0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EZR32HG220F64R63G-B0

EZR32HG220F64R63G-B0

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    VFQFN48_EP

  • 描述:

    IC RF TxRx + MCU 802.15.4 142MHz ~ 1.05GHz 48-VFQFN Exposed Pad

  • 数据手册
  • 价格&库存
EZR32HG220F64R63G-B0 数据手册
EZR32HG Wireless MCUs EZR32HG220 Data Sheet EZR32HG220 Wireless MCU family with ARM Cortex-M0+ CPU and sub-GHz Radio KEY FEATURES • Silicon Labs’ energy efficient 32-bit Wireless MCUs The EZR32HG Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high performance, low-energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit MCU, the EZR32HG family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale with 64/32 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the sub-GHz radio, result in a solution optimized for battery powered applications. • Based on ARM Cortex M0 CPU core with 64 kB of flash and 8 kB RAM • Best-in-class RF performance with EZradio and EZRadioPro transceivers • Ultra-low power wireless MCU • Low transmit and receive currents • Ultra-low power standby and sleep modes 32-Bit ARM Cortex wireless MCUs applications include the following: • Fast wake-up time • Alarm and security systems • Building and home automation • Energy, gas, water and smart metering • Health and fitness applications • Consumer electronics • Rich set of peripherals including 12-bit ADC and IDAC, multiple communication interfaces (UART, SPI, I2C), multiple GPIO and timers • AES Accelerator with 128-bit keys EZR32HG220 F64/F32 Energy Management Clock Management Core and Memory ARM Cortex™ M0+ processor Flash Program Memory RAM Memory Debug Interface w/ MTB Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES DMA Controller 32-bit bus Peripheral Reflex System I/O Ports Serial Interfaces Transceiver TX 18 mA @ +10 dBm 142-1050 MHz ASK, OOK G(FSK) 4(G)FSK RX 10 mA Preamble Sense 6.0 mA 1 Mbps SPI SPI Antenna Diversity 133 dBm sensitivity Low Energy UART™ silabs.com | Building a more connected world. USART 2 IC Timers and Triggers Analog Interfaces External Interrupts General Purpose I/O Timer/ Counter Real Time Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC Copyright © 2022 by Silicon Laboratories Rev. 1.4 EZR32HG220 Data Sheet Feature List 1. Feature List The HG highlighted features are listed below. MCU Features • ARM Cortex-M0+ CPU platform • Up to 25 MHz • 64/32 kB Flash w/8 kB RAM • Hardware AES with 128-bit keys • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.6 µA @ 3 V Stop Mode • 127 µA/MHz @ 3 V Run Mode • Timers/Counters • 3× Timer/Counter • 3×3 Compare/Capture/PWM channels • Real-Time Counter • 16/8-bit Pulse Counter • Watchdog Timer • Communication interfaces • 1× USART (UART/SPI) • 1× Low Energy UART • 1× I2C Interface with SMBus support • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s ADC • On-chip temperature sensor • Current Digital to Analog Converter • Up to 27 General Purpose I/O pins silabs.com | Building a more connected world. RF Features • Frequency Range • 142-1050 MHz • Modulation • (G)FSK, 4(G)FSK, (G)MSK, OOK • Receive sensitivity up to -133 dBm • Up to +20 dBm max output power • Low active power consumption • 10/13 mA RX • 18 mA TX at +10 dBm • 6 mA @ 1.2 kbps (Preamble Sense) • Data rate = 100 bps to 1 Mbps • Excellent selectivity performance • 69 dB adjacent channel • 79 dB blocking at 1 MHz • Antenna diversity and T/R switch control • Highly configurable packet handler • TX and RX 64 byte FIFOs • Automatic frequency control (AFC) • Automatic gain control (AGC) • IEEE 802.15.4g compliant System Features • • • • • Power-on Reset and Brown-Out Detector Debug Interface Temperature range -40 to 85 °C Single power supply 1.98 to 3.8 V QFN48 package Rev. 1.4 | 2 EZR32HG220 Data Sheet Ordering Information 2. Ordering Information The table below shows the available EZR32HG220 devices. Table 2.1. Ordering Information Ordering Radio Flash (kB) RAM (kB) Power Am- Max SensiSupply plifier tivity Voltage (V) (dBm) (dBm) Package Radio Chip Revision EZR32HG220FxxR55G-C0 EZRadio 32-64 8 +13 -116 1.98 - 3.8 QFN48 C EZR32HG220FxxR60G-C0 EZRadioPro 32-64 8 +13 -126 1.98 - 3.8 QFN48 C EZR32HG220FxxR61G-C0 EZRadioPro 32-64 8 +16 -126 1.98 - 3.8 QFN48 C EZR32HG220FxxR63G-C0 EZRadioPro 32-64 8 +20 -126 1.98 - 3.8 QFN48 C EZR32HG220FxxR67G-C0 EZRadioPro 32-64 8 +13 -133 1.98 - 3.8 QFN48 C EZR32HG220FxxR68G-C0 EZRadioPro 32-64 8 +20 -133 1.98 - 3.8 QFN48 C EZR32HG220FxxR69G-C0 EZRadioPro 32-64 8 +13 & 20 -133 1.98 - 3.8 QFN48 C Table 2.2. Flash Sizes Example Part Number Flash Size EZR32HG220F32R55G 32 kB EZR32HG220F64R55G 64 kB Note: Add an "(R)" at the end of the device part number to denote tape and reel option. Visit www.silabs.com for information on global distributors and representatives. silabs.com | Building a more connected world. Rev. 1.4 | 3 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 3.1.1 ARM Cortex-M0+ Core . . . . . . . . . . . . . . . . . 3.1.2 Debugging Interface (DBG) . . . . . . . . . . . . . . . 