on
C
Mighty Gecko Wireless SoC
EFR32MG1X232 Data Sheet
The Mighty Gecko family of wireless solutions combines an energy-friendly MCU with a highly integrated radio transceiver supporting Bluetooth Smart®, wireless mesh, and proprietary short range
wireless protocols.
KEY FEATURES
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
• Low energy active and sleep currents
fid
The IoT System-On-Chip provides industry-leading energy efficiency, ultra-fast wakeup
times, a scalable power amplifier, an integrated balun and no-compromise MCU features.
• 12-channel Peripheral Reflex System
enabling autonomous interaction of MCU
peripherals
• Autonomous Hardware Crypto Accelerator
and True Random Number Generator
en
Mighty Gecko applications include
• Connected Home
• Lighting
• Sports and Fitness
• Metering
• Building Automation
• Scalable Memory and Radio configuration
options available in several footprint
compatible QFN packages
EFR32 Wireless Gecko
Core / Memory
Power / Clock
Radio
tia
ARM CortexTM M4, 40 MHz CPU
with DSP extensions and FPU
DC-DC Regulator
Integrated PA, LNA, BALUN
Packet and State Trace
Flash Program Memory
RAM Memory
32-bit bus
Peripheral Reflex System
Timer
2 x USART
6 x TIMERs
Low Energy UARTTM
I2C
Up to 31 GPIO
Low Energy Timer
CRYOTIMER
Pulse Counter
Watchdog
RTC
l
Connectivity
Clocks:
2 x Crystal Oscillators
4 x RC Oscillators
Digital PLL
Analog
Security
TRUE RNG
ADC
IDAC
2 x Analog Comparators
CRYPTO Hardware Accelerator:
AES-128/256
SHA-1/2
RSA-2048
Available energy modes:
EM0 – EM1
EM0 – EM4
silabs.com | Smart. Connected. Energy-friendly.
This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Silicon
Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA).
Preliminary Rev. 0.71
EFR32MG1X232 Data Sheet
Features
1. Features
C
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• 2.4 GHz radio operation
• TX power up to 19.5 dBm
• Low Energy Consumption
• 8.6 mA RX current at 2.4 GHz (1 Mbps GFSK)
• 9.1 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS)
• 8.2 mA TX current @ 0 dBm output power at 2.4 GHz
• 60 µA/MHz in Energy Mode 0 (EM0)
• 1.35 µA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 1 µA EM3 Stop current (State/RAM retention)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -94 dBm sensitivity at 1 Mbps GFSK
• -99.4 dBm sensitivity at 250 kbps O-QPSK DSSS
• Modulation Format(s) Supported
• 2-FSK / 4-FSK with fully configurable shaping
• Shaped OQPSK / (G)MSK
• Supported Protocol(s)
• Bluetooth Smart
• ZigBee®
• Thread
• 2.4 GHz Proprietary Protocols
f
on
• Wide selection of MCU peripherals
• 12-bit 1 Msamples/s SAR Analog to Digital Converter
• 2× Analog Comparator
• Digital to Analog Current Converter (IDAC)
• Up to 31 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
• 31 General Purpose I/O pins with output state retention
and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• Hardware Crypto Acceleration with public key support
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wakeup from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUARTTM)
l
ia
t
en
id
• I2C interface with SMBus support and address recognition in EM3 Stop
• Wide Operating Range
• 1.62 V to 3.8 V single power supply
• -40 °C to 85 °C
• QFN48 7x7 mm Package
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 1
EFR32MG1X232 Data Sheet
Ordering Information
2. Ordering Information
Frequency
Band
Core
Flash
(kB)
RAM
(kB)
EFR32MG1P232F256GM48-A0
2.4 GHz
M4
256
32
• Bluetooth
Full
Smart
• ZigBee/Thread
• ZigBee RC
• Proprietary
19.5
EFR32MG1P232F256GM48-B0
2.4 GHz
M4
256
32
• Bluetooth
Full
Smart
• ZigBee/Thread
• ZigBee RC
• Proprietary
19.5
EFR32MG1B232F256GM48-B0
2.4 GHz
M4
256
32
• ZigBee/Thread Full
• ZigBee RC
19.5
C
Ordering Code
Protocol Stack
Encryption
Max TX
Power
(dBm)
f
on
EFR32 F G 1 P 133 F 256 G M 32 – A0 R
Tape and Reel (Optional)
Revision
id
Pin Count
Package – M (QFN), J (WLSCP)
Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
t
en
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 3 (dual-band), 2 (2.4 GHz), 1 (sub-GHz)
Performance Grade – P (Performance), B (Basic), V (Value)
Generation
Gecko
Family – M (Mighty), B (Blue), Z (Zappy), F (Flex)
Wireless Gecko 32-bit
l
ia
Figure 2.1. OPN Decoder
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 2
EFR32MG1X232 Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family features the world’s most energy friendly System-on-Chip radios. The devices are well suited for any battery
operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.
3.2 Block Diagram
A block diagram of the EFR32MG1X232 is shown in Figure 3.1 Block Diagram on page 3.
C
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
High Frequency
RC Oscillator
High Frequency
Crystal Oscillator
Memory
Protection Unit
f
on
Flash Program
Memory
Clock Management
RAM Memory
DMA Controlller
Debug Interface
Energy Management
Other
Voltage
Regulators
Voltage Monitor
CRYPTO
Power-On Reset
CRC
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC/DC Regulator
Low Frequency
Crystal Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
Peripheral Reflex System
FRC
DEMOD
PGA
IFADC
RF Frontend
PA
Q
AGC
Frequency
Synthesizer
CRC
BALUN
I
MOD
Lowest power mode with peripheral operational:
EM1—Sleep
Timers and Triggers
USART
External
Interrupts
Timer/Counter
Protocol Timer
ADC
Low Energy
UARTTM
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Analog
Comparator
I2C
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
IDAC
Pin Wakeup
EM2—Deep Sleep
Analog I/F
Cryotimer
t
en
EM0—Active
I/O Ports
id
LNA
Serial I/F
RAC
RFSENSE
BUFC
Radio Transceiver
EM3—Stop
EM4—Hibernate
EM4—Shutoff
Figure 3.1. Block Diagram
3.3 System Description
3.3.1 Antenna interface
ia
The 2.4 GHz antenna interface consists of two pins (2GRF_IOP and 2GRF_ION) that interface directly to the on-chip BALUN. The
2GRF_ION pin should be grounded externally.
The external components and power supply connections for the antenna interface in a typical application are shown in Section 5. Application Circuits.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 3
EFR32MG1X232 Data Sheet
System Overview
3.3.2 Integrated Oscillators
C
The EFR32MG1X232 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the radio and MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. Silicon Laboratories reference designs employ a crystal frequency of 38.4 MHz. An external clock source such as a TCXO can also be applied to the HFXO input for
improved accuracy over temperature.
• An optional 32.768 kHz crystal oscillator (LFXO) can be used as an accurate timing reference in low energy modes.
• A 32.768 kHz crystal oscillator (LFXO) should be used as an accurate timing reference in Bluetooth Smart low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
f
on
3.3.3 Fractional-N Frequency Synthesizer
The EFR32MG1X232 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.3.4 Receiver Architecture
id
The EFR32MG1X232 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, emplying a 38.4 MHz crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF
analog-to-digital converter (IFADC).
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.
t
en
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value with dB resolution is associated
with each received frame and the dynamic RSSI measurement can be monitored throughout reception.
ia
The EFR32MG1X232 features integrated support for antenna diversity to improve link budget, using complementary control outputs to
an external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations.
In typical applications, the demodulator output is stored in internal buffer memory for access by the MCU. Direct mode supports direct
serial output of demodulated data on configured GPIO pins.
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 4
EFR32MG1X232 Data Sheet
System Overview
3.3.5 Transmitter Architecture
The EFR32MG1X232 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine
shaping.
Automated PA up and down ramping is applied to each transmitted frame, in order to ensure the Adjacent Channel Power (ACP) meets
regulatory requirements.
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32MG1X232. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth
between devices that otherwise lack synchronized RF channel access.
C
3.3.6 Wake on Radio
f
on
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1X232 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals. Wake on Radio implementation may typically include the following functionality:
• Periodic trigger to start RF evaluation from the RTCC, GPIO or other low energy peripherals
• Received Signal Strength Indicator (RSSI) qualification
• Preamble and frame sync qualification
• Frame header qualification, including address filtering
• Autonomous packet demodulation and buffering
• Optional transfer of RSSI values to RAM via DMA
• Timeout to disable the receiver through the PRS in case of false alarm
3.3.7 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
id
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
l
ia
t
en
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 5
EFR32MG1X232 Data Sheet
System Overview
3.3.8 Flexible Frame Handling
C
EFR32MG1X232 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/
Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Fully configurable block codes for sub-GHz protocols, supporting both linear codes and table based lookup (e.g. Wireless M-bus 3out-of-6 coding)
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, supported in the MODEM, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
f
on
3.3.9 Packet and State Trace
3.3.10 Data Buffering
t
en
id
The EFR32MG1X232 Frame Controller has a packet and state trace unit that provides valuable information during the development
phase. It features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
The EFR32MG1X232 features an advanced buffer controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.3.11 Radio Controller (RAC)
The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1X232. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
ia
3.3.12 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support various levels of hardware-accelerated encryption, depending on the part. Section 2. Ordering Information specifies whether this
part has full or AES-only crypto support. AES-only devices support AES encryption and decryption with 128- or 256-bit keys. Full crypto support adds RSA-2048, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2.
l
Supported modes of operation for AES includes ECB, CTR, CBC, PCBC, CFB, OFB, CBC-MAC, GMAC, CCM and GCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the BUFC enabling fast and efficient autonomous cipher operations on data buffer content. It allows
fast processing of ECC, RSA and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 6
EFR32MG1X232 Data Sheet
System Overview
3.3.13 True Random Number Generator
The Frame Controller (FRC) implements a true random number generator that extracts noise from the RF receive chain. Data can be
read from a register 32 bits at a time, or larger blocks of random data can be written directly to RAM.
Output from the random number generator can be used either directly or as a seed or entropy source for software based random number generator algorithms such as Fortuna.
3.3.14 System Processor
C
The ARM Cortex-M processor subsystem integrates the following features and tasks in the system:
• 32-bit ARM Cortex-M RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• Advanced and flexible protocol support, in cooperation with the Frame Controller
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface, which can be disabled
f
on
The Cortex-M4 is equipped with DSP instruction support and a floating-point unit (FPU).
3.3.15 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active/EM1 Sleep.
3.3.16 Linked Direct Memory Access Controller (LDMA)
id
The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of
software. This reduces both energy consumption and software workload.
3.3.17 Integrated Voltage Regulators
3.3.18 Reset Management Unit (RMU)
t
en
The EFR32MG1X232 generates internal supply voltages from integrated regulators. This means that only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator, further detailed in section
3.3.37 Integrated DC-DC Converter (DC-DC), can be utilized to further reduce the current consumption. The DC-DC regulator requires
one external inductor and one external capacitor.
The RMU is responsible for handling reset of the EFR32MG1X232. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset and watchdog reset.
3.3.19 Energy Management Unit (EMU)
3.3.20 Clock Management Unit (CMU)
ia
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available. The EMU can also be used to turn off the power to unused RAM blocks. The EMU also contains control registers
for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has 4 channels
which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.
l
The Clock Management Unit controls oscillators and clocks in the EFR32MG1X232. Individual enabling and disabling of clocks to all
peripheral modules is perfomed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of
flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 7
EFR32MG1X232 Data Sheet
System Overview
3.3.21 Watchdog (WDOG)
The watchdog timer with window monitoring capabilities can monitor the Peripheral Reflex System and generate a reset in case of a
system failure to improve application reliability.
3.3.22 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.3.23 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
C
f
on
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
3.3.24 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUART provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.3.25 Inter-Integrated Circuit Interface (I2C)
3.3.26 Protocol Timer (PROTIMER)
id
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from
10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.3.27 Timer/Counter (TIMER)
t
en
The PROTIMER is perfectly suited for radio protocol time-keeping, featuring support for time-slotted and random backoff LBT/CSMA
radio access mechanisms. The PROTIMER includes a capture/compare functionality, including several capture registers, configurable
to capture counter or RTCC values upon trigger events selected from Peripheral Reflex System events or radio events. The capture
register values may be used for received frame timestamping. The compare feature produces output events upon match of captured
values to programmed comparison values, which can be used to enable or disable the RF receiver without MCU intervention.
