features of the EFR32BG1 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.1. Configuration Summary
Configuration
USART0
IrDA SmartCard
USART1
IrDA I2S SmartCard
TIMER0
with DTI.
TIMER1
silabs.com | Smart. Connected. Energy-friendly.
Pin Connections
US0_TX, US0_RX, US0_CLK, US0_CS
US1_TX, US1_RX, US1_CLK, US1_CS
l
Module
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIM1_CC[3:0]
Preliminary Rev. 1.1 | 11
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
tia
en
fid
on
C
Refer to Table 4.2 General Operating Conditions on page 14 for more details about operational supply and temperature limits.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 12
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Symbol
Storage temperature range
TSTG
Test Condition
Min
Typ
Max
Unit
-50
—
150
°C
External main supply voltage VDDMAX
0
—
3.8
V
External main supply voltage VDDRAMPMAX
ramp rate
—
—
1
V / μs
-0.3
—
Min of 5.25
and IOVDD
+2
V
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
C
Parameter
VDIGPIN
on
Voltage on any 5V tolerant
GPIO pin1
Voltage on non-5V tolerant
GPIO pins
VHFXOPIN
Input RF level on pins
2G4RF_IOP and
2G4RF_ION
PRFMAX2G4
—
—
10
dBm
Voltage differential between
RF pins (2G4RF_IOP 2G4RF_ION)
VMAXDIFF2G4
-50
—
50
mV
-0.3
—
3.3
V
Absolute Voltage on RF pins VMAX2G4
2G4RF_IOP and
2G4RF_ION
Total current into VDD power IVDDMAX
lines (source)
Total current into VSS
ground lines (sink)
IVSSMAX
Current per I/O pin (sink)
IIOMAX
Current for all I/O pins (sink)
IIOALLMAX
Current for all I/O pins
(source)
ΔVDD
Junction Temperature
TJ
—
200
mA
—
—
200
mA
—
—
50
mA
—
—
50
mA
—
—
200
mA
—
—
200
mA
—
—
0.3
V
-40
—
105
°C
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Smart. Connected. Energy-friendly.
l
Voltage difference between
AVDD and VREGVDD
—
tia
Current per I/O pin (source)
en
fid
Voltage on HFXO pins
Preliminary Rev. 1.1 | 13
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
• RFVDD ≤ AVDD
• PAVDD ≤ AVDD
4.1.2.1 General Operating Conditions
C
Parameter
Table 4.2. General Operating Conditions
Symbol
Test Condition
Typ
Max
Unit
-40
25
85
°C
1.85
3.3
3.8
V
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.85
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.85
3.3
3.8
V
—
—
200
mA
1.62
—
VVREGVDD
V
1.62
—
VVREGVDD
V
on
Min
Operating temperature range TOP
AVDD Supply voltage1
-G temperature grade, Ambient
Temperature
VAVDD
VREGVDD Operating supply VVREGVDD
voltage1 2
fid
VREGVDD Current
IVREGVDD
RFVDD Operating supply
voltage
VRFVDD
DCDC in bypass
DVDD Operating supply volt- VDVDD
age
VPAVDD
IOVDD Operating supply
voltage
VIOVDD
HFCLK frequency
fCORE
0 wait-states (MODE = WS0) 3
1 wait-states (MODE = WS1) 3
1.62
—
VVREGVDD
V
1.62
—
VVREGVDD
V
—
—
0.1
V
tia
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
en
PAVDD Operating supply
voltage
—
—
26
MHz
—
38.4
40
MHz
3. In MSC_READCTRL register
silabs.com | Smart. Connected. Energy-friendly.
l
Note:
1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max
Preliminary Rev. 1.1 | 14
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.3 DC-DC Converter
Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V,
VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated.
Table 4.3. DC-DC Converter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.85
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
on
C
Parameter
VDCDC_O
Regulation DC Accuracy
ACCDC
Regulation Window2
WINREG
VR
Output voltage under/overshoot
VOV
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD
V
Low noise (LN) mode, 1.8 V target
output
1.7
—
1.9
V
Low power (LP) mode,
LPCMPBIAS3 = 0, 1.8 V target
output, IDCDC_LOAD ≤ 75 μA
1.63
—
2.2
V
Low power (LP) mode,
LPCMPBIAS3 = 3, 1.8 V target
output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
—
3
—
mVpp
Radio disabled.
en
Steady-state output ripple
—
1.8
fid
Output voltage programmable range1
MAX
—
—
150
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
—
150
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
50
—
mV
—
125
—
mV
l
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
tia
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 15
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Max load current
ILOAD_MAX
C
DCDC nominal output capacitor
CDCDC
Typ
Max
Unit
Low noise (LN) mode, Heavy
Drive4
—
—
200
mA
Low noise (LN) mode, Medium
Drive4
—
—
100
mA
Low noise (LN) mode, Light
Drive4
—
—
50
mA
Low power (LP) mode,
LPCMPBIAS3 = 0
—
—
75
μA
Low power (LP) mode,
LPCMPBIAS3 = 3
—
—
10
mA
25% tolerance
1
1
1
μF
4.7
4.7
4.7
μH
—
1.2
2.5
Ω
on
Min
DCDC nominal output induc- LDCDC
tor
Resistance in Bypass mode
20% tolerance
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD
tia
en
fid
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits
3. In EMU_DCDCMISCCTRL register
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 16
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.4 Current Consumption
4.1.4.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32BG1 Typical Application
Circuit: Direct Supply Configuration without DC-DC converter on page 64.
Table 4.4. Current Consumption 3.3V without DC/DC
C
Parameter
Symbol
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Test Condition
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
130
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
105
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
106
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
222
350
μA/MHz
38.4 MHz crystal1
—
65
—
μA/MHz
38 MHz HFRCO
—
35
38
μA/MHz
26 MHz HFRCO
—
37
41
μA/MHz
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
en
fid
on
Min
—
157
275
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.3
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
3
6.3
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.8
6
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
Current consumption in EM2 IEM2
Deep Sleep mode.
IEM4
128 byte RAM retention, CRYOTIMER running from ULFRCO
128 byte RAM retention, no RTCC
IEM4S
no RAM retention, no RTCC
—
1.1
—
μA
—
0.65
—
μA
—
0.65
1.3
μA
—
0.04
0.11
μA
l
Current consumption in
EM4S Shutoff mode
tia
1 MHz HFRCO
Note:
1. CMU_HFXOCTRL_LOWPOWER=0
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 17
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.4.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC
output. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process
variation at TOP = 25 °C. See Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from
VDCDC) on page 64.
Table 4.5. Current Consumption 3.3V with DC-DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash2
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
63
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
71
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
78
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
76
—
μA/MHz
38.4 MHz crystal, CPU running
while loop from flash2
—
98
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
75
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
81
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
88
—
μA/MHz
on
C
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Test Condition
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
μA/MHz
38.4 MHz crystal2
—
49
—
μA/MHz
38 MHz HFRCO
—
32
—
μA/MHz
26 MHz HFRCO
—
38
—
μA/MHz
38.4 MHz crystal2
—
61
—
μA/MHz
—
45
—
μA/MHz
—
58
—
μA/MHz
—
2.5
—
μA
—
2.3
—
μA
38 MHz HFRCO
26 MHz HFRCO
tia
Current consumption in EM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
en
fid
Current consumption in EM0
Active mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
Full RAM retention and RTCC
running from LFXO
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.1
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
128 byte RAM retention, CRYOTIMER running from ULFRCO
128 byte RAM retention, no RTCC
IEM4
silabs.com | Smart. Connected. Energy-friendly.
4 kB RAM retention and RTCC
running from LFRCO
l
Current consumption in EM2 IEM2
Deep Sleep mode. DCDC in
Low Power mode4.
—
μA
0.86
—
μA
—
0.58
—
μA
—
0.58
—
μA
Preliminary Rev. 1.1 | 18
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
EM4S Shutoff mode
IEM4S
no RAM retention, no RTCC
Min
Typ
Max
Unit
—
0.04
—
μA
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD
2. CMU_HFXOCTRL_LOWPOWER=0
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD
4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD
tia
en
fid
on
C
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 19
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.4.3 Current Consumption 1.85 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.85 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32BG1 Typical Application
Circuit: Direct Supply Configuration without DC-DC converter on page 64.
