Si4704/05-D60
B R O A D C A S T F M R A D I O R EC EIVER W IT H R D S / R B D S
Features
Worldwide FM band support
(64–108 MHz)
Excellent real-world performance
Integrated VCO
Advanced FM seek tuning
Automatic frequency control (AFC)
Automatic gain control (AGC)
Digital FM stereo decoder
Programmable de-emphasis
Advanced Audio Processing
FM digital tuning
EN55020 compliant
No manual alignment necessary
Programmable reference clock
Adjustable soft mute control
RDS/RBDS processor (Si4705-D60)
Digital audio out
2-wire and 3-wire control interface
Integrated LDO regulator
QFN and SSOP packages
RoHS compliant
Ordering Information:
See page 28.
Applications
Pin Assignments
1
DFS
NC
GPO3/[DCLK]
Description
Si4704/05-D60 (QFN)
GPO2/[INT]
Modules for consumer electronics
Clock radios
Mini HiFi and docking stations
Entertainment systems
GPO1
Table and portable radios
Mini/micro systems
CD/DVD and Blu-ray players
Stereo boom boxes
NC
20
19
18
17
16
FMI 2
Si4704/05-D60
FM Antenna
RDS
(Si4705)
FMI
LNA
0/90
Mux
ADC
DIGITAL
AUDIO
DFS
GPO/DCLK
DAC
ROUT
DAC
LOUT
DSP
ADC
2.7~5.5 V (QFN) / 2.0~5.5 V (SSOP) VA
VD
1.62 - 3.6 V
RST
SEN
GND
CONTROL
INTERFACE
LDO
SCLK
AFC
Mux
SDIO
32.768 kHz
+
DOUT
LOW-IF
AGC
RCLK
14 LOUT/[DFS]
GND
PAD
LPI 4
13 ROUT/[DOUT]
8
9
10
VD
12 GND
7
RCLK
SEN
6
SDIO
RST 5
11 VA
Si4704/05-D60 (SSOP)
Functional Block Diagram
RFGND
15 DOUT
RFGND 3
SCLK
The Si4704/05-D60 digital CMOS FM radio receiver IC integrates the complete
tuner function from antenna input to digital audio output, enabling a cost efficient
digital audio platform for consumer electronic applications with high TDMA noise
immunity, superior radio performance, and high fidelity audio power amplification.
DOUT
1
24
LOUT/[DFS]
DFS
2
23
ROUT/[DOUT]
GPO3/[DCLK]
3
22
DBYP
GPO2/[INT]
4
21
VA
GPO1
5
20
VD
NC
6
19
RCLK
NC
7
18
SDIO
FMI
8
17
SCLK
RFGND
9
16
SEN
NC
10
15
RST
LPI
11
14
GND
NC
12
13
GND
This product, its features, and/or its
architecture is covered by one or more of
the following patents, as well as other
patents, pending and issued, both
foreign and domestic: 7,127,217;
7,272,373;
7,272,375;
7,321,324;
7,355,476;
7,426,376;
7,471,940;
7,339,503; 7,339,504.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1. QFN Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. SSOP Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3. QFN/SSOP Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.4. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7. Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.9. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.10. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.11. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.12. RDS/RBDS Processor (Si4705-D60 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.13. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.14. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.15. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.16. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.17. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.18. Firmware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
4.19. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.20. 2 V Operation (SSOP Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.21. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1. Si4704/05-D60-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2. Si4704/05-D60-GU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1. Si4704/05-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2. Si4704/05-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
8.1. Si4704/05-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2. Si4704/05-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9.1. Si4704/05-D60 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2. Top Marking Explanation (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3. Si4704/05-D60 Top Marking (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
9.4. Top Marking Explanation (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Document Change List: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
3
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
1. Electrical Specifications
Table 1. Recommended Operating Conditions1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Analog Supply Voltage
VA
2.72
—
5.5
V
Digital and I/O Supply Voltage
VD
1.62
—
3.6
V
Power Supply Powerup Rise Time
VDDRISE
10
—
—
µs
Interface Power Supply Powerup Rise Time
VIORISE
10
—
—
µs
TA
–20
25
85
C
Ambient Temperature
Notes:
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at
VA = 3.3 V and 25 C unless otherwise stated.
2. SSOP devices operate down to 2 V at 25 °C. See Section “4.20. 2 V Operation (SSOP Only)” for details.
4
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 2. DC Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
—
8.2
9.5
—
10.5
13.5
Unit
FM Mode
VAQFN Supply Current
IFMVA
VDQFN Supply Current
IFMVD
VASSOP Supply Current
IFMVA
—
18.5
21.5
VDSSOP Supply Current
IFMVD
—
0.15
0.6
VAQFN Supply Current
IFMVA
—
9.1
10.3
VDQFN Supply Current
IFMVD
—
9.9
12.8
VASSOP Supply Current
IFMVA
—
19.1
21.3
VDSSOP Supply Current
IFMVD
0.1
0.6
—
4
15
—
9.5
15
SCLK, RCLK inactive
—
3
10
SCLK, RCLK inactive
—
3
10
Digital Output Mode1
mA
Analog Output Mode2
Powerdown
VAQFN Powerdown Current
VASSOP Powerdown Current
VDQFN Powerdown Current
VDSSOP Powerdown Current
IAPD
IDPD
µA
µA
High Level Input Voltage3
VIH
0.7 x VD
—
VD + 0.3
V
3
VIL
–0.3
—
0.3 x VD
V
Current3
IIH
VIN = VD = 3.6 V
–10
—
10
µA
Low Level Input Current3
IIL
VIN = 0 V,
VD = 3.6 V
–10
—
10
µA
High Level Output Voltage4
VOH
IOUT = 500 µA
0.8 x VD
—
—
V
Low Level Output Voltage4
VOL
IOUT = –500 µA
—
—
0.2 x VD
V
Low Level Input Voltage
High Level Input
Notes:
1. Guaranteed by characterization.
2. Backwards compatible mode to rev B and rev C. Additional features on this device may increase typical supply current.
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
5
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 3. Reset Timing Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Min
Typ
Max
Unit
tSRST
100
—
—
µs
GPO1, GPO2/INT Hold from RST
tHRST
30
—
—
ns
RST Pulse Release Time Before VDD/VIO Turn Off
tRRST
30
—
—
ns
RST Pulse Width and GPO1, GPO2/INT Setup to RST
Important Notes:
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is
high) does not occur within 300 ns before the rising edge of RST.
