EFR32MG1 Mighty Gecko ZigBee® &
Thread SoC Family Data Sheet
The Mighty Gecko ZigBee & Thread family of SoCs is part of the
Wireless Gecko portfolio. Mighty Gecko SoCs are ideal for enabling energy-friendly ZigBee & Thread networking for IoT devices.
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup
times, a scalable power amplifier, an integrated balun and no-compromise MCU features.
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
• Scalable Memory and Radio configuration
options available in several footprint
compatible QFN packages
• 12-channel Peripheral Reflex System
enabling autonomous interaction of MCU
peripherals
Mighty Gecko applications include:
•
•
•
•
•
KEY FEATURES
Connected Home
Lighting
Health and Wellness
Metering
Home and Building Automation and Security
• Autonomous Hardware Crypto Accelerator
and Random Number Generator
• Integrated balun for 2.4 GHz and
integrated PA with up to 19.5 dBm
transmit power for 2.4 GHz and 20 dBm
transmit power for Sub-GHz radios
• Integrated DC-DC with RF noise mitigation
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
Flash Program
Memory
Clock Management
Memory
Protection Unit
RAM Memory
Debug Interface
DMA Controller
Energy Management
Other
High Frequency
Crystal
Oscillator
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
CRYPTO
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
CRC
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
Peripheral Reflex System
DEMOD
FRC
Sub-GHz RF
Frontend:
LNA, PA,
I/Q Mixer
Serial
Interfaces
PGA
IFADC
BUFC
Radio Transceiver
I/O Ports
Timers and Triggers
USART
External
Interrupts
Timer/Counter
Protocol Timer
ADC
Low Energy
UARTTM
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Analog
Comparator
I2C
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
IDAC
RFSENSE
To RF
Frontend
Circuits
AGC
RAC
Frequency
Synthesizer
CRC
BALUN
2.4 GHz RF
Frontend:
LNA, PA,
I/Q Mixer
Analog I/F
MOD
Pin Wakeup
Cryotimer
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
silabs.com | Smart. Connected. Energy-friendly.
EM2—Deep Sleep
EM3—Stop
EM4—Hibernate
EM4—Shutoff
Rev. 1.1
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Feature List
1. Feature List
The EFR32MG1 highlighted features are listed below.
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• 2.4 GHz and Sub-GHz radio operation
• Transmit power:
• 2.4 GHz radio: Up to 19.5 dBm
• Sub-GHz radio: Up to 20 dBm
• Low Energy Consumption
• 8.7 mA RX current at 2.4 GHz
• 8.2 mA TX current @ 0 dBm output power at 2.4 GHz
• 8.1 mA RX current at 868 MHz
• 34.5 mA TX current @ 14 dBm output power at 868 MHz
• 63 μA/MHz in Active Mode (EM0)
• 1.4 μA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 0.58 μA EM4H Hibernate Mode (128 byte RAM retention)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -94 dBm sensitivity @ 1 Mbit/s GFSK (2.4GHz)
• -121.4 dBm sensitivity at 2.4 kbps GFSK (868 MHz)
• Supported Modulation Formats
• 2-FSK / 4-FSK with fully configurable shaping
• Shaped OQPSK / (G)MSK
• Configurable DSSS and FEC
• BPSK / DBPSK TX
• OOK / ASK
• Supported Protocols:
• Proprietary Protocols
• Wireless M-Bus
• Low Power Wide Area Networks
• Support for Internet Security
• General Purpose CRC
• Random Number Generation
• Hardware Cryptographic Acceleration for AES 128/256,
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
silabs.com | Smart. Connected. Energy-friendly.
• Wide selection of MCU peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2× Analog Comparator (ACMP)
• Digital to Analog Current Converter (IDAC)
• Up to 31 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
• Up to 31 General Purpose I/O pins with output state retention and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50nA
• 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUART™)
• I2C interface with SMBus support and address recognition
in EM3 Stop
• Wide Operating Range
• 1.85 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• -40 °C to 85 °C
• QFN32 5x5 mm Package
• QFN48 7x7 mm Package
Rev. 1.1 | 1
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Ordering Information
2. Ordering Information
Ordering Code
Protocol Stack
Frequency Band
@ Max TX Power
Flash
(kB)
RAM
(kB)
GPIO
Package
EFR32MG1P233F256GM48-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
• 2.4 GHz @ 19.5 dBm
• Sub-GHz @ 20 dBm
256
32
28
QFN48
EFR32MG1P232F256GM48-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 19.5 dBm
256
32
31
QFN48
EFR32MG1P232F256GM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 19.5 dBm
256
32
16
QFN32
EFR32MG1P133F256GM48-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
• 2.4 GHz @ 16.5 dBm
• Sub-GHz @ 16.5 dBm
256
32
28
QFN48
EFR32MG1P132F256GM48-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 16.5 dBm
256
32
31
QFN48
EFR32MG1P132F256GM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 16.5 dBm
256
32
16
QFN32
EFR32MG1B232F256GM48-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 19.5 dBm
256
32
31
QFN48
EFR32MG1B232F256GM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 19.5 dBm
256
32
16
QFN32
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 2
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Ordering Information
Ordering Code
Protocol Stack
Frequency Band
@ Max TX Power
Flash
(kB)
RAM
(kB)
GPIO
Package
EFR32MG1B132F256GM48-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 16.5 dBm
256
32
31
QFN48
EFR32MG1B132F256GM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 16.5 dBm
256
32
16
QFN32
EFR32MG1V132F256GM48-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 8 dBm
256
32
31
QFN48
EFR32MG1V132F256GM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 8 dBm
256
32
16
QFN32
EFR32 X G 1 P 132 F 256 G M 32 – C0 R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), J (CSP)
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)
Performance Grade – P (Performance), B (Basic), V (Value)
Series
Gecko
Family – M (Mighty), B (Blue), F (Flex)
Wireless Gecko 32-bit
Figure 2.1. OPN Decoder
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 3
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for
any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a
short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.
A block diagram of the EFR32MG1 family is shown in Figure 3.1 Detailed EFR32MG1 Block Diagram on page 4. The diagram
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult
Ordering Information.
Radio Transciever
I
PA
Q
Frequency
Synthesizer
To RF
Frontend
Circuits
IOVDD
FRC
Floating Point Unit
USART
LEUART
Watchdog
Timer
Brown Out /
Power-On
Reset
A A
H P
B B
ULFRCO
AUXHFRCO
CRC
Analog Peripherals
Internal
Reference
VDD
VREF
12-bit ADC
LFXO
HFXO
HFXTAL_N
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
VDD
Temp
Sensor
LFRCO
LFXTAL_P / N
Port C
Drivers
IDAC
HFRCO
HFXTAL_P
PBn
CRYPTO
Clock Management
Reset
Management
Unit
Port B
Drivers
APORT
Serial Wire Debug /
Programming
PAn
I2C
DMA Controller
Voltage
Regulator
Port A
Drivers
Port
Mapper
Input MUX
DC-DC
Converter
DECOUPLE
RESETn
BUFC
Memory Protection Unit
bypass
VSS
VREGVSS
RFVSS
PAVSS
PCNT
RTC / RTCC
Up to 32 KB RAM
Voltage
Monitor
DVDD
VREGSW
MOD
CRYOTIMER
Up to 256 KB ISP Flash
Program Memory
RFVDD
VREGVDD
AGC
ARM Cortex-M4 Core
Energy Management
PAVDD
AVDD
IOVDD
TIMER
2.4 GHz RF
LNA
BALUN
IFADC
PGA
Q
Digital Peripherals
LETIMER
RAC
PA
RFSENSE
2G4RF_IOP
DEMOD
LNA
CRC
SUBGRF_IP
SUBGRF_IN
SUBGRF_OP
SUBGRF_ON
2G4RF_ION
Port I/O Configuration
Sub-GHz RF
I
+
Analog Comparator
Figure 3.1. Detailed EFR32MG1 Block Diagram
3.2 Radio
The Mighty Gecko family features a radio transceiver supporting Bluetooth Smart® and proprietary short range wireless protocols.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 4
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.2.1 Antenna Interface
The EFR32MG1 family includes devices which support both single-band and dual-band RF communication over separate physical RF
interfaces.
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The
2G4RF_ION pin should be grounded externally.
The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential receive interface (pinsSUBGRF_IP and SUBGRF_IN).
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching
Networks section.
3.2.2 Fractional-N Frequency Synthesizer
The EFR32MG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.2.3 Receiver Architecture
The EFR32MG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion
mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital
converter (IFADC).
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz
radio can be calibrated on-demand by the user for the desired frequency band.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received
frame and the dynamic RSSI measurement can be monitored throughout reception.
The EFR32MG1 features integrated support for antenna diversity to improve link budget for 802.15.4 DSSS-OQPSK PHY configuration
in the 2.4GHz band, using complementary control outputs to an external switch. Internal configurable hardware controls automatic
switching between antennae during RF receive detection operations.
3.2.4 Transmitter Architecture
The EFR32MG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32MG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.
3.2.5 Wake on Radio
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 5
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.2.6 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
3.2.7 Flexible Frame Handling
EFR32MG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
3.2.8 Packet and State Trace
The EFR32MG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It
features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
3.2.9 Data Buffering
The EFR32MG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.2.10 Radio Controller (RAC)
The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 6
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.2.11 Random Number Generator
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 7
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.3 Power
The EFR32MG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can
be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.3.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen
below a chosen threshold.
3.3.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.4 General Purpose Input/Output (GPIO)
EFR32MG1 has up to 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.5 Clocking
3.5.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFR32MG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
3.5.2 Internal and External Oscillators
The EFR32MG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 8
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.6.2 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes.
3.6.3 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.6.5 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.6.6 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 9
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.7.3 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.8 Security Features
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and
SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.9 Analog
3.9.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 10
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.9.4 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with
several ranges consisting of various step sizes.
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFR32MG1. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.11 Core and Memory
3.11.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface
3.11.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.11.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of
software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 11
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
3.12 Memory Map
The EFR32MG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFR32MG1 Memory Map — Core Peripherals and Code Space
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 12
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
System Overview
Figure 3.3. EFR32MG1 Memory Map — Peripherals
3.13 Configuration Summary
The features of the EFR32MG1 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.1. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
IrDA I2S SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0
with DTI.
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
silabs.com | Smart. Connected. Energy-friendly.
TIM1_CC[3:0]
Rev. 1.1 | 13
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to Table 4.2 General Operating Conditions on page 17 for more details about operational supply and temperature limits.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 14
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
TSTG
Min
Typ
Max
Unit
-50
—
150
°C
External main supply voltage VDDMAX
0
—
3.8
V
External main supply voltage VDDRAMPMAX
ramp rate
—
—
1
V / μs
-0.3
—
Min of 5.25
and IOVDD
+2
V
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
Voltage on any 5V tolerant
GPIO pin1
VDIGPIN
Voltage on non-5V tolerant
GPIO pins
Test Condition
Voltage on HFXO pins
VHFXOPIN
Input RF level on pins
2G4RF_IOP and
2G4RF_ION
PRFMAX2G4
—
—
10
dBm
Voltage differential between
RF pins (2G4RF_IOP 2G4RF_ION)
VMAXDIFF2G4
-50
—
50
mV
-0.3
—
3.3
V
Absolute Voltage on RF pins VMAX2G4
2G4RF_IOP and
2G4RF_ION
Input RF level on pins
SUBGRF_IP and
SUBGRF_IN
PRFMAXSUBG
—
—
10
dBm
Voltage differential between
RF pins (SUBGRF_IP SUBGRF_IN)
VMAXDIFFSUBG
-50
—
50
mV
-0.3
—
3.3
V
Total current into VDD power IVDDMAX
lines (source)
—
—
200
mA
Total current into VSS
ground lines (sink)
IVSSMAX
—
—
200
mA
Current per I/O pin (sink)
IIOMAX
—
—
50
mA
—
—
50
mA
—
—
200
mA
—
—
200
mA
—
—
0.3
V
Absolute Voltage on RF pins VMAXSUBG
SUBGRF_IP, SUBGRF_IN,
SUBGRF_OP, and
SUBGRF_ON
Current per I/O pin (source)
Current for all I/O pins (sink)
IIOALLMAX
Current for all I/O pins
(source)
Voltage difference between
AVDD and VREGVDD
ΔVDD
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 15
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Junction Temperature
TJ
Test Condition
Min
Typ
Max
Unit
-40
—
105
°C
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 16
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
• RFVDD ≤ AVDD
• PAVDD ≤ AVDD
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-G temperature grade, Ambient
Temperature
-40
25
85
°C
1.85
3.3
3.8
V
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.85
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.85
3.3
3.8
V
—
—
200
mA
1.62
—
VVREGVDD
V
DVDD Operating supply volt- VDVDD
age
1.62
—
VVREGVDD
V
PAVDD Operating supply
voltage
VPAVDD
1.62
—
VVREGVDD
V
IOVDD Operating supply
voltage
VIOVDD
1.62
—
VVREGVDD
V
—
—
0.1
V
0 wait-states (MODE = WS0) 3
—
—
26
MHz
1 wait-states (MODE = WS1) 3
—
—
40
MHz
Operating temperature range TOP
AVDD Supply voltage1
VAVDD
VREGVDD Operating supply VVREGVDD
voltage1 2
VREGVDD Current
IVREGVDD
RFVDD Operating supply
voltage
VRFVDD
DCDC in bypass
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
HFCLK frequency
fCORE
Note:
1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max
3. In MSC_READCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 17
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Thermal Resistance
THETAJA
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
QFN32 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
79
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
62.2
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
54.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
32
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
28.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
26.9
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
64.5
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
51.6
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
47.7
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
26.2
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
23.1
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
22.1
—
°C/W
Rev. 1.1 | 18
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V,
VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.85
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC Accuracy
ACCDC
Regulation Window2
WINREG
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low noise (LN) mode, 1.8 V target
output
1.7
—
1.9
V
Low power (LP) mode,
LPCMPBIAS3 = 0, 1.8 V target
output, IDCDC_LOAD ≤ 75 μA
1.63
—
2.2
V
Low power (LP) mode,
LPCMPBIAS3 = 3, 1.8 V target
output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
Steady-state output ripple
VR
Radio disabled.