Table 4.6. Current Consumption 1.85V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
131
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
220
—
μA/MHz
38.4 MHz crystal1
—
65
—
μA/MHz
38 MHz HFRCO
—
35
—
μA/MHz
26 MHz HFRCO
—
37
—
μA/MHz
1 MHz HFRCO
—
154
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.2
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
2.8
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.7
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1
—
μA
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
IEM4
128 byte RAM retention, CRYOTIMER running from ULFRCO
128 byte RAM retention, no RTCC
Current consumption in
EM4S Shutoff mode
IEM4S
silabs.com | Smart. Connected. Energy-friendly.
—
0.62
—
μA
—
0.62
—
μA
—
0.02
—
μA
l
Note:
1. CMU_HFXOCTRL_LOWPOWER=0
No RAM retention, no RTCC
tia
en
Current consumption in EM2 IEM2
Deep Sleep mode
fid
on
C
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Test Condition
Preliminary Rev. 1.1 | 20
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.4.4 Current Consumption Using Radio
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. TOP = 25 °C.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.
See Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 or
Figure 5.1 EFR32BG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 64.
Table 4.7. Current Consumption Using Radio 3.3 V with DC-DC
Symbol
Test Condition
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
ITX
Min
Typ
Max
Unit
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
8.7
—
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 3
—
8.2
—
mA
F = 2.4 GHz, CW, 3 dBm output
power
—
16.5
—
mA
F = 2.4 GHz, CW, 8 dBm output
power
—
23.3
—
mA
F = 2.4 GHz, CW, 10.5 dBm output power
—
32.7
—
mA
F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
83.9
—
mA
F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
126.7
—
mA
—
51
—
nA
RFSENSE current consump- IRFSENSE
tion
tia
en
fid
on
C
Parameter
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 21
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.5 Wake up times
Table 4.8. Wake up times
Symbol
Test Condition
Wake up from EM2 Deep
Sleep
tEM2_WU
Wakeup time from EM1
Sleep
tEM1_WU
C
Parameter
Wake up from EM3 Stop
tEM3_WU
Typ
Max
Unit
Code execution from flash
—
10.7
—
μs
Code execution from RAM
—
3
—
μs
Executing from flash
—
3
—
AHB
Clocks
Executing from RAM
—
3
—
AHB
Clocks
Executing from flash
—
10.7
—
μs
Executing from RAM
—
3
—
μs
Executing from flash
—
60
—
μs
—
290
—
μs
Min
Typ
Max
Unit
on
Min
Wake up from EM4H Hibernate1
tEM4H_WU
Wake up from EM4S Shutoff1
tEM4S_WU
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
fid
4.1.6 Brown Out Detector
Table 4.9. Brown Out Detector
Symbol
Test Condition
DVDDBOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling
1.35
—
—
V
—
24
—
mV
en
Parameter
VDVDDBOD_HYST
DVDD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
—
—
1.85
V
1.62
—
—
V
—
21
—
mV
—
2.4
—
μs
—
—
1.7
V
1.45
—
—
V
—
46
—
mV
—
300
—
μs
AVDD rising
AVDD falling
AVDD BOD hysteresis
VAVDDBOD_HYST
AVDD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
EM4 BOD threshold
VEM4DBOD
AVDD rising
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
silabs.com | Smart. Connected. Energy-friendly.
Supply drops at 0.1V/μs rate
l
AVDD falling
tia
DVDD BOD hysteresis
Preliminary Rev. 1.1 | 22
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.7 Frequency Synthesizer Characteristics
Table 4.10. Frequency Synthesizer Characteristics
Symbol
Test Condition
Min
Typ
Max
Unit
RF Synthesizer Frequency
range
FRANGE_2400
2.4 GHz frequency range
2400
—
2483.5
MHz
LO tuning frequency resolution with 38.4 MHz crystal
FRES_2400
2400 - 2483.5 MHz
—
—
73
Hz
—
—
1677
kHz
C
Parameter
Maximum frequency deviation with 38.4 MHz crystal
ΔFMAX_2400
tia
en
fid
on
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 23
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8 2.4 GHz RF Transceiver Characteristics
4.1.8.1 RF Transmitter General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Test circuit according to
Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.11. RF Transmitter General Characteristics for 2.4 GHz Band
C
Parameter
Symbol
Test Condition
Typ
Max
Unit
Maximum TX power1
POUTMAX
19.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply2
—
19.5
—
dBm
10.5 dBm-rated part numbers
—
10.5
—
dBm
0 dBm-rated part numbers
—
0
—
dBm
-30
—
dBm
on
Min
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
1
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.85 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power >
10.5 dBm.
—
4.5
—
dB
1.85 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power =
10.5 dBm.
—
3.8
—
dB
1.85 V < VVREGVDD < 3.3 V using
DC-DC converter
—
2.2
—
dB
From -40 to +85 °C, PAVDD connected to DC-DC output
—
1.5
—
dB
From -40 to +85 °C, PAVDD connected to external supply
—
1.5
—
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V
POUTVAR_T
RF tuning frequency range
FRANGE
Over RF tuning frequency range
tia
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
en
Output power variation vs
temperature at POUTMAX
fid
Minimum active TX Power
—
0.4
—
dB
2400
—
2483.5
MHz
l
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 24
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8.2 RF Receiver General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.12. RF Receiver General Characteristics for 2.4 GHz Band
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
C
Parameter
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
216 MHz to 960 MHz, Conducted
Measurement
—
-55.2
—
dBm
Above 960 MHz, Conducted
Measurement
—
-47.2
—
dBm
CW at 2.45 GHz
—
-24
—
dBm
—
-50
—
dBm
2 Mbps 2GFSK signal2
—
-89.2
—
dBm
250 kbps 2GFSK signal
—
-99.1
—
dBm
on
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
Test Condition
RFSENSETRIG
Level below which
RFSENSE will not trigger1
RFSENSETHRES
1% PER Sensitivity
SENS2GFSK
0.1% BER Sensitivity
fid
Level above which
RFSENSE will trigger1
Note:
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83dBm on this channel.
tia
en
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 25
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz. Test circuit according to
Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.13. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band
Symbol
Min
Typ
Max
Unit
Transmit 6dB bandwidth
TXBW
—
740
—
kHz
Power spectral density limit
PSDLIMIT
Per FCC part 15.247 at 10 dBm
—
-6.5
—
dBm/
3kHz
Per FCC part 15.247 at 20 dBm
—
-2.6
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
10
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
1.1
—
MHz
In-band spurious emissions
at 10 dBm, with allowed exceptions1
At ±2 MHz
—
-39.8
—
dBm
At ±3 MHz
—
-42.1
—
dBm
At ±2 MHz
—
—
-20
dBm
At ±3 MHz
—
—
-30
dBm
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47
—
dBm
Spurious emissions out-ofSPUROOB_FCC
band, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC. Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier3
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Non Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
Test Condition
on
C
Parameter
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
-16
—
dBm
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
25-1000 MHz
—
1-12 GHz
—
silabs.com | Smart. Connected. Energy-friendly.
l
—
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
Spurious emissions per ETSI SPURETSI440
EN300.440
tia
SPURETSI328
en
Spurious emissions out-ofband; per ETSI 300.328
fid
In-band spurious emissions
at 20 dBm, with allowed exceptions1 2
SPURINB
—
dBm
-42
—
dBm
-36
—
dBm
Preliminary Rev. 1.1 | 26
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency
which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
2. For 2456 MHz, a maximum output power of 15 dBm is used to achieve this value.
3. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
tia
en
fid
on
C
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 27
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.14. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal1. Packet
length is 20 bytes.