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until
after the first start condition.
3. When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the
rising edge of RST.
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then
minimum tSRST is 100 µs, to provide time for on-chip 1 M devices (active while RST is low) to pull GPO1 high and
GPO2 low.
5. RST must be held low for at least 100 µs after all voltage supplies have been ramped up.
6. RST needs to be asserted (pulled low) prior to any supply voltage is ramped down.
Figure 1. Reset Timing Parameters for Busmode Select
6
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 4. 2-Wire Control Interface Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
SCLK Frequency
fSCL
0
—
400
kHz
SCLK Low Time
tLOW
1.3
—
—
µs
SCLK High Time
tHIGH
0.6
—
—
µs
SCLK Input to SDIO Setup (START)
tSU:STA
0.6
—
—
µs
SCLK Input to SDIO Hold (START)
tHD:STA
0.6
—
—
µs
SDIO Input to SCLK Setup
tSU:DAT
100
—
—
ns
SDIO Input to SCLK Hold
tHD:DAT
0
—
900
ns
SCLK input to SDIO Setup (STOP)
tSU:STO
0.6
—
—
µs
STOP to START Time
tBUF
1.3
—
—
µs
SDIO Output Fall Time
tf:OUT
—
250
ns
—
300
ns
4,5
Cb
20 + 0.1 ----------1pF
SDIO Input, SCLK Rise/Fall Time
tf:IN
tr:IN
Cb
20 + 0.1 ----------1pF
SCLK, SDIO Capacitive Loading
Cb
—
—
50
pF
Input Filter Pulse Suppression
tSP
—
—
50
ns
Notes:
1. When VD = 0 V, SCLK and SDIO are low impedance.
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is
high) does not occur within 300 ns before the rising edge of RST.
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high
until after the first start condition.
4. The Si4704/05-D60 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum
tHD:DAT specification.
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be
violated as long as all other timing parameters are met.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
7
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
SCLK
70%
SDIO
70%
tSU:STA tHD:STA
tLOW
START
tr:IN
tHIGH
tr:IN
tf:IN
tSP
tSU:STO
tBUF
30%
30%
tf:IN,
tf:OUT
tHD:DAT tSU:DAT
STOP
START
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters
SCLK
A6-A0,
R/W
SDIO
START
ADDRESS + R/W
D7-D0
ACK
DATA
D7-D0
ACK
DATA
ACK
STOP
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram
8
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 5. 3-Wire Control Interface Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
SCLK Frequency
fCLK
0
—
2.5
MHz
SCLK High Time
tHIGH
25
—
—
ns
SCLK Low Time
tLOW
25
—
—
ns
tS
20
—
—
ns
SDIO Input to SCLKHold
tHSDIO
10
—
—
ns
SEN Input to SCLKHold
tHSEN
10
—
—
ns
SCLKto SDIO Output Valid
tCDV
Read
2
—
25
ns
SCLKto SDIO Output High Z
tCDZ
Read
2
—
25
ns
SCLK, SEN, SDIO, Rise/Fall time
tR, tF
—
—
10
ns
SDIO Input, SEN to SCLKSetup
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the
rising edge of RST.
SCLK
70%
30%
tR
tF
tHSDIO
tS
SEN
70%
SDIO
70%
tHIGH
tLOW
tHSEN
tS
30%
A7
30%
A6-A5,
R/W,
A4-A1
A0
D15
D14-D1
Address In
D0
Data In
Figure 4. 3-Wire Control Interface Write Timing Parameters
SCLK
70%
SEN
70%
30%
tHSDIO
tS
tCDV
tHSEN
tCDZ
tS
30%
70%
SDIO
A7
30%
A6-A5,
R/W,
A4-A1
Address In
A0
D15
½ Cycle Bus
Turnaround
D14-D1
D0
Data Out
Figure 5. 3-Wire Control Interface Read Timing Parameters
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
9
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 6. Digital Audio Interface Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DCLK Cycle Time
tDCT
26
—
1000
ns
DCLK Pulse Width High
tDCH
10
—
—
ns
DCLK Pulse Width Low
tDCL
10
—
—
ns
DFS Set-up Time to DCLK Rising Edge
tSU:DFS
5
—
—
ns
DFS Hold Time from DCLK Rising Edge
tHD:DFS
5
—
—
ns
tPD:DOUT
0
—
50
ns
DOUT Propagation Delay from DCLK Falling Edge
tDCH
tDCL
DCLK
tDCT
DFS
tHD:DFS
tSU:DFS
DOUT
tPD:OUT
Figure 6. Digital Audio Interface Timing Parameters, I2S Mode
10
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 7. FM Receiver Characteristics1,2
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Min
Typ
Max
Unit
76
—
108
MHz
(S+N)/N = 26 dB
—
2.2
3.5
µV EMF
f = 2 kHz,
RDS BLER < 5%
—
10
—
µV EMF
3
4
5
k
4
5
6
pF
100
105
—
dBµV EMF
m = 0.3
40
50
—
dB
Adjacent Channel Selectivity
±200 kHz
35
50
—
dB
Alternate Channel Selectivity
±400 kHz
60
70
—
dB
In-band
35
—
—
dB
72
80
90
mVRMS
—
—
1
dB
Input Frequency
fRF
Sensitivity3,4,5,6
RDS
Test Condition
Sensitivity6,7
LNA Input Resistance7,8
LNA Input
Input
AM
Capacitance7,8
IP37,9
Suppression3,4,7,8
Spurious Response
Audio Output
Rejection7
Voltage3,4,8
Audio Output L/R
Imbalance3,8,10
Audio Frequency Response
Low7
–3 dB
—
—
30
Hz
Audio Frequency Response
High7
–3 dB
15
—
—
kHz
35
42
—
dB
55
63
—
dB
—
58
—
dB
—
0.1
0.5
%
FM_DEEMPHASIS = 2
70
75
80
µs
FM_DEEMPHASIS = 1
45
50
54
µs
f = ±400 kHz
—
34
—
dBµV
f = ±4 MHz
—
30
—
dBµV
Audio Stereo
Audio Mono
S/N3,4,5,8
Audio Stereo
Audio
Separation8,10
S/N4,5,7,8
THD3,8,10
De-emphasis Time
Blocking
Constant7
Sensitivity3,4,5,6,7,11, 12
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Skyworks will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
4. f = 22.5 kHz.