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. Please refer to Section 3.4 Configuration Summary for available TIMER units and features in the EFR32MG1X232
3.3.28 Real Time Counter and Calendar (RTCC)
ia
The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three
modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects
the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time
insertion available in timer unit TIMER_0 only.
l
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators (Section 3.3.2 Integrated Oscillators) with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user
defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general
purpose data retention, allowing easy and convenient data storage in all energy modes.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 8
EFR32MG1X232 Data Sheet
System Overview
3.3.29 Low Energy Timer (LETIMERTM)
The unique LETIMER, is a 16-bit timer that is available in energy mode EM2 DeepSleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter and Calendar (RTCC), and can be configured to
start counting on compare matches from the RTCC.
3.3.30 Ultra Low Power Wake-up Timer (CRYOTIMER)
C
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO) or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.3.31 Pulse Counter (PCNT)
f
on
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
DeepSleep and EM3 Stop.
3.3.32 General Purpose Input/Output (GPIO)
EFR32MG1X232 has 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.3.33 Analog Port (APORT)
id
The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules ADC, ACMP, and IDAC on a flexible
selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. See 6.4 Analog Port (APORT) for an illustration of the APORT connections.
3.3.34 Analog Comparator (ACMP)
t
en
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software.
The ACMP can also be used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or
rises above a programmable threshold.
3.3.35 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 MSamples/s. The
output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple
samples.
3.3.36 Digital to Analog Current Converter (IDAC)
ia
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
source, including pins configurable as either single-ended or differential.
l
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The current is programmable between 0.05 µA and 64 µA with several
ranges with various step sizes.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 9
EFR32MG1X232 Data Sheet
System Overview
3.3.37 Integrated DC-DC Converter (DC-DC)
The DC-DC buck converter covers a wide range of load currents and provides high efficiency in energy modes EM0, EM1, EM2 and
EM3. Patent-pending RF noise mitigation allows operation of the DC-DC converter without degrading radio sensitivity. The converter
has three modes: low noise (LN), low power (LP), and bypass. Each operating mode transition is initiated by firmware and executed by
an integrated hardware state machine, providing well-controlled transitions. Bypass mode may be entered when the input voltage is too
low for efficient operation of the DC-DC converter. In Bypass mode, the DC-DC input supply is internally connected directly to its output
through a low resistance switch. Bypass mode also supports in-rush current limiting to avoid dipping the input supply due to excessive
current transients.
C
Key Features:
• Wide load range from sub-µA to 200 mA
• High efficiency up to 90%
• Low Noise (LN), Low Power (LP) and Bypass operating modes for high performance and low energy applications
• Fast wakeup from LP to LN to support quick EM2 to EM0 transition
• Low 50 nA quiescent current in LP mode to support micro-ampere range load currents
• Optimized for integration with the on-board radio
• Switching frequency programmable from 3 MHz to 8 MHz
• RF noise mitigation mechanism
• Supports wide range of passive part selection
• External capacitor range from 1 µF to 10 µF with external 4.7 µH inductor
• Protection features
• Programmable sourcing and sinking current limits
• Output short-circuit protection
• Dead-time protection
f
on
DVDD
id
PFET2
Bypass mode enable
VREGVDD
LN Controller
PWM
LP mode enable
LP Controller
PFET1
SW
Logic
t
en
Digital FSM
LN mode enable
CLim
VREGSW
4.7uH
pulses
ZDet
1.0uF
NFET
VREGVSS
Figure 3.2. Functional Diagram of the DC-DC Converter
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 10
EFR32MG1X232 Data Sheet
System Overview
3.3.37.1 DC-DC Converter Powertrain
The powertrain consists of low-resistance P-channel (PFET1) and N-channel (NFET) switches, combined with a current limiter and
zero-crossing detector. The power switches provide programmable drive strength by selection of a number of slices for each switch.
The switching logic takes either a PWM signal from a low-noise controller or pulses from a low-power controller and drives PFET1 and
NFET switches using proper dead-time control. The powertrain can switch in both forced Continuous Conduction Mode (CCM) mode
and load-adaptive Continuous Conduction/Discontinuous Conduction (CCM/DCM) mode. Load-adaptive CCM/DCM mode has superior
efficiency in light load conditions, whereas forced CCM mode provides the best transient response and noise control when the radio is
on.
The DC-DC converter includes a current limiter to protect PFET1 from large transient currents. Whenever a current overload is detected, the switching logic advances the transition from PFET1 to NFET and optionally sends an interrupt signal to the processor.
C
A zero-voltage detector is included to prevent reverse current in DCM mode. When NFET is on and zero voltage is detected across
NFET, the switching logic will turn NFET off to prevent reverse current. The zero-voltage detector can be disabled to enable forced
CCM mode. It can also be configured as a programmable reverse current limiter.
3.3.37.2 DC-DC Converter Low Noise (LN) Controller
f
on
The LN controller consists of an active-RC type-III compensator, a ramp generator and a PWM comparator. The compensator generates an error voltage from on-chip feedback, which is compared against a ramp voltage by the PWM comparator. The resulting PWM
signal is duty-cycle limited between 3% and 96%, with circuitry to avoid control-loop lockout. The PWM frequency can be generated
from the ramp generator's oscillator or from an external clock from the radio's RF synthesizer. Noise mitigation hardware post-processes the PWM signal to avoid in-band noise coupling into the radio system.
3.3.37.3 DC-DC Converter Low Power (LP) Controller
3.4 Configuration Summary
id
The LP controller consists of a continuous-time comparator with hysteresis and a constant frequency pulse generator. When the output
voltage is lower than the low threshold of the comparator, the pulse generator is enabled to activate the powertrain. The powertrain
switches at a constant-frequency with a fixed duty cycle of about 90%. When the DC-DC output exceeds the comparator's high threshold, the pulse generator is disabled until the cycle starts over again on the next low-threshold crossing. The comparator has four programmable response-time settings. The lowest setting consumes only approximately 50nA, providing high-efficiency regulation of current loads down to the micro-ampere range.
The features of the EFR32MG1X232 is a subset of the feature set described in the EFR32 Reference Manual. Table 3.1 Configuration
Summary on page 11 describes device specific implementation of the features. Remaining modules support full configuration.
Module
Configuration
USART0
IrDA I2S SmartCard
USART1
IrDA I2S SmartCard
TIMER0
with DTI.
TIMER1
t
en
Table 3.1. Configuration Summary
Pin Connections
US0_TX, US0_RX, US0_CLK, US0_CS
US1_TX, US1_RX, US1_CLK, US1_CS
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIM1_CC[3:0]
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 11
EFR32MG1X232 Data Sheet
System Overview
3.5 Memory Map
The EFR32MG1X232 memory map is shown in the figure below. RAM and flash sizes are for the largest memory configuration.
C
f
on
t
en
id
Figure 3.3. EFR32MG1X232 Memory Map
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 12
EFR32MG1X232 Data Sheet
Electrical Characteristics
4. Electrical Characteristics
4.1 Test Conditions
4.1.1 Typical Values
Typical values are based on TAMB=25 °C and VDD=3.3 V, as defined in 4.3.1 General Operating Conditions, by production test and/or
technology characterization unless otherwise specified.
Radio performance numbers are measured in conducted mode, based on Silicon Labs reference designs using output power-specific
external RF impedance-matching networks, further identified in Section 5. Application Circuits, for interfacing to a 50 Ω antenna.
C
4.1.2 Minimum and Maximum Values
Minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in
4.3.1 General Operating Conditions.
f
on
4.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions is not guaranteed. Stress beyond the
limits specified in may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given
in 4.3.1 General Operating Conditions.
Table 4.1. Absolute Maximum Ratings
Parameter
Storage temperature range
Symbol
TSTG
External main supply voltage VDDRAMPMAX
ramp rate
Voltage on any 5V tolerant
1
GPIO pin
VDIGPIN
Voltage on HFXO pins
VHFXOPIN
Voltage on RF pins
2G4RF_IOP and
2G4RF_ION
VMAX2G4
Total current into VSS ground IVSSMAX
lines (sink)
IIOMAX
Current per I/O pin (source)
Current for all I/O pins (sink)
IIOALLMAX
Voltage difference between
AVDD and VREGVDD
ΔVDD
Unit
-50
-
150
°C
0
-
3.8
V
-
-
1
V / µs
-0.3
-
Min of 5.25
and IOVDD
+2
V
-0.3
-
IOVDD+0.3
V
-0.3
-
1.4
V
TBD
-
TBD
V
-
-
TBD
mA
-
-
-
-
-
-
-
-
-
-
50
mA
50
mA
TBD
mA
TBD
mA
0.3
l
Current for all I/O pins
(source)
Max
ia
Current per I/O pin (sink)
Typ
t
en
Voltage on non-5V tolerant
GPIO pins
Min
id
External main supply voltage VDDMAX
Test Condition
V
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 13
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.3 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highet voltage in the system
• VREGVDD ≥ AVDD
• VREGVDD ≥ DVDD
• DVDD ≥ PAVDD
• DVDD ≥ DECOUPLE
• AVDD ≥ IOVDD
4.3.1 General Operating Conditions
C
Symbol
Ambient temperature range
TAMB
Test Condition
Min
Typ
Max
Unit
-40
25
85
°C
VREGVDD Operating supply VVREGVDD
voltage
1.62
3.3
3.8
V
RFVDD Operating supply
voltage
1.62
-
V(VREGVD
D)
V
V(VREGVD
D)
-
V(VREGVD
D)
V
DVDD Operating supply volt- VDVDD
age
1.62
-
V(VREGVD
D)
V
PAVDD Operating supply
voltage
VPAVDD
1.62
-
3.8
V
IOVDD Operating supply
voltage
VIOVDD
1.62
-
V(VREGVD
D)
V
DECOUPLE Operating supply voltage
VDECOUPLE
1.08
1.2
1.32
V
f
on
Parameter
Table 4.2. General Operating Conditions
VRFVDD
AVDD Operating supply volt- VAVDD
age
fCORE
Note:
1. in MSC_READCTRL register
t
en
HFCLK frequency
id
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
AVDD must be tied to VREGVDD
-
-
0.1
V
1
-
-
26
MHz
1 wait-states (MODE = WS1) 1
-
38.4
40
MHz
0 wait-states (MODE = WS0)
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 14
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.4 DC-DC Converter
Test conditions: LDCDC=4.7 µH, CDCDC=1.0 µF, VDCDC_I=3.3 V, VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration,
FDCDC_LN=8 MHz, unless otherwise indicated.
Table 4.3. DC-DC Converter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode
TBD
-
3.8
V
Low noise (LN) or low power (LP)
mode, 1.8 V output, 200 mA load
current
2.4
-
3.8
V
1.8
-
-
V
Output voltage range
VDCDC_O
1.8V configuration
Steady-state output ripple
VR
ESR=50 Ω, ESL=2 nH on 1 µF filter cap. Radio disabled
-
3
-
mVpp
f
on
C
Parameter
-
TBD
-
mVpp
CCM Mode (LNFORCECCM =
1), Load changes between 0 mA
and 100 mA
-
100
-
mV
DCM Mode (LNFORCECCM1 =
0), Load changes between 0 mA
and 10 mA
-
150
-
mV
0.1
-
%
ESR=50 Ω, ESL=2 nH on 1 µF filter cap. Radio enabled
Output voltage under/overshoot
VOV
1
VREG
Input changes between 3.8 V and
2.4 V
-
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
-
0.1
-
%
Quiescent current
IDCDC_Q
Low power (LP) mode, lowest
bias setting (LPCMPBIAS1 =
BIAS0)
-
50
-
nA
ILOAD_MAX
t
en
Max load current
id
DC line regulation
Low noise (LN) mode, DCM configuration (LNFORCECCM1 = 0)
-
0.3
-
mA
Low noise (LN) mode, CCM configuration (LNFORCECCM1 = 1)
-
0.8
-
mA
Low noise (LN) mode
-
200
mA
Low power (LP) mode
-
10
mA
Capacitance of DCDC output CDCDC
capacitor
Resistance in Bypass mode
RBYP
Peak current limit range
IIPK
Peak current limit step
IPK_STEP
Switching frequency
FLN
silabs.com | Smart. Connected. Energy-friendly.