—
10
—
dBm
Sensitivity, 0.1% BER2
SENS
Signal is reference signal1. Using
DC-DC converter
—
-91
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1
—
-90.2
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity
—
8.3
—
dB
N+1 adjacent channel (1
C/I1+
MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at +1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-3.3
—
dB
Interferer is reference signal at -1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
1.3
—
dB
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-39.5
—
dB
Alternate (3 MHz) selectivity, C/I3
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ±3
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-43.8
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-29
—
dB
Selectivity to image frequency +1 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency +1 MHz with 1
MHz precision
—
-43.6
—
dB
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
N-1 adjacent channel (1
C/I1MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
silabs.com | Smart. Connected. Energy-friendly.
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
l
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range.
tia
C/IIM+1
en
Alternate (2 MHz) selectivity, C/I2
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
fid
on
C
Parameter
Preliminary Rev. 1.1 | 28
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
—
-25.8
—
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
4
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-101
dBm
—
—
0.5
dB
Intermodulation performance IM
Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3
RSSIRES
C
RSSI resolution
Test Condition
Over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm
2. Receive sensitivity on Bluetooth Smart channel 26 is -86 dBm
tia
en
fid
on
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 29
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Test circuit according to Figure
5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.15. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band
Symbol
Test Condition
Min
Typ
Max
Unit
Error vector magnitude (offset EVM), per
802.15.4-2011, not including
2415 MHz channel1
EVM
Average across frequency. Signal
is DSSS-OQPSK reference packet2
—
5.5
—
% rms
Power spectral density limit
PSDLIMIT
Relative, at carrier ±3.5 MHz
—
-26
—
dBc
Absolute, at carrier ±3.5 MHz3
—
-36
—
dBm
Per FCC part 15.247
—
-4.2
—
dBm/
3kHz
Output power level which meets
10dBm/MHz ETSI 300.328 specification
—
12
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
2.25
—
MHz
Spurious emissions of harSPURHRM_FCC_
monics in restricted bands
R
per FCC Part 15.205/15.209,
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply,
Test Frequency is 2450 MHz
Continuous transmission of modulated carrier
—
-45.8
—
dBm
—
dBc
SPURHRM_FCC_
NRR
—
-26
tia
Spurious emissions of harmonics in harmonics in nonrestricted bands per FCC
Part 15.247/15.35, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz
en
fid
on
C
Parameter
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 30
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
SPUROOB_FCC_
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier4
—
-52
—
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
—
-62
—
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
part 15.205/15.209, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
—
-57
—
dBm
—
-48
—
dBm
—
dBc
R
en
fid
on
C
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
Spurious emissions out-ofband; per ETSI 300.3285
[2400-BW to 2400], [2483.5 to
2483.5+BW];
SPURETSI328
-16
—
dBm
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz, excluding above
frequencies
—
-42
—
dBm
1G-14G
—
-36
—
dBm
l
silabs.com | Smart. Connected. Energy-friendly.
-26
—
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
Spurious emissions per ETSI SPURETSI440
EN300.4405
—
tia
Spurious emissions out-ofSPUROOB_FCC_
band in non-restricted bands NR
per FCC Part 15.247, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
Preliminary Rev. 1.1 | 31
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Typical EVM for the 2415 MHz channel is 7.9%
2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with
pseudo-random packet data content
3. For 2415 MHz, a maximum duty cycle of 50% is used to achieve this value.
4. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
5. Specified at maximum power output level of 10 dBm
tia
en
fid
on
C
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 32
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.8.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz. Test circuit according to Figure
5.2 EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.16. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Symbol
Test Condition
Max usable receiver input
level, 1% PER
SAT
Sensitivity, 1% PER2
SENS
Min
Typ
Max
Unit
Signal is reference signal1. Packet
length is 20 octets.
—
10
—
dBm
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
—
-101
—
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
—
-101
—
dBm
CCR
Desired signal 10 dB above sensitivity limit
—
-2.6
—
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
ACR+1
Interferer is reference signal at +1
channel-spacing.
—
33.75
—
dB
Interferer is filtered reference signal4 at +1 channel-spacing.
—
52.2
—
dB
Interferer is CW at +1 channelspacing.5
—
58.6
—
dB
Interferer is reference signal at -1
channel-spacing.
—
35
—
dB
Interferer is filtered reference signal4 at -1 channel-spacing.
—
54.7
—
dB
Interferer is CW at -1 channelspacing.
—
60.1
—
dB
Interferer is reference signal at ±2
channel-spacing
—
45.9
—
dB
Interferer is filtered reference signal4 at ±2 channel-spacing
—
56.8
—
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
ACR2
Interferer is CW at ±2 channelspacing
tia
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level3
ACR-1
en
Co-channel interferer rejection, 1% PER
fid
on
C
Parameter
—
65.5
—
dB
—
40.8
—
dB
Interferer is CW in image band5
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level3. Interferer is reference
signal.
Interferer frequency < Desired frequency - 3 channel-spacing
—
57.2
Interferer frequency > Desired frequency + 3 channel-spacing
—
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level3
—
silabs.com | Smart. Connected. Energy-friendly.
l
Image rejection, 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level3
—
dB
57.9
—
dB
51.6
—
dB
Preliminary Rev. 1.1 | 33
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
5
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-98
dBm
—
0.25
—
dB
—
±1
—
dB
RSSIRES
RSSI accuracy in the linear
region as defined by
802.15.4-2003
RSSILIN
over RSSIMIN to RSSIMAX
C
RSSI resolution
Test Condition
fid
on
Note:
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s
2. Receive sensitivity on 802.15.4 channel 14 is -98 dBm
3. Reference sensitivity level is -85 dBm
4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
4.1.9 Modem Features
Table 4.17. Modem Features
Symbol
Test Condition
Min
Receive Bandwidth
RXBandwidth
Configurable range with 38.4 MHz
crystal
0.1
IF Frequency
IFFreq
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
Typ
Max
Unit
—
2530
kHz
—
1371
kHz
tia
en
Parameter
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 34
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.10 Oscillators
4.1.10.1 LFXO
Table 4.18. LFXO
Parameter
Symbol
Crystal frequency
Test Condition
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
—
0.25
—
pF
On each of LFXTAL_N and
LFXTAL_P pins
on
C
Min
On-chip tuning cap step size
SSLFXO
Current consumption after
startup 3
ILFXO
ESR = 70 kΩ, CL = 7 pF, GAIN4 =
3, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR=70 kΩ, CL = 7 pF, GAIN4 =
2
—
308
—
ms
fid
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
tia
en
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 35
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.10.2 HFXO
Table 4.19. HFXO
Symbol
Crystal Frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Supported range of crystal
load capacitance 1
CHFXO_CL
On-chip tuning cap range 2
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
FTHFXO
Test Condition
Min
Typ
Max
Unit
38
38.4
40
MHz
—
—
60
Ω
6
—
12
pF
9
20
25
pF
—
0.04
—
pF
38.4 MHz, ESR = 50 Ω, CL = 10
pF
—
300
—
μs
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
—
40
ppm
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
on
C
Parameter
Frequency Tolerance for the
crystal
4.1.10.3 LFRCO
fid
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
en
Table 4.20. LFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF = 1 in
CMU_LFRCOCTRL
26.2
32.768
34.5
kHz
ENVREF = 0 in
CMU_LFRCOCTRL
26.2
32.768
34.5
kHz
tLFRCO
Current consumption 1
ILFRCO
ENVREF = 1 in
CMU_LFRCOCTRL
ENVREF = 0 in
CMU_LFRCOCTRL
tia
Startup time
—
500
—
μs
—
342
—
nA
—
494
—
nA
silabs.com | Smart. Connected. Energy-friendly.