5. BAF = 300 Hz to 15 kHz, A-weighted.
6. Analog audio output mode.
7. Guaranteed by characterization.
8. VEMF = 1 mV.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. Sensitivity measured at (S+N)/N = 26 dB.
12. Blocker Amplitude = 100 dBµV.
13. At temperature (25 °C).
14. At LOUT and ROUT pins.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
11
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 7. FM Receiver Characteristics1,2 (Continued)
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Intermod Sensitivity3,4,5,6,7,11,12
Test Condition
Min
Typ
Max
Unit
f = ±400 kHz, ±800 kHz
—
40
—
dBµV
f = ±4 MHz, ±8 MHz
—
35
—
dBµV
Audio Output Load Resistance7,14
RL
Single-ended
10
—
—
k
Audio Output Load Capacitance7,14
CL
Single-ended
—
—
50
pF
RCLK tolerance = 100 ppm
—
—
60
ms/channel
From powerdown
—
—
110
ms
Input levels of 8 and
60 dBµV at RF Input
–3
—
3
dB
Seek/Tune Time7
Powerup
RSSI
Time7
Offset13
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Skyworks will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
4. f = 22.5 kHz.
5. BAF = 300 Hz to 15 kHz, A-weighted.
6. Analog audio output mode.
7. Guaranteed by characterization.
8. VEMF = 1 mV.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. Sensitivity measured at (S+N)/N = 26 dB.
12. Blocker Amplitude = 100 dBµV.
13. At temperature (25 °C).
14. At LOUT and ROUT pins.
12
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 8. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Input Frequency
Sensitivity4,5,6,8
Test Condition
fRF
Typ
Max
Unit
64
—
75.9
MHz
—
3.5
—
µV EMF
LNA Input
Resistance3,7
3
4
5
k
LNA Input
Capacitance3,7
4
5
6
pF
—
105
—
dBµV EMF
m = 0.3
—
50
—
dB
Adjacent Channel Selectivity
±200 kHz
—
50
—
dB
Alternate Channel Selectivity
±400 kHz
—
70
—
dB
72
80
90
mVRMS
—
—
1
dB
Input
(S+N)/N = 26 dB
Min
IP39
AM Suppression3,4,5,7
Audio Output Voltage4,5,7
Audio Output L/R
Imbalance4,7,10
Low3
–3 dB
—
—
30
Hz
Audio Frequency Response High3
–3 dB
15
—
—
kHz
—
63
—
dB
—
0.1
—
%
FM_DEEMPHASIS = 2
70
75
80
µs
FM_DEEMPHASIS = 1
45
50
54
µs
RL
Single-ended
10
—
—
k
CL
Single-ended
—
—
50
pF
RCLK tolerance
= 100 ppm
—
—
60
ms/channel
From powerdown
—
—
110
ms
Input levels of 8 and
60 dBµV EMF
–3
—
3
dB
Audio Frequency Response
Audio Mono
Audio
S/N4,3,5,7
THD4,7,10
De-emphasis Time
Constant3
Audio Output Load
Resistance3,11
Audio Output Load Capacitance3,11
Seek/Tune
Time3
Powerup Time3
RSSI
Offset12
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Skyworks will evaluate schematics and layouts for qualified customers.
3. Guaranteed by characterization.
4. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
5. f = 22.5 kHz.
6. BAF = 300 Hz to 15 kHz, A-weighted.
7. VEMF = 1 mV.
8. Analog output mode.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. At LOUT and ROUT pins.
12. At temperature (25 °C).
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
13
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 9. Reference Clock and Crystal Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
31.130
32.768
40,000
kHz
–100
—
100
ppm
1
—
4095
31.130
32.768
34.406
kHz
Crystal Oscillator Frequency
—
32.768
—
kHz
Crystal Frequency Tolerance2
–100
—
100
ppm
Board Capacitance
—
—
3.5
pF
ESR
—
—
50
CL3
7
12
22
pF
CL–single ended3
14
24
44
pF
Reference Clock
RCLK Supported Frequencies1
RCLK Frequency Tolerance2
REFCLK_PRESCALE
REFCLK
Crystal Oscillator
Notes:
1. The Si473x-D60 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK
frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 6 of “AN332: Si47xx
Programming Guide”.
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing.
3. Guaranteed by characterization.
Table 10. Thermal Conditions
Parameter
Symbol
Min
Typ
Max
Unit
Thermal Resistance*
JA
—
80
—
°C/W
Ambient Temperature
TA
–20
25
85
°C
Junction Temperature
TJ
—
—
92
°C
*Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.
14
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 11. Absolute Maximum Ratings1,2
Parameter
Symbol
Value
Unit
Analog Supply Voltage
VA
–0.5 to 5.8
V
Digital and I/O Supply Voltage
VD
–0.5 to 3.9
V
Input Current3
IIN
10
mA
Voltage3
VIN
–0.3 to (VIO + 0.3)
V
Operating Temperature
TOP
–40 to 95
C
Storage Temperature
TSTG
–55 to 150
C
0.4
Vpk
Input
RF Input Level4
Notes:
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond
recommended operating conditions for extended periods may affect device reliability.
2. The Si4704/05-D60 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2
kV HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.