—
3
—
mVpp
Output voltage under/overshoot
VOV
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
—
150
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
—
150
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
50
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
125
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 19
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive4
—
—
200
mA
Low noise (LN) mode, Medium
Drive4
—
—
100
mA
Low noise (LN) mode, Light
Drive4
—
—
50
mA
Low power (LP) mode,
LPCMPBIAS3 = 0
—
—
75
μA
Low power (LP) mode,
LPCMPBIAS3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
1
1
μF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
μH
—
1.2
2.5
Ω
DCDC nominal output capacitor
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits
3. In EMU_DCDCMISCCTRL register
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 20
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.5 Current Consumption
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32MG1 Typical Application
Circuit: Direct Supply Configuration without DC-DC converter on page 98.
Table 4.5. Current Consumption 3.3V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
130
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
105
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
106
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
222
350
μA/MHz
38.4 MHz crystal1
—
65
—
μA/MHz
38 MHz HFRCO
—
35
38
μA/MHz
26 MHz HFRCO
—
37
41
μA/MHz
1 MHz HFRCO
—
157
275
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.3
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
3
6.3
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.8
6
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1.1
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.65
—
μA
128 byte RAM retention, no RTCC
—
0.65
1.3
μA
no RAM retention, no RTCC
—
0.04
0.11
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
Test Condition
Note:
1. CMU_HFXOCTRL_LOWPOWER=0
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 21
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC
output. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process
variation at TOP = 25 °C. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from
VDCDC) on page 98.
Table 4.6. Current Consumption 3.3V with DC-DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash2
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
63
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
71
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
78
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
76
—
μA/MHz
38.4 MHz crystal, CPU running
while loop from flash2
—
98
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
75
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
81
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
88
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
μA/MHz
38.4 MHz crystal2
—
49
—
μA/MHz
38 MHz HFRCO
—
32
—
μA/MHz
26 MHz HFRCO
—
38
—
μA/MHz
38.4 MHz crystal2
—
61
—
μA/MHz
38 MHz HFRCO
—
45
—
μA/MHz
26 MHz HFRCO
—
58
—
μA/MHz
Current consumption in EM2 IEM2
Deep Sleep mode. DCDC in
Low Power mode4.
Full RAM retention and RTCC
running from LFXO
—
1.4
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
1.4
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
1.1
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
0.86
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.58
—
μA
128 byte RAM retention, no RTCC
—
0.58
—
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Current consumption in EM0
Active mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Current consumption in EM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
IEM4
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 22
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
EM4S Shutoff mode
IEM4S
no RAM retention, no RTCC
Min
Typ
Max
Unit
—
0.04
—
μA
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD
2. CMU_HFXOCTRL_LOWPOWER=0
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD
4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 23
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.5.3 Current Consumption 1.85 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.85 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32MG1 Typical Application
Circuit: Direct Supply Configuration without DC-DC converter on page 98.
Table 4.7. Current Consumption 1.85V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
131
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
220
—
μA/MHz
38.4 MHz crystal1
—
65
—
μA/MHz
38 MHz HFRCO
—
35
—
μA/MHz
26 MHz HFRCO
—
37
—
μA/MHz
1 MHz HFRCO
—
154
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.2
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
2.8
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.7
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.62
—
μA
128 byte RAM retention, no RTCC
—
0.62
—
μA
No RAM retention, no RTCC
—
0.02
—
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
Test Condition
Note:
1. CMU_HFXOCTRL_LOWPOWER=0
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 24
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.5.4 Current Consumption Using Radio
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. TOP = 25 °C.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.
See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 or
Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98.
Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC
Parameter
Symbol
Test Condition
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
500 kbit/s, 2GFSK, F = 915MHz ,
Radio clock prescaled by 4
—
8.4
10
mA
38.4 kbit/s, 2GFSK, F = 868
MHz , Radio clock prescaled by 4
—
8.1
10
mA
38.4 kbit/s, 2GFSK, F = 490
MHz , Radio clock prescaled by 4
—
7.9
10
mA
50 kbit/s, 2GFSK, F = 433 MHz ,
Radio clock prescaled by 4
—
7.7
10
mA
38.4 kbit/s, 2GFSK, F = 315MHz ,
Radio clock prescaled by 4
—
7.9
10
mA
38.4 kbit/s, 2GFSK, F = 169MHz ,
Radio clock prescaled by 4
—
7.6
10
mA
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
8.7
—
mA
802.15.4 receiving frame, F = 2.4
GHz, Radio clock prescaled by 3
—
9.8
—
mA
Rev. 1.1 | 25
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
ITX
RFSENSE current consump- IRFSENSE
tion
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
F = 915 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
80.2
104
mA
F = 915 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
35.5
40.9
mA
F = 868 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
84.9
114
mA
F = 868 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
34.5
42
mA
F = 490 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
82.8
112
mA
F = 433 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
32.3
37.8
mA
F = 433 MHz, CW, 10 dBm
match, PAVDD connected to
DCDC output
—
19.5
22.1
mA
F = 315 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
32.5
39.4
mA
F = 169 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
80.2
106.9
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 3
—
8.2
—
mA
F = 2.4 GHz, CW, 3 dBm output
power
—
16.5
—
mA
F = 2.4 GHz, CW, 8 dBm output
power
—
23.3
—
mA
F = 2.4 GHz, CW, 10.5 dBm output power
—
32.7
—
mA
F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
83.9
—
mA
F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
126.7
—
mA
—
51
—
nA
Rev. 1.1 | 26
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.6 Wake up times
Table 4.9. Wake up times
Parameter
Symbol
Test Condition
Wake up from EM2 Deep
Sleep
tEM2_WU
Wakeup time from EM1
Sleep
tEM1_WU
Wake up from EM3 Stop
tEM3_WU
Wake up from EM4H Hibernate1
tEM4H_WU
Wake up from EM4S Shutoff1
tEM4S_WU
Min
Typ
Max
Unit
Code execution from flash
—
10.7
—
μs
Code execution from RAM
—
3
—
μs
Executing from flash
—
3
—
AHB
Clocks
Executing from RAM
—
3
—
AHB
Clocks
Executing from flash
—
10.7
—
μs
Executing from RAM
—
3
—
μs
Executing from flash
—
60
—
μs
—
290
—
μs
Min
Typ
Max
Unit
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
4.1.7 Brown Out Detector
Table 4.10. Brown Out Detector
Parameter
Symbol
Test Condition
DVDDBOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling
1.35
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
24
—
mV
DVDD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
AVDD rising
—
—
1.85
V
AVDD falling
1.62
—
—
V
AVDD BOD hysteresis
VAVDDBOD_HYST
—
21
—
mV
AVDD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
46
—
mV
—
300
—
μs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
silabs.com | Smart. Connected. Energy-friendly.
Supply drops at 0.1V/μs rate
Rev. 1.1 | 27
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.8 Frequency Synthesizer Characteristics
Table 4.11. Frequency Synthesizer Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF Synthesizer Frequency
range
FRANGE_2400
2.4 GHz frequency range
2400
—
2483.5
MHz
LO tuning frequency range
FRANGE_900
Sub GHz frequency range
779
—
956
MHz
FRANGE_433
390
—
574
MHz
FRANGE_315
195
—
358
MHz
FRANGE_169
110
—
191
MHz
LO tuning frequency resolution with 38.4 MHz crystal
Frequency deviation resolution with 38.4 MHz crystal
Maximum frequency deviation with 38.4 MHz crystal
FRES_2400
2400 - 2483.5 MHz
—
—
73
Hz
FRES_900
779 - 956 MHz
—
—
24
Hz
FRES_433
390 - 574 MHz
—
—
12.2
Hz
FRES_315
195 - 358 MHz
—
—
7.3
Hz
FRES_169
110 - 191 MHz
—
—
4.6
Hz
ΔFRES_2400
2400 - 2483.5 MHz
—
—
73
Hz
ΔFRES_900
779 - 956 MHz
—
—
24
Hz
ΔFRES_433
390 - 574 MHz
—
—
12.2
Hz
ΔFRES_315
195 - 358 MHz
—
—
7.3
Hz
ΔFRES_169
110 - 191 MHz
—
—
4.6
Hz
ΔFMAX_2400
2400 - 2483.5 MHz
—
—
1677
kHz
ΔFMAX_900
779 - 956 MHz
—
—
559
kHz
ΔFMAX_433
390 - 574 MHz
—
—
280
kHz
ΔFMAX_315
195 - 358 MHz
—
—
167
kHz
ΔFMAX_169
110 - 191 MHz
—
—
105
kHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 28
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9 2.4 GHz RF Transceiver Characteristics
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum TX power1
POUTMAX
19.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply2
—
19.5
—
dBm
16.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply
—
16.5
—
dBm
8 dBm-rated part numbers
—
8
—
dBm
-30
—
dBm
Minimum active TX Power
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
1
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.85 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power >
10.5 dBm.
—
4.5
—
dB
1.85 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power =
10.5 dBm.
—
3.8
—
dB
1.85 V < VVREGVDD < 3.3 V using
DC-DC converter
—
2.2
—
dB
From -40 to +85 °C, PAVDD connected to DC-DC output
—
1.5
—
dB
From -40 to +85 °C, PAVDD connected to external supply
—
1.5
—
dB
Over RF tuning frequency range
—
0.4
—
dB
2400
—
2483.5
MHz
Output power variation vs
supply at POUTMAX
Output power variation vs
temperature at POUTMAX
POUTVAR_V
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 29
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
Level above which
RFSENSE will trigger1
RFSENSETRIG
Level below which
RFSENSE will not trigger1
RFSENSETHRES
1% PER Sensitivity
SENS2GFSK
0.1% BER Sensitivity
Test Condition
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
216 MHz to 960 MHz, Conducted
Measurement
—
-55.2
—
dBm
Above 960 MHz, Conducted
Measurement
—
-47.2
—
dBm
CW at 2.45 GHz
—
-24
—
dBm
—
-50
—
dBm
2 Mbps 2GFSK signal2
—
-89.2
—
dBm
250 kbps 2GFSK signal
—
-99.1
—
dBm
Note:
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83dBm on this channel.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 30
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.14. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band
Parameter
Symbol
Transmit 6dB bandwidth
TXBW
Power spectral density limit
PSDLIMIT
Min
Typ
Max
Unit
—
740
—
kHz
Per FCC part 15.247 at 10 dBm
—
-6.5
—
dBm/
3kHz
Per FCC part 15.247 at 20 dBm
—
-2.6
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
10
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
1.1
—
MHz
In-band spurious emissions
at 10 dBm, with allowed exceptions1
At ±2 MHz
—
-39.8
—
dBm
At ±3 MHz
—
-42.1
—
dBm
At ±2 MHz
—
—
-20
dBm
At ±3 MHz
—
—
-30
dBm
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47
—
dBm
Spurious emissions out-ofSPUROOB_FCC
band, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC. Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier3
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Non Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
—
-16
—
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz
—
-42
—
dBm
1-12 GHz
—
-36
—
dBm
SPURINB
In-band spurious emissions
at 20 dBm, with allowed exceptions1 2
Emissions of harmonics outof-band, per FCC part
15.247
Spurious emissions out-ofband; per ETSI 300.328
SPURHRM_FCC
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.440
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 31
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency
which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
2. For 2456 MHz, a maximum output power of 15 dBm is used to achieve this value.
3. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 32
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.15. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal1. Packet
length is 20 bytes.