l
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
Preliminary Rev. 1.1 | 36
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.10.4 HFRCO and AUXHFRCO
Table 4.21. HFRCO and AUXHFRCO
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency Accuracy
fHFRCO_ACC
Any frequency band, across supply voltage and temperature
-10
—
3
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
204
228
μA
fHFRCO = 32 MHz
—
171
190
μA
fHFRCO = 26 MHz
—
147
164
μA
fHFRCO = 19 MHz
—
126
138
μA
fHFRCO = 16 MHz
—
110
120
μA
fHFRCO = 13 MHz
—
100
110
μA
fHFRCO = 7 MHz
—
81
91
μA
fHFRCO = 4 MHz
—
33
35
μA
fHFRCO = 2 MHz
—
31
35
μA
fHFRCO = 1 MHz
—
30
35
μA
Coarse (% of period)
—
0.8
—
%
Fine (% of period)
—
0.1
—
%
—
0.2
—
% RMS
C
Parameter
Current consumption on all
supplies
IHFRCO
SSHFRCO
PJHFRCO
4.1.10.5 ULFRCO
en
Period Jitter
fid
on
Step size
Table 4.22. ULFRCO
Symbol
Oscillation frequency
fULFRCO
Test Condition
tia
Parameter
Min
Typ
Max
Unit
0.8
1
1.05
kHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 37
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.11 Flash Memory Characteristics
Table 4.23. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
Test Condition
Typ
Max
Unit
10000
—
—
cycles
RETFLASH
10
—
—
years
Word (32-bit) programming
time
tW_PROG
20
26
40
μs
Page erase time
tPERASE
20
27
40
ms
Mass erase time
tMERASE
20
27
40
ms
Device erase time2
tDERASE
—
60
74
ms
Page erase current3
IERASE
—
—
3
mA
—
—
5
mA
—
—
3
mA
on
C
Min
Mass or Device erase current3
Write current3
IWRITE
tia
en
fid
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW)
3. Measured at 25°C
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 38
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.12 GPIO
Table 4.24. GPIO
Parameter
Symbol
Input low voltage
Test Condition
Min
Typ
Max
Unit
VIOIL
—
—
IOVDD*0.3
V
Input high voltage
VIOIH
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VIOOH
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
Sourcing 3 mA, IOVDD ≥ 3 V,
C
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
on
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Sinking 3 mA, IOVDD ≥ 3 V,
fid
Output low voltage relative to VIOOL
IOVDD
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
en
Sinking 8 mA, IOVDD ≥ 1.62 V,
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD
—
0.1
30
nA
LFXO Pins, GPIO ≤ IOVDD
—
0.1
50
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
30
43
65
kΩ
30
43
65
kΩ
20
25
35
ns
—
1.8
—
4.5
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
I5VTOLLEAK
I/O pin pull-up resistor
RPU
I/O pin pull-down resistor
RPD
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
l
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
tia
Input leakage current on
5VTOL pads above IOVDD
—
ns
—
ns
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 39
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
—
2.2
—
ns
—
7.4
—
ns
Min
Typ
Max
Unit
—
5.8
8.26
μA
In EM0 or EM1, 4 supplies monitored
—
11.8
16.8
μA
In EM2, EM3 or EM4, 1 supply
monitored
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored
—
99
—
nA
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
C
Note:
1. In GPIO_Pn_CTRL register
on
4.1.13 VMON
Table 4.25. VMON
Parameter
VMON Supply Current
Symbol
Test Condition
IVMON
In EM0 or EM1, 1 supply monitored
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
—
200
—
mV
—
20
—
mV
—
460
—
ns
—
26
—
mV
Coarse
tVMON_RES
Hysteresis
VVMON_HYST
Supply drops at 1V/μs rate
tia
In EM0 or EM1
Fine
Response time
en
fid
VMON Loading of Monitored ISENSE
Supply
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 40
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.14 ADC
Table 4.26. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
C
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
0
—
2*VREF
V
-VREF
—
VREF
V
1
—
VAVDD
V
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK,
—
301
350
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
149
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
91
—
μA
—
51
—
μA
on
Power supply rejection1
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP
Continous operation. WARMUPMODE2 = KEEPADCWARM
BIASPROG = 0, GPBIASACC = 1
3
fid
BIASPROG = 15, GPBIASACC =
13
en
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 1
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
—
9
—
μA
—
117
—
μA
BIASPROG = 0, GPBIASACC = 1
3
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
35 ksps / 16 MHz ADCCLK,
79
—
μA
—
345
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
191
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
132
—
μA
BIASPROG = 0, GPBIASACC = 1
1 Msps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
l
—
3
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP
Continous operation. WARMUPMODE2 = KEEPADCWARM
tia
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
3
BIASPROG = 15, GPBIASACC =
03
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 41
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 0
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
Min
Typ
Max
Unit
—
102
—
μA
—
17
—
μA
—
162
—
μA
—
123
—
μA
—
140
—
μA
BIASPROG = 0, GPBIASACC = 0
3
C
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
on
3
IADC_CLK
ADC Clock Frequency
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time4
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE2 = NORMAL
—
—
5
μs
WARMUPMODE2 = KEEPINSTANDBY
—
—
2
μs
WARMUPMODE2 = KEEPINSLOWACC
—
—
1
μs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
58
67
—
dB
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
—
68
—
dB
—
75
—
dB
Startup time of reference
generator and ADC core
tADCSTART
SNDRADC
Spurious-Free Dynamic
Range (SFDR)
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
Offset Error
VADCOFFSETERR
Gain error in ADC
VADC_GAIN
Using internal reference
Using external reference
tia
en
SNDR at 1Msps and fin =
10kHz
HFPERCLK = 16 MHz
fid
Current from HFPERCLK
—
380
—
μV
-3
0.25
3
LSB
—
-0.2
5
%
—
-1
—
%
DNLADC
12 bit resolution, No Missing Codes
-1
—
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
Temperature Sensor Slope
VTS_SLOPE
—
silabs.com | Smart. Connected. Energy-friendly.
l
Differential non-linearity
(DNL)
2
LSB
—
6
LSB
-1.84
—
mV/°C
Preliminary Rev. 1.1 | 42
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL
2. In ADCn_CNTL register
3. In ADCn_BIASPROG register
4. Derived from ADCCLK
tia
en
fid
on
C
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 43
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.15 IDAC
Table 4.27. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
C
Linear steps within each
range
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-5
—
2
%
EM0 or EM1
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-0.5
—
%
NIDAC_STEPS
on
Step size
Test Condition
SSIDAC
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
-0.7
—
%
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
tIDAC_SU
Output within 1% of steady state
value
—
silabs.com | Smart. Connected. Energy-friendly.
l
—
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
Start up time
tia
en
fid
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
—
%
-0.5
—
%
5
—
μs
Preliminary Rev. 1.1 | 44
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
Current consumption in EM0 IIDAC
or EM1 2
Source mode, excluding output
current
—
8.9
13
μA
Sink mode, excluding output current
—
12
16
μA
Source mode, excluding output
current, duty cycle mode, T = 25
°C
—
1.04
—
μA
Sink mode, excluding output current, duty cycle mode, T = 25 °C
—
1.08
—
μA
Source mode, excluding output
current, duty cycle mode, T ≥ 85
°C
—
8.9
—
μA
Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C
—
12
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.04
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.02
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.02
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.02
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.18
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.08
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.02
—
%
on
C
Current consumption in EM2
or EM32
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
tia
en
fid
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Note:
1. In IDAC_CURPROG register
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 45
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.16 Analog Comparator (ACMP)
Table 4.28. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
Supply Voltage
VACMPVDD
C
Active current not including
voltage reference
IACMP
Typ
Max
Unit
0
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.85
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 1, FULLBIAS2 = 0
—
50
—
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
95
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
HYSTSEL3 = HYST0
-1.75
0
1.75
mV
HYSTSEL3 = HYST1
10
18
26
mV
HYSTSEL3 = HYST2
21
32
46
mV
HYSTSEL3 = HYST3
27
44
63
mV
HYSTSEL3 = HYST4
32
55
80
mV
HYSTSEL3 = HYST5
38
65
100
mV
HYSTSEL3 = HYST6
43
77
121
mV
47
86
148
mV
-4
0
4
mV
-27
-18
-10
mV
-47
-32
-18
mV
-64
-43
-27
mV
HYSTSEL3 = HYST12
-78
-54
-32
mV
HYSTSEL3 = HYST13
-93
-64
-37
mV
HYSTSEL3 = HYST14
-113
-74
-42
mV
HYSTSEL3 = HYST15
-135
-85
-47
mV
on
Min
Current consumption of inter- IACMPREF
nal voltage reference
VACMPHYST
HYSTSEL3 = HYST8
HYSTSEL3 = HYST9
HYSTSEL3 = HYST10
V
MAX
l
HYSTSEL3 = HYST11
VVREGVDD_
tia
HYSTSEL3 = HYST7
silabs.com | Smart. Connected. Energy-friendly.