10
µF
-
4.7
-
µH
-
0.8
-
Ω
20
-
640
mA
-
20
-
mA
Medium Drive2
-
40
-
Heavy Drive2
-
80
-
mA
Low noise (LN) mode
3
8
MHz
Light drive
2
l
LDCDC
-
ia
Inductance of DCDC output
inductor
1
mA
Preliminary Rev. 0.71 | 15
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. In MU_DCDCMISCCTRL register
2. Drive levels are defined by configuration of the P/NSLICESEL register. Light Drive: P/NSLICESEL=3; Medium Drive: P/NSLICESEL=7; Heavy Drive: P/NSLICESEL=15.
C
f
on
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 16
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.4.1 DC-DC Converter Typical Performance Characteristics
Default test conditions: CCM mode, LDCDC=4.7 µH, CDCDC=1.0 µF, VDCDC_I=3.3 V, VDCDC_O=1.8 V, FDCDC_LN=8 MHz
Efficiency VS Load Current, LN mode
Efficiency VS Load current, LP mode
100
100
90
90
80
80
Eff,%
Eff,%
C
70
60
60
50
1
10
10
Load,mA
40
-3
10
2
-2
10
-1
10
Load,mA
0
10
_
_
_
_
CMP
CMP
CMP
CMP
_
_
_
_
BIAS
BIAS
BIAS
BIAS
3
2
1
0
1
10
Relative output droop VS Load current, LP mode
Ron VS supply voltage in bypass mode
2
LP
LP
LP
LP
50
Heavy Drive
Medium Drive
Light Drive
f
on
40
0
10
70
10
SW _ PFET _ EN 0
SW _ PFET _ EN 1
5
-5
id
Ron,Ohm
1.5
Relative output droop,mV
0
-10
-15
1
-20
-25
2
2.5
VDD,V
3
3.5
LN (CCM) and LP mzode transition(load: 5mA)
-30
-3
10
10
-2
-1
10
Load,mA
100mA
ILOAD
2V/div
offset:1.8V
1mA
10μs/div
100μs/div
1
10
l
Figure 4.1. DC-DC Electrical Characteristics
silabs.com | Smart. Connected. Energy-friendly.
0
Load Step Response in LN(CCM)mode(Heavy Drive)
DVDD
50mV/div
offset:1.8V
VSW
10
ia
DVDD
60mV/div
offset:1.8V
4
t
en
0.5
LP _ CMP _ BIAS 3
LP _ CMP _ BIAS 2
LP _ CMP _ BIAS 1
LP _ CMP _ BIAS 0
Preliminary Rev. 0.71 | 17
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.5 Current Consumption
4.5.1 Current Consumption 1.8 V without DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 1.8 V. EMU_PWRCFG_PWRCG=NODCDC.
EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.1 EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration
without DC-DC converter on page 44.
Table 4.4. Current Consumption 1.8V without DC/DC
Parameter
Symbol
C
Current consumption in EM0 IACTIVE
Active mode with radio disabled, All peripherals disabled
Test Condition
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash
-
TBD
-
µA/MHz
38 MHz HFRCO, CPU running
Prime from flash
-
TBD
-
µA/MHz
38 MHz HFRCO, CPU running
while loop from flash
-
TBD
-
µA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
-
TBD
-
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
-
TBD
-
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
-
TBD
-
µA/MHz
38.4 MHz crystal
-
TBD
-
µA/MHz
38 MHz HFRCO
-
TBD
-
µA/MHz
f
on
Min
id
Current consumption in EM1 IIDLE
Sleep mode with radio disabled. All peripherals disabled
-
TBD
-
µA/MHz
1 MHz HFRCO
-
TBD
-
µA/MHz
Current consumption in EM2 IEM2
DeepSleep mode.
Full RAM retention and RTCC
running from LFXO
-
TBD
-
µA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
-
TBD
-
µA
Current consumption in EM4 IEM4
Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
-
TBD
-
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
-
TBD
-
µA
128 byte RAM retention, no RTCC
-
TBD
-
µA
No RAM retention, no RTCC
-
TBD
-
µA
Current consumption in EM4 IEM4S
Shutoff mode
l
ia
t
en
26 MHz HFRCO
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 18
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.5.2 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 3.3 V. EMU_PWRCFG_PWRCG=NODCDC.
EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.1 EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration
without DC-DC converter on page 44.
Table 4.5. Current Consumption 3.3V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash
-
124
-
µA/MHz
38 MHz HFRCO, CPU running
Prime from flash
-
85
-
µA/MHz
38 MHz HFRCO, CPU running
while loop from flash
-
99
-
µA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
-
TBD
-
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
-
100
-
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
-
TBD
-
µA/MHz
38.4 MHz crystal
-
45
-
µA/MHz
38 MHz HFRCO
-
27
-
µA/MHz
26 MHz HFRCO
-
28
-
µA/MHz
1 MHz HFRCO
-
TBD
-
µA/MHz
Current consumption in EM2 IEM2
DeepSleep mode.
Full RAM retention and RTCC
running from LFXO
-
2.92
-
µA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
-
TBD
-
µA
Current consumption in EM4 IEM4
Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
-
TBD
-
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
-
TBD
-
µA
128 byte RAM retention, no RTCC
-
TBD
-
µA
no RAM retention, no RTCC
-
TBD
-
µA
C
Current consumption in EM0 IACTIVE
Active mode with radio disabled, All peripherals disabled
Test Condition
f
on
Current consumption in EM1 IIDLE
Sleep mode with radio disabled. All peripherals disabled
l
ia
t
en
id
Current consumption in EM4 IEM4S
Shutoff mode
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 19
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.5.3 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD= 1.8 V DC-DC output. See Figure 5.2
EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 or Figure 5.3
EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) on page 45.
Table 4.6. Current Consumption 3.3V with DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash.
-
94
-
µA/MHz
38 MHz HFRCO, CPU running
Prime from flash
-
60
-
µA/MHz
38 MHz HFRCO, CPU running
while loop from flash
-
69
-
µA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
-
TBD
-
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
-
75
-
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
-
TBD
-
µA/MHz
38.4 MHz crystal
-
39
-
µA/MHz
38 MHz HFRCO
-
20
-
µA/MHz
26 MHz HFRCO
-
21
-
µA/MHz
1 MHz HFRCO
-
TBD
-
µA/MHz
Current consumption in EM2 IEM2
DeepSleep mode.
Full RAM retention and RTCC
1
running from LFXO
-
1.35
-
µA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYO2
TIMER running from ULFRCO
-
1
-
µA
Current consumption in EM4 IEM4
Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
-
0.7
-
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
-
0.5
-
µA
128 byte RAM retention, no RTCC
-
0.3
-
µA
no RAM retention, no RTCC
-
0.2
-
µA
C
Current consumption in EM0 IACTIVE
Active mode with radio disabled. All peripherals disabled, DCDC in LowNoise
mode
Test Condition
f
on
Current consumption in EM1 IIDLE
Sleep mode with radio disabled. All peripherals disabled, DCDC in LowPower
mode.
l
ia
Note:
1. Target for planned revision. Current silicon performance is 2.3 µA
2. Target for planned revision.
t
en
id
Current consumption in EM4 IEM4S
Shutoff mode
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 20
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.5.4 Current Consumption Using Radio
Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. See Figure 5.2 EFR32MG1X232 Typical
Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44. or Figure 5.3 EFR32MG1X232 Typical
Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) on page 45.
Table 4.7. Current Consumption Using Radio 3.3 V with DC-DC
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX
1 Mbit/s, 2GFSK, F = 2.4 GHz
-
8.6
-
mA
802.15.4 receiving frame, F = 2.4
GHz
-
9.1
-
mA
Current consumption in pol- IRX_POLL
led RX mode (radio active for
200 µs every second to
check for traffic)
1 Mbit/s, 2GFSK, F = 2.4 GHz
-
4
-
µA
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
CW, 0 dBm, F = 2.4 GHz
-
8.2
-
mA
CW, 3 dBm, F = 2.4 GHz
-
16.4
-
mA
CW, 8 dBm, F = 2.4 GHz
-
25.5
-
mA
CW, 10.5 dBm, F = 2.4 GHz
-
34.5
-
mA
CW, 16.5 dBm, F = 2.4 GHz,
PAVDD connected directly to external 3.3V supply
-
88
-
mA
CW, 19.5 dBm, F = 2.4 GHz,
PAVDD connected directly to external 3.3V supply
-
133
-
mA
C
Parameter
f
on
ITX
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 21
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.6 Wake up times
Table 4.8. Wake up times
Parameter
Symbol
Test Condition
Wake up from EM2 DeepSleep
tEM2_WU
Wakeup time from idle, executing from flash
tIDLE
C
Wake up from EM3 Stop
tEM3_WU
tEM4H_WU
Wake up from EM4 Shutoff1
tEM4S_WU
Typ
Max
Unit
Code execution from RAM
-
2.8
3.4
µs
Code execution from FLASH
-
7.8
10.4
µs
Executing from flash
-
TBD
-
AHB
Clocks
Executing from RAM
-
TBD
-
AHB
Clocks
Executing from flash
-
2.8
3.4
µs
Executing from RAM
-
TBD
-
µs
Executing from flash
-
TBD
-
µs
Executing from RAM
-
TBD
-
µs
Executing from flash
-
TBD
-
µs
Executing from RAM
-
TBD
-
µs
f
on
Wake up from EM4 Hiber1
nate
Min
Note:
1. Time from wakeup request till first instruction is executed. Wakeup results in device reset.
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 22
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.7 Brown Out Detector
Table 4.9. Brown Out Detector
Parameter
Symbol
Test Condition
DECOUPLE BOD threshold
VDECOUPLEBOD
Min
Typ
Max
Unit
TBD
TBD
TBD
V
-
TBD
-
V
-
TBD
-
nS
DVDD rising
TBD
TBD
TBD
V
DVDD falling
TBD
TBD
TBD
V
-
TBD
-
mV
-
TBD
-
nS
AVDD rising
TBD
TBD
TBD
V
AVDD falling
TBD
TBD
TBD
V
DECOUPLE BOD hysteresis VDECOUPLE_HYST
DECOUPLE response time
tDECOUPLE_DE-
Supply drops at 1V/µs rate
C
LAY
DVDDBOD threshold
DVDD BOD hysteresis
VDVDDBOD
VDVDDBOD_HYST
f
on
DVDD response time
tDVDDBOD_DELAY Supply drops at 1V/µs rate
AVDD BOD threshold
VAVDDBOD
VAVDDBOD_HYST
-
TBD
-
mV
AVDD response time
tAVDDBOD_DELAY Supply drops at 1V/µs rate
-
TBD
-
nS
EM4 BOD threshold
VEM4DBOD
AVDD rising
TBD
TBD
TBD
V
AVDD falling
TBD
TBD
TBD
V
-
TBD
-
mV
-
TBD
-
nS
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
4.8 Frequency Synthesizer Characteristics
id
AVDD BOD hysteresis
Supply drops at 1V/µs rate
t
en
Table 4.10. Frequency Synthesizer Characteristics
Symbol
Test Condition
RF Synthesizer Frequency
range
FRANGE_2400
2.4 GHz frequency range
LO tuning frequency resolution with 38.4 MHz crystal
FRES_2400
2400 - 2485 MHz
Maximum frequency deviation with 38.4 MHz crystal
ΔFMAX_2400
4.9 2.4 GHz RF Transceiver Characteristics
Min
Typ
Max
Unit
2400
-
2485
MHz
-
-
73
Hz
-
-
1677
kHz
l
ia
Parameter
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 23
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.11. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Maximum TX power
1
Symbol
Test Condition
POUTMAX
0 dBm-rated part numbers
C
Min
Typ
Max
Unit
-
0
-
dBm
-62
-
dBm
POUTMIN
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
-
1
-
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V
1.8 V < V(VREGVDD) < 3.3 V
without DC-DC converter
-
6
-
dB
1.8 V < V(VREGVDD < 3.3 V using DC-DC converter
-
2
-
dB
From -40 to +85° C
-
2
-
dB
Over RF tuning frequency range
-
1
-
dB
2400
-
2483.5
MHz
f
on
Minimum active TX Power
Output power variation vs
temperature at POUTMAX
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
id
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
4.9.2 RF Receiver General Characteristics for the 2.4 GHz Band
t
en
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.12. RF Receiver General Characteristics for 2.4 GHz Band
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Level above which
RFSENSE will trigger
RFSENSETRIG
Level below which
RFSENSE wil not trigger
RFSENSETHRES
Test Condition
Min
Typ
Max
Unit
2400
-
2483.5
MHz
-
-57
-
dBm
1 GHz to 12 GHz
-
-47
-
dBm
CW at 2.45 GHz
-
-17
-
dBm
-
-50
-
dBm
30 MHz to 1 GHz
l
ia
Parameter
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 24
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.13. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band
Parameter
Symbol
Transmit 6dB bandwidth
TXBW
Typ
Max
Unit
-
TBD
-
kHz
Per FCC part 15.247
-
TBD
-
dBm/
kHz
Per ETSI 300.328
-
TBD
-
dBm/
MHz
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
-
TBD
-
MHz
In-band spurious emissions,
1
with allowed exceptions
SPURINB
At ±2 MHz
-
-35
-
dBm
At ±3 MHz
-
-36
-
dBm
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
-
TBD
-
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC
SPUROOB_FCC
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
-
TBD
-
dBc
Spurious emissions out-ofband; per ETSI 300.328
SPURETSI328
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
-
TBD
-
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
-
TBD
-
dBm
C
Min
Power spectral density limit
PSDLIMIT
Test Condition
f
on
t
en
id
Spurious emissions per ETSI SPURETSI440
EN300.440
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
-
TBD
-
nW
25-1000 MHz
-
TBD
-
nW
-
TBD
-
nW
1-24 GHz
Note:
1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency
which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 25
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.14. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band
Symbol
Test Condition
Max usable receiver input
level, 0.1% BER
SAT
Sensitivity, 0.1% BER
SENS
C
Parameter
Min
Typ
Max
Unit
Signal is reference signal . Packet
length is 20 bytes.