—
10
—
dBm
Sensitivity, 0.1% BER2
SENS
Signal is reference signal1. Using
DC-DC converter
—
-94
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1
—
-92
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity
—
8.3
—
dB
N+1 adjacent channel (1
C/I1+
MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at +1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-3
—
dB
N-1 adjacent channel (1
C/I1MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at -1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-0.5
—
dB
Alternate (2 MHz) selectivity, C/I2
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-43
—
dB
Alternate (3 MHz) selectivity, C/I3
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ±3
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-46.7
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-38.7
—
dB
Selectivity to image frequency +1 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency +1 MHz with 1
MHz precision
—
-48.2
—
dB
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
C/IIM+1
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 33
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
—
-25.8
—
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
4
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-101
dBm
—
—
0.5
dB
Intermodulation performance IM
RSSI resolution
RSSIRES
Test Condition
Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3
Over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm
2. Receive sensitivity on Bluetooth Smart channel 26 is -86 dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 34
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Test circuit according to Figure
5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Error vector magnitude (offset EVM), per
802.15.4-2011, not including
2415 MHz channel1
EVM
Average across frequency. Signal
is DSSS-OQPSK reference packet2
—
5.5
—
% rms
Power spectral density limit
PSDLIMIT
Relative, at carrier ±3.5 MHz
—
-26
—
dBc
Absolute, at carrier ±3.5 MHz3
—
-36
—
dBm
Per FCC part 15.247
—
-4.2
—
dBm/
3kHz
Output power level which meets
10dBm/MHz ETSI 300.328 specification
—
12
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
2.25
—
MHz
Spurious emissions of harSPURHRM_FCC_
monics in restricted bands
R
per FCC Part 15.205/15.209,
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply,
Test Frequency is 2450 MHz
Continuous transmission of modulated carrier
—
-45.8
—
dBm
—
-26
—
dBc
Spurious emissions of harmonics in harmonics in nonrestricted bands per FCC
Part 15.247/15.35, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz
SPURHRM_FCC_
NRR
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 35
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
SPUROOB_FCC_
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier4
—
-52
—
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
—
-62
—
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
part 15.205/15.209, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
—
-57
—
dBm
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
—
-48
—
dBm
R
Spurious emissions out-ofSPUROOB_FCC_
band in non-restricted bands NR
per FCC Part 15.247, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
Spurious emissions out-ofband; per ETSI 300.3285
[2400-BW to 2400], [2483.5 to
2483.5+BW];
—
-16
—
dBm
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz, excluding above
frequencies
—
-42
—
dBm
1G-14G
—
-36
—
dBm
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.4405
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 36
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Typical EVM for the 2415 MHz channel is 7.9%
2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with
pseudo-random packet data content
3. For 2415 MHz, a maximum duty cycle of 50% is used to achieve this value.
4. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
5. Specified at maximum power output level of 10 dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 37
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz. Test circuit according to Figure
5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.
Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 1% PER
SAT
Signal is reference signal1. Packet
length is 20 octets.
—
10
—
dBm
Sensitivity, 1% PER2
SENS
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
—
-101
—
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
—
-101
—
dBm
Co-channel interferer rejection, 1% PER
CCR
Desired signal 10 dB above sensitivity limit
—
-2.6
—
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
ACR+1
Interferer is reference signal at +1
channel-spacing.
—
33.75
—
dB
Interferer is filtered reference signal4 at +1 channel-spacing.
—
52.2
—
dB
Interferer is CW at +1 channelspacing.5
—
58.6
—
dB
Interferer is reference signal at -1
channel-spacing.
—
35
—
dB
Interferer is filtered reference signal4 at -1 channel-spacing.
—
54.7
—
dB
Interferer is CW at -1 channelspacing.
—
60.1
—
dB
Interferer is reference signal at ±2
channel-spacing
—
45.9
—
dB
Interferer is filtered reference signal4 at ±2 channel-spacing
—
56.8
—
dB
Interferer is CW at ±2 channelspacing
—
65.5
—
dB
Image rejection, 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level3
Interferer is CW in image band5
—
49.3
—
dB
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level3. Interferer is reference
signal.
Interferer frequency < Desired frequency - 3 channel-spacing
—
57.2
—
dB
Interferer frequency > Desired frequency + 3 channel-spacing
—
57.9
—
dB
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level3
—
51.6
—
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level3
ACR-1
ACR2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 38
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
5
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-98
dBm
—
0.25
—
dB
—
±1
—
dB
RSSI resolution
RSSIRES
RSSI accuracy in the linear
region as defined by
802.15.4-2003
RSSILIN
Test Condition
over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s
2. Receive sensitivity on 802.15.4 channel 14 is -98 dBm
3. Reference sensitivity level is -85 dBm
4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 39
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10 Sub-GHz RF Transceiver Characteristics
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 40
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Test Condition
Min
Typ
Max
Unit
902
—
930
MHz
PAVDD connected directly to external 3.3V supply, 20 dBm output
power setting
17.7
20.3
24.5
dBm
PAVDD connected to DC-DC output, 14 dBm output power setting
10.4
13.8
17.6
dBm
—
-45.5
—
dBm
Minimum active TX Power
POUTMIN
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
4.8
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to DC-DC output
—
1.9
—
dB
-40 to +85C with PAVDD connected to external supply
—
0.6
1.3
dB
-40 to +85C with PAVDD connected to DC-DC output
—
0.7
1.4
dB
PAVDD connected to external
supply
—
0.2
0.6
dB
PAVDD connected to DC-DC output
—
0.3
0.6
dB
Output power variation vs
temperature, peak to peak
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 41
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions of harmonics in restricted bands,
per FCC Part 15.205 /
15.209, Emissions taken at
20 dBm output power,
PAVDD = 3.3V, Test Frequency = 915 MHz
SPURHARM_FCC Conducted measurement, 20dBm
match
_20
—
-64.6
-47
dBm
Spurious emissions of harmonics in non-restricted
bands, per FCC Part 15.231,
Emissions taken at 20 dBm
output power, PAVDD =
3.3V, Test Frequency = 915
MHz
—
-64.2
-42
dBc
Spurious emissions out-ofSPUROOB_FCC_
band in non-restricted bands, 20
per FCC Part 15.231, Emissions taken at 20 dBm output
power, PAVDD = 3.3V, Test
Frequency = 915 MHz
—
-76.2
-66
dBc
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz
—
-68.8
-52
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz
—
-67.7
-62
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
Part 15.205 / 15.209, Emissions taken at 20 dBm output
power, PAVDD = 3.3V, Test
Frequency = 915 MHz
—
-69.1
-58
dBm
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency = 915 MHz
—
-54.6
-42.4
dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 42
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Spurious emissions of harSPURHARM_FCC Conducted measurement, 14dBm
monics in restricted bands,
match
_14
per FCC Part 15.205 /
15.209, Emissions taken at
14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
915 MHz
—
-75.2
-60
dBm
Spurious emissions of harmonics in non-restricted
bands, per FCC Part 15.231,
Emissions taken at 14 dBm
output power, PAVDD connected to DC-DC output,
Test Frequency = 915 MHz
—
-69
-49
dBc
Spurious emissions of harSPUROOB_FCC_
monics out-of-band in non14
restricted bands, per FCC
Part 15.231, Emissions taken at 14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
915 MHz
—
-87.5
-66
dBc
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
915 MHz
—
-74.2
-52
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
915 MHz
—
-73.1
-67
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
Part 15.205 / 15.209, Emissions taken at 14 dBm output
power, PAVDD connected to
DC-DC output, Test Frequency = 915 MHz
—
-74.3
-58
dBm
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
915 MHz
—
-60.2
-49
dBm
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 43
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 44
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
902
—
930
MHz
Max usable input level, 0.1% SAT
BER
Desired is reference 500 kbps
GFSK signal5
—
—
10
dBm
Sensitivity
Desired is reference 4.8 kbps
OOK signal1, 20% PER
—
-104.7
-100.7
dBm
Desired is reference 600 bps
GFSK signal2, 0.1% BER
—
-126.4
—
dBm
Desired is reference 50 kbps
GFSK signal3, 0.1% BER
—
-107.5
-104.2
dBm
Desired is reference 100 kbps
GFSK signal4, 0.1% BER
—
-105.1
-101.5
dBm
Desired is reference 500 kbps
GFSK signal5, 0.1% BER
—
-97.7
-93.2
dBm
Desired is reference 400 kbps
GFSK signal6, 1% PER
—
-90.9
-87.5
dBm
CW at 915 MHz
—
-25.8
—
dBm
—
-50
—
dBm
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level,
20% PER
—
43.7
—
dB
Desired is 600 bps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
65.76
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
48.24
—
dB
Desired is 100 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
51.1
—
dB
Desired is 500 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
47
—
dB
Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level,
0.1% BER
—
35.9
—
dB
SENS
Level above which
RFSENSE will trigger7
RFSENSETRIG
Level below which
RFSENSE will not trigger7
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 45
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level,
20% PER
—
57.2
—
dB
Desired is 600 bps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
71.76
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
53.6
—
dB
Desired is 100 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
56.9
—
dB
Desired is 500 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
53.6
—
dB
Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level,
0.1% BER
—
44
—
dB
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level,
20% PER
—
41.2
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
52.4
—
dB
Desired is 100 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
50.35
—
dB
Desired is 500 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
46.2
—
dB
Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level,
0.1% BER
—
35.9
—
dB
Interferer CW at Desired ±1 MHz
—
58.7
—
dB
Interferer CW at Desired ±2 MHz
—
60.9
—
dB
Interferer CW at Desired ±10 MHz
—
76.4
—
dB
Desired is 100 kbps GFSK signal4
at 3dB above sensitivity level
—
46.1
—
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
216-960 MHz
—
-77.7
-49.2
dBm
Above 960 MHz
—
-62.7
-51.7
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
C/IIMAGE
Blocking selectivity, 0.1%
BER. Desired is 100 kbps
GFSK signal at 3dB above
sensitivity level
C/IBLOCKER
Intermod selectivity, 0.1%
BER. CW interferers at 400
kHz and 800 kHz offsets
C/IIM
RSSI resolution
RSSIRES
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 46
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Max spurious emissions dur- SPURRX_ARIB
ing active receive mode,per
ARIB STD-T108 Section 3.3
Test Condition
Min
Typ
Max
Unit
Below 710 MHz, RBW=100kHz
—
-77.7
-60
dBm
710-900 MHz, RBW=1MHz
—
-75.8
-61
dBm
900-915 MHz, RBW=100kHz
—
-85.4
-61
dBm
915-930 MHz, RBW=100kHz
—
-85.6
-55
dBm
930-1000 MHz, RBW=100kHz
—
-85.1
-60
dBm
Above 1000 MHz, RBW=1MHz
—
-57.9
-47
dBm
Note:
1. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz
2. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1262 Hz, channel spacing = 300 kHz
3. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200
kHz
4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4kHz, channel spacing = 200 kHz
5. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 2524.8 kHz, channel spacing = 1 MHz
6. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 336.64 kHz, channel
spacing = 600 kHz
7. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 47
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 868 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Test Condition
Min
Typ
Max
Unit
863
—
876
MHz
PAVDD connected directly to external 3.3V supply, 20 dBm output
power setting
16.6
19.6
23
dBm
PAVDD connected to DC-DC output, 14 dBm output power setting
10
14.7
17.5
dBm
—
-43.5
—
dBm
Minimum active TX Power
POUTMIN
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V_NO
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
5
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to DC-DC output
—
2
—
dB
-40 to +85C with PAVDD connected to external supply
—
0.6
0.9
dB
-40 to +85C with PAVDD connected to DC-DC output
—
0.5
1.2
dB
PAVDD connected to external
supply
—
0.2
0.6
dB
PAVDD connected to DC-DC output
—
0.2
0.8
dB
SPURHARM_ETSI Conducted measurement, PAVDD
connected to DC-DC output
—
-44
-30
dBm
Spurious emissions, 47-74 / SPUROOB_ETSI
87.5-118 / 174-230 / 470-862
MHz and 470-862 MHz, per
ETSI EN 300-220, Section
7.8.2.1
—
-61.7
-55.7
dBm
Spurious emissions, other
frequencies below 1 GHz,
per ETSI EN 300-220, Section 7.8.2.1
—
-64.2
-43.5
dBm
Spurious emissions, frequencies above 1 GHz, per ETSI
EN 300-220, Section 7.8.2.1
—
-59.9
-30
dBm
DCDC
POUTVAR_V_DC
DC
Output power variation vs
temperature, peak to peak
POUTVAR_T
Output power variation vs RF POUTVAR_F_NO
frequency
DCDC
POUTVAR_F_DC
DC
Spurious emissions of harmonics, per ETSI EN
300-220, Section 7.8.2.1
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 48
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 868 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Max usable input level, 0.1% SAT
BER
Sensitivity
SENS
Level above which
RFSENSE will trigger4
RFSENSETRIG
Level below which
RFSENSE will not trigger4
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level .