—
en
fid
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
MAX
Preliminary Rev. 1.1 | 46
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Comparator delay4
tACMPDELAY
BIASPROG2 = 1, FULLBIAS2 = 0
—
30
—
μs
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
—
μs
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference Voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
2
2.5
2.8
V
CSRESSEL5 = 0
—
inf
—
kΩ
CSRESSEL5 = 1
—
15
—
kΩ
CSRESSEL5 = 2
—
27
—
kΩ
CSRESSEL5 = 3
—
39
—
kΩ
CSRESSEL5 = 4
—
51
—
kΩ
CSRESSEL5 = 5
—
102
—
kΩ
CSRESSEL5 = 6
—
164
—
kΩ
CSRESSEL5 = 7
—
239
—
kΩ
C
Offset voltage
Capacitive Sense Internal
Resistance
RCSRES
fid
on
en
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ±100 mV differential drive
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPTOTAL = IACMP + IACMPREF
IACMPREF is zero if an external voltage reference is used.
tia
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 47
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.17 I2C
I2C Standard-mode (Sm)
Table 4.29. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU,DAT
250
—
—
ns
SDA hold time3
tHD,DAT
100
—
3450
ns
4.7
—
—
μs
(Repeated) START condition tHD,STA
hold time
4
—
—
μs
STOP condition set-up time
tSU,STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
on
C
Min
Repeated START condition
set-up time
tSU,STA
fid
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
tia
en
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 48
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
I2C Fast-mode (Fm)
Table 4.30. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
C
tSU,DAT
100
—
—
ns
SDA hold time3
tHD,DAT
100
—
900
ns
Repeated START condition
set-up time
tSU,STA
0.6
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU,STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
on
SDA set-up time
I2C Fast-mode Plus (Fm+)
en
fid
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
Table 4.31. I2C Fast-mode Plus (Fm+)1
Symbol
SCL clock frequency2
fSCL
SCL clock low time
tLOW
SCL clock high time
tHIGH
SDA set-up time
tSU,DAT
SDA hold time
tHD,DAT
Repeated START condition
set-up time
tSU,STA
Min
Typ
Max
Unit
0
—
1000
kHz
0.5
—
—
μs
0.26
—
—
μs
50
—
—
ns
100
—
—
ns
0.26
—
—
μs
0.26
—
—
μs
l
(Repeated) START condition tHD,STA
hold time
Test Condition
tia
Parameter
STOP condition set-up time
tSU,STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 49
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.1.18 USART SPI
SPI Master Timing
Table 4.32. SPI Master Timing
Parameter
Symbol
SCLK period 1 2
tSCLK
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
C
tCS_MO
0
—
8
ns
SCLK to MOSI 1 2
tSCLK_MO
3
—
20
ns
MISO setup time 1 2
tSU_MI
IOVDD = 1.62 V
56
—
—
ns
IOVDD = 3.0 V
37
—
—
ns
6
—
—
ns
on
CS to MOSI 1 2
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
fid
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
CLKPOL = 1
MOSI
tSU_MI
MISO
en
SCLK
tH_MI
tia
Figure 4.1. SPI Master Timing Diagram
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 50
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.33. SPI Slave Timing
Parameter
Symbol
SCKL period 1 2
SCLK high period1 2
Test Condition
Typ
Max
Unit
tSCLK_sl
2*
tHFPERCLK
—
—
ns
tSCLK_hi
3*
tHFPERCLK
—
—
ns
3*
tHFPERCLK
—
—
ns
C
Min
tSCLK_lo
CS active to MISO 1 2
tCS_ACT_MI
4
—
50
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2
tH_MO
3+2*
tHFPERCLK
—
—
ns
SCLK to MISO 1 2
tSCLK_MI
16 +
tHFPERCLK
—
66 + 2 *
tHFPERCLK
ns
on
SCLK low period 1 2
tCS_ACT_MI
en
CS
fid
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
MOSI
tH_MO
tSCLK
tia
tSCLK_MI
MISO
tSCLK_LO
Figure 4.2. SPI Slave Timing Diagram
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Smart. Connected. Energy-friendly.
l
4.2 Typical Performance Curves
Preliminary Rev. 1.1 | 51
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.2.1 Supply Current
on
C
Figure 4.3. EM0 Active Mode Typical Supply Current
tia
en
fid
Figure 4.4. EM1 Sleep Mode Typical Supply Current
l
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 52
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
tia
en
fid
on
C
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 53
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
tia
en
fid
on
C
l
Figure 4.6. DC-DC Converter Typical Performance Characteristics
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 54
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
50mV/div
offset:1.8V
100mA
C
VSW
ILOAD
2V/div
offset:1.8V
1mA
10μs/div
100μs/div
on
Figure 4.7. DC-DC Converter Transition Waveforms
tia
en
fid
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 55
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.2.3 Internal Oscillators
on
C
Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz
tia
en
fid
Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 32 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 56
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 26 MHz
tia
en
fid
Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 57
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz
tia
en
fid
Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 58
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 7 MHz
tia
en
fid
Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 59
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 2 MHz
tia
en
fid
Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 1 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 60
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.18. LFRCO Typical Performance at 32.768 kHz
tia
en
fid
Figure 4.19. ULFRCO Typical Performance at 1 kHz
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 61
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
4.2.4 2.4 GHz Radio
tia
en
fid
on
C
silabs.com | Smart. Connected. Energy-friendly.
l
Figure 4.20. 2.4 GHz RF Transmitter Output Power
Preliminary Rev. 1.1 | 62
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Electrical Specifications
on
C
Figure 4.21. 2.4 GHz RF Receiver Sensitivity
tia
en
fid
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 63
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
Main
Supply
+
–
VREGVDD
AVDD
C
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
on
DECOUPLE
RFVDD
PAVDD
Figure 5.1. EFR32BG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
fid
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
+
–
en
Main
Supply
VREGVDD
VDCDC
AVDD
VREGSW
HFXTAL_N
VREGVSS
HFXTAL_P
LFXTAL_N
tia
DVDD
IOVDD
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
l
Figure 5.2. EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 64
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Typical Connection Diagrams
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
C
DECOUPLE
RFVDD
PAVDD
on
Figure 5.3. EFR32BG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)
5.2 RF Matching Networks
fid
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 65 for applications in the 2.4GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
PAVDD
PAVDD
L0
2G4RF_IOP
2G4RF_ION
en
PAVDD
50Ω
C0
L0
L1
2G4RF_IOP
2G4RF_ION
C0
50Ω
C1
tia
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
5.3 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 65
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
6. Pin Definitions
6.1 EFR32BG1 CSP43 2.4 GHz Definition
en
fid
on
C
Figure 6.1. EFR32BG1 CSP43 2.4 GHz Pinout
tia
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 66
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Table 6.1. CSP43 2.4 GHz Device Pinout
CSP Pin# and Name
Pin Alternate Functionality / Description
Pin
#
Pin Name
A1
VREGSW
DCDC regulator switching node
A2
VREGVDD
Voltage regulator VDD input
A3
DECOUPLE
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
A4
IOVDD
Analog
C
Communication
PF0
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
#0
BUSAX
BUSBY
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
#0
VREGVSS
BUSBX
Voltage regulator VSS
tia
B1
BUSAY
en
PF1
Other
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
fid
A7
Radio
Digital IO power supply.
on
A6
Timers
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 67
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
LFXTAL_P
PB15
BUSCY
C
B2
BUSDX
Radio
Other
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
DVDD
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11
LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
PC6
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT #12
MODEM_ANT0 #11
MODEM_ANT1 #10
Digital power supply.
fid
B4
Communication
on
B3
Timers
BUSAX
BUSBY
PC9
BUSAY
BUSBX
l
silabs.com | Smart. Connected. Energy-friendly.
tia
en
B5
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
Preliminary Rev. 1.1 | 68
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
PF2
Analog
BUSAX
C
B6
Pin Name
Pin Alternate Functionality / Description
BUSBY
Communication
Radio
Other
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO #0
DBG_SWO #0
GPIO_EM4WU0
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI #0
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
PF3
C1
AVDD
BUSAY
BUSBX
Analog power supply.
