Si4063/60-C
H I G H - P ERFORMANCE , L O W -C U R R E N T T RANSMITTER
Features
Smart metering
Remote control
Home security and alarm
Telemetry
Garage and gate openers
Remote keyless entry
Home automation
Industrial control
Sensor networks
Health monitors
Electronic shelf labels
1
20
19
18
17
16
NC 2
15 nSEL
NC 3
14 SDI
GND
PAD
TX 4
13 SDO
NC 5
Description
Silicon Laboratories' Si406x devices are high-performance, low-current
transmitters covering the sub-GHz frequency bands from 142 to
1050 MHz. The radios are part of the EZRadioPRO® family, which
includes a complete line of transmitters, receivers, and transceivers
covering a wide range of applications. All parts offer extremely low active
and standby current consumption. The Si406x includes optimal phase
noise performance for narrow band applications, such as FCC Part90 and
169 MHz wireless Mbus. The Si4063 offers exceptional output power of
up to +20 dBm with outstanding TX efficiency. The high output power
allows extended ranges and highly robust communication links. The
Si4060 active mode TX current consumption of 18 mA at +10 dBm
coupled with extremely low standby current and fast wake times ensure
extended battery life in the most demanding applications. The Si4063 can
achieve up to +27 dBm output power with built-in ramping control of a
low-cost external FET. The devices can meet worldwide regulatory
standards: FCC, ETSI, wireless MBus, and ARIB. All devices are
designed to be compliant with 802.15.4g and WMbus smart metering
standards. The devices are highly flexible and can be configured via the
Wireless Development Suite (WDS) available at Silicon Labs web site.
Rev 1.0 10/14
SDN
XOUT
XIN
GND
Pin Assignments
Applications
Copyright © 2014 by Silicon Laboratories
12 SCLK
6
7
8
9
10
GPIO1
GPIO0
GPIO2
VDD
Power supply = 1.8 to 3.8 V
Highly configurable packet handler
TX 129 byte FIFO
Low BOM
Low battery detector
Temperature sensor
20-Pin QFN package
IEEE 802.15.4g compliant
Suitable for FCC Part 90 Mask D, FCC
part 15.247, 15,231, 15,249, ARIB T-108,
T-96, T-67, China regulatory ETSI EN
300 220
GPIO3
Frequency range = 142–1050 MHz
Modulation
(G)FSK, 4(G)FSK, (G)MSK
OOK
Max output power
+20 dBm (Si4063)
+13 dBm (Si4060)
PA support for +27 or +30 dBm
Ultra low current powerdown modes
30 nA shutdown, 40 nA standby
Data rate = 100 bps to 1 Mbps
Fast wake times
TXRamp
VDD
11 nIRQ
Patents pending
Si4063/60-C
Si4063/60-C
Functional Block Diagram
GPIO3 GPIO2
XIN XOUT
Loop
Filter
PFD / CP
VCO
FBDIV
TX DIV
30 MHz XO
Frac-N Div
LO
Gen
Bootup
OSC
SDN
PA
PowerRamp
Cntl
SPI Interface
Controller
TX
ADC
Temp
sensor
MODEM
FIFO
Packet
Handler
LDOs
PA
LDO
LBD
32K LP
OSC
TXRAMP
2
Digital
Logic
POR
VDD
GPIO0 GPIO1
Product
Freq. Range
Max Output
Power
TX Current
Narrowband
Operation
Si4063
Major bands
142–1050 MHz
+20 dBm
169 MHz:
68.5 mA
Si4060
Major bands
142–1050 MHz
+13 dBm
+10 dBm: 18 mA
+13 dBm: 24 mA
Rev 1.0
nSEL
SDI
SDO
SCLK
nIRQ
Si4063/60-C
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Fast Response Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.3. Operating Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4. Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Modulation and Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Modulation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2. Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5. Internal Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1. Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2. Transmitter (TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
5.3. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
6. Data Handling and Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6.1. TX FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2. Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7. Auxiliary Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1. Wake-up Timer and 32 kHz Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2. Low Duty Cycle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3. Temperature, Battery Voltage, and Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4. Low Battery Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
8. Pin Descriptions: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10. Package Outline: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11. PCB Land Pattern: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
12.1. Si4063/60 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Rev 1.0
3
Si4063/60-C
1. Electrical Specifications
Table 1. DC Characteristics1
Parameter
Min
Typ
Max
Unit
1.8
3.3
3.8
V
RC Oscillator, Main Digital Regulator,
and Low Power Digital Regulator OFF
—
30
—
nA
IStandby
Register values maintained and RC
oscillator/WUT OFF
—
40
—
nA
ISleepRC
RC Oscillator/WUT ON and all register values maintained, and all other blocks OFF
—
740
—
nA
ISleepXO
Sleep current using an external 32 kHz crystal.