-
10
-
dBm
Signal is reference signal. Using
2
DC-DC converter
-
-94
-
dBm
With dirty transmitter as defined in
Core_4.1
-
-91.4
-
dBm
1
f
on
Desired signal 3 dB above reference sensitivity
-
9
-
dB
N+1 adjacent channel (1
C/I1+
MHz) selectivity, 0.1% BER,
3
with allowable exceptions .
Desired is reference signal at
3 dB above reference sensitivity level
Interferer is reference signal at
+1 MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
-
-2
-
dB
N-1 adjacent channel (1
C/I1MHz) selectivity, 0.1% BER,
with allowable exceptions3.
Desired is reference signal at
3 dB above reference sensitivity level
Interferer is reference signal at
-1 MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
-
0
-
dB
Alternate (2 MHz) selectivity, C/I2
0.1% BER, with allowable
exceptions3. Desired is reference signal at 3 dB above
reference sensitivity level
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
-
-43
-
dB
Alternate (3 MHz) selectivity, C/I3
0.1% BER, with allowable
exceptions3. Desired is reference signal at 3 dB above
reference sensitivity level
Interferer is reference signal at
±3 MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
-
-48
-
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at 3 dB above
reference sensitivity level
Interferer is reference signal at image frequency with 1 MHz precision
-
-40
-
dB
Selectivity to image frequen- C/IIM+1
4
cy +1 MHz, 0.1% BER. Desired is reference signal at 3
dB above reference sensitivity level
Interferer is reference signal at image frequency +1 MHz with
1 MHz precision
-
-48
ia
t
en
id
Signal to co-channel interfer- C/ICC
er, 0.1% BER
-
dB
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 26
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
-
-30
-
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
-
-35
-
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
-
-35
-
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
-
-30
-
dBm
Desired is reference signal at 6dB
above reference sensitivity level.
Interferer 1 is CW at level IMBLE.
Interferer 2 is reference signal at
IMBLE.
-
-33
-
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
TBD
-
-
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-
-
TBD
dBm
-
-
TBD
dB
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at 3 dB
above reference sensitivity
level. Interferer is CW in
OOB range.
C
Intermodulation performance IM
per Core_4.1, Vol 6 Section
4.4 (n = 3 alternative), 0.1%
BER.
Test Condition
f
on
RSSI resolution
RSSIRES
Over RSSIMIN to RSSIMAX
l
ia
t
en
id
Note:
1. Reference signal is defined in Core_4.2, Vol 6, Section 4.6. 2GFSK, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired
data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm
2. Target for planned revision. Current silicon performance is -92.1 dBm
3. Allowable exceptions for spurious response RF channels, as specified in Core_4.2, Vol 6, Section 4.2 "Interference Performance". Where there is conflict of specifications regarding interference at image frequencies, the less stringent specification applies.
4. Selectivity to image frequency -1 MHz corresponds to C/I1+ N+1 adjacent hannel selectivity
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 27
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.15. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band
Parameter
Symbol
Min
Typ
Max
Unit
-
5
-
% rms
-40
-
40
ppm
Relative, at carrier ±3.5 MHz
-
TBD
-
dBc
Absolute, at carrier ±3.5 MHz
-
TBD
-
dBm
Per FCC part 15.247
-
TBD
-
dBm/kH
z
Per ETSI 300.328
-
TBD
-
dBm/M
Hz
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
-
TBD
-
MHz
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
2nd,3rd, 5, 6,8,9,10 harmonics;
continuous transmission of modulated carrier
-
TBD
-
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics
SPUROOB_FCC
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
-
TBD
-
dBc
Spurious emissions out-ofband; per ETSI 300.328
SPURETSI328
[2400-BW to 2400], [2483.5 to
2483.5+BW];
-
TBD
-
dBm
C
Error vector magnitude (off- EVM
set EVM), per 802.15.4-2011
Transmit center frequency
2
error
FERR
Power spectral density limit
PSDLIMIT
Test Condition
Signal is DSSS-OQPSK reference
1
packet
f
on
t
en
id
Spurious emissions per ETSI SPURETSI440
EN300.440
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
-
TBD
-
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
-
TBD
-
nW
25-1000 MHz,
-
TBD
-
nW
-
TBD
-
nW
1G-24G
l
ia
Note:
1. Reference packet is defined as TBD of packet length TBD, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz
band, with pseudo-random packet data content
2. Frequency error measurements are referred to the high-frequency crystal reference of the device
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 28
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32MG1X232
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 45.
Table 4.16. RF Receiver Characteristics for 801.15.4 DSSS-OQPSK in the 2.4 GHz Band
Symbol
Test Condition
Max usable receiver input
level, 1% PER
SAT
Sensitivity, 1% PER
SENS
C
Parameter
Min
Typ
Max
Unit
Signal is reference signal . Packet
length is 20 octets.
-
10
-
dBm
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
-
-99.1
-
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
-
-99.4
-
dBm
1
f
on
CCR
Desired signal 10 dB above sensitivity limit
-
-2.2
-
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
2
level
ACR+1
Interferer is reference signal at +1
channel-spacing.
-
34.1
-
dB
Interferer is filtered reference sig3
nal at +1 channel-spacing.
-
51
-
dB
Interferer is CW at +1 channelspacing.4
-
58.7
-
dB
Interferer is reference signal at -1
channel-spacing.
-
35.5
-
dB
Interferer is filtered reference signal3 at -1 channel-spacing.
-
54
-
dB
Interferer is CW at -1 channelspacing.
-
60.6
-
dB
Interferer is reference signal at ±2
channel-spacing
-
45.6
-
dB
Interferer is filtered reference signal3 at ±2 channel-spacing
-
59.5
-
dB
Interferer is CW at ±2 channelspacing
-
66
-
dB
-
50.2
-
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level2
ACR2
t
en
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level2
ACR-1
id
Co-channel interferer rejection, 1% PER
Interferer is CW in image band
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level2. Interferer is reference
signal.
Interferer frequency < Desired frequency - 3 channel-spacing
-
58.8
-
dB
Interferer frequency > Desired frequency + 3 channel-spacing
-
57.7
-
dB
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level2
-
50.6
-
l
silabs.com | Smart. Connected. Energy-friendly.
4
ia
Image rejection , 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level2
dB
Preliminary Rev. 0.71 | 29
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
5
-
-
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-
-
-98
dBm
-
0.25
-
dB
-
TBD
-
dB
RSSI resolution
RSSIRES
RSSI linearity as defined by
802.15.4-2003
RSSILIN
Test Condition
over RSSIMIN to RSSIMAX
C
f
on
Note:
1. Reference signal is defined as TBD
2. Reference sensitivity level is -85 dBm
3. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15MHz from the adjacent carrier.
4. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
4.10 RFSENSE
Table 4.17. RFSENSE
Parameter
Symbol
4.11 Modem Features
Min
id
RFSENSE current consump- IRFSENSE
tion
Test Condition
-
Typ
Max
Unit
TBD
TBD
nA
t
en
Table 4.18. Modem Features
Parameter
Symbol
Test Condition
Typ
Max
Unit
Receive Bandwidth
RXBandwidth
Configurable range with 38.4 MHz
crystal
0.1
-
2530
kHz
IF Frequency
IFFreq
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
-
1371
kHz
DSSS symbol length
DSSSRange
Configurable in steps of 1 chip
2
-
32
chips
DSSS Bits per symbol
DSSSBitPerSym
Configurable
1
-
4
bits/
symbol
l
ia
Min
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 30
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.12 Oscillators
4.12.1 LFXO
Table 4.19. LFXO
Parameter
Symbol
Crystal frequency
Typ
Max
Unit
fLFXO
-
32.768
-
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
-
-
70
kΩ
Supported range of crystal
1
load capacitance
CLFXO_CL
6
-
18
pF
8
-
40
pF
-
0.25
-
pF
C
Min
On-chip tuning cap range
2
CLFXO_T
Test Condition
On each of LFXTAL_N and
LFXTAL_P pins
f
on
On-chip tuning cap step size
SSLFXO
LFXO current consumption
3
on AVDD after startup
ILFXO_ANA
ESR = 30 kΩ, CL=12.5 pF, GAIN
= 3, AGC4 = 1
4
-
TBD
-
nA
LFXO current consumption
on DVDD after startup
ILFXO_DIG
ESR = 30 kΩ, CL=12.5 pF, GAIN4
=1
-
TBD
-
nA
Start- up time
tLFXO
ESR=30 kΩ, CL=12.5 pF, GAIN4
=2
-
200
-
ms
l
ia
t
en
id
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 31
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.12.2 HFXO
Table 4.20. HFXO
Symbol
Crystal Frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Supported range of crystal
1
load capacitance
CHFXO_CL
C
Parameter
On-chip tuning cap range
2
On-chip tuning capacitance
step
CHFXO_T
Test Condition
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
SSHFXO
Min
Typ
Max
Unit
38
38.4
40
MHz
-
-
60
Ω
6
-
12
pF
0
20
25
pF
-
0.04
-
pF
f
on
Current consumption on
IHFXODIG
DVDD for HFXO after startup
38.4 MHz: ESR = 50 Ω, CL = 10
pF, BOOST3 = 2
-
TBD
-
µA
Current consumption on
IHFXOANA
AVDD for HFXO after startup
38.4 MHz: ESR = 50 Ω, CL = 10
-
TBD
-
µA
Startup time
tHFXO
38.4 MHz: ESR=50 Ω, CL = 10 pF,
BOOST3 = 2
-
300
-
µs
FTHFXO
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
-
40
ppm
Frequency Tolerance for the
crystal
3
pF, BOOST = 2
4.12.3 LFRCO
t
en
id
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. In CMU_HFXOCTRL register
Table 4.21. LFRCO
Symbol
Oscillation frequency
fLFRCO
Startup time
tLFRCO
Current consumption on
DVDD
ILFRCODIG
Current consumption on
1
AVDD
ILFRCOANA
Test Condition
silabs.com | Smart. Connected. Energy-friendly.