3. For input pins DFS, SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2, GPO3, and DCLK.
4. At RF input pin FMI and LPI.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
15
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
2. Typical Application Schematic
2.1. QFN Typical Application Schematic
Optional: Digital Audio Out
OPMODE: 0xB0, 0xB5
C9
GPO1
GPO2/INT
R3
GPO3/DCLK
17
16
GND
D60
15
14
LOUT
13
ROUT
12
2.7 to 5.5 V
11
VA
VD
C1
10
6
VA
RCLK
RSTB
DOUT
DFS
19
18
GPO3/DCLK
GPO2/INT
Si4704/05
LPI
SENB
5
LOUT
ROUT
9
4
DFS
R1
DOUT
RFGND
SDIO
Embedded Antenna
FMI
8
3
NC
SCLK
FM Antenna
2
7
1
C2
GPO1
NC
20
R2
1.62 to 3.6 V
C4
RSTB
VD
RCLK
SDIO
SCLK
1
2
SENB
GPO3
RCLK
X1
C5
C6
Optional: For Crystal OSC
Notes:
1. Place C1 close to VA pin and C4 close to VD pin.
2. All grounds connect directly to GND plane on PCB.
3. Pins 1 and 20 are no connects, leave floating.
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Skyworks will evaluate schematics and layouts for qualified customers.
5. Pin 2 connects to the FM antenna interface.
6. Place Si4704/05-D60 as close as possible to antenna and keep the FMI traces as short as possible.
16
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
2.2. SSOP Typical Application Schematic
Optional: Digital Audio Out
OPMODE: 0xB0, 0xB5
C9
3
5
GPO1
C2
DOUT
LOUT
DFS
ROUT
GPO3/DCLK
GPO2/INT
GPO1
6
NC
7
NC
8
9
FMI
RFGND
10 NC
Embedded Antenna
11
DBYP
VA
VD
RCLK
SDIO
SCLK
SENB
RSTB
24
LOUT
23
ROUT
22
C1
21
2.0 to 5.5 V
20
RCLK
18
SCLK
16
SENB
15
12 NC
GND 13
C4
SDIO
17
GND 14
1.62 to 3.6 V
VD
19
LPI
VA
RSTB
2
R3
4
GPO2/INT
FM Antenna
2
1
GPO3/DCLK
1
R2
D60
DFS
R1
Si4704/05
DOUT
GPO3
RCLK
X1
C5
C6
Optional: For Crystal OSC
Notes:
1. Place C1 close to VA and C4 close to VD pin.
2. All grounds connect directly to GND plane on PCB.
3. Pins 6 and 7 are no connects, leave floating.
4. Pin 10 is unused. Tie this pin to GND.
5. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Skyworks will evaluate schematics and layouts for qualified customers.
6. Pin 8 connects to the FM antenna interface.
7. Place Si4704/05-D60 as close as possible to antenna and keep the FMI traces as short as possible.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
17
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
3. QFN/SSOP Bill of Materials
Table 12. Si4704/05-D60 QFN/SSOP Bill of Materials
Component(s)
Value/Description
Supplier
C1
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R
Murata
C2
Coupling capacitor, 1 nF, ±20%, Z5U/X7R
Murata
C4
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R
Murata
U1
Si4704/05-D60 FM Radio Tuner
Skyworks
Optional Components
C5, C6
Crystal load capacitors, 22 pF, ±5%, COG
(Optional for crystal oscillator)
Venkel
C9
Noise mitigating capacitor, 2~5 pF
(Optional for digital audio)
Murata
R1
Resistor, 600
(Optional for digital audio)
Venkel
R2
Resistor, 2 k
(Optional for digital audio)
Venkel
R3
Resistor, 2 k
(Optional for digital audio)
Venkel
X1
32.768 kHz crystal
(Optional for crystal oscillator)
Epson
18
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4. Functional Description
4.1. Overview
Si4704/05-D60
FM Antenna
RDS
(Si4705)
FMI
RFGND
LNA
DIGITAL
AUDIO
0/90
Mux
ADC
DFS
GPO/DCLK
LOW-IF
AGC
DAC
ROUT
DAC
LOUT
DSP
32.768 kHz
ADC
2.7~5.5 V (QFN) / 2.0~5.5 V (SSOP) VA
CONTROL
INTERFACE
VD
1.62 - 3.6 V
RST
LDO
SEN
GND
SDIO
AFC
Mux
SCLK
RCLK
+
DOUT
Figure 7. Functional Block Diagram
The Si4704/05-D60 CMOS FM radio receiver IC
integrates the complete tuner function from antenna
input to audio output. This feature enables a costefficient digital audio platform for consumer electronics
applications with high TDMA noise immunity, superior
radio performance, and high fidelity audio power
amplification. Offering unmatched integration and PCB
space savings, the Si4704/05-D60 requires only few
external components and less than 15 mm2 of board
area, excluding the antenna inputs. The Si4704/05-D60
FM radio provides the space savings and low power
consumption necessary for portable devices while
delivering the high performance and design simplicity
desired for all FM solutions.
Leveraging Skyworks' proven and patented Si4700/01
FM tuner's digital low intermediate frequency (low-IF)
receiver architecture, the Si4704/05-D60 delivers
superior RF performance and interference rejection in
the FM bands. The high level of integration and
complete system production test simplifies design-in,
increases system quality, and improves reliability and
manufacturability.
The Si4704/05-D60 is a feature-rich solution that
includes advanced seek algorithms, soft mute, autocalibrated digital tuning, FM stereo processing and
advanced audio processing.
In addition, the Si4704/05-D60 provides analog and
digital audio outputs and a programmable reference
clock. The device supports I2C-compatible 2-wire
control interface, and a Si4700/01 backwardscompatible 3-wire control interface.
The Si4704/05-D60 utilizes digital signal processing to
achieve high fidelity, optimal performance, and design
flexibility. The chip provides excellent pilot rejection,
selectivity, and unmatched audio performance, and
offers both the manufacturer and the end-user
extensive programmability and a better listening
experience.
The Si4705-D60 incorporates a digital signal processor
for the European Radio Data System (RDS) and the
North American Radio Broadcast Data System (RBDS)
including all required symbol decoding, block
synchronization, error detection, and error correction
functions. Using this feature, the Si4705-D60 enables
broadcast data such as station identification and song
name to be displayed to the user.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
19
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4.2. Operating Modes
4.4.1. Audio Data Formats
The Si4704/05-D60 operates in FM receive mode. In
FM mode, radio signals are received on FMI and
processed by the FM front-end circuitry. In addition to
the receiver mode, there is a clocking mode to choose
to clock the Si4704/05-D60 from a reference clock or
crystal. On the Si4704/05-D60, there is an audio output
mode to choose between an analog and/or digital audio
output. In the analog audio output mode, ROUT and
LOUT are used for the audio output pins. In the digital
audio mode, DOUT, DFS, and DCLK pins are used.