—
1.7
—
µA
ISensor
Low battery detector ON, register values maintained,
and all other blocks OFF
—
1
—
µA
IReady
Crystal Oscillator and Main Digital Regulator ON,
all other blocks OFF
—
1.8
—
mA
TUNE Mode Current
ITune_TX
TX Tune, High Performance Mode
—
7.8
—
mA
TX Mode Current
(Si4063)
ITX_+20
+20 dBm output power, class-E match, 915 MHz,
3.3 V
—
88
—
mA
+20 dBm output power, square-wave match,
169 MHz, 3.3 V
—
68.5
—
mA
ITX_+10
+10 dBm output power, Class-E match, 169 MHz,
3.3 V2
—
18
—
mA
ITX_+13
+13 dBm output power, Class-E match,
915/868 MHz, 3.3 V2
—
24
—
mA
Supply Voltage
Range
Symbol
VDD
Power Saving Modes IShutdown
-LBD
TX Mode Current
(Si4060)
Test Condition
Notes:
1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and
from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.
2. Measured on direct tie RF evaluation board.
4
Rev 1.0
Si4063/60-C
Table 2. Synthesizer AC Electrical Characteristics1
Parameter
Synthesizer Frequency
Range (Si4063/60)
Synthesizer Frequency
Resolution2
Symbol
Test Condition
FSYN
FRES-960
850–1050 MHz
FRES-525
420–525 MHz
FRES-420
350–420 MHz
FRES-350
284–350 MHz
FRES-175
142–175 MHz
Min
Typ
Max
Unit
850
—
1050
MHz
350
—
525
MHz
284
—
350
MHz
142
—
175
MHz
—
28.6
—
Hz
—
14.3
—
Hz
—
11.4
—
Hz
—
9.5
—
Hz
—
4.7
—
Hz
Synthesizer Settling Time
tLOCK
Measured from exiting Ready mode with
XOSC running to any frequency.
Including VCO Calibration.
—
50
—
µs
Phase Noise
L(fM)
F = 10 kHz, 169 MHz, High Perf Mode
—
–117
—
dBc/Hz
F = 100 kHz, 169 MHz, High Perf Mode
—
–120
—
dBc/Hz
F = 1 MHz, 169 MHz, High Perf Mode
—
–138
—
dBc/Hz
F = 10 MHz, 169 MHz, High Perf Mode
—
–148
—
dBc/Hz
F = 10 kHz, 915 MHz, High Perf Mode
—
–102
—
dBc/Hz
F = 100 kHz, 915 MHz, High Perf Mode
—
–105
—
dBc/Hz
F = 1 MHz, 915 MHz, High Perf Mode
—
–125
—
dBc/Hz
F = 10 MHz, 915 MHz, High Perf Mode
—
–138
—
dBc/Hz
Notes:
1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage
and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise
stated.
2. Default API setting for modulation deviation resolution is double the typical value specified.
Rev 1.0
5
Si4063/60-C
Table 3. Transmitter AC Electrical Characteristics1
Parameter
Symbol
Test Condition
TX Frequency Range
Min
Typ
Max
Unit
850
—
1050
MHz
350
—
525
MHz
284
—
350
MHz
142
—
175
MHz
FTX
(G)FSK Data Rate2
DRFSK
0.1
—
500
kbps
4(G)FSK Data Rate2
DR4FSK
0.2
—
1000
kbps
OOK Data Rate2
DROOK
0.1
—
120
kbps
Modulation Deviation
Range
Modulation Deviation
Resolution3
Output Power Range
(Si4063)4
f960
850–1050 MHz
—
1.5
—
MHz
f525
420–525 MHz
—
750
—
kHz
f420
350–420 MHz
—
600
—
kHz
f350
284–350 MHz
—
500
—
kHz
f175
142–175 MHz
—
250
—
kHz
FRES-960
850–1050 MHz
—
28.6
—
Hz
FRES-525
420–525 MHz
—
14.3
—
Hz
FRES-420
350–420 MHz
—
11.4
—
Hz
FRES-350
284–350 MHz
—
9.5
—
Hz
FRES-175
142–175 MHz
—
4.7
—
Hz
PTX63
Typical range at 3.3 V with Class E
match optimized for best PA efficiency
–20
—
+20
dBm
PTX60
Typical range at 3.3 V with Class E
match optimized for best PA efficiency.