Typ
Max
Unit
TBD
32.768
TBD
kHz
-
500
-
µs
-
TBD
-
nA
-
TBD
-
nA
l
Note:
1. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
Min
ia
Parameter
Preliminary Rev. 0.71 | 32
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.12.4 HFRCO and AUXHFRCO
Table 4.22. HFRCO and AUXHFRCO
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fHFRCO
38 MHz frequency band
TBD
38
TBD
MHz
32 MHz frequency band
TBD
32
TBD
MHz
26 MHz frequency band
TBD
26
TBD
MHz
19 MHz frequency band
TBD
19
TBD
MHz
16 MHz frequency band
TBD
16
TBD
MHz
13 MHz frequency band
TBD
13
TBD
MHz
7 MHz frequency band
TBD
7
TBD
MHz
4 MHz frequency band
TBD
4
TBD
MHz
2 MHz frequency band
TBD
2
TBD
MHz
1 MHz frequency band
TBD
1
TBD
MHz
fHFRCO ≥ 19 MHz
-
300
-
ns
4 < fHFRCO < 19 MHz
-
1
-
µs
fHFRCO ≤ 4 MHz
-
2.5
-
µs
fHFRCO = 38 MHz
-
TBD
-
µA
fHFRCO = 32 MHz
-
TBD
-
µA
fHFRCO = 26 MHz
-
TBD
-
µA
fHFRCO = 19 MHz
-
TBD
TBD
µA
fHFRCO = 16 MHz
-
TBD
-
µA
fHFRCO = 13 MHz
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
fHFRCO = 19 MHz
-
TBD
TBD
µA
fHFRCO = 16 MHz
-
TBD
-
µA
fHFRCO = 13 MHz
-
TBD
-
µA
fHFRCO = 7 MHz
-
TBD
-
fHFRCO = 4 MHz
-
TBD
-
fHFRCO = 2 MHz
-
TBD
-
µA
fHFRCO = 1 MHz
-
TBD
-
µA
C
Parameter
f
on
Start-up time
Current consumption on
DVDD
tHFRCO
IHFRCODIG
fHFRCO = 4 MHz
fHFRCO = 2 MHz
fHFRCO = 1 MHz
Current consumption on
1
AVDD
IHFRCOANA
fHFRCO = 38 MHz
fHFRCO = 32 MHz
l
silabs.com | Smart. Connected. Energy-friendly.
ia
fHFRCO = 26 MHz
t
en
id
fHFRCO = 7 MHz
µA
µA
Preliminary Rev. 0.71 | 33
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Step size
SSHFRCO
Coarse (% of period)
-
0.8
-
%
Fine (% of period)
-
0.1
-
%
Duty cycle
DCHFRCO
47.5
-
52.5
%
Period Jitter
PJHFRCO
-
0.2
-
% RMS
Min
Typ
Max
Unit
TBD
1
TBD
kHz
Note:
1. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
C
4.12.5 ULFRCO
Symbol
Test Condition
f
on
Parameter
Table 4.23. ULFRCO
Oscillation frequency
fULFRCO
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 34
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.13 GPIO
Table 4.24. GPIO
Parameter
Symbol
Input low voltage
Test Condition
Min
Typ
Max
Unit
VIOIL
-
-
IOVDD*0.3
V
Input high voltage
VIOIH
IOVDD*0.7
-
-
V
Output high voltage relative
to IOVDD
VIOOH
IOVDD*0.8
-
-
V
IOVDD*0.6
-
-
V
Sourcing 20 mA, VDD ≥ 3 V, DRIV- IOVDD*0.8
ESTRENGTH1 = STRONG
-
-
V
Sourcing 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
IOVDD*0.6
-
-
V
Sinking 3 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = WEAK
-
-
IOVDD*0.2
V
Sinking 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
-
-
IOVDD*0.4
V
Sinking 20 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = STRONG
-
-
IOVDD*0.2
V
Sinking 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
-
-
IOVDD*0.4
V
Sourcing 3 mA, VDD ≥ 3 V, DRIV1
ESTRENGTH = WEAK
C
Sourcing 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
f
on
Output low voltage relative to VIOOL
IOVDD
id
IIOLEAK
GPIO ≤ IOVDD
-
0.1
TBD
nA
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
IOVDD < GPIO ≤ IOVDD + 2 V
-
3.3
15
µA
I/O pin pull-up resistor
RPU
TBD
40
TBD
kΩ
I/O pin pull-down resistor
RPD
TBD
40
TBD
kΩ
TBD
25
TBD
ns
CL = 50pF, DRIVESTRENGTH1 =
STRONG, SLEWRATE1 = 0x6
-
TBD
-
ns
CL = 50pF, DRIVESTRENGTH1 =
WEAK, SLEWRATE1 = 0x6
-
TBD
-
ns
CL = 50pF, DRIVESTRENGTH1 =
STRONG, SLEWRATE = 0x61
-
TBD
-
ns
CL = 50pF, DRIVESTRENGTH1 =
WEAK, SLEWRATE1 = 0x6
-
TBD
-
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
Output fall time, From 70%
to 30% of VIO
tIOOR
silabs.com | Smart. Connected. Energy-friendly.
l
Note:
1. In GPIO_Pn_CTRL register
ia
Output rise time, From 30%
to 70% of VIO
tIOOF
t
en
Input leakage current
Preliminary Rev. 0.71 | 35
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.14 VMON
Table 4.25. VMON
Parameter
Symbol
Test Condition
VMON Supply Current in
EM0 or EM1
IVMON
C
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
Hysteresis
Typ
Max
Unit
In EM0 or EM1, 1 supply monitored
-
5.8
-
µA
In EM0 or EM1, 4 supplies monitored
-
11.8
-
µA
In EM2, EM3 or EM4, 1 supplies
monitored
-
68
-
nA
In EM2, EM3 or EM4, 4 supplies
monitored
-
115
-
nA
In EM0 or EM1
-
2
-
µA
In EM2, EM3 or EM4
-
2
-
nA
TBD
-
TBD
V
Coarse
-
200
-
mV
Fine
-
20
-
mV
Supply drops at 1V/µs rate
-
500
-
ns
-
TBD
-
mV
f
on
VMON Loading of Monitored ISENSE
Supply
Min
tVMON_RES
VVMON_HYST
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 36
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.15 ADC
Table 4.26. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
C
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
-
12
Bits
0
-
2*VREF
V
-VREF
-
VREF
V
1
-
VAVDD
V
PSRRADC
At DC
-
80
-
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
-
80
-
dB
Current on DVDD, using internal reference buffer. Continous operation. WARMUP1
MODE = KEEPADCWARM
IADCDIG_CONTI-
-
TBD
-
µA
250 ksps / 4 MHz ADCCLK, BIASPROG2 = 6
-
TBD
-
µA
62.5 Msps / 1 MHz ADCCLK,
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
µA
f
on
Power supply rejection
NOUS
1 Msps / 16 MHz ADCCLK,
2
BIASPROG = 0
BIASPROG2 = 15
id
Current on DVDD, using in- IADCDIG_NORMAL 50 ksps / 16 MHz ADCCLK,
ternal reference buffer. DutyBIASPROG2 = 0
cycled operation. WARMUPMODE1 = NORMAL
5 ksps / 16 MHz ADCCLK
BIASPROG2 = 0
3
Current on AVDD , using internal reference buffer. Continous operation. WARMUPMODE1 = KEEPADCWARM
125 ksps / 16 MHz ADCCLK,
BIASPROG2 = 0
t
en
Current on DVDD, using in- IADCDIG_STANDternal reference buffer. Duty- BY
cycled operation. AWARMUPMODE1 = KEEPINSTANDBY or KEEPINSLOWACC
5 ksps / 16 MHz ADCCLK,
TBD
-
µA
-
TBD
-
µA
250 ksps / 4 MHz ADCCLK, BIASPROG2 = 6
-
TBD
-
µA
62.5 Msps / 1 MHz ADCCLK,
-
TBD
-
µA
-
TBD
-
µA
-
TBD
-
BIASPROG2 = 0
IADCANA_CONTI-
1 Msps / 16 MHz ADCCLK,
NOUS
BIASPROG2 = 0
BIASPROG2 = 15
BIASPROG2 = 0
silabs.com | Smart. Connected. Energy-friendly.
l
Current on AVDD3 , using in- IADCANA_NORMAL 50 Ksps / 16 MHz ADCCLK,
ternal reference buffer. DutyBIASPROG2 = 0
cycled operation. WARMUPMODE1 = NORMAL
5 Ksps / 16 MHz ADCCLK,
ia
-
µA
Preliminary Rev. 0.71 | 37
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Current on AVDD3, using in- IADCANA_STANDternal reference buffer. Duty- BY
cycled operation. WARMUPMODE1 = KEEPINSTANDBY
or KEEPINSLOWACC
Test Condition
125 Ksps / 16 MHz ADCCLK,
Min
Typ
Max
Unit
-
TBD
-
µA
-
TBD
-
µA
BIASPROG2 = 0
5 Ksps / 16 MHz ADCCLK,
BIASPROG2 = 0
fADCCLK
-
-
16
MHz
Throughput rate
fADCRATE
-
-
1
Msps
Conversion time
tADCCONV
6 bit
-
7
-
ADCCL
K Cycles
10 bit
-
11
-
ADCCL
K Cycles
12 bit
-
13
-
ADCCL
K Cycles
WARMUPMODE1 = NORMAL
-
-
5
µs
WARMUPMODE1 = KEEPINSTANDBY or KEEPINSLOWACC
-
-
1
µs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
TBD
67
-
dB
C
ADC Clock Frequency
f
on
Startup time of reference
generator and ADC core in
NORMAL mode
tADCSTART
From standby mode
SNDR at 1Msps and fin =
10kHz
SNDRADC
id
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
-
68
-
dB
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
-
75
-
dB
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
-
380
-
µV
Offset Error
VADCOFFSETERR
Gain error in ADC
VADC_GAIN
t
en
Spurious-Free Dynamic
Range (SFDR)
TBD
1
TBD
LSB
Using internal reference
-
±0.1
TBD
%
Using external reference
-
TBD
-
%
-1
-
TBD
LSB
TBD
-
TBD
LSB
Differential non-linearity
(DNL)
DNLADC
12 bit resolution
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
l
ia
Note:
1. In ADCn_CNTL register
2. In ADCn_BIASPROG register
3. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 38
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.16 IDAC
Table 4.27. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
Typ
Max
Unit
-
4
-
-
RANGSEL = RANGE0
0.05
-
1.6
µA
RANGSEL1 = RANGE1
1.6
-
4.7
µA
RANGSEL1 = RANGE2
0.5
-
16
µA
RANGSEL1 = RANGE3
2
-
64
µA
-
32
-
RANGSEL1 = RANGE0
-
50
-
nA
RANGSEL1 = RANGE1
-
100
-
nA
RANGSEL1 = RANGE2
-
500
-
nA
RANGSEL1 = RANGE3
-
2
-
µA
Continuous mode, AVDD=3.3V, T
= 25°C
TBD
-
TBD
%
Continuous mode, AVDD=3.8V,
across all temperature
TBD
-
TBD
%
EM2 or EM3
TBD
-
TBD
%
Output within 1% of steady state
value
-
5
TBD
µs
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
-
5
-
µs
Step value is changed
-
1
-
µs
Current consumption on
2
AVDD in continuous mode
Source mode, excluding output
current
-
9.2
-
µA
Sink mode, excluding output current
-
12.3
-
µA
RANGESEL1=0, output voltage =
3
max(V(IOVDD), V(AVDD) -100 m
v)
-
TBD
-
%
RANGESEL1=1, output voltage =
max(V(IOVDD), V(AVDD)3-100 m
V)
-
TBD
-
%
RANGESEL1=2, output voltage =
max(V(IOVDD), V(AVDD)3-150 m
V)
-
TBD
-
%
RANGESEL1=3, output voltage =
max(V(IOVDD), V(AVDD)3-250 m
V)
-
TBD
-
%
C
Min
NIDAC_STEPS
Step size
SSIDAC
1
f
on
Linear steps within each
range
Test Condition
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
tIDAC_SU
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
l
ia
silabs.com | Smart. Connected. Energy-friendly.