C2
PB14
BUSCX
BUSDY
l
silabs.com | Smart. Connected. Energy-friendly.
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
tia
LFXTAL_N
en
B7
fid
on
Timers
Preliminary Rev. 1.1 | 69
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
PB13
Analog
BUSCY
C
C3
Pin Name
Pin Alternate Functionality / Description
BUSDX
Communication
Radio
Other
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT #10
MODEM_ANT0 #9
MODEM_ANT1 #8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT #11
MODEM_ANT0 #10
MODEM_ANT1 #9
C4
BUSBX
BUSAX
BUSBY
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
tia
PC8
BUSAY
en
C5
PC7
fid
on
Timers
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 70
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
PF4
Analog
BUSAX
C
C6
Pin Name
Pin Alternate Functionality / Description
BUSBY
Communication
Radio
Other
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28
LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT #26
MODEM_ANT0 #25
MODEM_ANT1 #24
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29
LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT #27
MODEM_ANT0 #26
MODEM_ANT1 #25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
C7
BUSBX
BUSCX
BUSDY
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
tia
PB12
BUSAY
en
D1
PF5
fid
on
Timers
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 71
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
PB11
Analog
BUSCY
C
D2
Pin Name
Pin Alternate Functionality / Description
BUSDX
Communication
Radio
Other
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
on
Timers
D3
PA1
BUSCY
BUSDX
D4
PC10
Ground
BUSAX
BUSBY
l
silabs.com | Smart. Connected. Energy-friendly.
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
tia
D5
VSS
en
fid
ADC0_EXTP
Preliminary Rev. 1.1 | 72
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
CSP Pin# and Name
Pin
#
Pin Name
PC11
D7
RFVDD
Analog
BUSAY
C
D6
Pin Alternate Functionality / Description
BUSBX
Radio
Other
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
on
Communication
Radio power supply
PA0
BUSCX
BUSDY
en
fid
ADC0_EXTN
E1
Timers
VSS
Ground
E3
VSS
Ground
E4
VSS
Ground
E5
VSS
Ground
E6
VSS
Ground
E7
HFXTAL_N
F1
VSS
F2
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
F3
2G4RF_ION
2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
F4
PAVSS
Power Amplifier (PA) voltage regulator VSS
F5
RFVSS
Radio Ground
F6
VSS
F7
HFXTAL_P
G1
PAVDD
Power Amplifier (PA) voltage regulator VDD input
G7
RESETn
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
High Frequency Crystal input pin.
Ground
tia
E2
l
Ground
High Frequency Crystal output pin.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 73
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
6.1.1 EFR32BG1 CSP43 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.2. CSP43 2.4 GHz GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
-
-
-
-
PF5
(5V)
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
PB15 PB14
PB13 PB12 PB11
(5V) (5V) (5V)
C
Port B
-
-
-
-
Port F
-
-
-
-
PC11 PC10
(5V) (5V)
-
-
on
Port C
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PB13, PB12, and PB11 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
tia
en
fid
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 74
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
6.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.3. Alternate functionality overview
C
Alternate
Functionality
4-7
8 - 11
12 - 15
16 - 19
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
0: PA0
1: PA1
ACMP0_O
on
ACMP1_O
0-3
LOCATION
0: PA0
1: PA1
20 - 23
24 - 27
28 - 31
0: PA0
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
6: PF2
6: PF3
DBG_SWCLKTCK
Clock Management
Unit, clock output
number 0.
Clock Management
Unit, clock output
number 1.
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
tia
0: PF0
Analog comparator
ACMP1, digital output.
Analog to digital
converter ADC0 external reference input positive pin
en
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
fid
ADC0_EXTP
Analog comparator
ACMP0, digital output.
Analog to digital
converter ADC0 external reference input negative pin
ADC0_EXTN
0: PA1
Description
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
l
0: PF1
DBG_SWDIOTMS
silabs.com | Smart. Connected. Energy-friendly.
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
Preliminary Rev. 1.1 | 75
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Debug-interface
Serial Wire viewer
Output.
0: PF2
1: PB13
DBG_SWO
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
3: PC11
C
Debug-interface
JTAG Test Data In.
0: PF3
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
DBG_TDI
on
Debug-interface
JTAG Test Data
Out.
0: PF2
DBG_TDO
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
0: PA1
FRC_DOUT
0: PF2
16: PC11
24: PF0
25: PF1
26: PF2
27: PF3
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
30: PA0
31: PA1
28: PF5
31: PA0
Frame Controller,
Data Sniffer Clock.
Frame Controller,
Data Sniffer Frame
active
Frame Controller,
Data Sniffer Output.
Pin can be used to
wake the system
up from EM4
tia
GPIO_EM4WU0
0: PB13
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU9
l
0: PC10
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU12
0: PA1
I2C0_SCL
28: PF4
29: PF5
en
FRC_DFRAME
Note that this function is enabled to
pin out of reset.
fid
FRC_DCLK
0: PA0
1: PA1
Description
5: PB11
6: PB12
7: PB13
silabs.com | Smart. Connected. Energy-friendly.
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
I2C0 Serial Clock
Line input / output.
31: PA0
Preliminary Rev. 1.1 | 76
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
12 - 15
16 - 19
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
0: PA0
1: PA1
I2C0_SDA
LETIM0_OUT0
0: PA0
1: PA1
C
0: PA1
LETIM0_OUT1
LEU0_RX
LEU0_TX
on
0: PA1
0: PA0
1: PA1
LFXTAL_N
LFXTAL_P
MODEM_ANT1
MODEM_DCLK
MODEM_DOUT
28: PF4
29: PF5
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
28: PF5
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
16: PC11
31: PA0
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
0: PA0
1: PA1
silabs.com | Smart. Connected. Energy-friendly.
Low Energy Timer
LETIM0, output
channel 0.
Low Energy Timer
LETIM0, output
channel 1.
LEUART0 Receive
input.
31: PA0
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
24: PF3
25: PF4
26: PF5
29: PA0
30: PA1
24: PF4
25: PF5
28: PA0
29: PA1
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
28: PF5
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
21: PF0
22: PF1
23: PF2
20: PF0
21: PF1
22: PF2
23: PF3
16: PC11
I2C0 Serial Data input / output.
MODEM antenna
control output 0,
used for antenna
diversity.
MODEM antenna
control output 1,
used for antenna
diversity.
MODEM data clock
out.
l
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
0: PA1
MODEM_DIN
24: PF0
25: PF1
26: PF2
27: PF3
Description
tia
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
MODEM_ANT0
28 - 31
en
0: PB15
24 - 27
fid
0: PB14
20 - 23
MODEM data in.
31: PA0
30: PA0
31: PA1
MODEM data out.
Preliminary Rev. 1.1 | 77
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
PCNT0_S0IN
0-3
4-7
8 - 11
12 - 15
16 - 19
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
0: PA0
1: PA1
0: PA1
PCNT0_S1IN
C
4: PF4
5: PF5
4: PF5
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
PRS_CH2
PRS_CH6
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
31: PA0
0: PF2
1: PF3
2: PF4
3: PF5
0: PF3
1: PF4
2: PF5
0: PA0
1: PA1
8: PB15
9: PA0
10: PA1
PRS_CH9
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
3: PB11
4: PC10
5: PC11
PRS_CH11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
0: PA0
1: PA1
6: PB11
7: PB12
silabs.com | Smart. Connected. Energy-friendly.
16: PC11
Peripheral Reflex
System PRS, channel 8.