3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . . 3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . . 3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . . 3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . 3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . . 3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . 3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.1.10 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . 3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 3.1.12 Pre-Programmed UART Bootloader . . . . . . . . . . . . 3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) 3.1.14 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . 3.1.15 Real Time Counter (RTC) . . . . . . . . . . . . . . . 3.1.16 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . 3.1.17 Voltage Comparator (VCMP) . . . . . . . . . . . . . . 3.1.18 Analog to Digital Converter (ADC) . . . . . . . . . . . . 3.1.19 Current Digital to Analog Converter (IDAC) . . . . . . . . . 3.1.20 Advanced Encryption Standard Accelerator (AES) . . . . . . . 3.1.21 General Purpose Input/Output (GPIO) . . . . . . . . . . . 3.1.22 EZRadio® and EZRadioPro® Transceivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .11 . . . . 4. Electrical Specifications 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 Test Conditions . . . . . . . . 4.1.1 Typical Values . . . . . . 4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .12 4.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .13 4.4 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .13 4.5 Current Consumption . . . . 4.5.1 EM0 Current Consumption 4.5.2 EM1 Current Consumption 4.5.3 EM2 Current Consumption 4.5.4 EM3 Current Consumption 4.5.5 EM4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .16 .19 .21 .22 .22 4.6 Transitions between Energy Modes . . . . . . . . . . . . . . . . . . . . . . .23 silabs.com | Building a more connected world. . Rev. 1.4 | 4 4.7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 4.8 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 4.9 General Purpose Input Output . . . . . . . . . . . . . . . . . . . . . . . . .25 4.10 Oscillators . . 4.10.1 LFXO . . 4.10.2 HFXO . . 4.10.3 LFRCO . 4.10.4 HFRCO . 4.10.5 AUXHFRCO 4.10.6 USHFRCO 4.10.7 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 .33 .34 .35 .36 .40 .40 .41 4.11 Analog Digital Converter (ADC) . 4.11.1 Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 .52 4.12 Current Digital Analog Converter (IDAC) . . . . . . . . . . . . . . . . . . . . .58 4.13 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . . . .63 4.14 I2C . . . . . . . . . . . . . . . . . . . . . . . .64 4.15 Radio. . . . . . . . . . . . . . . . . . . . . 4.15.1 EZRadioPRO (R6x) DC Electrical Characteristics . . . . 4.15.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics 4.15.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics . 4.15.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics 4.15.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications . . 4.15.6 EZRadio (R55) DC Electrical Characteristics . . . . . . 4.15.7 EZRadio (R55) Synthesizer AC Electrical Characteristics . . 4.15.8 EZRadio (R55) Receiver AC Electrical Characteristics . . . 4.15.9 EZRadio (R55) Transmitter AC Electrical Characteristics . . 4.15.10 EZRadio (R55) Radio Auxiliary Block Specifications . . . 4.15.11 Radio Digital I/O Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 .66 .67 .68 .71 .72 .73 .73 .74 .75 .76 .77 4.16 Digital Peripherals . . . . . . . . . . . . .78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 5.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 5.3 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . . .83 5.4 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .85 5.5 QFN48 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .86 . . 6. PCB Layout and Soldering . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . .88 6.2 Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . . .89 7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 silabs.com | Building a more connected world. Rev. 1.4 | 5 EZR32HG220 Data Sheet System Overview 3. System Overview 3.1 Introduction The EZR32HG220 Wireless MCUs are the latest in the Silicon Labs family of wireless MCUs delivering a high-performance, low-energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit ARM Cortex-M0+, the EZR32HG family provides designers with the ultimate in flexibility with a family of pin-compatible parts that scale from 32 to 64 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times combined with the low transmit and receive power consumption of the sub-GHz radio result in a solution optimized for low power and battery powered applications. For a complete feature set and in-depth information on the modules, refer to the EZR32HG Reference Manual. The EZR32HG220 block diagram is shown below. EZR32HG220 F64/F32 Energy Management Clock Management Core and Memory ARM Cortex™ M0+ processor Flash Program Memory RAM Memory Debug Interface w/ MTB Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES DMA Controller 32-bit bus Peripheral Reflex System I/O Ports Serial Interfaces Transceiver TX 18 mA @ +10 dBm 142-1050 MHz ASK, OOK G(FSK) 4(G)FSK USART RX 10 mA Preamble Sense 6.0 mA 1 Mbps SPI SPI Antenna Diversity 133 dBm sensitivity Low Energy UART™ 2 IC Timers and Triggers Analog Interfaces External Interrupts General Purpose I/O Timer/ Counter Real Time Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC Figure 3.1. Block Diagram 3.1.1 ARM Cortex-M0+ Core The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EZR32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+ Devices Generic User Guide. 