C/IIMAGE
C/IBLOCKER
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
863
—
876
MHz
Desired is reference 2.4 kbps
GFSK signal1
—
—
10
dBm
Desired is reference 38.4 kbps
GFSK signal2
—
—
10
dBm
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-121.4
-116.5
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-109.2
-105.4
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-95.1
—
dBm
CW at 868 MHz
—
-25.8
—
dBm
—
-50
—
dBm
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
48.5
57.7
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
36.4
44.9
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
59.1
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
47.7
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
47.5
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
47.2
—
dB
Interferer CW at Desired ±1 MHz
—
71.9
—
dB
Interferer CW at Desired ±2 MHz
—
77.9
—
dB
Interferer CW at Desired ±10 MHz
—
90.9
—
dB
Rev. 1.1 | 49
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-77.1
-69
dBm
1 GHz to 12 GHz
—
-59.9
-50
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 50
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF tuning frequency range
FRANGE
470
—
510
MHz
Maximum TX Power1
POUTMAX
18.5
21.1
23
dBm
Minimum active TX Power
POUTMIN
-44.9
—
dBm
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply, peak to peak
POUTVAR_V
at 20 dBm;1.8 V < VVREGVDD <
3.3 V, PAVDD connected directly
to external supply
—
4.3
—
dB
Output power variation vs
temperature, peak to peak
POUTVAR_T
-40 to +85C at 20 dBm
—
0.2
0.9
dB
—
0.2
0.4
dB
—
-41.3
-34.9
dBm
—
-47.2
-36
dBm
—
-57.5
—
dBm
Spurious emissions, other
frequencies below 1GHz, per
China SRW Requirement,
Section 2.1
—
-58.5
—
dBm
Spurious emissions, frequencies above 1GHz, per China
SRW Requirement, Section
2.1
—
-47.9
—
dBm
PAVDD connected directly to external 3.3V supply
Output power variation vs RF POUTVAR_F
frequency
Harmonic emissions, frequencies below 1GHz, per
China SRW Requirement,
Section 2.1
SPURHARM_CN
Harmonic emissions, frequencies above 1GHz, per
China SRW Requirement,
Section 2.1
Spurious emissions,
48.5-72.5MHz, 76-108MHz,
167-223MHz, 470-556MHz,
606-798MHz, per China
SRW Requirement, Section
3
SPUROOB_CN
20 dBm output power setting,
490MHz
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 51
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 490 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Max usable input level, 0.1% SAT
BER
Sensitivity
SENS
Level above which
RFSENSE will trigger5
RFSENSETRIG
Level below which
RFSENSE will not trigger5
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level .
C/IIMAGE
C/IBLOCKER
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
470
—
510
dBm
Desired is reference 2.4 kbps
GFSK signal1
—
—
10
dBm
Desired is reference 38.4 kbps
GFSK signal2
—
—
10
dBm
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-122.2
—
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-111.7
-108.9
dBm
Desired is reference 10 kbps
GFSK signal3, 0.1% BER
—
-117.5
-114.8
dBm
Desired is reference 100 kbps
GFSK signal4, 0.1% BER
—
-107.6
-104.7
dBm
CW at 490 MHz
—
-25.8
—
dBm
—
-50
—
dBm
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
48
58.4
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
40
47.5
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
60.8
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
51.7
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
60.9
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
53
—
dB
Interferer CW at Desired ±1 MHz
—
71.9
—
dB
Interferer CW at Desired ±2 MHz
—
74.1
—
dB
Interferer CW at Desired ±10 MHz
—
87.9
—
dB
Rev. 1.1 | 52
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-84.7
-54
dBm
1 GHz to 12 GHz
—
-66.8
-54
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz
3. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 21.04 kHz
4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz
5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 53
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Test Condition
PAVDD connected to DCDC output
Min
Typ
Max
Unit
426
—
445
MHz
11
14.3
18
dBm
7
10.7
14
dBm
—
-42
—
dBm
Minimum active TX Power
POTMIN
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply, peak to peak Pout =
10dBm
POUTVAR_V
at 10 dBm;1.8 V < VVREGVDD <
3.3 V, PAVDD = DC-DC output
—
1.7
—
dB
Output power variation vs
temperature, peak to peak
Pout= 10dBm
POUTVAR_T
-40 to +85C at 10dBm
—
0.5
1.2
dB
—
0.2
0.6
dB
Output power variation vs RF POUTVAR_F
frequency Pout = 10dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 54
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions of harSPURHARM_FCC Conducted measurement using
monics in restricted bands,
rms detector, Pout=+14dBm
per FCC Part 15.205 /
15.209, Emissions taken at
14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
434 MHz
—
-61.2
-47
dBm
Spurious emissions of harmonics in non-restricted
bands, per FCC Part 15.231,
Emissions taken at 14 dBm
output power, PAVDD connected to DC-DC output,
Test Frequency = 434 MHz
—
-68.5
-26
dBc
—
-86.2
-26
dBc
Conducted measurement using
peak detector, Pout=+14dBm
Spurious emissions of harSPUROOB_FCC
monics out-of-band in nonrestricted bands, per FCC
Part 15.231, Emissions taken at 14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
434 MHz
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
434 MHz
Conducted measurement using
peak , 434MHz
—
-71.9
-52
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
434 MHz
Conducted measurement using
peak detector, Pout=+14dBm
—
-70.2
-62
dBm
—
-60.5
-54.5
dBm
—
-57.7
-46
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
Part 15.205 / 15.209, Emissions taken at 14 dBm output
power, PAVDD connected to
DC-DC output, Test Frequency = 434 MHz
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
434 MHz
silabs.com | Smart. Connected. Energy-friendly.
Conducted measurement using
rms detector, Pout=+14dBm
Rev. 1.1 | 55
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Spurious emissions of harSPURHRM_ETSI
monics, frequencies below
1Ghz, per ETSI EN 300-220,
Section 7.8.2.1, 434MHz
Test Condition
Conducted measurement using
peak detector, PAVDD connected
to DC-DC output
Spurious emissions of harmonics, frequencies above
1GHz, per ETSI EN 300-220,
Section 7.8.2.1, 434MHz
Spurious emissions, 47-74 / SPUROOB_ETSI
87.5-118 / 174-230 / 470-862
MHz and 470-862 MHz, per
ETSI EN 300-220, Section
7.8.2.1, 434MHz
Conducted measurement using
rms detector, PAVDD connected
to DC-DC output
Spurious emissions, other
frequencies below 1 GHz,
per ETSI EN 300-220, Section 7.8.2.1, 434MHz
Spurious emissions, frequencies above 1 GHz, per ETSI
EN 300-220, Section 7.8.2.1,
434MHz
Conducted measurement using
peak detector, PAVDD connected
to DC-DC output
Min
Typ
Max
Unit
—
-57.3
-36
dBm
—
-84.5
-36
dBm
—
-65.1
-60
dBm
—
-63.9
-42
dBm
—
-56.8
-36
dBm
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 56
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Max usable input level, 0.1% SAT
BER
Sensitivity
SENS
Level above which
RFSENSE will trigger6
RFSENSETRIG
Level below which
RFSENSE will not trigger6
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
Test Condition
Min
Typ
Max
Unit
426
—
445
MHz
Desired is reference 2.4 kbps
GFSK signal4
—
—
10
dBm
Desired is reference 50 kbps
GFSK signal3
—
—
10
dBm
Desired is reference 4.8 kbps
OOK signal1, 20% PER
—
-107
—
dBm
Desired is reference 100 kbps
GFSK signal2, 0.1% BER
—
-107.5
-105
dBm
Desired is reference 50 kbps
GFSK signal3, 0.1% BER
—
-110
-107.2
dBm
Desired is reference 2.4 kbps
GFSK signal4, 0.1% BER
—
-122.3
—
dBm
Desired is reference 9.6 kbps
GFSK signal5, 1% PER
—
-109.4
-106.2
dBm
CW at 433 MHz
—
-25.8
—
dBm
—
-50
—
dBm
—
46
—
dB
Desired is 100 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
24.8
33.4
—
dB
Desired is 2.4 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
47
59.1
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
45.6
50.7
—
dB
—
31.2
—
dB
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level,
20% PER
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 57
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level,
20% PER
—
56.8
—
dB
Desired is 100 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
56.2
—
dB
Desired is 2.4 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
62.2
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
57.4
—
dB
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
—
47.8
—
dB
Desired is 4.8 kbps OOK signal1
at 3dB above sensitivity level>,
20% PER
—
42.2
—
dB
Desired is 100 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
50
—
dB
Desired is 2.4 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
52.3
—
dB
Desired is 50 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
53
—
dB
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
—
45
—
dB
Interferer CW at Desired ±1 MHz
—
73.8
—
dB
Interferer CW at Desired ±2 MHz
—
75.7
—
dB
Interferer CW at Desired ±10 MHz
—
89.9
—
dB
Desired is 2.4 kbps GFSK signal4
at 3dB above sensitivity level
—
59.1
—
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
216-960 MHz
—
-83.5
-57
dBm
Above 960 MHz
—
-62.5
-52
dBm
Max spurious emissions dur- SPURRX_ETSI
ing active receive mode, per
ETSI 300-220 Section 8.6
below 1000 MHz
—
-84.6
-57
dBm
Above 1000 MHz
—
-59.7
-52
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
C/IIMAGE
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal4 at 3dB above
sensitivity level
C/IBLOCKER
Intermod selectivity, 0.1%
BER. CW interferers at 12.5
kHz and 25 kHz offsets
C/IIM
RSSI resolution
RSSIRES
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 58
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Max spurious emissions dur- SPURRX_ARIB
ing active receive mode, per
ARIB STD T67 Section
3.3(5)
Test Condition
Below 710 MHz, RBW=100kHz
Min
Typ
Max
Unit
—
-83.6
-57
dBm
Note:
1. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz
2. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz, channel spacing = 200 kHz
3. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200
kHz
4. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz
5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 9.989 kHz, channel spacing = 12.5 kHz
6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 59
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 315 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band
Parameter
Symbol
Min
Typ
Max
Unit
RF tuning frequency range
FRANGE
195
—
358
MHz
Maximum TX Power1
POUTMAX
10.8
15.3
17
dBm
Minimum active TX Power
POUTMIN
-43.9
—
dBm
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply
POUTVAR_V
1.8 V < VVREGVDD < 3.3 V,
PAVDD = DC-DC output
—
1.8
—
dB
Output power variation vs
temperature
POUTVAR_T
—
0.5
1.2
dB
Output power variation vs RF POUTVAR_F
frequency
—
0.1
0.7
dB
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
PAVDD connected to DC-DC output
Rev. 1.1 | 60
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Spurious emissions of harSPURHARM_FCC Conducted measurement using
monics in restricted bands,
averaging detector, Pout=+14dBm
per FCC Part 15.205 /
15.209, Emissions taken at
14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
315 MHz
—
-53.8
-47
dBm
Spurious emissions of harmonics in non-restricted
bands, per FCC Part 15.231,
Emissions taken at 14 dBm
output power, PAVDD connected to DC-DC output,
Test Frequency = 315 MHz
—
-63.4
-26
dBc
Spurious emissions of harSPUROOB_FCC
monics out-of-band in nonrestricted bands, per FCC
Part 15.231, Emissions taken at 14 dBm output power,
PAVDD connected to DC-DC
output, Test Frequency =
315 MHz
—
-76.6
-26
dBc
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
315 MHz
—
-71.8
-51
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
315 MHz
—
-70.2
-61
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
Part 15.205 / 15.209, Emissions taken at 14 dBm output
power, PAVDD connected to
DC-DC output, Test Frequency = 315 MHz
—
-68.2
-57
dBm
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC Part
15.205 / 15.209, Emissions
taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency =
315 MHz
—
-57.5
-46
dBm
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 61
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 62
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 315 MHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Max usable input level, 0.1% SAT
BER
Sensitivity
SENS
Level above which
RFSENSE will trigger4
RFSENSETRIG
Level below which
RFSENSE will not trigger4
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level .