Concurrent analog/digital audio output mode is also
available requiring all five pins.
The digital audio interface operates in slave mode and
supports three different audio data formats:
4.3. FM Receiver
The Si4704/05-D60 FM receiver is based on the proven
Si4700/01 FM tuner. The receiver uses a digital low-IF
architecture allowing the elimination of external
components and factory adjustments. The Si4704/05D60 integrates a low noise amplifier (LNA) supporting
the worldwide FM broadcast band (64 to 108 MHz). An
AGC circuit controls the gain of the LNA to optimize
sensitivity and rejection of strong interferers. An imagereject mixer downconverts the RF signal to low-IF. The
quadrature mixer output is amplified, filtered, and
digitized with high resolution analog-to-digital
converters (ADCs). This advanced architecture allows
the Si4704/05-D60 to perform channel selection, FM
demodulation, and stereo audio processing to achieve
superior performance compared to traditional analog
architectures.
4.4. Digital Audio Interface
The digital audio interface operates in slave mode and
supports a variety of MSB-first audio data formats
including I2S and left-justified modes. The interface has
three pins: digital data input (DIN), digital frame
synchronization input (DFS), and a digital bit
synchronization input clock (DCLK). The Si4704/05-D60
supports a number of industry-standard sampling rates
including 32, 44.1, and 48 kHz. The digital audio
interface enables low-power operation by eliminating
the need for redundant DACs and ADCs on the audio
baseband processor.
I2S
Left-Justified
DSP Mode
In I2S mode, by default the MSB is captured on the
second rising edge of DCLK following each DFS
transition. The remaining bits of the word are sent in
order, down to the LSB. The left channel is transferred
first when the DFS is low, and the right channel is
transferred when the DFS is high.
In left-justified mode, by default the MSB is captured on
the first rising edge of DCLK following each DFS
transition. The remaining bits of the word are sent in
order, down to the LSB. The left channel is transferred
first when the DFS is high, and the right channel is
transferred when the DFS is low.
In DSP mode, the DFS becomes a pulse with a width of
1DCLK period. The left channel is transferred first,
followed right away by the right channel. There are two
options in transferring the digital audio data in DSP
mode: the MSB of the left channel can be transferred on
the first rising edge of DCLK following the DFS pulse or
on the second rising edge.
In all audio formats, depending on the word size, DCLK
frequency, and sample rates, there may be unused
DCLK cycles after the LSB of each word before the next
DFS transition and MSB of the next word. In addition, if
preferred, the user can configure the MSB to be
captured on the falling edge of DCLK via properties.
The number of audio bits can be configured for 8, 16,
20, or 24 bits.
4.4.2. Audio Sample Rates
The device supports a number of industry-standard
sampling rates including 32, 44.1, and 48 kHz. The
digital audio interface enables low-power operation by
eliminating the need for redundant DACs on the audio
baseband processor.
20
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
(OFALL = 1)
INVERTED
DCLK
(OFALL = 0)
DCLK
LEFT CHANNEL
DFS
I2S
(OMODE = 0000)
RIGHT CHANNEL
1 DCLK
DOUT
1 DCLK
1
2
n-2
3
n-1
MSB
n
1
LSB
MSB
2
n-2
3
n-1
n
LSB
Figure 8. I2S Digital Audio Format
(OFALL = 1)
INVERTED
DCLK
(OFALL = 0)
DCLK
DFS
LEFT CHANNEL
RIGHT CHANNEL
Left-Justified
(OMODE = 0110)
DOUT
1
2
3
n-2
n-1
MSB
n
1
LSB
MSB
2
n-2
3
n-1
n
LSB
Figure 9. Left-Justified Digital Audio Format
(OFALL = 0)
DCLK
DFS
RIGHT CHANNEL
LEFT CHANNEL
(OMODE = 1100)
DOUT
(MSB at 1 rising edge)
1
st
2
3
n-2
n-1
MSB
DOUT
(MSB at 2 rising edge)
nd
1
LSB
MSB
n-1
n
1
LSB
MSB
2
3
n-2
1
MSB
2
3
n-2
n-1
n
LSB
LEFT CHANNEL
1 DCLK
(OMODE = 1000)
n
RIGHT CHANNEL
2
3
n-2
n-1
n
LSB
Figure 10. DSP Digital Audio Format
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
21
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4.6. Received Signal Qualifiers
The output of the FM demodulator is a stereo
multiplexed (MPX) signal. The MPX standard was
developed in 1961, and is used worldwide. Today's
MPX signal format consists of left + right (L+R) audio,
left – right (L–R) audio, a 19 kHz pilot tone, and
RDS/RBDS data as shown in Figure 11 below.
The quality of a tuned signal can vary depending on
many factors including environmental conditions, time of
day, and position of the antenna. To adequately manage
the audio output and avoid unpleasant audible effects to
the end-user, the Si4704/05-D60 monitors and provides
indicators of the signal quality, allowing the host
processor to perform additional processing if required
by the customer. The Si4704/05-D60 monitors signal
quality metrics including RSSI, SNR, and multipath
interference on FM signals. These metrics are used to
optimize signal processing and are also reported to the
host processor. The signal processing algorithms can
use either Skyworks' optimized settings (recommended)
or be customized to modify performance.
Modulation Level
4.5. Stereo Audio Processing
Mono Audio
Left + Right
0
Stereo
Pilot
15 19 23
Stereo Audio
Left - Right
38
RDS/
RBDS
53
57
Frequency (kHz)
Figure 11. MPX Signal Spectrum
4.5.1. Stereo Decoder
The Si4704/05-D60's integrated stereo decoder
automatically decodes the MPX signal using DSP
techniques. The 0 to 15 kHz (L+R) signal is the mono
output of the FM tuner. Stereo is generated from the
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is
used as a reference to recover the (L–R) signal. Output
left and right channels are obtained by adding and
subtracting the (L+R) and (L–R) signals respectively.