3.1.2 Debugging Interface (DBG) These devices include hardware debug support through a 2-pin serial-wire debug interface. 3.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EZR32HG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks: the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. silabs.com | Building a more connected world. Rev. 1.4 | 6 EZR32HG220 Data Sheet System Overview 3.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving, for instance, data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 3.1.5 Reset Management Unit (RMU) The Reset Management Unit (RMU) is responsible for handling the reset functionality of the EZR32HG. 3.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manages all the low energy modes (EM) in EZR32HG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 3.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EZR32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 3.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may, for example, be caused by an external event, such as an ESD pulse, or by a software failure. 3.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 3.1.10 Inter-Integrated Circuit Interface (I2C) The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I2C module allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 3.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note, AN0003: UART Bootloader, is pre-programmed in the device at the factory. Autobaud and destructive write are supported. The autobaud feature, interface, and commands are described further in the application note. 3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique Low Energy Universal Asynchronous Receiver/Transmitter (LEUART™), the Low Energy UART, is a UART that allows twoway UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. silabs.com | Building a more connected world. Rev. 1.4 | 7 EZR32HG220 Data Sheet System Overview 3.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 3.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 3.1.16 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 3.1.17 Voltage Comparator (VCMP) The Voltage Supply Comparator (VCMP) is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.18 Analog to Digital Converter (ADC) The Analog to Digital Converter (ADC) is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals. 3.1.19 Current Digital to Analog Converter (IDAC) The current digital to analog converter (IDAC) can source or sink a configurable constant current, which can be output on, or sinked from pin or ADC. The current is configurable with several ranges of various step sizes. 3.1.20 Advanced Encryption Standard Accelerator (AES) The Advanced Encryption Standard Accelerator (AES) performs AES encryption and decryption with 128-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations (i.e., 8- or 16-bit operations are not supported). 3.1.21 General Purpose Input/Output (GPIO) In the EZR32HG220, there are 27 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. silabs.com | Building a more connected world. Rev. 1.4 | 8 EZR32HG220 Data Sheet System Overview 3.1.22 EZRadio® and EZRadioPro® Transceivers The EZR32HG family of devices is built using high-performance, low-current EZRadio and EZRadioPro RF transceivers covering the sub-GHz frequency bands from 142 to 1050 MHz. These devices offer outstanding sensitivity of up to –133 dBm (using EZRadioPro) while achieving extremely low active and standby current consumption. The EZR32HG devices using the EZRadioPro transceiver offer frequency coverage in all major bands and include optimal phase noise, blocking, and selectivity performance for narrow band and licensed band applications, such as FCC Part 90 and 169 MHz wireless Mbus. The 69 dB adjacent channel selectivity with 12.5 kHz channel spacing ensures robust receive operation in harsh RF conditions, which is particularly important for narrow band operation. The active mode TX current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with extremely low standby current and fast wake times is optimized for extended battery life in the most demanding applications. The EZR32HG devices can achieve up to +27 dBm output power with built-in ramping control of a low-cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI, and ARIB. All devices using the EZRadioPRO tranceiver are designed to be compliant with 