C/IIMAGE
C/IBLOCKER
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
195
—
358
dBm
Desired is reference 2.4 kbps
GFSK signal1
—
—
10
dBm
Desired is reference 38.4 kbps
GFSK signal2
—
—
10
dBm
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-123.5
-120.7
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-111.4
-108.6
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-97.2
-94.6
dBm
CW at 315 MHz
—
-25.8
—
dBm
—
-50
—
dBm
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
54.1
64.2
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
46
50
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
66
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level2,
0.1% BER
—
54
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
54.4
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
51.9
—
dB
Interferer CW at Desired ±1 MHz
—
74.9
—
dB
Interferer CW at Desired ±2 MHz
—
76.7
—
dB
Interferer CW at Desired ±10 MHz
72.6
93.1
—
dB
Rev. 1.1 | 63
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
FCC 216 to 960 MHz
—
-87.4
-55
dBm
FCC >960MHz
—
-76.7
-47
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 64
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 169.5MHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and
Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.
Table 4.28. Sub-GHz RF Transmitter characteristics for 169 MHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF tuning frequency range
FRANGE
169
—
170
MHz
Maximum TX Power1
POUTMAX
18.4
20.4
23.3
dBm
Minimum active TX Power
POUTMIN
-42.6
—
dBm
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply, peak to peak
POUTVAR_V
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
4.8
—
dB
Output power variation vs
temperature, peak to peak
POUTVAR_T
-40 to +85C at 10dBm
—
0.6
1.2
dB
Harmonic emissions above 1 SPURHARM_ETSI Conducted measurement, Pout=
GHz, per ETSI EN 300-220,
+20dBm
Section 7.8.2.1
—
-49.3
-36
dBm
Harmonic emissions, 47-74
MHz, 87.5-118 MHz,
174-230 MHz and 470-862
MHz, per ETSI EN 300-220,
Section 7.8.2.1
—
-58.2
-53
dBm
Harmonic emissions, other
frequencies below 1 GHz,
per ETSI EN 300-220, Section 7.8.2.1
—
-38.9
-25.4
dBm
Spurious emissions (exclud- SPUROOB_ETSI
ing harmonics) above 1 GHz,
per ETSI EN 300-220, Section 7.8.2.1
—
-61.8
-36
dBm
Spurious emissions (excluding harmonics), 47-74 MHz,
87.5-118 MHz, 174-230 MHz
and 470-862 MHz, per ETSI
EN 300-220, Section 7.8.2.1
—
-62
-54
dBm
Spurious emissions (excluding harmonics), other frequencies below 1 GHz, per
ETSI EN 300-220, Section
7.8.2.1
—
-47.6
-41.1
dBm
PAVDD connected to external 3.3
V supply
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 65
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 169.5MHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and
Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have
been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.
Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Max usable input level, 0.1% SAT
BER
Sensitivity
SENS
Level above which
RFSENSE will trigger4
RFSENSETRIG
Level below which
RFSENSE will not trigger4
RFSENSETHRES
Adjacent channel selectivity,
Interferer is CW at ±1 ×
channel-spacing
C/I1
Alternate channel selectivity, C/I2
Interferer is CW at ±2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level .
C/IIMAGE
C/IBLOCKER
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
169
—
170
dBm
Desired is reference 2.4 kbps
GFSK signal1
—
—
10
dBm
Desired is reference 38.4 kbps
GFSK signal2
—
—
10
dBm
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-124
—
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-111.9
-108
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-97.7
-94.6
dBm
CW at 169 MHz
—
-25.8
—
dBm
—
-50
—
dBm
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
65
—
dB
Desired is 38.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
43.3
50.4
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
67.9
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
55.5
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
54.6
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
51
—
dB
Interferer CW at Desired ±1 MHz
—
74.2
—
dB
Interferer CW at Desired ±2 MHz
68.7
76
—
dB
Interferer CW at Desired ±10 MHz
80
90.6
—
dB
Rev. 1.1 | 66
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-83.7
-63
dBm
1 GHz to 12 GHz
—
-58.8
-50
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
4.1.11 Modem Features
Table 4.30. Modem Features
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Receive Bandwidth
RXBandwidth
Configurable range with 38.4 MHz
crystal
0.1
—
2530
kHz
IF Frequency
IFFreq
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
—
1371
kHz
DSSS symbol length
DSSSRange
Configurable in steps of 1 chip
2
—
32
chips
DSSS Bits per symbol
DSSSBitPerSym
Configurable
1
—
4
bits/
symbol
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 67
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.12 Oscillators
4.1.12.1 LFXO
Table 4.31. LFXO
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kΩ, CL = 7 pF, GAIN4 =
3, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR=70 kΩ, CL = 7 pF, GAIN4 =
2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 68
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.12.2 HFXO
Table 4.32. HFXO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Crystal Frequency
fHFXO
38.4 MHz required for radio transciever operation.
38
38.4
40
MHz
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Crystal frequency 38.4 MHz
—
—
60
Ω
Supported range of crystal
load capacitance 1
CHFXO_CL
6
—
12
pF
On-chip tuning cap range 2
CHFXO_T
9
20
25
pF
On-chip tuning capacitance
step
SSHFXO
—
0.04
—
pF
Startup time
tHFXO
38.4 MHz, ESR = 50 Ω, CL = 10
pF
—
300
—
μs
Frequency Tolerance for the
crystal
FTHFXO
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
—
40
ppm
On each of HFXTAL_N and
HFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
4.1.12.3 LFRCO
Table 4.33. LFRCO
Parameter
Symbol
Test Condition
Oscillation frequency
fLFRCO
Startup time
tLFRCO
Current consumption 1
ILFRCO
Min
Typ
Max
Unit
ENVREF = 1 in
CMU_LFRCOCTRL
30.474
32.768
34.243
kHz
ENVREF = 0 in
CMU_LFRCOCTRL
30.474
32.768
33.915
kHz
—
500
—
μs
ENVREF = 1 in
CMU_LFRCOCTRL
—
342
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
494
—
nA
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 69
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.12.4 HFRCO and AUXHFRCO
Table 4.34. HFRCO and AUXHFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency Accuracy
fHFRCO_ACC
Any frequency band, across supply voltage and temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
204
228
μA
fHFRCO = 32 MHz
—
171
190
μA
fHFRCO = 26 MHz
—
147
164
μA
fHFRCO = 19 MHz
—
126
138
μA
fHFRCO = 16 MHz
—
110
120
μA
fHFRCO = 13 MHz
—
100
110
μA
fHFRCO = 7 MHz
—
81
91
μA
fHFRCO = 4 MHz
—
33
35
μA
fHFRCO = 2 MHz
—
31
35
μA
fHFRCO = 1 MHz
—
30
35
μA
Coarse (% of period)
—
0.8
—
%
Fine (% of period)
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.95
1
1.07
kHz
Current consumption on all
supplies
Step size
Period Jitter
IHFRCO
SSHFRCO
PJHFRCO
4.1.12.5 ULFRCO
Table 4.35. ULFRCO
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.1 | 70
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.13 Flash Memory Characteristics
Table 4.36. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
Min
Typ
Max
Unit
10000
—
—
cycles
RETFLASH
10
—
—
years
Word (32-bit) programming
time
tW_PROG
20
26
40
μs
Page erase time
tPERASE
20
27
40
ms
Mass erase time
tMERASE
20
27
40
ms
Device erase time2
tDERASE
—
60
74
ms
Page erase current3
IERASE
—
—
3
mA
—
—
5
mA
—
—
3
mA
Mass or Device erase current3
Write current3
IWRITE
Test Condition
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW)
3. Measured at 25°C
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 71
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.14 GPIO
Table 4.37. GPIO
Parameter
Symbol
Input low voltage
Test Condition
Min
Typ
Max
Unit
VIOIL
—
—
IOVDD*0.3
V
Input high voltage
VIOIH
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VIOOH
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD
—
0.1
30
nA
LFXO Pins, GPIO ≤ IOVDD
—
0.1
50
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
Sourcing 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VIOOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up resistor
RPU
30
43
65
kΩ
I/O pin pull-down resistor
RPD
30
43
65
kΩ
20
25
35
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 72
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
Min
Typ
Max
Unit
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Note:
1. In GPIO_Pn_CTRL register
4.1.15 VMON
Table 4.38. VMON
Parameter
Symbol
Test Condition
VMON Supply Current
IVMON
In EM0 or EM1, 1 supply monitored
—
5.8
8.26
μA
In EM0 or EM1, 4 supplies monitored
—
11.8
16.8
μA
In EM2, EM3 or EM4, 1 supply
monitored
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored
—
99
—
nA
In EM0 or EM1
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/μs rate
—
460
—
ns
—
26
—
mV
VMON Loading of Monitored ISENSE
Supply
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 73
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.16 ADC
Table 4.39. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
0
—
2*VREF
V
-VREF
—
VREF
V
1
—
VAVDD
V
Power supply rejection1
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK,
—
301
350
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
149
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
91
—
μA
—
51
—
μA
—
9
—
μA
—
117
—
μA
—
79
—
μA
—
345
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
191
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
132
—
μA
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP
Continous operation. WARMUPMODE2 = KEEPADCWARM
BIASPROG = 0, GPBIASACC = 1
3
BIASPROG = 15, GPBIASACC =
13
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 1
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP
Continous operation. WARMUPMODE2 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
BIASPROG = 15, GPBIASACC =
03
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 74
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 0
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
Min
Typ
Max
Unit
—
102
—
μA
—
17
—
μA
—
162
—
μA
—
123
—
μA
—
140
—
μA
BIASPROG = 0, GPBIASACC = 0
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
Current from HFPERCLK
IADC_CLK
ADC Clock Frequency
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time4
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE2 = NORMAL
—
—
5
μs
WARMUPMODE2 = KEEPINSTANDBY
—
—
2
μs
WARMUPMODE2 = KEEPINSLOWACC
—
—
1
μs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
58
67
—
dB
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
—
68
—
dB
Startup time of reference
generator and ADC core
SNDR at 1Msps and fin =
10kHz
tADCSTART
SNDRADC
HFPERCLK = 16 MHz
Spurious-Free Dynamic
Range (SFDR)
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
—
380
—
μV
Offset Error
VADCOFFSETERR
-3
0.25
3
LSB
Gain error in ADC
VADC_GAIN
Using internal reference
—
-0.2
5
%
Using external reference
—
-1
—
%
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No Missing Codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Temperature Sensor Slope
VTS_SLOPE
—
-1.84
—
mV/°C
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 75
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL
2. In ADCn_CNTL register
3. In ADCn_BIASPROG register
4. Derived from ADCCLK
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 76
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.17 IDAC
Table 4.40. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
Start up time
tIDAC_SU
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-2
—
2
%
EM0 or EM1
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
—
-0.7
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
Output within 1% of steady state
value
—
5
—
μs
Rev. 1.1 | 77
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
Current consumption in EM0 IIDAC
or EM1 2
Source mode, excluding output
current
—
8.9
13
μA
Sink mode, excluding output current
—
12
16
μA
Source mode, excluding output
current, duty cycle mode, T = 25
°C
—
1.04
—
μA
Sink mode, excluding output current, duty cycle mode, T = 25 °C
—
1.08
—
μA
Source mode, excluding output
current, duty cycle mode, T ≥ 85
°C
—
8.9
—
μA
Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C
—
12
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.04
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.02
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.02
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.02
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.18
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.08
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.02
—
%
Current consumption in EM2
or EM32
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Note:
1. In IDAC_CURPROG register
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 78
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.18 Analog Comparator (ACMP)
Table 4.41. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
Supply Voltage
VACMPVDD
Active current not including
voltage reference
IACMP
Current consumption of inter- IACMPREF
nal voltage reference
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
VACMPHYST
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
0
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.85
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 1, FULLBIAS2 = 0
—
50
—
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
95
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
HYSTSEL3 = HYST0
-1.75
0
1.75
mV
HYSTSEL3 = HYST1
10
18
26
mV
HYSTSEL3 = HYST2
21
32
46
mV
HYSTSEL3 = HYST3
27
44
63
mV
HYSTSEL3 = HYST4
32
55
80
mV
HYSTSEL3 = HYST5
38
65
100
mV
HYSTSEL3 = HYST6
43
77
121
mV
HYSTSEL3 = HYST7
47
86
148
mV
HYSTSEL3 = HYST8
-4
0
4
mV
HYSTSEL3 = HYST9
-27
-18
-10
mV
HYSTSEL3 = HYST10
-47
-32
-18
mV
HYSTSEL3 = HYST11
-64
-43
-27
mV
HYSTSEL3 = HYST12
-78
-54
-32
mV
HYSTSEL3 = HYST13
-93
-64
-37
mV
HYSTSEL3 = HYST14
-113
-74
-42
mV
HYSTSEL3 = HYST15
-135
-85
-47
mV
MAX
—
VVREGVDD_
V
MAX
Rev. 1.1 | 79
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Comparator delay4
tACMPDELAY
BIASPROG2 = 1, FULLBIAS2 = 0
—
30
—
μs
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
—
μs
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference Voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
2
2.5
2.8
V
CSRESSEL5 = 0
—
inf
—
kΩ
CSRESSEL5 = 1
—
15
—
kΩ
CSRESSEL5 = 2
—
27
—
kΩ
CSRESSEL5 = 3
—
39
—
kΩ
CSRESSEL5 = 4
—
51
—
kΩ
CSRESSEL5 = 5
—
102
—
kΩ
CSRESSEL5 = 6
—
164
—
kΩ
CSRESSEL5 = 7
—
239
—
kΩ
Capacitive Sense Internal
Resistance
RCSRES
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ±100 mV differential drive
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPTOTAL = IACMP + IACMPREF
IACMPREF is zero if an external voltage reference is used.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 80