4.5.2. Stereo-Mono Blending
Adaptive noise suppression is employed to gradually
combine the stereo left and right audio channels to a
mono (L+R) audio signal as the signal quality degrades
to maintain optimum sound fidelity under varying
reception conditions. Three metrics, received signal
strength indicator (RSSI), signal-to-noise ratio (SNR),
and
multipath
interference,
are
monitored
simultaneously in forcing a blend from stereo to mono.
The metric which reflects the minimum signal quality
takes precedence and the signal is blended
appropriately.
All three metrics have programmable stereo/mono
thresholds and attack/release rates. If a metric falls
below its mono threshold, the signal is blended from
stereo to full mono. If all metrics are above their
respective stereo thresholds, then no action is taken to
blend the signal. If a metric falls between its mono and
stereo thresholds, then the signal is blended to the level
proportional to the metric’s value between its mono and
stereo thresholds, with an associated attack and
release rate.
4.7. Volume Control
The audio output may be muted. Volume is adjusted
digitally by the RX_VOLUME property.
4.8. Stereo DAC
High-fidelity stereo digital-to-analog converters (DACs)
drive analog audio signals onto the LOUT and ROUT
pins. The audio output may be muted.
4.9. Soft Mute
The soft mute feature is available to attenuate the audio
outputs and minimize audible noise in very weak signal
conditions. The soft mute feature is triggered by the
SNR metric. The SNR threshold for activating soft mute
is programmable, as are soft mute attenuation levels
and attack and release rates.
4.10. FM Hi-Cut Control
Hi-cut control is employed on audio outputs with
degradation of the signal due to low SNR and/or
multipath interference. Two metrics, SNR and multipath
interference, are monitored concurrently in forcing hi-cut
of the audio outputs. Programmable minimum and
maximum thresholds are available for both metrics. The
transition frequency for hi-cut is also programmable with
up to seven hi-cut filter settings. A single set of attack
and release rates for hi-cut are programmable for both
metrics from a range of 2 ms to 64 s. The level of hi-cut
applied can be monitored with the FM_RSQ_STATUS
command. Hi-cut can be disabled by setting the hi-cut
filter to audio bandwidth of 15 kHz.
22
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4.11. De-emphasis
Pre-emphasis and de-emphasis is a technique used by
FM broadcasters to improve the signal-to-noise ratio of
FM receivers by reducing the effects of high-frequency
interference and noise. When the FM signal is
transmitted, a pre-emphasis filter is applied to
accentuate the high audio frequencies. The Si4704/05D60 incorporates a de-emphasis filter which attenuates
high frequencies to restore a flat frequency response.
Two time constants are used in various regions. The deemphasis time constant is programmable to 50 or 75 µs
and is set by the FM_DEEMPHASIS property.
4.12. RDS/RBDS Processor (Si4705-D60
Only)
The Si4705-D60 implements an RDS/RBDS* processor
for symbol decoding, block synchronization, error
detection, and error correction.
The Si4705-D60 device is user configurable and
provides an optional interrupt when RDS is
synchronized, loses synchronization, and/or the user
configurable RDS FIFO threshold has been met.
The Si4705-D60 reports RDS decoder synchronization
status and detailed bit errors in the information word for
each RDS block with the FM_RDS_STATUS command.
The range of reportable block errors is 0, 1–2, 3–5, or
6+. More than six errors indicates that the
corresponding block information word contains six or
more non-correctable errors or that the block checkword
contains errors. The pilot does not have to be present to
decode RDS/RBDS.
*Note: RDS/RBDS is referred to only as RDS throughout the
remainder of this document.
4.13. Tuning
The tuning frequency is directly programmed using the
FM_TUNE_FREQ command. The Si4704/05-D60
supports channel spacing steps of 10 kHz in FM mode.
4.14. Seek
The Si4704/05-D60 seek functionality is performed
completely on-chip and will search up or down the
selected frequency band for a valid channel. A valid
channel is qualified according to a series of
programmable signal indicators and thresholds. The
seek function can be made to stop at the band edge and
provide an interrupt, or wrap the band and continue
seeking until arriving at the original departure frequency.
The device sets interrupts with found valid stations or, if
the seek results in zero found valid stations, the device
indicates failure and again sets an interrupt. Refer to
“AN332: Si47xx Programming Guide”.
The Si4704/05-D60 uses RSSI, SNR, and AFC to
qualify stations. Most of these variables have
programmable thresholds for modifying the seek
function according to customer needs.
RSSI is employed first to screen all possible candidate
stations. SNR and AFC are subsequently used in
screening the RSSI qualified stations. The more
thresholds the system engages, the higher the
confidence that any found stations will indeed be valid
broadcast stations. The Si4704/05-D60 defaults set
RSSI to a mid-level threshold and add an SNR
threshold set to a level delivering acceptable audio
performance. This trade-off will eliminate very low RSSI
stations while keeping the seek time to acceptable
levels. Generally, the time to auto-scan and store valid
channels for an entire FM band with all thresholds
engaged is very short depending on the band content.
Seek is initiated using the FM_SEEK_START
command. The RSSI, SNR, and AFC threshold settings
are adjustable using properties.
4.15. Reference Clock
The Si4704/05-D60 reference clock is programmable,
supporting RCLK frequencies listed in Table 9,
“Reference Clock and Crystal Characteristics,” on
page 14. Refer to Table 2, “DC Characteristics,” on
page 5 for switching voltage levels and Table 9 for
frequency tolerance information.
An onboard crystal oscillator is available to generate the
32.768 kHz reference when an external crystal and load
capacitors are provided. Refer to "2. Typical Application
Schematic" on page 16. This mode is enabled using the
POWER_UP command. Refer to “AN332: Si47xx
Programming Guide”.
The Si4704/05-D60 performance may be affected by
data activity on the SDIO bus when using the integrated
internal oscillator. SDIO activity results from polling the
tuner for status or communicating with other devices
that share the SDIO bus. If there is SDIO bus activity
while the Si4704/05-D60 is performing the seek/tune
function, the crystal oscillator may experience jitter,
which may result in mistunes, false stops, and/or lower
SNR.