t
en
IIDAC
id
Start up time
Preliminary Rev. 0.71 | 39
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Output voltage compliance in ICOMP_SINK
source mode, sink current
change relative to current
sunk at IOVDD
Test Condition
Min
Typ
Max
Unit
RANGESEL1=0, output voltage =
100 mV
-
TBD
-
%
RANGESEL1=1, output voltage =
100 mV
-
TBD
-
%
RANGESEL1=2, output voltage =
150 mV
-
TBD
-
%
RANGESEL1=3, output voltage =
250 mV
-
TBD
-
%
C
Note:
1. In IDAC_CURPROG register
2. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
3. Voltage reference AVDD switches to DVDD when ANASW=1 in EMU_PWRCTRL
f
on
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 40
EFR32MG1X232 Data Sheet
Electrical Characteristics
4.17 Analog Comparator (ACMP)
Table 4.28. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
CMPVDD =
1
ACMPn_CTRL_PWRSEL
Active current not including
voltage reference
IACMP
C
Current consumption of inter- IACMPREF
nal voltage reference,
Typ
Max
Unit
0
-
CMPVDD
V
BIASPROG = 1, FULLBIAS2 = 0
-
50
-
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
-
370
TBD
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
-
65
TBD
µA
VLP selected as input using 2.5V
Reference / 4 (0.625V)
-
50
-
nA
VLP selected as input using VDD
-
20
-
nA
VBDIV selected as input using
1.25 V reference / 1
-
3
-
µA
VADIV selected as input using
VDD/1
-
2
-
µA
HYSTSEL = HYST0
3
-
0
TBD
mV
HYSTSEL3 = HYST1
-
14
-
mV
HYSTSEL3 = HYST2
-
25
-
mV
HYSTSEL3 = HYST3
-
30
-
mV
HYSTSEL3 = HYST4
-
35
-
mV
HYSTSEL3 = HYST5
-
39
-
mV
HYSTSEL3 = HYST6
-
42
-
mV
HYSTSEL3 = HYST7
-
45
-
mV
BIASPROG2 = 1, FULLBIAS2 = 0
-
30
-
µs
BIASPROG2 = 0x10, FULLBIAS2
=04
-
3.7
-
µs
BIASPROG2 = 0x20, FULLBIAS2
=14
-
35
-
ns
BIASPROG2 =0x07, FULLBIAS2
=14
-
TBD
-
-
2
f
on
Hysteresis
Min
VACMPHYST
tACMPDELAY
4
tACMPREF
Offset voltage
VACMPOFFSET
µs
ia
Startup time of reference
generator
t
en
id
Comparator delay
TBD
mV
l
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 41
EFR32MG1X232 Data Sheet
Electrical Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Reference Voltage
VACMPREF
Single ended, internal 1.25 V reference
TBD
1.25
TBD
V
Single ended, internal 2.5 V reference
TBD
2.5
TBD
V
Differential, internal 1.25 V reference
TBD
1.25
TBD
V
Differential, internal 2.5 V reference
TBD
2.5
TBD
V
CSRESSEL = 0
-
inf
-
kΩ
CSRESSEL5 = 1
-
12
-
kΩ
CSRESSEL5 = 2
-
24
-
kΩ
CSRESSEL5 = 3
-
36
-
kΩ
CSRESSEL5 = 4
-
48
-
kΩ
CSRESSEL5 = 5
-
92
-
kΩ
CSRESSEL5 = 6
-
148
-
kΩ
CSRESSEL5 = 7
-
215
-
kΩ
RCSRES
C
Capacitive Sense Internal
Resistance
5
f
on
id
Note:
1. CMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ± 100 mV differential
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPREF is zero if an external voltage reference is used.
l
ia
t
en
IACMPTOTAL = IACMP + IACMPREF
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 42
EFR32MG1X232 Data Sheet
Application Circuits
5. Application Circuits
C
f
on
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 43
EFR32MG1X232 Data Sheet
Application Circuits
5.1 Power Supplies
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
C0
C6
C7
C8
DVDD
AVDD
RFVDD
C1
VREGSW
C5
VREGVDD
C4
DECOUPLE
C3
IOVDD
C2
C9
C10
C
C9
PAVDD
X0
HFXTAL_N
LFXTAL_P
HFXTAL_P
LFXTAL_N
X1
f
on
Figure 5.1. EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
id
C0
C1
HFXTAL_N
HFXTAL_P
C8
L0
C9
VREGSW
C7
AVDD
FB2
C10
C11
t
en
C9
X0
RFVDD
C6
VREGVDD
FB1
C5
DVDD
C4
IOVDD
C3
DECOUPLE
C2
LFXTAL_P
PAVDD
X1
LFXTAL_N
Figure 5.2. EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC)
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 44
EFR32MG1X232 Data Sheet
Application Circuits
VDD
C0
C1
RFVDD
C7
L0
C8
C9
VREGSW
C6
VREGVDD
FB1
C5
DVDD
C4
DECOUPLE
C3
IOVDD
C2
AVDD
C10
C11
C9
PAVDD
X0
HFXTAL_N
LFXTAL_P
HFXTAL_P
LFXTAL_N
X1
C
Figure 5.3. EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD)
f
on
5.2 RF Matching Networks
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 45 for applications in the 2.4GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
id
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
L0
2G4RF_IOP
2G4RF_ION
PAVDD
50Ω
C0
L0
L1
t
en
PAVDD
PAVDD
50Ω
2G4RF_IOP
2G4RF_ION
C0
C1
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 45
EFR32MG1X232 Data Sheet
Pinout and Package
6. Pinout and Package
6.1 Pinout
The EFR32MG1X232 pinout, including selected functionality, is shown in Figure 6.1 EFR32MG1X232 Pinout (top view, not to scale) on
page 46.
Figure 6.1. EFR32MG1X232 Pinout (top view, not to scale)
C
QFN48 Pin# and
Name
Pin Name
0
VSSIO_0_0
PF0
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
#0 BOOT_TX
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
GroundIO_0_0
t
en
PF1
Analog
id
2
Pin Alternate Functionality / Description
f
on
Pin
#
1
Table 6.1. Device Pinout
l
ia
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
#0 BOOT_RX
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 46
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PF2
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO #0
DBG_SWO #0
GPIO_EM4WU0
BUSAY BUSBX
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI #0
BUSBY BUSAX
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28
LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT #26
MODEM_ANT0 #25
MODEM_ANT1 #24
C
3
Pin Name
Pin Alternate Functionality / Description
f
on
4
PF3
PF4
t
en
id
5
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 47
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PF5
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29
LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT #27
MODEM_ANT0 #26
MODEM_ANT1 #25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
BUSBY BUSAX
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30
LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT #28
MODEM_ANT0 #27
MODEM_ANT1 #26
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31
LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT #29
MODEM_ANT0 #28
MODEM_ANT1 #27
C
6
Pin Name
Pin Alternate Functionality / Description
f
on
7
PF6
9
RFVDD
Radio power supply
10
HFXTAL_N
High Frequency Crystal input pin.
11
HFXTAL_P
High Frequency Crystal output pin.
12
RESETn
13
NC
l
BUSAY BUSBX
ia
PF7
t
en
id
8
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
No Connect.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 48
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin Alternate Functionality / Description
Pin
#
Pin Name
14
RFVSS
Radio Ground
15
PAVSS
Power Amplifier (PA) voltage regulator VSS
16
2G4RF_ION
2.4 GHz Differential RF input/output, negative path.
17
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
18
PAVDD
Power Amplifier (PA) voltage regulator VDD input
Analog
C
PD11
CMU_CLK1 #4
PRS_CH3 #9
PRS_CH4 #1
PRS_CH5 #0
PRS_CH6 #12
ACMP0_O #18
ACMP1_O #18
BUSDY BUSCX
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18
LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18
US0_RX #17
US0_CLK #16
US0_CS #15
US0_CTS #14
US0_RTS #13
US1_TX #18
US1_RX #17
US1_CLK #16
US1_CS #15
US1_CTS #14
US1_RTS #13
LEU0_TX #18
LEU0_RX #17
I2C0_SDA #18
I2C0_SCL #17
FRC_DCLK #18
FRC_DOUT #17
FRC_DFRAME #16
MODEM_DCLK #18
MODEM_DIN #17
MODEM_DOUT #16
MODEM_ANT0 #15
MODEM_ANT1 #14
BUSCY BUSDX
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19
LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19
US0_RX #18
US0_CLK #17
US0_CS #16
US0_CTS #15
US0_RTS #14
US1_TX #19
US1_RX #18
US1_CLK #17
US1_CS #16
US1_CTS #15
US1_RTS #14
LEU0_TX #19
LEU0_RX #18
I2C0_SDA #19
I2C0_SCL #18
FRC_DCLK #19
FRC_DOUT #18
FRC_DFRAME #17
MODEM_DCLK #19
MODEM_DIN #18
MODEM_DOUT #17
MODEM_ANT0 #16
MODEM_ANT1 #15
PRS_CH3 #10
PRS_CH4 #2
PRS_CH5 #1
PRS_CH6 #13
ACMP0_O #19
ACMP1_O #19
BUSDY BUSCX
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20
LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20
US0_RX #19
US0_CLK #18
US0_CS #17
US0_CTS #16
US0_RTS #15
US1_TX #20
US1_RX #19
US1_CLK #18
US1_CS #17
US1_CTS #16
US1_RTS #15
LEU0_TX #20
LEU0_RX #19
I2C0_SDA #20
I2C0_SCL #19
FRC_DCLK #20
FRC_DOUT #19
FRC_DFRAME #18
MODEM_DCLK #20
MODEM_DIN #19
MODEM_DOUT #18
MODEM_ANT0 #17
MODEM_ANT1 #16
PRS_CH3 #11
PRS_CH4 #3
PRS_CH5 #2
PRS_CH6 #14
ACMP0_O #20
ACMP1_O #20
l
silabs.com | Smart. Connected. Energy-friendly.
ia
PD12
Other
t
en
21
PD10
Radio
id
20
Communication
f
on
19
Timers
Preliminary Rev. 0.71 | 49
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PD13
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
MODEM_ANT0 #18
MODEM_ANT1 #17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
BUSDY BUSCX
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
MODEM_ANT0 #19
MODEM_ANT1 #18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
BUSCY BUSDX
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
MODEM_ANT0 #20
MODEM_ANT1 #19
C
22
Pin Name
Pin Alternate Functionality / Description
f
on
23
PD14
PD15
t
en
id
24
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 50
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PA0
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
ADC0_EXTN
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
BUSCY BUSDX
ADC0_EXTP
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
BUSDY BUSCX
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2
US0_RX #1
US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2
US1_RX #1
US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
MODEM_ANT0 #31
MODEM_ANT1 #30
C
25
Pin Name
Pin Alternate Functionality / Description
f
on
26
PA1
PA2
t
en
id
27
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 51
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PA3
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3
US0_RX #2
US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3
US1_RX #2
US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
MODEM_ANT0 #0
MODEM_ANT1 #31
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
GPIO_EM4WU8
BUSDY BUSCX
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4
US0_RX #3
US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4
US1_RX #3
US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
MODEM_ANT0 #1
MODEM_ANT1 #0
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
BUSCY BUSDX
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5
US0_RX #4
US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5
US1_RX #4
US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
MODEM_ANT0 #2
MODEM_ANT1 #1
C
28
Pin Name
Pin Alternate Functionality / Description
f
on
29
PA4
PA5
t
en
id
30
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 52
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PB11
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
BUSDY BUSCX
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
C
31
Pin Name
Pin Alternate Functionality / Description
f
on
32
PB12
BUSCY BUSDX
34
AVDD
Analog power supply.
l
ia
PB13
t
en
id
33
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 53
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PB14
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
LFXTAL_N
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
C
35
Pin Name
Pin Alternate Functionality / Description
f
on
PB15
BUSCY BUSDX
LFXTAL_P
37
VREGVSS
Voltage regulator VSS
38
VREGSW
DCDC regulator switching node
39
VREGVDD
Voltage regulator VDD input
40
DVDD
41
DECOUPLE
42
IOVDD
t
en
Digital power supply.
id
36
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this
pin.
Digital IO power supply.
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 54
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PC6
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
BUSAY BUSBX
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT #10
MODEM_ANT0 #9
MODEM_ANT1 #8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
BUSBY BUSAX
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT #11
MODEM_ANT0 #10
MODEM_ANT1 #9
C
43
Pin Name
Pin Alternate Functionality / Description
f
on
44
PC7
PC8
t
en
id
45
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 55
EFR32MG1X232 Data Sheet
Pinout and Package
QFN48 Pin# and
Name
Pin
#
PC9
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT #12
MODEM_ANT0 #11
MODEM_ANT1 #10
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
C
46
Pin Name
Pin Alternate Functionality / Description
f
on
47
PC10
PC11
t
en
id
48
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
l
ia
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 56
EFR32MG1X232 Data Sheet
Pinout and Package
6.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is
shown in the column corresponding to LOCATION 0.
Table 6.2. Alternate functionality overview
Alternate
LOCATION
C
Functionality
0-3
0: PA0
1: PA1
2: PA2
3: PA3
ACMP0_O
ADC0_EXTN
12 - 15
16 - 19
20 - 23
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
18: PD10
19: PD11
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24 - 27
28 - 31
Description
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP0, digital output.
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP1, digital output.
0: PA0
Analog to digital
converter ADC0 external reference input negative pin
0: PA1
Analog to digital
converter ADC0 external reference input positive pin
0: PF1
BOOT_RX
0: PF0
BOOT_TX
Bootloader RX
t
en
id
ADC0_EXTP
4: PA4
5: PA5
6: PB11
7: PB12
8 - 11
f
on
ACMP1_O
4-7
Bootloader TX
5: PD14
6: PF2
7: PF7
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
4: PD10
5: PD15
6: PF3
7: PF6
0: PF0
DBG_SWCLKTCK
Clock Management
Unit, clock output
number 0.