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.19 I2C
I2C Standard-mode (Sm)
Table 4.42. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU,DAT
250
—
—
ns
SDA hold time3
tHD,DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU,STA
4.7
—
—
μs
(Repeated) START condition tHD,STA
hold time
4
—
—
μs
STOP condition set-up time
tSU,STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 81
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
I2C Fast-mode (Fm)
Table 4.43. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
SDA set-up time
tSU,DAT
100
—
—
ns
SDA hold time3
tHD,DAT
100
—
900
ns
Repeated START condition
set-up time
tSU,STA
0.6
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU,STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 82
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
I2C Fast-mode Plus (Fm+)
Table 4.44. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
μs
SCL clock high time
tHIGH
0.26
—
—
μs
SDA set-up time
tSU,DAT
50
—
—
ns
SDA hold time
tHD,DAT
100
—
—
ns
Repeated START condition
set-up time
tSU,STA
0.26
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.26
—
—
μs
STOP condition set-up time
tSU,STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 83
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.1.20 USART SPI
SPI Master Timing
Table 4.45. SPI Master Timing
Parameter
Symbol
SCLK period 1 2
tSCLK
CS to MOSI 1 2
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
0
—
8
ns
SCLK to MOSI 1 2
tSCLK_MO
3
—
20
ns
MISO setup time 1 2
tSU_MI
IOVDD = 1.62 V
56
—
—
ns
IOVDD = 3.0 V
37
—
—
ns
6
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 84
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.46. SPI Slave Timing
Parameter
Symbol
SCKL period 1 2
Test Condition
Min
Typ
Max
Unit
tSCLK_sl
2*
tHFPERCLK
—
—
ns
SCLK high period1 2
tSCLK_hi
3*
tHFPERCLK
—
—
ns
SCLK low period 1 2
tSCLK_lo
3*
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
4
—
50
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2
tH_MO
3+2*
tHFPERCLK
—
—
ns
SCLK to MISO 1 2
tSCLK_MI
16 +
tHFPERCLK
—
66 + 2 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 85
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.3. EM0 Active Mode Typical Supply Current
Figure 4.4. EM1 Sleep Mode Typical Supply Current
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 86
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 87
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.6. DC-DC Converter Typical Performance Characteristics
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 88
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
50mV/div
offset:1.8V
100mA
VSW
ILOAD
2V/div
offset:1.8V
1mA
100μs/div
10μs/div
Figure 4.7. DC-DC Converter Transition Waveforms
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 89
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.2.3 Internal Oscillators
Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz
Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 32 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 90
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 26 MHz
Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 91
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz
Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 92
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 7 MHz
Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 93
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 2 MHz
Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 1 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 94
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.18. LFRCO Typical Performance at 32.768 kHz
Figure 4.19. ULFRCO Typical Performance at 1 kHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 95
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
4.2.4 2.4 GHz Radio
Figure 4.20. 2.4 GHz RF Transmitter Output Power
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 96
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Electrical Specifications
Figure 4.21. 2.4 GHz RF Receiver Sensitivity
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 97
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
Main
Supply
+
–
VREGVDD
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.1. EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.2. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 98
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Typical Connection Diagrams
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.3. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 99
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Typical Connection Diagrams
5.2 RF Matching Networks
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 100 for applications in the 2.4GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page
101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For
low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF
transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
Typical RF matching network circuit diagrams are shown in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on
page 101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
PAVDD
PAVDD
2G4RF_IOP
2G4RF_ION
PAVDD
L0
50Ω
C0
L0
L1
2G4RF_IOP
2G4RF_ION
50Ω
C0
C1
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 100
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Typical Connection Diagrams
Sub-GHz Match Topology I (169-450 MHz)
PAVDD
L1
L2
C0
L3
C5
L5
L6
L7
SUBGRF_IN
50Ω
C2
C7
C4
L0
C8
C9
C10
C3
SUBGRF_IP
C1
L4
C6
BAL1
SUBGRF_ON
SUBGRF_OP
Sub-GHz Match Topology 2 (450-915 MHz)
C0
L3
PAVDD
L5
L6
50Ω
SUBGRF_IN
L0
C4
C7
C8
C9
SUBGRF_IP
C1
L4
BAL1
SUBGRF_ON
SUBGRF_OP
Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits
5.3 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 101
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6. Pin Definitions
6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout
Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 102
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout
Pin
Pin Alternate Functionality / Description
Pin #
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT
#22 MODEM_ANT0
#21 MODEM_ANT1
#20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT
#23 MODEM_ANT0
#22 MODEM_ANT1
#21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT
#24 MODEM_ANT0
#23 MODEM_ANT1
#22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO
DBG_SWO #0
GPIO_EM4WU0
Ground
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 103
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
4
5
6
Pin Alternate Functionality / Description
Pin Name
PF3
PF4
PF5
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT
#25 MODEM_ANT0
#24 MODEM_ANT1
#23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI
BUSBY BUSAX
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28
LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT
#26 MODEM_ANT0
#25 MODEM_ANT1
#24
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
BUSAY BUSBX
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29
LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT
#27 MODEM_ANT0
#26 MODEM_ANT1
#25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 104
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
7
Pin Alternate Functionality / Description
Pin Name
PF6
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30
LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT
#28 MODEM_ANT0
#27 MODEM_ANT1
#26
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31
LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT
#29 MODEM_ANT0
#28 MODEM_ANT1
#27
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
8
PF7
BUSAY BUSBX
9
RFVDD
Radio power supply
10
HFXTAL_N
High Frequency Crystal input pin.
11
HFXTAL_P
High Frequency Crystal output pin.
12
RESETn
13
SUBGRF_OP
Sub GHz Differential RF output, positive path.
14
SUBGRF_ON
Sub GHz Differential RF output, negative path.
15
SUBGRF_IP
Sub GHz Differential RF input, positive path.
16
SUBGRF_IN
Sub GHz Differential RF input, negative path.
17
RFVSS
Radio Ground
18
PAVSS
Power Amplifier (PA) voltage regulator VSS
19
2G4RF_ION
2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
20
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
21
PAVDD
Power Amplifier (PA) voltage regulator VDD input
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 105
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
22
23
24
Pin Name
PD13
PD14
PD15
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT
#19 MODEM_ANT0
#18 MODEM_ANT1
#17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
BUSDY BUSCX
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT
#20 MODEM_ANT0
#19 MODEM_ANT1
#18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
BUSCY BUSDX
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT
#21 MODEM_ANT0
#20 MODEM_ANT1
#19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 106
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
25
26
27
Pin Name
PA0
PA1
PA2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
ADC0_EXTN
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT
#30 MODEM_ANT0
#29 MODEM_ANT1
#28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
BUSCY BUSDX
ADC0_EXTP
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT
#31 MODEM_ANT0
#30 MODEM_ANT1
#29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
BUSDY BUSCX
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2
US0_RX #1
US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2
US1_RX #1
US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
MODEM_ANT0 #31
MODEM_ANT1 #30
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 107
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
28
29
30
Pin Name
PA3
PA4
PA5
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3
US0_RX #2
US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3
US1_RX #2
US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
MODEM_ANT0 #0
MODEM_ANT1 #31
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
GPIO_EM4WU8
BUSDY BUSCX
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4
US0_RX #3
US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4
US1_RX #3
US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
MODEM_ANT0 #1
MODEM_ANT1 #0
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
BUSCY BUSDX
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5
US0_RX #4
US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5
US1_RX #4
US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
MODEM_ANT0 #2
MODEM_ANT1 #1
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 108
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
31
32
Pin Name
PB11
PB12
33
PB13
34
AVDD
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
BUSDY BUSCX
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
BUSCY BUSDX
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
Analog power supply .
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 109
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
35
Pin Name
PB14
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
LFXTAL_N
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
BUSCY BUSDX
LFXTAL_P
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
36
PB15
37
VREGVSS
Voltage regulator VSS
38
VREGSW
DCDC regulator switching node
39
VREGVDD
Voltage regulator VDD input
40
DVDD
41
DECOUPLE
42
IOVDD
43
PC6
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
BUSBY BUSAX
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11
LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
Rev. 1.1 | 110
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
44
45
46
Pin Name
PC7
PC8
PC9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT
#10 MODEM_ANT0
#9 MODEM_ANT1
#8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
BUSBY BUSAX
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT
#11 MODEM_ANT0
#10 MODEM_ANT1
#9
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
BUSAY BUSBX
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT
#12 MODEM_ANT0
#11 MODEM_ANT1
#10
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 111
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
47
48
Pin Name
PC10
PC11
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT
#13 MODEM_ANT0
#12 MODEM_ANT1
#11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT
#14 MODEM_ANT0
#13 MODEM_ANT1
#12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 112
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number
from 15 down to 0.
Table 6.2. QFN48 2.4 GHz and Sub-GHz GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
PA5
(5V)
PA4
(5V)
PA3
(5V)
PA2
(5V)
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
Port B
Port C
Port D
Port F
PB15 PB14 PB13 PB12 PB11
(5V) (5V) (5V)
-
-
-
PD15 PD14 PD13
(5V) (5V) (5V)
-
-
-
-
PC11 PC10
(5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF7
(5V)
PF6
(5V)
PF5
(5V)
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to
preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 113
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.2 QFN48 2.4 GHz Device Pinout
Figure 6.2. QFN48 2.4 GHz Device Pinout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 114
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.3. QFN48 2.4 GHz Device Pinout
Pin
Pin Alternate Functionality / Description
Pin #
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT
#22 MODEM_ANT0
#21 MODEM_ANT1
#20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT
#23 MODEM_ANT0
#22 MODEM_ANT1
#21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT
#24 MODEM_ANT0
#23 MODEM_ANT1
#22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO
DBG_SWO #0
GPIO_EM4WU0
Ground
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 115
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
4
5
6
Pin Alternate Functionality / Description
Pin Name
PF3
PF4
PF5
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT
#25 MODEM_ANT0
#24 MODEM_ANT1
#23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI
BUSBY BUSAX
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28
LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT
#26 MODEM_ANT0
#25 MODEM_ANT1
#24
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
BUSAY BUSBX
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29
LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT
#27 MODEM_ANT0
#26 MODEM_ANT1
#25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 116
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
7
Pin Alternate Functionality / Description
Pin Name
PF6
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30
LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT
#28 MODEM_ANT0
#27 MODEM_ANT1
#26
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31
LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT
#29 MODEM_ANT0
#28 MODEM_ANT1
#27
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
8
PF7
BUSAY BUSBX
9
RFVDD
Radio power supply
10
HFXTAL_N
High Frequency Crystal input pin.
11
HFXTAL_P
High Frequency Crystal output pin.