Efficiency can be traded off for higher
Tx output power up to +13 dBm.
–20
—
+12.5
dBm
PRF_OUT
Using switched current match within
6 dB of max power
—
0.25
—
dB
At 20 dBm PA power setting, 915 MHz,
Class E match, 3.3 V, 25 °C
19
20
21
dBm
Output Power Range
(Si4060)4
TX RF Output Steps
Output Power Variation
(Si4063)
Notes:
1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and
from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.
2. The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula:
Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz).
3. Default API setting for modulation deviation resolution is double the typical value specified.
4. Output power is dependent on matching components and board layout.
6
Rev 1.0
Si4063/60-C
Table 3. Transmitter AC Electrical Characteristics1 (Continued)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Power Variation
(Si4060)
At 10 dBm PA power setting, 915 MHz,
Class E match, 3.3 V, 25 °C
9.5
10
10.5
dBm
Output Power Variation
(Si4063)
At 20 dBm PA power setting, 169 MHz,
Square Wave match, 3.3 V, 25 °C
18.5
20
21
dBm
Output Power Variation
(Si4060)
At 10 dBm PA power setting, 169 MHz,
Square Wave match, 3.3 V, 25 °C
—
10
—
dBm
TX RF Output Level
Variation vs. Temperature
PRF_TEMP
–40 to +85 C
—
2.3
—
dB
TX RF Output Level
Variation vs. Frequency
PRF_FREQ
Measured across 902–928 MHz
—
0.6
—
dB
B*T
Gaussian Filtering Bandwith Time
Product
—
0.5
—
Transmit Modulation
Filtering
Notes:
1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and
from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.
2. The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula:
Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz).
3. Default API setting for modulation deviation resolution is double the typical value specified.
4. Output power is dependent on matching components and board layout.
Rev 1.0
7
Si4063/60-C
Table 4. Auxiliary Block Specifications1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Temperature Sensor
Sensitivity
TSS
—
4.5
—
ADC
Codes/
°C
Low Battery Detector
Resolution
LBDRES
—
50
—
mV
Microcontroller Clock
Output Frequency Range2
Temperature Sensor
Conversion
XTAL Range3
30 MHz XTAL Start-Up Time
30 MHz XTAL Cap
Resolution
32 kHz XTAL Start-Up Time
32 kHz Accuracy using
Internal RC Oscillator
POR Reset Time
FMC
Configurable to Fxtal or Fxtal
divided by 2, 3, 7.5, 10, 15, or
30 where Fxtal is the reference
XTAL frequency. In addition,
32.768 kHz is also supported.
32.768K
—
Fxtal
Hz
TEMPCT
Programmable setting
—
3
—
ms
25
—
32
MHz
—
300
—
µs
30MRES
—
70
—
fF
t32k
—
2
—
sec
32KRCRES
—
2500
—
ppm
tPOR
—
—
6
ms
XTALRange
t30M
Using XTAL and board layout in
reference design. Start-up time
will vary with XTAL type and
board layout.
Notes:
1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage
and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise
stated.
2. Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies
tested in bench characterization.
3. XTAL Range tested in production using an external clock source (similar to using a TCXO).
8
Rev 1.0
Si4063/60-C
Table 5. Digital IO Specifications (GPIO_x, SCLK, SDO, SDI, nSEL, nIRQ, SDN)1
Parameter
Rise Time
2,3
Fall Time3,4
Symbol
Test Condition
Min
Typ
Max
Unit
TRISE
0.1 x VDD to 0.9 x VDD,
CL = 10 pF,
DRV = LL
—
2.3
—
ns
TFALL
0.9 x VDD to 0.1 x VDD,
CL = 10 pF,
DRV = LL
—
2
—
ns
Input Capacitance
CIN
—
2
—
pF
Logic High Level Input Voltage
VIH
VDD x 0.7
—
—
V
Logic Low Level Input Voltage
VIL
—
—
VDD x 0.3
V
Input Current
IIN
0 3.3 V. When Vdd < 3.3 V, the Vhi will be closely following the Vdd, and ramping time will be
smaller also.