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
l
PRS_CH10
0: PC6
1: PC7
2: PC8
3: PC9
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
Peripheral Reflex
System PRS, channel 7.
tia
PRS_CH8
4: PB11
5: PB12
6: PB13
7: PB14
Peripheral Reflex
System PRS, channel 6.
en
PRS_CH7
Peripheral Reflex
System PRS, channel 3.
8: PB13
9: PB14
10: PB15
8: PB14
9: PB15
10: PA0
Pulse Counter
PCNT0 input number 1.
Peripheral Reflex
System PRS, channel 2.
5: PF0
6: PF1
7: PF2
5: PB11
6: PB12
7: PB13
Pulse Counter
PCNT0 input number 0.
Peripheral Reflex
System PRS, channel 1.
6: PF0
7: PF1
6: PB11
7: PB12
Description
Peripheral Reflex
System PRS, channel 0.
7: PF0
0: PA1
TIM0_CC0
28 - 31
fid
PRS_CH3
23: PF0
24 - 27
on
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
20 - 23
Peripheral Reflex
System PRS, channel 11.
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
Timer 0 Capture
Compare input /
output channel 0.
Preliminary Rev. 1.1 | 78
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
0: PA1
TIM0_CC1
TIM0_CC2
C
TIM0_CDTI0
3: PB11
12 - 15
on
TIM0_CDTI1
TIM0_CDTI2
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
TIM1_CC2
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
TIM1_CC3
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
US0_CLK
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
US0_CS
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
0: PA1
TIM1_CC1
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
30: PA0
31: PA1
24: PF3
25: PF4
26: PF5
29: PA0
30: PA1
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
28: PA0
29: PA1
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
28: PA1
silabs.com | Smart. Connected. Energy-friendly.
23: PF0
31: PA0
27: PA0
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
31: PA0
22: PF0
23: PF1
21: PF0
22: PF1
23: PF2
24: PF2
25: PF3
26: PF4
27: PF5
30: PA0
31: PA1
24: PF3
25: PF4
26: PF5
29: PA0
30: PA1
Timer 0 Capture
Compare input /
output channel 1.
Timer 0 Capture
Compare input /
output channel 2.
Timer 0 Complimentary Dead Time
Insertion channel 0.
Timer 0 Complimentary Dead Time
Insertion channel 1.
Timer 0 Complimentary Dead Time
Insertion channel 2.
Timer 1 Capture
Compare input /
output channel 0.
Timer 1 Capture
Compare input /
output channel 1.
Timer 1 Capture
Compare input /
output channel 2.
Timer 1 Capture
Compare input /
output channel 3.
24: PF2
25: PF3
26: PF4
27: PF5
30: PA0
31: PA1
24: PF3
25: PF4
26: PF5
29: PA0
30: PA1
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
28: PA0
29: PA1
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
28: PA1
22: PF0
23: PF1
21: PF0
22: PF1
23: PF2
19: PF0
27: PA0
USART0 clock input / output.
USART0 chip select input / output.
l
US0_RTS
23: PF0
16: PC11
28: PF5
Description
tia
US0_CTS
28 - 31
en
3: PB11
24 - 27
24: PF1
25: PF2
26: PF3
27: PF4
fid
6: PB11
7: PB12
12: PC7
13: PC8
14: PC9
15: PC10
20 - 23
21: PF0
22: PF1
23: PF2
19: PF0
8: PB13
9: PB14
10: PB15
11: PC6
TIM1_CC0
0: PA0
1: PA1
16 - 19
USART0 Clear To
Send hardware
flow control input.
USART0 Request
To Send hardware
flow control output.
Preliminary Rev. 1.1 | 79
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
0: PA1
US0_RX
C
US0_TX
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
23: PF0
16: PC11
US1_RX
0: PA0
1: PA1
24: PF0
25: PF1
26: PF2
27: PF3
silabs.com | Smart. Connected. Energy-friendly.
8: PB13
9: PB14
10: PB15
11: PC6
28: PF5
31: PA0
28: PF4
29: PF5
30: PA0
31: PA1
24: PF3
25: PF4
26: PF5
29: PA0
30: PA1
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
28: PA0
29: PA1
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
28: PA1
21: PF0
22: PF1
23: PF2
19: PF0
12: PC8
13: PC9
14: PC10
15: PC11
12: PC7
13: PC8
14: PC9
15: PC10
23: PF0
16: PC11
27: PA0
24: PF1
25: PF2
26: PF3
27: PF4
USART0 Asynchronous Receive.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
24: PF2
25: PF3
26: PF4
27: PF5
22: PF0
23: PF1
Description
28: PF5
31: PA0
USART1 clock input / output.
USART1 chip select input / output.
USART1 Clear To
Send hardware
flow control input.
USART1 Request
To Send hardware
flow control output.
USART1 Asynchronous Receive.
USART1 Synchronous mode Master
Input / Slave Output (MISO).
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
l
6: PB11
7: PB12
8: PB14
9: PB15
10: PC6
11: PC7
24: PF1
25: PF2
26: PF3
27: PF4
28 - 31
tia
5: PB11
6: PB12
7: PB13
24 - 27
en
0: PA1
US1_TX
12: PC7
13: PC8
14: PC9
15: PC10
20 - 23
fid
US1_RTS
12: PC8
13: PC9
14: PC10
15: PC11
4: PB11
5: PB12
6: PB13
7: PB14
US1_CS
US1_CTS
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
16 - 19
on
US1_CLK
0: PA0
1: PA1
12 - 15
Preliminary Rev. 1.1 | 80
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
6.3 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
CH0
CH1
CH2
CH3
CH4
PD10
PD9
PD11
PD13
PD12
PC6
PD14
PD15
PA0
PA1
PA2
PA3
PD10
PD9
PD11
PD12
PD13
PD14
PD15
PA0
PA1
PA2
PA3
PA5
PA5
CH5
CH6
PC6
CH7
PC8
PC7
PC7
PC8
PC9
PC10
PC9
PC11
PF0
CH8
CH9
CH10
PC10
PC11
PF1
PF2
PF3
PF4
PF1
PA4
PB12
PB11
PB11
PA4
PB12
PB13
PB13
PB15
PB15
PB14
BUSCX
PF6
PF5
PF7
BUSBY
PB14
l
silabs.com | Smart. Connected. Energy-friendly.
tia
BUSCY
en
BUSDX
CH11
CH12
CH13
CH14
CH15
CH16
PF0
PF2
PF3
PF5
PF4
PF6
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
PF7
BUSAY
BUSBX
fid
BUSDY
CH26
CH27
CH28
CH29
CH30
CH31
Bus
BUSAX
on
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
C
Table 6.4. ACMP0 Bus and Pin Mapping
Preliminary Rev. 1.1 | 81
C
tia
l
silabs.com | Smart. Connected. Energy-friendly.
PB12
PB14
BUSCY
PB15
PB13
PB11
PB15
PB13
PB11
PD10
PD12
PD14
PA0
PA2
PA4
PD9
PD11
PD13
PD15
PA1
PA3
PA5
en
PB12
PB14
BUSCX
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PD10
PD12
PD14
PA0
PA2
PA4
fid
BUSDX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
on
BUSDY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Table 6.5. ACMP1 Bus and Pin Mapping
Preliminary Rev. 1.1 | 82
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
l
silabs.com | Smart. Connected. Energy-friendly.