12
RESETn
13
NC
14
RFVSS
Radio Ground
15
PAVSS
Power Amplifier (PA) voltage regulator VSS
16
2G4RF_ION
2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
17
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
18
PAVDD
Power Amplifier (PA) voltage regulator VDD input
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
No Connect.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 117
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
19
20
21
Pin Name
PD10
PD11
PD12
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18
LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18
US0_RX #17
US0_CLK #16
US0_CS #15
US0_CTS #14
US0_RTS #13
US1_TX #18
US1_RX #17
US1_CLK #16
US1_CS #15
US1_CTS #14
US1_RTS #13
LEU0_TX #18
LEU0_RX #17
I2C0_SDA #18
I2C0_SCL #17
FRC_DCLK #18
FRC_DOUT #17
FRC_DFRAME #16
MODEM_DCLK #18
MODEM_DIN #17
MODEM_DOUT
#16 MODEM_ANT0
#15 MODEM_ANT1
#14
CMU_CLK1 #4
PRS_CH3 #9
PRS_CH4 #1
PRS_CH5 #0
PRS_CH6 #12
ACMP0_O #18
ACMP1_O #18
BUSCY BUSDX
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19
LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19
US0_RX #18
US0_CLK #17
US0_CS #16
US0_CTS #15
US0_RTS #14
US1_TX #19
US1_RX #18
US1_CLK #17
US1_CS #16
US1_CTS #15
US1_RTS #14
LEU0_TX #19
LEU0_RX #18
I2C0_SDA #19
I2C0_SCL #18
FRC_DCLK #19
FRC_DOUT #18
FRC_DFRAME #17
MODEM_DCLK #19
MODEM_DIN #18
MODEM_DOUT
#17 MODEM_ANT0
#16 MODEM_ANT1
#15
PRS_CH3 #10
PRS_CH4 #2
PRS_CH5 #1
PRS_CH6 #13
ACMP0_O #19
ACMP1_O #19
BUSDY BUSCX
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20
LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20
US0_RX #19
US0_CLK #18
US0_CS #17
US0_CTS #16
US0_RTS #15
US1_TX #20
US1_RX #19
US1_CLK #18
US1_CS #17
US1_CTS #16
US1_RTS #15
LEU0_TX #20
LEU0_RX #19
I2C0_SDA #20
I2C0_SCL #19
FRC_DCLK #20
FRC_DOUT #19
FRC_DFRAME #18
MODEM_DCLK #20
MODEM_DIN #19
MODEM_DOUT
#18 MODEM_ANT0
#17 MODEM_ANT1
#16
PRS_CH3 #11
PRS_CH4 #3
PRS_CH5 #2
PRS_CH6 #14
ACMP0_O #20
ACMP1_O #20
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 118
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
22
23
24
Pin Name
PD13
PD14
PD15
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT
#19 MODEM_ANT0
#18 MODEM_ANT1
#17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
BUSDY BUSCX
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT
#20 MODEM_ANT0
#19 MODEM_ANT1
#18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
BUSCY BUSDX
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT
#21 MODEM_ANT0
#20 MODEM_ANT1
#19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 119
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
25
26
27
Pin Name
PA0
PA1
PA2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
ADC0_EXTN
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT
#30 MODEM_ANT0
#29 MODEM_ANT1
#28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
BUSCY BUSDX
ADC0_EXTP
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT
#31 MODEM_ANT0
#30 MODEM_ANT1
#29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
BUSDY BUSCX
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2
US0_RX #1
US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2
US1_RX #1
US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
MODEM_ANT0 #31
MODEM_ANT1 #30
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 120
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
28
29
30
Pin Name
PA3
PA4
PA5
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3
US0_RX #2
US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3
US1_RX #2
US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
MODEM_ANT0 #0
MODEM_ANT1 #31
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
GPIO_EM4WU8
BUSDY BUSCX
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4
US0_RX #3
US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4
US1_RX #3
US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
MODEM_ANT0 #1
MODEM_ANT1 #0
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
BUSCY BUSDX
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5
US0_RX #4
US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5
US1_RX #4
US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
MODEM_ANT0 #2
MODEM_ANT1 #1
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 121
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
31
32
Pin Name
PB11
PB12
33
PB13
34
AVDD
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
BUSDY BUSCX
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
BUSCY BUSDX
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
Analog power supply .
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 122
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
35
Pin Name
PB14
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
LFXTAL_N
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
BUSCY BUSDX
LFXTAL_P
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
36
PB15
37
VREGVSS
Voltage regulator VSS
38
VREGSW
DCDC regulator switching node
39
VREGVDD
Voltage regulator VDD input
40
DVDD
41
DECOUPLE
42
IOVDD
43
PC6
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
BUSBY BUSAX
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11
LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
Rev. 1.1 | 123
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
44
45
46
Pin Name
PC7
PC8
PC9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT
#10 MODEM_ANT0
#9 MODEM_ANT1
#8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
BUSBY BUSAX
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT
#11 MODEM_ANT0
#10 MODEM_ANT1
#9
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
BUSAY BUSBX
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT
#12 MODEM_ANT0
#11 MODEM_ANT1
#10
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 124
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
47
48
Pin Name
PC10
PC11
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT
#13 MODEM_ANT0
#12 MODEM_ANT1
#11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT
#14 MODEM_ANT0
#13 MODEM_ANT1
#12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 125
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.2.1 QFN48 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number
from 15 down to 0.
Table 6.4. QFN48 2.4 GHz GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
PA5
(5V)
PA4
(5V)
PA3
(5V)
PA2
(5V)
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF7
(5V)
PF6
(5V)
PF5
(5V)
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Port B
Port C
Port D
Port F
PB15 PB14 PB13 PB12 PB11
(5V) (5V) (5V)
-
-
-
-
PC11 PC10
(5V) (5V)
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
-
-
-
-
-
-
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to
preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 126
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.3 QFN32 2.4 GHz Device Pinout
Figure 6.3. QFN32 2.4 GHz Device Pinout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 127
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.5. QFN32 2.4 GHz Device Pinout
Pin
Pin Alternate Functionality / Description
Pin #
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT
#22 MODEM_ANT0
#21 MODEM_ANT1
#20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT
#23 MODEM_ANT0
#22 MODEM_ANT1
#21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT
#24 MODEM_ANT0
#23 MODEM_ANT1
#22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO
DBG_SWO #0
GPIO_EM4WU0
Ground
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 128
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT
#25 MODEM_ANT0
#24 MODEM_ANT1
#23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI
4
PF3
BUSAY BUSBX
5
RFVDD
Radio power supply
6
HFXTAL_N
High Frequency Crystal input pin.
7
HFXTAL_P
High Frequency Crystal output pin.
8
RESETn
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
9
RFVSS
Radio Ground
10
PAVSS
Power Amplifier (PA) voltage regulator VSS
11
2G4RF_ION
2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
12
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
13
PAVDD
Power Amplifier (PA) voltage regulator VDD input
14
PD13
BUSCY BUSDX
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT
#19 MODEM_ANT0
#18 MODEM_ANT1
#17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
Rev. 1.1 | 129
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
15
16
17
Pin Name
PD14
PD15
PA0
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT
#20 MODEM_ANT0
#19 MODEM_ANT1
#18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
BUSCY BUSDX
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT
#21 MODEM_ANT0
#20 MODEM_ANT1
#19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
BUSDY BUSCX
ADC0_EXTN
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT
#30 MODEM_ANT0
#29 MODEM_ANT1
#28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 130
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
18
19
20
Pin Name
PA1
PB11
PB12
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
ADC0_EXTP
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT
#31 MODEM_ANT0
#30 MODEM_ANT1
#29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
BUSCY BUSDX
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
BUSDY BUSCX
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 131
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
Pin Name
21
PB13
22
AVDD
23
PB14
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
BUSDY BUSCX
LFXTAL_N
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
BUSCY BUSDX
LFXTAL_P
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
Analog power supply .
24
PB15
25
VREGVSS
Voltage regulator VSS
26
VREGSW
DCDC regulator switching node
27
VREGVDD
Voltage regulator VDD input
28
DVDD
29
DECOUPLE
30
IOVDD
Digital power supply .
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
Digital IO power supply .
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 132
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Pin
Pin #
31
32
Pin Name
PC10
PC11
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT
#13 MODEM_ANT0
#12 MODEM_ANT1
#11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT
#14 MODEM_ANT0
#13 MODEM_ANT1
#12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 133
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.3.1 QFN32 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number
from 15 down to 0.
Table 6.6. QFN32 2.4 GHz GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port B
Port C
Port D
Port F
PB15 PB14 PB13 PB12 PB11
(5V) (5V) (5V)
-
-
-
PD15 PD14 PD13
(5V) (5V) (5V)
-
-
-
-
PC11 PC10
(5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade
options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 134
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
6.4 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.7. Alternate Functionality Overview
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
ACMP0_O
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP0, digital output.
ACMP1_O
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP1, digital output.
18: PD10
19: PD11
18: PD10
19: PD11
24 - 27
28 - 31
Description
0: PA0
Analog to digital
converter ADC0 external reference input negative pin
0: PA1
Analog to digital
converter ADC0 external reference input positive pin
ADC0_EXTN
ADC0_EXTP
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
5: PD14
6: PF2
7: PF7
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
4: PD10
5: PD15
6: PF3
7: PF6
0: PF0
DBG_SWCLKTCK
Clock Management
Unit, clock output
number 0.
Clock Management
Unit, clock output
number 1.
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
0: PF1
DBG_SWDIOTMS
silabs.com | Smart. Connected. Energy-friendly.
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
Rev. 1.1 | 135
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
0: PF2
1: PB13
2: PD15
3: PC11
Debug-interface
Serial Wire viewer
Output.
0: PF3
Debug-interface
JTAG Test Data In.
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
DBG_SWO
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
DBG_TDI
0: PF2
Debug-interface
JTAG Test Data
Out.
DBG_TDO
Note that this function is enabled to
pin out of reset.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
FRC_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
FRC_DFRAME
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
FRC_DOUT
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
0: PF2
GPIO_EM4WU0
0: PF7
GPIO_EM4WU1
0: PD14
GPIO_EM4WU4
0: PA3
GPIO_EM4WU8
silabs.com | Smart. Connected. Energy-friendly.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Frame Controller,
Data Sniffer Clock.
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Frame Controller,
Data Sniffer Frame
active
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Frame Controller,
Data Sniffer Output.
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Rev. 1.1 | 136
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PB13
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU9
0: PC10
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU12
I2C0_SCL
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
I2C0_SDA
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
LETIM0_OUT0
0: PA0
1: PA1
2: PA2
3: PA3
LETIM0_OUT1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
LEU0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
LEU0_TX
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
I2C0 Serial Clock
Line input / output.
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
I2C0 Serial Data input / output.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Low Energy Timer
LETIM0, output
channel 0.
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Low Energy Timer
LETIM0, output
channel 1.
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
LEUART0 Receive
input.
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
17: PD10
18: PD11
19: PD12
18: PD10
19: PD11
16: PC11
18: PD10
19: PD11
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
0: PB15
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
LFXTAL_P
MODEM_ANT1
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
0: PB14
LFXTAL_N
MODEM_ANT0
Description
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
14: PD10
15: PD11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
MODEM antenna
control output 0,
used for antenna
diversity.
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
MODEM antenna
control output 1,
used for antenna
diversity.
Rev. 1.1 | 137
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
MODEM_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
MODEM data clock
out.
MODEM_DIN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
MODEM data in.
MODEM_DOUT
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
MODEM data out.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
PCNT0_S0IN
0: PA0
1: PA1
2: PA2
3: PA3
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Pulse Counter
PCNT0 input number 0.
PCNT0_S1IN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Pulse Counter
PCNT0 input number 1.
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
4: PF4
5: PF5
6: PF6
7: PF7
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
4: PF5
5: PF6
6: PF7
7: PF0
Peripheral Reflex
System PRS, channel 1.
PRS_CH2
0: PF2
1: PF3
2: PF4
3: PF5
4: PF6
5: PF7
6: PF0
7: PF1
Peripheral Reflex
System PRS, channel 2.
PRS_CH3
0: PF3
1: PF4
2: PF5
3: PF6
4: PF7
5: PF0
6: PF1
7: PF2
PRS_CH4
1: PD10
2: PD11
3: PD12
9: PD10
10: PD11
11: PD12
28 - 31
Description
Peripheral Reflex
System PRS, channel 0.
12: PD13
13: PD14
14: PD15
Peripheral Reflex
System PRS, channel 3.
4: PD13
5: PD14
6: PD15
Peripheral Reflex
System PRS, channel 4.
PRS_CH5
0: PD10
1: PD11
2: PD12
3: PD13
4: PD14
5: PD15
PRS_CH6
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
PRS_CH7
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PA0
silabs.com | Smart. Connected. Energy-friendly.
24 - 27
Peripheral Reflex
System PRS, channel 5.
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Rev. 1.1 | 138
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
PRS_CH8
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PA0
10: PA1
PRS_CH9
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
10: PA2
11: PC6
PRS_CH10
0: PC6
1: PC7
2: PC8
3: PC9
4: PC10
5: PC11
PRS_CH11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
TIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
TIM0_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
TIM0_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
TIM0_CDTI0
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
TIM0_CDTI1
0: PA4
1: PA5
2: PB11
3: PB12
16 - 19
20 - 23
24 - 27
28 - 31
Description
Peripheral Reflex
System PRS, channel 8.
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
Peripheral Reflex
System PRS, channel 11.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 0 Capture
Compare input /
output channel 0.
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 0 Capture
Compare input /
output channel 1.
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 0 Capture
Compare input /
output channel 2.
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 0 Complimentary Dead Time
Insertion channel 0.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
Timer 0 Complimentary Dead Time
Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
Timer 0 Complimentary Dead Time
Insertion channel 2.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
TIM1_CC0
0: PA0
1: PA1
2: PA2
3: PA3
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 1 Capture
Compare input /
output channel 0.
TIM1_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 1 Capture
Compare input /
output channel 1.
TIM1_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 2.
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
16: PC11
Rev. 1.1 | 139
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 1 Capture
Compare input /
output channel 3.
US0_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART0 clock input / output.