Vlo = 0 V when NO current needed to be sunk into TXRAMP pin. If 10 µA need to be sunk into the chip, Vlo will be
10 µA x 10k = 100 mV.
22
Rev 1.0
Si4063/60-C
Number
Command
Summary
0x2200
PA_MODE
0x2201
PA_PWR_LVL
0x2202
PA_BIAS_CLKDUTY
Adjust TX power in coarse steps and optimizes for different match configurations.
0x2203
PA_TC
Changes the ramp up/down time of the PA.
Sets PA type.
Adjust TX power in fine steps.
5.2.1. Si4063: +20 dBm PA
The +20 dBm configuration utilizes a class-E matching configuration. Typical performance for the 900 MHz band
for output power steps, voltage, and temperature are shown in Figures 8–10. The output power is changed in 128
steps through PA_PWR_LVL API. For detailed matching values, BOM, and performance at other frequencies, refer
to the PA Matching application note.
TXPowervs.PA_PWR_LVL
25
20
15
10
5
Ͳ5
Ͳ10
Ͳ15
Ͳ20
Ͳ25
Ͳ30
Ͳ35
Ͳ40
0
20
40
60
80
100
120
PA_PWR_LVL
Figure 8. +20 dBm TX Power vs. PA_PWR_LVL
TX Power vs. VDD
22
TX Power (dBm)
TXPower(dBm)
0
20
18
16
14
12
10
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Supply Voltage (VDD)
Figure 9. +20 dBm TX Power vs. VDD
Rev 1.0
23
Si4063/60-C
TX Power vs Temp
TX Power (dBm)
20.5
20
19.5
19
18.5
18
-40 -30 -20 -10
0
10
20
30
40
50
60
Temperature (C)
Figure 10. +20 dBm TX Power vs. Temp
24
Rev 1.0
70
80
Si4063/60-C
5.3. Crystal Oscillator
The Si406x includes an integrated crystal oscillator with a fast start-up time of less than 250 µs. The design is
differential with the required crystal load capacitance integrated on-chip to minimize the number of external
components. By default, all that is required off-chip is the crystal. The default crystal is 30 MHz, but the circuit is
designed to handle any XTAL from 25 to 32 MHz. If a crystal different than 30 MHz is used, the POWER_UP API
boot command must be modified. The WDS calculator crystal frequency field must also be changed to reflect the
frequency being used. The crystal load capacitance can be digitally programmed to accommodate crystals with
various load capacitance requirements and to adjust the frequency of the crystal oscillator. The tuning of the crystal
load capacitance is programmed through the GLOBAL_XO_TUNE API property. The total internal capacitance is
11 pF and is adjustable in 127 steps (70 fF/step). The crystal frequency adjustment can be used to compensate for
crystal production tolerances. The frequency offset characteristics of the capacitor bank are demonstrated in
Figure 11.
Figure 11. Capacitor Bank Frequency Offset Characteristics
Utilizing the on-chip temperature sensor and suitable control software, the temperature dependency of the crystal
can be canceled.
A TCXO or external signal source can easily be used in place of a conventional XTAL and should be connected to
the XIN pin. The incoming clock signal is recommended to be peak-to-peak swing in the range of 600 mV to 1.4 V
and ac-coupled to the XIN pin. If the peak-to-peak swing of the TCXO exceeds 1.4 V peak-to-peak, then dc
coupling to the XIN pin should be used. The maximum allowed swing on XIN is 1.8 V peak-to-peak.
The XO capacitor bank should be set to 0 whenever an external drive is used on the XIN pin. In addition, the
POWER_UP command should be invoked with the TCXO option whenever external drive is used.
Rev 1.0
25
Si4063/60-C
6. Data Handling and Packet Handler
6.1. TX FIFOs
By default, a 64 byte FIFO is available in the device. This can be increased to support a 129 byte FIFO via API
configuration. Writing to command Register 66h loads data into the TX FIFO. The TX FIFO has a threshold for
when the FIFO is almost empty, which is set by the “TX_FIFO_EMPTY” property. An interrupt event occurs when
the data in the TX FIFO reaches the almost empty threshold. If more data is not loaded into the FIFO, the chip
automatically exits the TX state after the PACKET_SENT interrupt occurs. The TX FIFO may be cleared or reset
with the “FIFO_RESET” command.