802.15.4g and WMbus smart metering standards. The devices are highly flexible and can be programmed and configured via Simplicity Studio, available at www.silabs.com. Communications between the radio and MCU are done over USART and IRQ, which requires the pins to be configured in the following way: Table 3.1. Radio MCU Communication Configuration EZR32HG MCU RF EZR32HG Function Assignment PA2 SDN GPIO Output PC0 nSEL US1_CS #5 PC1 SDI US1_MOSI #5 PC2 SDO US1_MISO #5 PC3 SCLK US1_CLK #5 PC4 nIRQ GPIO_EM4WU6 (GPIO Input with IRQ enabled) 3.1.22.1 EZRadio and EZRadioPRO Transceivers GPIO Configuration The EZRadio and EZRadioPRO Transceivers have 4 General Purpose Digital I/O pins. These GPIOs may be configured to perform various radio-specific functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. silabs.com | Building a more connected world. Rev. 1.4 | 9 EZR32HG220 Data Sheet System Overview 3.2 Configuration Summary The features of the EZR32HG220 are a subset of the feature set described in the EZR32HG Reference Manual. The table below describes device specific implementation of the features. Table 3.2. Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_CLK0, CMU_CLK1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL UART0 Full configuration with IrDA and I2S US0_TX, US0_RX, US0_CLK, US0_CS LEUART0 Full configuration LEU0_TX, LEU0_RX USARTRF1 Reduced configuration USRF1_RX, USRF1_TX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7, 6, 5, 4, 1, 0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA GPIO 27 pins Available pins are shown in 5.4 GPIO Pinout Overview silabs.com | Building a more connected world. Rev. 1.4 | 10 EZR32HG220 Data Sheet System Overview 3.3 Memory Map The EZR32HG220 memory map is shown below with RAM and flash sizes for the largest memory configuration. Figure 3.2. EZR32HG220 Memory Map with Largest RAM and Flash Sizes silabs.com | Building a more connected world. Rev. 1.4 | 11 EZR32HG220 Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Test Conditions 4.1.1 Typical Values The typical data are based on TAMB = 25°C and VDD = 3.0 V, as defined in Table 4.3 General Operating Conditions on page 13, by simulation and/or technology characterisation unless otherwise specified. 4.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 4.3 General Operating Conditions on page 13, by simulation and/or technology characterisation unless otherwise specified. 4.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in the table below may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 4.3 General Operating Conditions on page 13. Table 4.1. Absolute Maximum Ratings Parameter Symbol Min Typ Max Unit -55 ─ 1501 °C ─ ─ 260 °C VDDMAX 0 ─ 3.8 V VIOPIN -0.3 ─ VDD+0.3 V Storage temperature range TSTG Maximum soldering temperature TS External main supply voltage Voltage on any I/O pin Test Condition Latest IPC/JEDEC JSTD-020 Standard Note: 1. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. silabs.com | Building a more connected world. Rev. 1.4 | 12 EZR32HG220 Data Sheet Electrical Specifications 4.3 Thermal Characteristics Table 4.2. Thermal Conditions Parameter Symbol Test Condition Min Typ Max Unit Ambient temperature range TAMB -40 ─ 85 °C Junction temperature value TJ ─ ─ 1051 °C +13/+16 dBm on 2layer board ─ ─ 61.8 °C/W +20 dBm on 4-layer board ─ ─ 20.72 °C/W -55 ─ 150 °C Thermal impedance junction to ambient TIJA Storage temperature range TSTG Note: 1. Values are based on simulations run on 2-layer and 4-layer PCBs at 0m/s airflow. 2. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 4.4 General Operating Conditions Table 4.3. General Operating Conditions Parameter Symbol Min Typ Max Unit TAMB -40 ─ 85 °C VDDOP 1.98 ─ 3.8 V Internal APB clock frequency fAPB ─ ─ 4825 MHz Internal AHB clock frequency fAHB ─ ─ 4825 MHz Ambient temperature range Operating supply voltage silabs.com | Building a more connected world. Rev. 1.4 | 13 EZR32HG220 Data Sheet Electrical Specifications 4.5 Current Consumption Table 4.4. Current Consumption Parameter Symbol Test Condition Min Typ Max Unit IEM0 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 148 158 µA/MHz IEM1 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 153 163 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 161 172 µA/MHz IEM2 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 163 174 µA/MHz IEM3 IEM4 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 127 137 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 129 139 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 131 140 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 134 143 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 134 143 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 137 145 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 136 144 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 139 148 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 142 150 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 146 154 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 