Clock Management
Unit, clock output
number 1.
ia
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
l
Note that this function is enabled to
pin out of reset,
and has a built-in
pull down.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 57
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
0: PF1
DBG_SWDIOTMS
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
C
Debug-interface
Serial Wire viewer
Output.
0: PF2
1: PB13
2: PD15
3: PC11
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
f
on
DBG_SWO
Debug-interface
JTAG Test Data In.
0: PF3
DBG_TDI
Description
id
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
0: PF2
DBG_TDO
12: PC7
13: PC8
14: PC9
15: PC10
FRC_DFRAME
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
FRC_DOUT
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
GPIO_EM4WU1
silabs.com | Smart. Connected. Energy-friendly.
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Frame Controller,
Data Sniffer Clock.
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Frame Controller,
Data Sniffer Frame
active
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Frame Controller,
Data Sniffer Output.
Pin can be used to
wake the system
up from EM4
l
0: PF7
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
ia
8: PB13
9: PB14
10: PB15
11: PC6
GPIO_EM4WU0
Note that this function is enabled to
pin out of reset.
t
en
4: PA4
5: PA5
6: PB11
7: PB12
16: PC11
FRC_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
0: PF2
Debug-interface
JTAG Test Data
Out.
Pin can be used to
wake the system
up from EM4
Preliminary Rev. 0.71 | 58
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PD14
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU4
0: PA3
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU8
0: PB13
C
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU9
0: PC10
Pin can be used to
wake the system
up from EM4
f
on
GPIO_EM4WU12
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
LETIM0_OUT0
0: PA0
1: PA1
2: PA2
3: PA3
LETIM0_OUT1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
LEU0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
LEU0_TX
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
I2C0_SCL
I2C0_SDA
Description
silabs.com | Smart. Connected. Energy-friendly.
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
I2C0 Serial Data input / output.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Low Energy Timer
LETIM0, output
channel 0.
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Low Energy Timer
LETIM0, output
channel 1.
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
LEUART0 Receive
input.
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
18: PD10
19: PD11
16: PC11
18: PD10
19: PD11
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
l
LFXTAL_P
I2C0 Serial Clock
Line input / output.
ia
0: PB15
28: PF5
29: PF6
30: PF7
31: PA0
t
en
LFXTAL_N
24: PF1
25: PF2
26: PF3
27: PF4
id
0: PB14
20: PD13
21: PD14
22: PD15
23: PF0
17: PD10
18: PD11
19: PD12
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
Preliminary Rev. 0.71 | 59
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
LOCATION
Functionality
12 - 15
16 - 19
20 - 23
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
MODEM antenna
control output 0,
used for antenna
diversity.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
MODEM antenna
control output 1,
used for antenna
diversity.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
MODEM_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
MODEM data clock
out.
MODEM_DIN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
MODEM data in.
MODEM_DOUT
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
MODEM data out.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
PCNT0_S0IN
0: PA0
1: PA1
2: PA2
3: PA3
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Pulse Counter
PCNT0 input number 0.
PCNT0_S1IN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Pulse Counter
PCNT0 input number 1.
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
4: PF4
5: PF5
6: PF6
7: PF7
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
4: PF5
5: PF6
6: PF7
7: PF0
PRS_CH2
0: PF2
1: PF3
2: PF4
3: PF5
4: PF6
5: PF7
6: PF0
7: PF1
PRS_CH3
0: PF3
1: PF4
2: PF5
3: PF6
4: PF7
5: PF0
6: PF1
7: PF2
MODEM_ANT0
MODEM_ANT1
0-3
4-7
8 - 11
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
0: PA4
1: PA5
2: PB11
3: PB12
C
silabs.com | Smart. Connected. Energy-friendly.
Peripheral Reflex
System PRS, channel 0.
Peripheral Reflex
System PRS, channel 1.
Peripheral Reflex
System PRS, channel 2.
9: PD10
10: PD11
11: PD12
12: PD13
13: PD14
14: PD15
Peripheral Reflex
System PRS, channel 3.
Peripheral Reflex
System PRS, channel 4.
l
4: PD14
5: PD15
Description
ia
0: PD10
1: PD11
2: PD12
3: PD13
4: PD13
5: PD14
6: PD15
17: PD10
18: PD11
19: PD12
28 - 31
t
en
1: PD10
2: PD11
3: PD12
18: PD10
19: PD11
id
PRS_CH5
14: PD10
15: PD11
f
on
PRS_CH4
15: PD10
24 - 27
Peripheral Reflex
System PRS, channel 5.
Preliminary Rev. 0.71 | 60
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
PRS_CH7
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PA0
PRS_CH8
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PA0
10: PA1
PRS_CH9
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
10: PA2
11: PC6
0: PC6
1: PC7
2: PC8
3: PC9
4: PC10
5: PC11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
TIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
TIM0_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
TIM0_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
TIM0_CDTI0
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
TIM0_CDTI1
0: PA4
1: PA5
2: PB11
3: PB12
C
PRS_CH6
0: PA0
1: PA1
2: PA2
3: PA3
PRS_CH11
24 - 27
28 - 31
Description
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Peripheral Reflex
System PRS, channel 8.
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
f
on
PRS_CH10
20 - 23
Peripheral Reflex
System PRS, channel 10.
Peripheral Reflex
System PRS, channel 11.
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 0 Capture
Compare input /
output channel 0.
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 0 Capture
Compare input /
output channel 1.
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 0 Capture
Compare input /
output channel 2.
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 0 Complimentary Deat Time
Insertion channel 0.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
Timer 0 Complimentary Deat Time
Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
Timer 0 Complimentary Deat Time
Insertion channel 2.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
TIM1_CC0
0: PA0
1: PA1
2: PA2
3: PA3
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 1 Capture
Compare input /
output channel 0.
15: PD10
l
18: PD10
19: PD11
ia
t
en
id
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
silabs.com | Smart. Connected. Energy-friendly.
16: PC11
Peripheral Reflex
System PRS, channel 9.
Preliminary Rev. 0.71 | 61
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
16 - 19
20 - 23
TIM1_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 1 Capture
Compare input /
output channel 1.
TIM1_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 2.
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 1 Capture
Compare input /
output channel 3.
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART0 clock input / output.
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART0 chip select input / output.
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART0 clear to
send hardware flow
control input.
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART0 request to
send hardware flow
control output.
C
12 - 15
TIM1_CC3
US0_CS
US0_CTS
4: PA5
5: PB11
6: PB12
7: PB13
14: PD10
15: PD11
8: PB14
9: PB15
10: PC6
11: PC7
13: PD10
14: PD11
15: PD12
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
28: PF5
29: PF6
30: PF7
31: PA0
USART0 Asynchronous Receive.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
US1_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
US1_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
USART0 Asynchronous Transmit.Also
used as receive input in half duplex
communication.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART1 clock input / output.
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART1 chip select input / output.
15: PD10
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
l
4: PA4
5: PA5
6: PB11
7: PB12
silabs.com | Smart. Connected. Energy-friendly.
24: PF1
25: PF2
26: PF3
27: PF4
Description
ia
0: PA0
1: PA1
2: PA2
3: PA3
US0_TX
20: PD13
21: PD14
22: PD15
23: PF0
28 - 31
t
en
US0_RX
0: PA1
1: PA2
2: PA3
3: PA4
15: PD10
id
US0_RTS
f
on
US0_CLK
15: PD10
24 - 27
Preliminary Rev. 0.71 | 62
EFR32MG1X232 Data Sheet
Pinout and Package
Alternate
LOCATION
Functionality
0-3
4-7
8 - 11
12 - 15
16 - 19
US1_CTS
0: PA4
1: PA5
2: PB11
3: PB12
US1_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART1 clear to
send hardware flow
control input.
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART1 request to
send hardware flow
control output.
C
0: PA1
1: PA2
2: PA3
3: PA4
US1_RX
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
17: PD10
18: PD11
19: PD12
f
on
US1_TX
4: PA5
5: PB11
6: PB12
7: PB13
20 - 23
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
18: PD10
19: PD11
28 - 31
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Description
USART1 Asynchronous Receive.
USART1 Synchronous mode Master
Input / Slave Output (MISO).
USART1 Asynchronous Transmit.Also
used as receive input in half duplex
communication.
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
id
6.3 GPIO Pinout Overview
12: PC7
13: PC8
14: PC9
15: PC10
24 - 27
The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port is indicated by a
number from 15 down to 0.
Table 6.3. GPIO Pinout
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
Port B
Port C
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
-
PC11 PC10
(5V) (5V)
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
-
-
-
PA5
(5V)
PA4
(5V)
PA3
(5V)
PA2
(5V)
PA1
PA0
-
-
-
-
-
-
-
-
-
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Port E
-
-
-
-
-
-
-
-
-
-
-
-
Port F
-
-
-
-
-
-
-
-
PF7
(5V)
PF6
(5V)
PF5
(5V)
PF4
(5V)
l
ia
Port D
PB15 PB14
t
en
Port
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 63
EFR32MG1X232 Data Sheet
Pinout and Package
6.4 Analog Port (APORT)
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
and DACs. The APORT consists of wires, switches, and control needed to configurably implement the routes. Please see EFR32 Reference Manual for complete description.
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
C
BUSBY
f
on
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
BUSBX
id
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
t
en
BUSDY
BUSCY
ia
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
BUSDX
l
1X1Y2X2Y3X3Y4X4Y
ACMP0
1X1Y2X2Y3X3Y4X4Y
ACMP1
1X1Y2X2Y3X3Y4X4Y
ADC0
1X1Y
IDAC0
Figure 6.2. EFR32MG1X232 APORT
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 64
EFR32MG1X232 Data Sheet
Pinout and Package
Table 6.4. APORT Client Map
Analog Module
ACMP0
Analog Module Channel
APORT1XCH6
Shared Bus
BUSAX
Pin
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
C
APORT1XCH20
PF4
APORT1XCH22
PF6
APORT1YCH7
BUSAY
PC7
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
f
on
APORT1YCH9
APORT2XCH7
BUSBX
APORT2XCH9
APORT2XCH17
APORT2XCH19
APORT2XCH21
APORT2YCH6
APORT2YCH8
APORT2YCH10
APORT2YCH16
APORT2YCH18
APORT2YCH20
APORT3XCH2
PC11
PF1
PF3
PF5
PF7
BUSBY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSCX
ia
APORT2YCH22
PC9
t
en
APORT2XCH23
id
APORT2XCH11
PC7
PD10
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH3
silabs.com | Smart. Connected. Energy-friendly.
APORT3YCH5
BUSCY
PD11
PD13
l
APORT3XCH4
Preliminary Rev. 0.71 | 65
EFR32MG1X232 Data Sheet
Pinout and Package
Analog Module
ACMP1
Analog Module Channel
APORT1XCH6
Shared Bus
BUSAX
Pin
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1XCH20
PF4
APORT1XCH22
PF6
C
APORT1YCH7
BUSAY
PC7
APORT1YCH9
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
f
on
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
APORT2XCH7
BUSBX
PC7
APORT2XCH9
PC9
APORT2XCH11
PC11
APORT2XCH17
PF1
APORT2XCH21
APORT2XCH23
APORT2YCH6
APORT2YCH10
APORT2YCH16
APORT2YCH18
APORT2YCH20
APORT2YCH22
APORT3XCH2
PF5
PF7
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSCX
PD10
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH3
BUSCY
PD11
APORT3YCH5
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
silabs.com | Smart. Connected. Energy-friendly.
l
ia
APORT3XCH4
BUSBY
PF3
t
en
APORT2YCH8
id
APORT2XCH19
Preliminary Rev. 0.71 | 66
EFR32MG1X232 Data Sheet
Pinout and Package
Analog Module
ADC0
Analog Module Channel
APORT1XCH6
Shared Bus
BUSAX
Pin
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1XCH20
PF4
APORT1XCH22
PF6
C
APORT1YCH7
BUSAY
PC7
APORT1YCH9
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
f
on
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
APORT2XCH7
BUSBX
PC7
APORT2XCH9
PC9
APORT2XCH11
PC11
APORT2XCH17
PF1
APORT2XCH21
APORT2XCH23
APORT2YCH6
APORT2YCH10
APORT2YCH16
APORT2YCH18
APORT2YCH20
APORT2YCH22
APORT3XCH2
PF5
PF7
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSCX
PD10
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH3
BUSCY
PD11
APORT3YCH5
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
silabs.com | Smart. Connected. Energy-friendly.