TX FIFO
TX FIFO Almost
Empty Threshold
Figure 12. TX FIFO
6.2. Packet Handler
Config
0, 2, o r 4
Bytes
Con fig
0, 2, o r 4
Bytes
Con fig
0, 2, o r 4
B ytes
C RC Field 5 (op t)
Field 5 (opt)
Data
C RC Field 4 (op t)
Field 4 (opt)
Data
C RC Field 3 (op t)
Field 3 (opt)
Data
Con fig
C RC Field 2 (op t)
1-4 Bytes
F ield 2 (o pt)
Pkt Len gth or Data
Field 1
Header or Data
1-255 Bytes
C RC Field 1 (op t)
Preamble
Sync Word
When using the FIFOs, automatic packet handling may be enabled. The usual fields for network communication,
such as preamble, synchronization word, headers, packet length, and CRC, can be configured to be automatically
added to the data payload. The fields needed for packet generation normally change infrequently and can
therefore be stored in registers. Automatically adding these fields to the data payload in TX mode greatly reduces
the amount of communication between the microcontroller and Si406x. It also greatly reduces the required
computational power of the microcontroller. The general packet structure is shown in Figure 13. Any or all of the
fields can be enabled and checked by the internal packet handler.
Con fig
0, 2, or 4
Bytes
0, 2, or 4
Bytes
Figure 13. Packet Handler Structure
The fields are highly programmable and can be used to check any kind of pattern in a packet structure. The
general functions of the packet handler include the following:
Construction
of Preamble field in TX mode
Construction of Sync field in TX mode
Construction of Data Field from FIFO memory in TX mode
Construction of CRC field (if enabled) in TX mode
Data whitening and/or Manchester encoding (if enabled) in TX mode
26
Rev 1.0
Si4063/60-C
7. Auxiliary Blocks
7.1. Wake-up Timer and 32 kHz Clock Source
The chip contains an integrated wake-up timer that can be used to periodically wake the chip from sleep mode. The
wake-up timer runs from either the internal 32 kHz RC Oscillator, or from an external 32 kHz XTAL.
The wake-up timer can be configured to run when in sleep mode. If WUT_EN = 1 in the GLOBAL_WUT_CONFIG
property, prior to entering sleep mode, the wake-up timer will count for a time specified defined by the
GLOBAL_WUT_R and GLOBAL_WUT_M properties. At the expiration of this period, an interrupt will be generated
on the nIRQ pin if this interrupt is enabled in the INT_CTL_CHIP_ENABLE property. The microcontroller will then
need to verify the interrupt by reading the chip interrupt status either via GET_INT_STATUS or a fast response
register. The formula for calculating the Wake-Up Period is as follows:
WUT_R
42
WUT = WUT_M ----------------------------- ms
32.768
The RC oscillator frequency will change with temperature; so, a periodic recalibration is required. The RC oscillator
is automatically calibrated during the POWER_UP command and exits from the Shutdown state. To enable the
recalibration feature, CAL_EN must be set in the GLOBAL_WUT_CONFIG property, and the desired calibration
period should be selected via WUT_CAL_PERIOD[2:0] in the same API property. During the calibration, the
32 kHz RC oscillator frequency is compared to the 30 MHz XTAL and then adjusted accordingly. The calibration
needs to start the 30 MHz XTAL, which increases the average current consumption; so, a longer CAL_PERIOD
results in a lower average current consumption. The 32 kHz XTAL accuracy is comprised of both the XTAL
parameters and the internal circuit. The XTAL accuracy can be defined as the XTAL initial error + XTAL aging +
XTAL temperature drift + detuning from the internal oscillator circuit. The error caused by the internal circuit is
typically less than 10 ppm.
7.2. Low Duty Cycle Mode
The low duty cycle (LDC) mode is implemented to automatically wake-up the transmitter to send a packet. It allows
low average current polling operation by the Si406x for which the wake-up timer (WUT) is used. TX LDC operation
must be set via the GLOBAL_WUT_CONFIG property when setting up the WUT. The LDC wake-up period is
determined by the following formula:
WUT_R
42
LDC = WUT_LDC ----------------------------- ms
32.768
where the WUT_LDC parameter can be set by the GLOBAL_WUT_LDC property. The WUT period must be set in
conjunction with the LDC mode duration; for the relevant API properties, see the wake-up timer (WUT) section.