PA4
PB12
PB14
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
PD10
PD12
PD14
PA0
PA2
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
tia
PB15
Bus
Table 6.7. IDAC0 Bus and Pin Mapping
PA4
PB12
PB14
BUSDY
PD10
PD12
PD14
PA0
PA2
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
en
PB12
PB14
BUSCX
PD10
PD12
PD14
PA0
PA2
PA4
fid
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
on
BUSCY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
C
APORT1Y APORT1X Port
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Pin Definitions
Table 6.6. ADC0 Bus and Pin Mapping
Preliminary Rev. 1.1 | 83
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
CSP Package Specifications
7. CSP Package Specifications
7.1 CSP Package Dimensions
tia
en
fid
on
C
Figure 7.1. CSP Package Drawing
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 84
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
CSP Package Specifications
Table 7.1. CSP Package Dimensions
Dimension
Typ
Max
A
0.480
0.510
0.540
A1
0.175
0.190
0.205
c
0.270
0.295
0.320
c1
0.022
0.025
0.028
D
3.260
3.295
3.320
E
3.108
3.143
3.168
b
0.240
0.270
0.300
—
2.400
—
—
2.400
—
—
0.447
—
—
0.302
—
—
0.448
—
—
0.441
—
C
Min
D1
D2
E2
D3
E3
aaa
bbb
ccc
ddd
fid
e
on
E1
0.400
—
0.10
0.10
0.03
0.15
en
eee
—
0.05
tia
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Primary datum “C” and seating plane are defined by the spherical crowns of the solder balls.
4. Dimension “b” is measured at the maximum solder bump diameter, parallel to primary datum “C”.
5. Minimum bump pitch 0.4mm.
6. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 85
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
CSP Package Specifications
7.2 CSP PCB Land Pattern
en
fid
on
C
Figure 7.2. CSP PCB Land Pattern Drawing
tia
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 86
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
CSP Package Specifications
Table 7.2. CSP PCB Land Pattern Dimensions
Typ
X
0.20
C1
2.40
C2
2.40
E1
0.40
E2
0.40
C
Dimension
tia
en
fid
on
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.075 mm (3 mils).
7. A stencil of square aperture (0.22 x 0.22 mm) is recommended.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 87
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
CSP Package Specifications
7.3 CSP Package Marking
on
C
PPPPPPPPP
TTTTTT
YYWW #
Figure 7.3. CSP Package Marking
fid
tia
en
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade (P | B | V)
5. Feature Code (1 to 7)
6. TRX Code (3 = TXRX | 2= RX | 1 = TX)
7. Band (2 = 2.4 GHz)
8. Flash (G = 256K | F = 128K | E = 64K | D = 32K)
9. Temperature Grade (G = -40 to 85)
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• # – Bootloader revision number.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 88
EFR32BG1 Blue Gecko Bluetooth® Smart SoC CSP Family Data Sheet
Revision History
8. Revision History
8.1 Revision 1.1
2016-Oct-26
C
• Ordering Information: Removed Encryption column. All products in family include full encryption capabilites. Previously EFR32BG1V
devices listed as "AES only".
• System Overview Sections: Minor wording and typographical error fixes.
• Electrical Characteristics: Minor wording and typographical error fixes.
• "Current Consumption 3.3V with DC-DC" table in Electrical Characteristics: Typical values for EM2 and EM3 current updated with
correct values from silicon characterization.
• Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
• Updated APORT client map sections.
on
8.2 Revision 0.98
8.3 Revision 0.3
2015-11-2
Initial release of CSP package document.
tia
en
fid
2016-July-6
• All OPNs changed to rev C0. Note the following:
• All OPNs ending in -B0 are Engineering Samples based on an older revision of silicon and are being removed from the OPN
table. These older revisions should be used for evaluation only and will not be supported for production.
• OPNs ending in -C0 are the Current Revision of Silicon and are intended for production.
• Updated OPN table to new format.
• Updated OPN decoder figure to include extended family options.
• Added supported modulation formats and protocols to feature list for P-grade devices.
• Electrical specification tables updated with latest characterization data and production test limits.
• Added graphs in typical performance curves for supply current, oscillator frequency and RF.
• Updated DC-DC graphs in typical performance section.
• Typical connection diagram formatting updated.
• Pinout diagram formatting updated.
• Removed BOOT_TX and BOOT_RX alternate functions from pin function tables.
• Updated package marking diagram with latest inclusive version.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 1.1 | 89
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
3.2 Radio. . . . . . . . . . . .
3.2.1 Antenna Interface . . . . . . .
3.2.2 Fractional-N Frequency Synthesizer.
3.2.3 Receiver Architecture. . . . . .
3.2.4 Transmitter Architecture . . . . .
3.2.5 Wake on Radio . . . . . . . .
3.2.6 RFSENSE . . . . . . . . .
3.2.7 Flexible Frame Handling. . . . .
3.2.8 Packet and State Trace . . . . .
3.2.9 Data Buffering . . . . . . . .
3.2.10 Radio Controller (RAC). . . . .
3.2.11 Random Number Generator . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.3 Power . . . . . . . . . .
3.3.1 Energy Management Unit (EMU) .
3.3.2 DC-DC Converter . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
. 6
. 6
3.4 General Purpose Input/Output (GPIO).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal and External Oscillators .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
. 6
. 6
3.6 Counters/Timers and PWM . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . . .
3.6.2 Real Time Counter and Calendar (RTCC) . . .
3.6.3 Low Energy Timer (LETIMER). . . . . . .
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.5 Pulse Counter (PCNT) . . . . . . . . .
3.6.6 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
7
7
7
7
7
3.7 Communications and Other Digital Peripherals . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
8
8
8
3.8 Security Features. . . . . . . . . . . . . . .
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) .
3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.9 Analog . . . . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . . . . .
3.9.2 Analog Comparator (ACMP) . . . . .
3.9.3 Analog to Digital Converter (ADC) . . .
3.9.4 Digital to Analog Current Converter (IDAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table of Contents
3
3
4
4
4
4
4
5
5
5
5
5
8
8
8
9
9
90
3.10 Reset Management Unit (RMU)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
3.11 Core and Memory . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . .
3.11.2 Memory System Controller (MSC) . . . . .
3.11.3 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
9
9
9
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
3.13 Configuration Summary .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
12
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . .
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . .
4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . .
4.1.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . .
4.1.4 Current Consumption. . . . . . . . . . . . . . . . . . . . . .
4.1.4.1 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . .
4.1.4.2 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . .
4.1.4.3 Current Consumption 1.85 V without DC-DC Converter . . . . . . . . .
4.1.4.4 Current Consumption Using Radio . . . . . . . . . . . . . . . .
4.1.5 Wake up times . . . . . . . . . . . . . . . . . . . . . . . .
4.1.6 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . .
4.1.7 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . .
4.1.8 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . .
4.1.8.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . .
4.1.8.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . .
4.1.8.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . .
4.1.8.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band. . . . .
4.1.8.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band .
4.1.8.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. .
4.1.9 Modem Features . . . . . . . . . . . . . . . . . . . . . . .
4.1.10 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.10.1 LFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.10.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.10.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.10.4 HFRCO and AUXHFRCO . . . . . . . . . . . . . . . . . . .
4.1.10.5 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11 Flash Memory Characteristics . . . . . . . . . . . . . . . . . .
4.1.12 GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.13 VMON . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.14 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.15 IDAC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.16 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . .
4.1.17 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.18 USART SPI . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.13
.14
.14
.15
.17
.17
.18
.20
.21
.22
.22
.23
.24
.24
.25
.26
.28
.30
.33
.34
.35
.35
.36
.36
.37
.37
.38
.39
.40
.41
.44
.46
.48
.50
4.2 Typical Performance Curves
4.2.1 Supply Current . . . .
4.2.2 DC-DC Converter . . .
4.2.3 Internal Oscillators. . .
4.2.4 2.4 GHz Radio . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.51
.52
.54
.56
.62
Table of Contents
91
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Power
.
.
.
.
.
64
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
5.2 RF Matching Networks .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.65
5.3 Other Connections .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.65
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
.
6.1 EFR32BG1 CSP43 2.4 GHz Definition . . .
6.1.1 EFR32BG1 CSP43 2.4 GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.66
.74
6.2 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.75
6.3 Analog Port (APORT) Client Maps .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.81
. . . . . . . . . . . . . . . . . . . . . . . .
84
7.1 CSP Package Dimensions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.84
7.2 CSP PCB Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.86
7.3 CSP Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.88
8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
7. CSP Package Specifications
8.1 Revision 1.1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
8.2 Revision 0.98 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
8.3 Revision 0.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90
Table of Contents
92
.
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com