For best seek/tune results, Skyworks recommends that
all SDIO data traffic be suspended during Si4704/05D60 seek and tune operations. This is achieved by
keeping the bus quiet for all other devices on the bus,
and delaying tuner polling until the tune or seek
operation is complete. The seek/tune complete (STC)
interrupt should be used instead of polling to determine
when a seek/tune operation is complete.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
23
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4.16. Control Interface
A serial port slave interface is provided, which allows an
external controller to send commands to the Si4704/05D60 and receive responses from the device. The serial
port can operate in two bus modes: 2-wire mode and 3wire mode. The Si4704/05-D60 selects the bus mode by
sampling the state of the GPO1 and GPO2 pins on the
rising edge of RST. The GPO1 pin includes an internal
pull-up resistor, which is connected while RST is low,
and the GPO2 pin includes an internal pull-down
resistor, which is connected while RST is low.
Therefore, it is only necessary for the user to actively
drive pins which differ from these states. See Table 13.
Table 13. Bus Mode Select on Rising Edge of
RST
Bus Mode
2-Wire
3-Wire
GPO1
1
0 (must drive)
GPO2
0
0
After the rising edge of RST, the pins GPO1 and GPO2
are used as general purpose output (O) pins, as
described in Section “4.17. GPO Outputs”. In any bus
mode, commands may only be sent after VD and VA
supplies are applied.
In any bus mode, before sending a command or reading
a response, the user must first read the status byte to
ensure that the device is ready (CTS bit is high).
4.16.1. 2-Wire Control Interface Mode
When selecting 2-wire mode, the user must ensure that
SCLK is high during the rising edge of RST, and stays
high until after the first start condition. Also, a start
condition must not occur within 300 ns before the rising
edge of RST.
The 2-wire bus mode uses only the SCLK and SDIO
pins for signaling. A transaction begins with the START
condition, which occurs when SDIO falls while SCLK is
high. Next, the user drives an 8-bit control word serially
on SDIO, which is captured by the device on rising
edges of SCLK. The control word consists of a 7-bit
device address, followed by a read/write bit (read = 1,
write = 0). The Si4704/05-D60 acknowledges the
control word by driving SDIO low on the next falling
edge of SCLK.
Although the Si4704/05-D60 will respond to only a
single device address, this address can be changed
with the SEN pin (note that the SEN pin is not used for
signaling in 2-wire mode). Refer to “AN332: Si47xx
Programming Guide”
For write operations, the user then sends an 8-bit data
byte on SDIO, which is captured by the device on rising
edges of SCLK. The Si4704/05-D60 acknowledges
each data byte by driving SDIO low for one cycle, on the
next falling edge of SCLK. The user may write up to 8
data bytes in a single 2-wire transaction. The first byte is
a command, and the next seven bytes are arguments.
For read operations, after the Si4704/05-D60 has
acknowledged the control byte, it will drive an 8-bit data
byte on SDIO, changing the state of SDIO on the falling
edge of SCLK. The user acknowledges each data byte
by driving SDIO low for one cycle, on the next falling
edge of SCLK. If a data byte is not acknowledged, the
transaction will end. The user may read up to 16 data
bytes in a single 2-wire transaction. These bytes contain
the response data from the Si4704/05-D60.
A 2-wire transaction ends with the STOP condition,
which occurs when SDIO rises while SCLK is high.
For details on timing specifications and diagrams, refer
to Table 4, “2-Wire Control Interface Characteristics” on
page 7; Figure 2, “2-Wire Control Interface Read and
Write Timing Parameters,” on page 8, and Figure 3, “2Wire Control Interface Read and Write Timing Diagram,”
on page 8.
4.16.2. 3-Wire Control Interface Mode
When selecting 3-wire mode, the user must ensure that
a rising edge of SCLK does not occur within 300 ns
before the rising edge of RST.
The 3-wire bus mode uses the SCLK, SDIO, and SEN_
pins. A transaction begins when the user drives SEN
low. Next, the user drives a 9-bit control word on SDIO,
which is captured by the device on rising edges of
SCLK. The control word consists of a 9-bit device
address (A7:A5 = 101b), a read/write bit (read = 1, write
= 0), and a 5-bit register address (A4:A0).
For write operations, the control word is followed by a
16-bit data word, which is captured by the device on
rising edges of SCLK.
For read operations, the control word is followed by a
delay of one-half SCLK cycle for bus turn-around. Next,
the Si4704/05-D60 will drive the 16-bit read data word
serially on SDIO, changing the state of SDIO on each
rising edge of SCLK.
A transaction ends when the user sets SEN high, then
pulses SCLK high and low one final time. SCLK may
either stop or continue to toggle while SEN is high.
In 3-wire mode, commands are sent by first writing each
argument to register(s) 0xA1–0xA3, then writing the
command word to register 0xA0. A response is
retrieved by reading registers 0xA8–0xAF.
For details on timing specifications and diagrams, refer
to Table 5, “3-Wire Control Interface Characteristics,” on
page 9, Figure 4, and Figure 5.
24
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
4.17. GPO Outputs
4.21. Programming with Commands
The Si4704/05-D60 provides three general-purpose
output pins. The GPO pins can be configured to output
a constant low, constant high, or high-impedance. The
GPO pins can be reconfigured as specialized functions.
To ease development time and offer maximum
customization, the Si4704/05-D60 provides a simple yet
powerful software interface to program the receiver. The
device is programmed using commands, arguments,
properties, and responses.
4.18. Firmware Upgrades
The Si4704/05-D60 contains on-chip program RAM to
accommodate minor changes to the firmware. This
allows Skyworks to provide future firmware updates to
optimize the characteristics of new radio designs and
those already deployed in the field.
4.19. Reset, Powerup, and Powerdown
Setting the RST pin low will disable analog and digital
circuitry, reset the registers to their default settings, and
disable the bus. Setting the RST pin high will bring the
device out of reset.
The Si4704/05-D60 contains an on-board non-volatile
memory for storing its operational firmware. Proper
timing as specified in this data sheet, particularly with
respect to keeping RST pin low during any power
supply transitions, must be honored to avoid the risk of
corrupting the contents of this memory, which can
render the device permanently non-functional.
To perform an action, the user writes a command byte
and associated arguments, causing the chip to execute
the given command. Commands control an action such
as powerup the device, shut down the device, or tune to
a station. Arguments are specific to a given command
and are used to modify the command.