Figure 14. TX LDC Sequences
In TX LDC mode, the transmitter periodically wakes itself up to transmit a packet that is in the data buffer. If a
packet has been transmitted, nIRQ goes low if the option is set in the INT_CTL_ENABLE property. After
transmitting, the transmitter immediately returns to the WUT state and stays there until the next wake-up time
expires.
Rev 1.0
27
Si4063/60-C
7.3. Temperature, Battery Voltage, and Auxiliary ADC
The Si406x family contains an integrated auxiliary ADC for measuring internal battery voltage, an internal
temperature sensor, or an external component over a GPIO. The ADC utilizes a SAR architecture and achieves
11-bit resolution. The Effective Number of Bits (ENOB) is 9 bits. When measuring external components, the input
voltage range is 1 V, and the conversion rate is between 300 Hz to 2.44 kHz. The ADC value is read by first
sending the GET_ADC_READING command and enabling the inputs that are desired to be read: GPIO, battery, or
temp. The temperature sensor accuracy at 25 °C is typically ±2 °C.
7.4. Low Battery Detector
The low battery detector (LBD) is enabled and utilized as part of the wake-up-timer (WUT). The LBD function is not
available unless the WUT is enabled, but the host MCU can manually check the battery voltage anytime with the
auxiliary ADC. The LBD function is enabled in the GLOBAL_WUT_CONFIG API property. The battery voltage will
be compared against the threshold each time the WUT expires. The threshold for the LBD function is set in
GLOBAL_LOW_BATT_THRESH. The threshold steps are in increments of 50 mV, ranging from a minimum of
1.5 V up to 3.05 V. The accuracy of the LBD is ±3%. The LBD notification can be configured as an interrupt on the
nIRQ pin or enabled as a direct function on one of the GPIOs.
28
Rev 1.0
Si4063/60-C
SDN
1
XOUT
XIN
GND
GPIO2
GPIO3
8. Pin Descriptions: Si4063/60
20 19 18 17 16
NC 2
15 nSEL
NC 3
14 SDI
GND
PAD
TX 4
13 SDO
Pin
Pin Name
7
8
9
VDD
GPIO0
10 11 nIRQ
GPIO1
6
TXRamp
12 SCLK
VDD
NC 5
I/0
Description
I
Shutdown Input Pin.
0–VDD V digital input. SDN should be = 0 in all modes except Shutdown mode.
When SDN = 1, the chip will be completely shut down, and the contents of the
registers will be lost. Can be used to reset the chip
1
SDN
2
NC
Leave pin floating.
3
NC
Leave pin floating.
Transmit Output Pin.
4
TX
O
5
NC
6
VDD
VDD
7
TXRAMP
O
8
VDD
VDD
9
GPIO0
I/O
General Purpose Digital I/O.
10
GPIO1
I/O
May be configured through the registers to perform various functions including:
Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery
Detect, etc.
The PA output is an open-drain connection, so the L-C match must supply
VDD (+3.3 VDC nominal) to this pin.
It is recommended to connect this pin to GND per the reference design schematic. Not connected internally to any circuitry.
+1.8 to +3.8 V Supply Voltage Input to Internal Regulators.
The recommended VDD supply voltage is +3.3 V.
Programmable Bias Output with Ramp Capability for External FET PA.
See "5.2. Transmitter (TX)" on page 22.
+1.8 to +3.8 V Supply Voltage Input to Internal Regulators.
The recommended VDD supply voltage is +3.3 V.
General Microcontroller Interrupt Status Output.
11
nIRQ
O
When the Si406x exhibits any one of the interrupt events, the nIRQ pin will be
set low = 0. The Microcontroller can then determine the state of the interrupt
by reading the interrupt status. No external resistor pull-up is required, but it
may be desirable if multiple interrupt lines are connected.
Rev 1.0
29
Si4063/60-C
Pin
Pin Name
I/0
Description
Serial Clock Input.
12
SCLK
I
13
SDO
O
0–VDD V digital input. This pin provides the serial data clock function for the
4-line serial data bus. Data is clocked into the Si406x on positive edge transitions.
0–VDD V Digital Output.
Provides a serial readback function of the internal control registers.
Serial Data Input.
14
SDI
I
0–VDD V digital input. This pin provides the serial data stream for the 4-line
serial data bus.