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
US0_CS
USART0 chip select input / output.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
US0_CTS
0: PA4
1: PA5
2: PB11
3: PB12
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART0 Clear To
Send hardware
flow control input.
US0_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART0 Request
To Send hardware
flow control output.
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
USART0 Asynchronous Receive.
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
TIM1_CC3
US0_RX
15: PD10
15: PD10
16: PC11
18: PD10
19: PD11
24 - 27
28 - 31
US0_TX
Description
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
US1_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART1 clock input / output.
US1_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART1 chip select input / output.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
US1_CTS
0: PA4
1: PA5
2: PB11
3: PB12
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART1 Clear To
Send hardware
flow control input.
US1_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART1 Request
To Send hardware
flow control output.
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
Rev. 1.1 | 140
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
US1_RX
LOCATION
0-3
4-7
8 - 11
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
US1_TX
12 - 15
16 - 19
20 - 23
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
USART1 Asynchronous Receive.
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
16: PC11
18: PD10
19: PD11
24 - 27
28 - 31
Description
USART1 Synchronous mode Master
Input / Slave Output (MISO).
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
6.5 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 141
silabs.com | Smart. Connected. Energy-friendly.
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA5
PA3
PB11
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.8. ACMP0 Bus and Pin Mapping
Rev. 1.1 | 142
silabs.com | Smart. Connected. Energy-friendly.
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA5
PA3
PB11
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.9. ACMP1 Bus and Pin Mapping
Rev. 1.1 | 143
silabs.com | Smart. Connected. Energy-friendly.
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
BUSCY
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT1Y APORT1X Port
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Pin Definitions
Table 6.10. ADC0 Bus and Pin Mapping
Table 6.11. IDAC0 Bus and Pin Mapping
Rev. 1.1 | 144
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN48 Package Specifications
7. QFN48 Package Specifications
7.1 QFN48 Package Dimensions
Figure 7.1. QFN48 Package Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 145
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN48 Package Specifications
Table 7.1. QFN48 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D
6.90
7.00
7.10
E
6.90
7.00
7.10
D2
4.60
4.70
4.80
E2
4.60
4.70
4.80
e
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 146
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN48 Package Specifications
7.2 QFN48 PCB Land Pattern
Figure 7.2. QFN48 PCB Land Pattern Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 147
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN48 Package Specifications
Table 7.2. QFN48 PCB Land Pattern Dimensions
Dimension
Typ
S1
6.01
S
6.01
L1
4.70
W1
4.70
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 148
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN48 Package Specifications
7.3 QFN48 Package Marking
EFR32
PPPPPPPPP
YYWWTTTTTT #
Figure 7.3. QFN48 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade (P | B | V)
5. Feature Code (1 to 7)
6. TRX Code (3 = TXRX | 2= RX | 1 = TX)
7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
8. Flash (E = 1024K | F = 512K | G = 256K | F = 128K | E = 64K | D = 32K)
9. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• # – Bootloader revision number.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 149
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN32 Package Specifications
8. QFN32 Package Specifications
8.1 QFN32 Package Dimensions
Figure 8.1. QFN32 Package Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 150
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN32 Package Specifications
Table 8.1. QFN32 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D/E
4.90
5.00
5.10
D2/E2
3.40
3.50
3.60
E
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 151
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN32 Package Specifications
8.2 QFN32 PCB Land Pattern
Figure 8.2. QFN32 PCB Land Pattern Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 152
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN32 Package Specifications
Table 8.2. QFN32 PCB Land Pattern Dimensions
Dimension
Typ
S1
4.01
S
4.01
L1
3.50
W1
3.50
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 153
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
QFN32 Package Specifications
8.3 QFN32 Package Marking
EFR32
PPPPPPPPP
YYWWTTTTTT
Figure 8.3. QFN32 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade (P | B | V)
5. Feature Code (1 to 7)
6. TRX Code (3 = TXRX | 2= RX | 1 = TX)
7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
8. Flash (G = 256K | F = 128K | E = 64K | D = 32K)
9. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 154
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Revision History
9. Revision History
9.1 Revision 1.1
2016-Oct-26
• Ordering Information: Removed Encryption column. All products in family include full encryption capabilites. Previously EFR32MG1V
devices listed as "AES only".
• System Overview Sections: Minor wording and typographical error fixes.
• Electrical Characteristics: Minor wording and typographical error fixes.
• "Sub-GHz Receiver Characteristics for 433 MHz Band" table in Electrical Characteristics: Corrected Sensitivity spec error where data for 50 kbps and 2.4 kbps were swapped.
• "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC.
• Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
• Updated APORT client map sections.
9.2 Revision 1.0
2016-Jul-22
• Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
• Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
• Absolute Maximum Ratings
• General Operating Conditions
• DC-DC Converter
• Current Consumption Using Radio 3.3V with DC-DC
• RF Transmitter General Characteristics for 2.4 GHz Band
• RF Receiver General Characteristics for 2.4 GHz Band
• RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
• RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
• RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
• Sub-GHz RF Transmitter characteristics for 868 MHz Band
• Sub-GHz RF Transmitter characteristics for 490 MHz Band
• Sub-GHz RF Receiver characteristics for 490 MHz Band
• Sub-GHz RF Receiver characteristics for 433 MHz Band
• HFRCO and AUXHFRCO
• ADC
• IDAC
• Updated Typical Performance Graphs.
• Added external ground note to 2G4RF_ION pin descriptions.
• Added note for 5V tolerance to pinout GPIO Overview sections.
• Updated OPN decoder with latest revision.
• Updated Package Marking text with latest descriptions.
9.3 Revision 0.97
2016-06-06
• Added dual-band and sub-GHz OPNs.
9.4 Revision 0.951
2016-06-03
• Electrical specification tables updated with additional characterization data.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 155
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Revision History
9.5 Revision 0.95
2016-04-11
• All OPNs changed to rev C0. Note the following:
• All OPNs ending in -B0 are Engineering Samples based on an older revision of silicon and are being removed from the OPN
table. These older revisions should be used for evaluation only and will not be supported for production.
• OPNs ending in -C0 are the Current Revision of Silicon and are intended for production.
• Electrical specification tables updated with latest characterization data and production test limits.
9.6 Revision 0.9
2016-01-12
• Updated electrical specifications with latest characterization data.
• Added thermal characteristics table.
• Updated OPN decoder figure to include extended family options.
9.7 Revision 0.8
2015-12-01
• Engineering samples note added to ordering information table.
• Updated electrcal specifications with latest available data.
9.8 Revision 0.75
2015-11-3
•
•
•
•
•
•
•
•
•
Consolidated individual device datasheets into single-family document.
Re-formatted ordering information table and OPN decoder.
Updated block diagrams for front page and system overview.
Removed extraneous sections from DC-DC and wake-on-radio from system overview.
Updated table formatting for electrical specifications to tech pubs standards.
Updated electrcal specifications with latest available data.
Added I2C and USART SPI timing tables.
Moved DC-DC graph to typical performance curves.
Updated APORT tables and APORT references to correct nomenclature.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 156
EFR32MG1 Mighty Gecko ZigBee® & Thread SoC Family Data Sheet
Revision History
9.9 Revision 0.7
2015-08-31
Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections
• Section 2: Ordering Information
• Section 3.3.4: Receiver Architecture
• Section 3.3.5: Transmitter Architecture
• Section 4: Electrical Characteristics
• Section 4.3.1: General Operating Conditions
• Section 4.4: DC-DC Converter
• Section 4.5: Current Consumption
• Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band
• Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band
• Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band
• Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band
• Section 4.11.1: LFXO
• Section 4.11.2: HFXO
• Section 4.12: GPIO
• Section 4.13: VMON
• Section 4.14: ADC
• Section 4.15: IDAC
• Section 4.16: Analog Comparator
• Section 5: Application Circuits
• Section 6.5: QFNxx Package
• Section 6.7: QFNxx Package Marking
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 157
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
3.2 Radio. . . . . . . . . . . .
3.2.1 Antenna Interface . . . . . . .
3.2.2 Fractional-N Frequency Synthesizer.
3.2.3 Receiver Architecture. . . . . .
3.2.4 Transmitter Architecture . . . . .
3.2.5 Wake on Radio . . . . . . . .
3.2.6 RFSENSE . . . . . . . . .
3.2.7 Flexible Frame Handling. . . . .
3.2.8 Packet and State Trace . . . . .
3.2.9 Data Buffering . . . . . . . .
3.2.10 Radio Controller (RAC). . . . .
3.2.11 Random Number Generator . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.3 Power . . . . . . . . . .
3.3.1 Energy Management Unit (EMU) .
3.3.2 DC-DC Converter . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.4 General Purpose Input/Output (GPIO).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal and External Oscillators .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.6 Counters/Timers and PWM . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . . .
3.6.2 Real Time Counter and Calendar (RTCC) . . .
3.6.3 Low Energy Timer (LETIMER). . . . . . .
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.5 Pulse Counter (PCNT) . . . . . . . . .
3.6.6 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.7 Communications and Other Digital Peripherals . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
.10
.10
.10
3.8 Security Features. . . . . . . . . . . . . . .
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) .
3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
3.9 Analog . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . .
3.9.2 Analog Comparator (ACMP) . .
3.9.3 Analog to Digital Converter (ADC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table of Contents
4
5
5
5
5
5
6
6
6
6
6
7
9
9
9
9
9
9
9
158
3.9.4 Digital to Analog Current Converter (IDAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.10 Reset Management Unit (RMU)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.11 Core and Memory . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . .
3.11.2 Memory System Controller (MSC) . . . . .
3.11.3 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.11
.11
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
3.13 Configuration Summary .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
14
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . .
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . .
4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . .
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . .
4.1.5 Current Consumption. . . . . . . . . . . . . . . . . . . . . .
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . .
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . .
4.1.5.3 Current Consumption 1.85 V without DC-DC Converter . . . . . . . . .
4.1.5.4 Current Consumption Using Radio . . . . . . . . . . . . . . . .
4.1.6 Wake up times . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . .
4.1.8 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . .
4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . .
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . .
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . .
4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . .
4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band. . . . .
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band .
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. .
4.1.10 Sub-GHz RF Transceiver Characteristics . . . . . . . . . . . . . .
4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band . . . . . .
4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band . . . . . . .
4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band . . . . . .
4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band . . . . . . .
4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band . . . . . .
4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band . . . . . . .
4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band . . . . . .
4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band . . . . . . .
4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band . . . . . .
4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band . . . . . . .
4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band . . . . . .
4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band . . . . . . .
4.1.11 Modem Features . . . . . . . . . . . . . . . . . . . . . . .
4.1.12 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12.1 LFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12.4 HFRCO and AUXHFRCO . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table of Contents
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.15
.17
.17
.18
.19
.21
.21
.22
.24
.25
.27
.27
.28
.29
.29
.30
.31
.33
.35
.38
.40
.41
.45
.48
.49
.51
.52
.54
.57
.60
.63
.65
.66
.67
.68
.68
.69
.69
.70
159
4.1.12.5 ULFRCO . . . . . . .
4.1.13 Flash Memory Characteristics
4.1.14 GPIO. . . . . . . . .
4.1.15 VMON . . . . . . . .
4.1.16 ADC . . . . . . . . .
4.1.17 IDAC . . . . . . . . .
4.1.18 Analog Comparator (ACMP) .
4.1.19 I2C . . . . . . . . .
4.1.20 USART SPI . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.70
.71
.72
.73
.74
.77
.79
.81
.84
4.2 Typical Performance Curves
4.2.1 Supply Current . . . .
4.2.2 DC-DC Converter . . .
4.2.3 Internal Oscillators. . .
4.2.4 2.4 GHz Radio . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.85
.86
.88
.90
.96
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . .
98
5.1 Power
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5.2 RF Matching Networks .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 100
5.3 Other Connections .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
.
.98
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout . .
6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 102
. 113
6.2 QFN48 2.4 GHz Device Pinout . .
6.2.1 QFN48 2.4 GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 114
. 126
6.3 QFN32 2.4 GHz Device Pinout . .
6.3.1 QFN32 2.4 GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 127
. 134
6.4 Alternate Functionality Overview
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 135
6.5 Analog Port (APORT) Client Maps .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 141
7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 145
7.1 QFN48 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 145
7.2 QFN48 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 147
7.3 QFN48 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 149
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 150
8.1 QFN32 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 150
8.2 QFN32 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 152
8.3 QFN32 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 154
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1 Revision 1.1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 155
9.2 Revision 1.0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 155
9.3 Revision 0.97 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 155
9.4 Revision 0.951
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 155
Table of Contents
160
9.5 Revision 0.95 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
9.6 Revision 0.9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
9.7 Revision 0.8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
9.8 Revision 0.75 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
9.9 Revision 0.7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 157
.
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table of Contents
161
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com