l
ia
APORT3XCH4
BUSBY
PF3
t
en
APORT2YCH8
id
APORT2XCH19
Preliminary Rev. 0.71 | 67
EFR32MG1X232 Data Sheet
Pinout and Package
Analog Module
IDAC0
Analog Module Channel
APORT1XCH2
Shared Bus
BUSCX
Pin
PD10
APORT1XCH4
PD12
APORT1XCH6
PD14
APORT1XCH8
PA0
APORT1XCH10
PA2
APORT1XCH12
PA4
APORT1XCH28
PB12
C
APORT1XCH30
APORT1YCH3
PB14
BUSCY
PD11
APORT1YCH5
PD13
APORT1YCH7
PD15
f
on
APORT1YCH9
PA1
APORT1YCH11
PA3
APORT1YCH13
PA5
APORT1YCH27
PB11
APORT1YCH29
PB13
APORT1YCH31
PB15
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 68
EFR32MG1X232 Data Sheet
Pinout and Package
6.5 QFN48 Package Dimensions
C
f
on
t
en
id
Figure 6.3. QFN48 Package Drawing
Min
Typ
A
0.80
0.85
A1
0.00
0.02
A3
Max
0.90
0.05
0.20 REF
b
0.18
0.25
0.30
D
6.90
7.00
7.10
silabs.com | Smart. Connected. Energy-friendly.
l
Dimension
ia
Table 6.5. QFN48 Package Dimensions
Preliminary Rev. 0.71 | 69
EFR32MG1X232 Data Sheet
Pinout and Package
Dimension
Min
Typ
Max
E
6.90
7.00
7.10
D2
4.60
4.70
4.80
E2
4.60
4.70
4.80
e
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
C
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
fff
f
on
eee
0.08
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 70
EFR32MG1X232 Data Sheet
Pinout and Package
6.6 QFN48 PCB Land Pattern
C
f
on
t
en
id
Figure 6.4. QFN48 PCB Land Pattern Drawing
Table 6.6. QFN48 PCB Land Pattern Dimensions
S1
6.01
S
6.01
L1
4.70
W1
4.70
e
0.50
W
0.26
silabs.com | Smart. Connected. Energy-friendly.
l
Typ
ia
Dimension
Preliminary Rev. 0.71 | 71
EFR32MG1X232 Data Sheet
Pinout and Package
Dimension
Typ
L
0.86
C
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
f
on
6.7 QFN48 Package Marking
t
en
id
EFR32
PPPPPPPPP
YYWWTTTTTT#
Figure 6.5. QFN48 Package Marking
l
ia
The package marking consists of:
• PPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• # - The firmware revision.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 72
EFR32MG1X232 Data Sheet
Revision History
7. Revision History
7.1 Revision 0.71
2015-09-08
C
Revisions specific to Mighty Gecko
• Front Page: Key Features
• Section 1. Features. Modulation Formats Supported, 2.4GHz-only devices
• Section 3.3.4 Receiver Architecture
• Section 3.3.8 Flexible Frame Handling
• Section 3.3.17 Integrated Voltage Regulators
• Section 4. Electrical Characteristics. Table column ordering.
• Section 4.10 RFSENSE. Correct unit.
7.2 Revision 0.7
f
on
2015-08-31
7.3 Revision 0.63
2015-07-07
Section 1. Features. correct Ultra Low Energy Timer/Counter bit width.
Section 2. Ordering information : revisions of Max TX power according to part number.
ia
t
en
id
Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections
• Section 2: Ordering Information
• Section 3.3.4: Receiver Architecture
• Section 3.3.5: Transmitter Architecture
• Section 4: Electrical Characteristics
• Section 4.3.1: General Operating Conditions
• Section 4.4: DC-DC Converter
• Section 4.5: Current Consumption
• Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band
• Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band
• Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band
• Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band
• Section 4.11.1: LFXO
• Section 4.11.2: HFXO
• Section 4.12: GPIO
• Section 4.13: VMON
• Section 4.14: ADC
• Section 4.15: IDAC
• Section 4.16: Analog Comparator
• Section 5: Application Circuits
• Section 6.5: QFNxx Package
• Section 6.7: QFNxx Package Marking
Section 3. System Summary: clarify Crypto options. Revise text desribing Transmitter Architecture and Flexible Frame Handling.
l
Section 4. Electrical Characteristics: revise RF performance specification tables.
7.4 Revision 0.62
2015-06-18
Revise current consumption table format.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 73
EFR32MG1X232 Data Sheet
Abbreviations
8. Abbreviations
Table 8.1 Abbreviations on page 74 lists abbreviations used in this document.
Table 8.1. Abbreviations
Abbreviation
Description
ACP
Adjacent Channel Power
ACS
Adjacent Channel Selectivity
ADC
Analog to Digital Converter
C
AGC
Automatic Gain Control
ASK
Amplitude-Shift Keying
BALUN
BALanced UNbalanced (differential to single ended conversion)
BPSK
Binary Phase-Shift Keying
CMU
CRC
CSP
CSMA-CA
DAC
DMA
f
on
BT
Bandwidth Time
Clock Management Unit
Cyclic Redundancy Check
Channel Separation
Carrier Sense Multiple Access - Collision Avoidance
Digital to Analog Converter
Direct Memory Access
Elliptic Curve Cryptography
EFR
Energy Friendly Radio
EMU
Energy Management Unit
EM
Energy Mode
ESD
Electrostatic Discharge
ESR
Equivalent Series Resistance
FEC
Forward Error Correction
FPU
Floating Point Unit
FRC
Frame Controller
FSK
Frequency-Shift Keying
GCM
Galois Counter Mode
GFSK
Gaussian Frequency-Shift Keying
IF
Intermediate Frequency
LBT
Listen Before Talk
LNA
Low Noise Amplifier
LO
Local Oscillator
MSC
Memory System Controller
MSK
Minimum-Shift Keying
silabs.com | Smart. Connected. Energy-friendly.
l
ECC
ia
Direct Sequence Spread Spectrum
t
en
id
DSSS
Preliminary Rev. 0.71 | 74
EFR32MG1X232 Data Sheet
Abbreviations
Abbreviation
Description
OOK
On-Off Keying
O-QPSK
Offset Quadrature Phase-Shift Keying
PA
Power Amplifier
PRS
Peripheral Reflex System
PSK
Phase-Shift Keying
PWM
Pulse-Width Modulation
RF
Radio Frequency
C
RMU
Reset Management Unit
RSSI
Received Signal Strength Indicator
RTCC
Real Time Counter and Calendar
SPI
Serial Peripheral Interface
TCXO
f
on
SRI
Simplified Radio Interface
Temperature Compensated Crystal Oscillator
l
ia
t
en
id
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.71 | 75
Table of Contents
1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
3.2 Block Diagram.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
3.3 System Description . . . . . . . . . . . . . . . . . . .
3.3.1 Antenna interface . . . . . . . . . . . . . . . . . . .
3.3.2 Integrated Oscillators . . . . . . . . . . . . . . . . . .
3.3.3 Fractional-N Frequency Synthesizer. . . . . . . . . . . . .
3.3.4 Receiver Architecture. . . . . . . . . . . . . . . . . .
3.3.5 Transmitter Architecture . . . . . . . . . . . . . . . . .
3.3.6 Wake on Radio . . . . . . . . . . . . . . . . . . . .
3.3.7 RFSENSE . . . . . . . . . . . . . . . . . . . . .
3.3.8 Flexible Frame Handling. . . . . . . . . . . . . . . . .
3.3.9 Packet and State Trace . . . . . . . . . . . . . . . . .
3.3.10 Data Buffering. . . . . . . . . . . . . . . . . . . .
3.3.11 Radio Controller (RAC) . . . . . . . . . . . . . . . . .
3.3.12 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . .
3.3.13 True Random Number Generator . . . . . . . . . . . . .
3.3.14 System Processor . . . . . . . . . . . . . . . . . .
3.3.15 Memory System Controller (MSC) . . . . . . . . . . . . .
3.3.16 Linked Direct Memory Access Controller (LDMA) . . . . . . . .
3.3.17 Integrated Voltage Regulators . . . . . . . . . . . . . .
3.3.18 Reset Management Unit (RMU) . . . . . . . . . . . . . .
3.3.19 Energy Management Unit (EMU) . . . . . . . . . . . . .
3.3.20 Clock Management Unit (CMU) . . . . . . . . . . . . . .
3.3.21 Watchdog (WDOG) . . . . . . . . . . . . . . . . . .
3.3.22 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.3.23 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.3.24 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.3.25 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.3.26 Protocol Timer (PROTIMER) . . . . . . . . . . . . . . .
3.3.27 Timer/Counter (TIMER) . . . . . . . . . . . . . . . .
3.3.28 Real Time Counter and Calendar (RTCC) . . . . . . . . . .
3.3.29 Low Energy Timer (LETIMERTM) . . . . . . . . . . . . .
3.3.30 Ultra Low Power Wake-up Timer (CRYOTIMER) . . . . . . . .
3.3.31 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . .
3.3.32 General Purpose Input/Output (GPIO) . . . . . . . . . . .
3.3.33 Analog Port (APORT) . . . . . . . . . . . . . . . . .
3.3.34 Analog Comparator (ACMP) . . . . . . . . . . . . . . .
3.3.35 Analog to Digital Converter (ADC) . . . . . . . . . . . . .
3.3.36 Digital to Analog Current Converter (IDAC) . . . . . . . . . .
3.3.37 Integrated DC-DC Converter (DC-DC) . . . . . . . . . . .
3.3.37.1 DC-DC Converter Powertrain . . . . . . . . . . . . . .
3.3.37.2 DC-DC Converter Low Noise (LN) Controller . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 3
. 4
. 4
. 4
. 5
. 5
. 5
. 6
. 6
. 6
. 6
. 6
. 7
. 7
. 7
. 7
. 7
. 7
. 7
. 7
. 8
. 8
. 8
. 8
. 8
. 8
. 8
. 8
. 9
. 9
. 9
. 9
. 9
. 9
. 9
. 9
.10
.11
.11
Table of Contents
76
3.3.37.3 DC-DC Converter Low Power (LP) Controller
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.4 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.5 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .
13
.
.
.
4.1 Test Conditions . . . . . . .
4.1.1 Typical Values . . . . . . .
4.1.2 Minimum and Maximum Values .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
.13
.13
4.2 Absolute Maximum Ratings .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
4.3 Operating Conditions . . . .
4.3.1 General Operating Conditions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
4.4 DC-DC Converter . . . . . . . . . . . . . .
4.4.1 DC-DC Converter Typical Performance Characteristics .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
.17
4.5 Current Consumption . . . . . . . . . . . .
4.5.1 Current Consumption 1.8 V without DC-DC Converter.
4.5.2 Current Consumption 3.3 V without DC-DC Converter.
4.5.3 Current Consumption 3.3 V using DC-DC Converter .
4.5.4 Current Consumption Using Radio . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
.18
.19
.20
.21
4.6 Wake up times
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.22
4.7 Brown Out Detector .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.23
4.8 Frequency Synthesizer Characteristics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.23
4.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . .
4.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . .
4.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . .
4.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . .
4.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . .
4.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
4.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.23
.24
.24
.25
.26
.28
.29
4.10 RFSENSE
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.30
4.11 Modem Features
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.30
4.12 Oscillators. . . . . . .
4.12.1 LFXO . . . . . . .
4.12.2 HFXO . . . . . . .
4.12.3 LFRCO . . . . . . .
4.12.4 HFRCO and AUXHFRCO .
4.12.5 ULFRCO . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.31
.31
.32
.32
.33
.34
4.13 GPIO .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.35
4.14 VMON .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.36
4.15 ADC.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.37
4.16 IDAC
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.39
4.17 Analog Comparator (ACMP)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.41
5. Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
5.1 Power Supplies .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.44
Table of Contents
77
5.2 RF Matching Networks .
.
.45
6. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
6.1 Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.46
6.2 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.57
6.3 GPIO Pinout Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.63
6.4 Analog Port (APORT) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
6.5 QFN48 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.69
6.6 QFN48 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.71
6.7 QFN48 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.72
7. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
7.1 Revision 0.71 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
7.2 Revision 0.7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
7.3 Revision 0.63 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
7.4 Revision 0.62 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
8. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76
Table of Contents
78
Simplicity Studio
One-click access to MCU tools,
documentation, software, source
code libraries & more. Available
for Windows, Mac and Linux!
www.silabs.com/simplicity
MCU Portfolio
www.silabs.com/mcu
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com