Serial Interface Select Input.
15
nSEL
I
0–VDD V digital input. This pin provides the Select/Enable function for the
4-line serial data bus.
Crystal Oscillator Output.
16
XOUT
O
17
XIN
I
Crystal Oscillator Input.
Connect to an external 25 to 32 MHz crystal, or connect to an external source.
When using an XTAL, leave floating per the reference design schematic. When
using a TCXO, connect to TCXO GND, which should be separate from the
board’s reference ground plane.
18
GND
GND
19
GPIO2
I/O
General Purpose Digital I/O.
20
GPIO3
I/O
May be configured through the registers to perform various functions, including
Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery
Detect.
GND
The exposed metal paddle on the bottom of the Si406x supplies the RF and circuit ground(s) for the entire chip. It is very important that a good solder connection is made between this exposed metal paddle and the ground plane of the
PCB underlying the Si406x.
PKG
30
Connect to an external 25 to 32 MHz crystal, or leave floating when driving
with an external source on XIN.
PADDLE_GND
Rev 1.0
Si4063/60-C
9. Ordering Information
Part Number*
Description
Package Type
Operating
Temperature
Si4063-C2A-GM
ISM EZRadioPRO Transmitter
QFN-20
Pb-free
–40 to 85 °C
Si4060-C2A-GM
ISM EZRadioPRO Transmitter
QFN-20
Pb-free
–40 to 85 °C
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option.
Rev 1.0
31
Si4063/60-C
10. Package Outline: Si4063/60
Figure 15 illustrates the package details for the Si406x. Table 14 lists the values for the dimensions shown in the
illustration.
2X
bbb C
B
A
D
D2
Pin 1 (Laser)
e
20
20x L
1
E
E2
2X
aaa C
A1
20x b
ccc C
ddd
eee C
A
A3
SEATING PLANE
C
Figure 15. 20-Pin Quad Flat No-Lead (QFN)
32
Rev 1.0
C A B
Si4063/60-C
Table 14. Package Dimensions
Dimension
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
b
0.20 REF
0.18
0.25
D
D2
0.30
4.00 BSC
2.45
2.60
e
0.50 BSC
E
4.00 BSC
2.75
E2
2.45
2.60
2.75
L
0.30
0.40
0.50
aaa
0.15
bbb
0.15
ccc
0.10
ddd
0.10
eee
0.08
Notes:
1. All dimensions are shown in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220,
Variation VGGD-8.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C
specification for Small Body Components.
Rev 1.0
33
Si4063/60-C
11. PCB Land Pattern: Si4063/60
Figure 16 illustrates the PCB land pattern details for the Si406x. Table 15 lists the values for the dimensions shown
in the illustration.
Figure 16. PCB Land Pattern
34
Rev 1.0
Si4063/60-C
Table 15. PCB Land Pattern Dimensions
Symbol
Millimeters
Min
Max
C1
3.90
4.00
C2
3.90
4.00
E
0.50 REF
X1
0.20
0.30
X2
2.55
2.65
Y1
0.65
0.75
Y2
2.55
2.65
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on IPC-7351 guidelines.
Solder Mask Design
3. All metal pads are to be non-solder mask defined (NSMD). Clearance
between the solder mask and the metal pad is to be 60 µm minimum, all
the way around the pad.
Stencil Design
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal
walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for the
perimeter pads.
7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be
used for the center ground pad.
Card Assembly
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for small body components.
Rev 1.0
35
Si4063/60-C
12. Top Marking
12.1. Si4063/60 Top Marking
12.2. Top Marking Explanation
Mark Method
YAG Laser
Line 1 Marking
Part Number
40632A = Si4063 Rev 2A1
40602A = Si4060 Rev 2A1
Line 2 Marking
TTTTT = Internal Code
Internal tracking code.2
Line 3 Marking
YY = Year
WW = Workweek
Assigned by the Assembly House. Corresponds to the last
significant digit of the year and workweek of the mold date.
Notes:
1. The first letter after the part number is part of the ROM revision. The last letter indicates the firmware
revision.
2. The first letter of this line is part of the ROM revision.
36
Rev 1.0
Simplicity Studio
One-click access to MCU tools,
documentation, software, source
code libraries & more. Available
for Windows, Mac and Linux!
www.silabs.com/simplicity
MCU Portfolio
www.silabs.com/mcu
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com