184 196 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 194 208 µA/MHz EM0 current. No prescaling. Running prime number calculation code from Flash. silabs.com | Building a more connected world. Rev. 1.4 | 14 EZR32HG220 Data Sheet Electrical Specifications Parameter Symbol EM1 current EM2 current EM3 current silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB =25 °C ─ 64 68 µA/MHz 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 67 71 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 85 91 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 86 92 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 51 55 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 52 56 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 53 57 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 54 58 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 56 59 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 57 61 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 58 61 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 59 63 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 64 68 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 67 71 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25 °C ─ 106 114 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85 °C ─ 114 126 µA/MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD = 3.0 V, TAMB = 25 °C ─ 0.9 1.35 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD = 3.0 V, TAMB = 85 °C ─ 1.6 3.50 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD = 3.0 V, TAMB = 25 °C ─ 0.6 0.90 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD = 3.0 V, TAMB = 85 °C ─ 1.2 2.65 µA Rev. 1.4 | 15 EZR32HG220 Data Sheet Electrical Specifications Parameter Symbol EM4 current Test Condition Min Typ Max Unit VDD = 3.0 V, TAMB = 25 °C ─ 0.02 0.035 µA VDD = 3.0 V, TAMB = 85 °C ─ 0.18 0.480 µA 4.5.1 EM0 Current Consumption Figure 4.1. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 24 MHz Figure 4.2. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 21 MHz silabs.com | Building a more connected world. Rev. 1.4 | 16 EZR32HG220 Data Sheet Electrical Specifications Figure 4.3. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 14 MHz Figure 4.4. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 11 MHz silabs.com | Building a more connected world. Rev. 1.4 | 17 EZR32HG220 Data Sheet Electrical Specifications Figure 4.5. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 6.6 MHz silabs.com | Building a more connected world. Rev. 1.4 | 18 EZR32HG220 Data Sheet Electrical Specifications 4.5.2 EM1 Current Consumption Figure 4.6. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 24 MHz Figure 4.7. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 21 MHz silabs.com | Building a more connected world. Rev. 1.4 | 19 EZR32HG220 Data Sheet Electrical Specifications Figure 4.8. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 14 MHz Figure 4.9. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 11 MHz silabs.com | Building a more connected world. Rev. 1.4 | 20 EZR32HG220 Data Sheet Electrical Specifications Figure 4.10. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 6.6 MHz 4.5.3 EM2 Current Consumption Figure 4.11. EM2 Current Consumption, RTC Prescaled to 1 kHz, 32.768 kHz LFRCO silabs.com | Building a more connected world. Rev. 1.4 | 21 EZR32HG220 Data Sheet Electrical Specifications 4.5.4 EM3 Current Consumption Figure 4.12. EM3 Current Consumption 4.5.5 EM4 Current Consumption Figure 4.13. EM4 Current Consumption silabs.com | Building a more connected world. Rev. 1.4 | 22 EZR32HG220 Data Sheet Electrical Specifications 4.6 Transitions between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 4.5. Energy Modes Transitions Parameter Symbol Min Typ Max Unit Transition time from EM1 to EM0 tEM10 ─ 0 ─ HFCORECLK cycles Transition time from EM2 to EM0 tEM20 ─ 2 ─ µs Transition time from EM3 to EM0 tEM30 ─ 2 ─ µs Transition time from EM4 to EM0 tEM40 ─ 163 ─ µs 4.7 Power Management The EZR32HG requires the AVDD_x, VDD_DREG, RFVDD_x and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, see the application note, AN0002.0: EFM32 and EZR32 Wireless MCU Series 0 Hardware Design Considerations. Table 4.6. Power Management Parameter BOD threshold on falling external supply voltage Symbol Test Condition Min Typ Max Unit VBODextthr- EM0 1.74 ─ 1.96 V VBODextthr EM2 1.71 1.86 1.98 V ─ 1.85 ─ V Applies to Power-on Reset, Brownout Reset and pin reset. ─ 163 ─ µs X5R capacitor recommended. Apply between DECOUPLE pin and GROUND ─ 1 ─ µF + BOD threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts CDECOUPLE Voltage regulator decoupling capacitor. silabs.com | Building a more connected world. Rev. 1.4 | 23 EZR32HG220 Data Sheet Electrical Specifications 4.8 Flash Table 4.7. Flash Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Test Condition Min Typ Max Unit 20000 ─ ─ cycles TAMB
EZR32HG220F64R63G-B0 价格&库存

很抱歉,暂时无法提供与“EZR32HG220F64R63G-B0”相匹配的价格&库存,您可以联系我们找货

免费人工找货