Properties are a special command argument used to
modify the default chip operation and are generally
configured immediately after powerup. Examples of
properties are de-emphasis level, RSSI seek threshold,
and soft mute attenuation threshold.
Responses provide the user information and are
echoed after a command and associated arguments are
issued. All commands provide a 1-byte status update,
indicating interrupt and clear-to-send status information.
For a detailed description of the commands and
properties for the Si4704/05-D60, see “AN332: Si47xx
Programming Guide.”
A powerdown mode is available to reduce power
consumption when the part is idle. Putting the device in
powerdown mode will disable analog and digital circuitry
while keeping the bus active.
4.20. 2 V Operation (SSOP Only)
The Si4704/05-D60 is capable of operating down to 2 V
as the battery drains in an application. Any power-up or
reset is not guaranteed to work below the dc
characteristics defined in Table 2. This capability
enables a much longer run time in battery operated
devices.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
25
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
5. Pin Descriptions
GPO2/[INT]
GPO3/[DCLK]
DFS
1
GPO1
NC
NC
5.1. Si4704/05-D60-GM
20
19
18
17
16
FMI 2
15 DOUT
RFGND 3
14 LOUT/[DFS]
GND
PAD
LPI 4
13 ROUT/[DOUT]
6
7
8
9
10
SCLK
SDIO
RCLK
VD
12 GND
SEN
RST 5
11 VA
Pin Number(s)
Name
Description
1, 20
NC
No connect. Leave floating.
2
FMI
FM RF inputs. FMI should be connected to the antenna trace.
3
RFGND
4
LPI
Embedded antenna input.
5
RST
Device reset input (active low).
6
SEN
Serial enable input (active low).
7
SCLK
Serial clock input.
8
SDIO
Serial data input/output.
9
RCLK
External reference oscillator input.
10
VD
Digital and I/O supply voltage.
11
VA
Analog supply voltage. May be connected directly to battery.
12, GND PAD
GND
13
ROUT/[DOUT]
14
LOUT/[DFS]
15
DOUT
16
DFS
17
GPO3/[DCLK]
18
GPO2/[INT]
19
GPO1
RF ground. Connect to ground plane on PCB.
Ground. Connect to ground plane on PCB.
Right audio line output for analog output mode.
Left audio line output for analog output mode.
Digital output data for digital output mode.
Digital frame synchronization input for digital output mode.
General purpose output, crystal oscillator, or digital bit synchronous clock input in digital
output mode.
General purpose output or interrupt pin.
General purpose output.
26
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
5.2. Si4704/05-D60-GU
DOUT
1
24
LOUT/[DFS]
DFS
2
23
ROUT/[DOUT]
GPO3/[DCLK]
3
22
DBYP
GPO2/[INT]
4
21
VA
GPO1
5
20
VD
NC
6
19
RCLK
NC
7
18
SDIO
FMI
8
17
SCLK
RFGND
9
16
SEN
NC
10
15
RST
LPI
11
14
GND
NC
12
13
GND
Pin Number(s)
Name
1
DOUT
2
DFS
3
GPO3/[DCLK]
4
GPO2/[INT]
5
GPO1
6,7
NC
No connect. Leave floating.
8
FMI
FM RF inputs. FMI should be connected to the antenna trace.
9
RFGND
10
NC
Unused. Tie these pins to GND.
11
LPI
Embedded antenna input.
12
NC
Unused. Tie these pins to GND.
13,14
GND
Ground. Connect to ground plane on PCB.
15
RST
Device reset input (active low).
16
SEN
Serial enable input (active low).
17
SCLK
Serial clock input.
18
SDIO
Serial data input/output.
19
RCLK
External reference oscillator input.
20
VD
Digital and I/O supply voltage.
21
VA
Analog supply voltage. May be connected directly to battery.
22
DBYP
23
ROUT/[DOUT]
24
LOUT/[DFS]
Description
Digital output data for digital output mode.
Digital frame synchronization input for digital output mode.
General purpose output, crystal oscillator, or digital bit synchronous clock input in digital
output mode.
General purpose output or interrupt pin.
General purpose output.
RF ground. Connect to ground plane on PCB.
Bypass capacitor.
Right audio line output in analog output mode.
Left audio line output in analog output mode.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
27
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
6. Ordering Guide
Part Number1
Description
Si4704-D60-GM
Si4704-D60-GU2
QFN
Pb-free
FM Broadcast Radio Receiver
Si4705-D60-GM
Si4705-D60-GU2
Package
Type
SSOP
Pb-free
QFN
Pb-free
FM Broadcast Radio Receiver with RDS/RBDS
SSOP
Pb-free
Operating
Temperature/Voltage
–20 to 85 °C
2.7 to 5.5 V
–20 to 85 °C
2.7 to 5.5 V
Notes:
1. Add an “(R)” at the end of the device part number to denote tape and reel option.
2. SSOP devices operate down to VA = 2 V at 25 °C.
28
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
7. Package Outline
7.1. Si4704/05-D60 QFN
Figure 12 illustrates the package details for the Si4704/05-D60. Table 14 lists the values for the dimensions shown
in the illustration.
Figure 12. 20-Pin Quad Flat No-Lead (QFN)
Table 14. Package Dimensions
Millimeters
Millimeters
Symbol
Symbol
Min
Nom
Max
Min
Nom
Max
A
0.50
0.55
0.60
f
A1
0.00
0.02
0.05
L
0.35
0.40
0.45
b
0.20
0.25
0.30
L1
0.00
—
0.10
c
0.27
0.32
0.37
aaa
—
—
0.05
D
D2
3.00 BSC
1.65
1.70
1.75
2.53 BSC
bbb
—
—
0.05
ccc
—
—
0.08
e
0.50 BSC
ddd
—
—
0.10
E
3.00 BSC
eee
—
—
0.10
E2
1.65
1.70
1.75
Notes:
1. All dimensions are shown in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
29
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
7.2. Si4704/05-D60 SSOP
Figure 13 illustrates the package details for the Si4704/05-D60. Table 15 lists the values for the dimensions shown
in the illustration.
Figure 13. 24-Pin SSOP
Table 15. Package Dimensions
Dimension
Min
Nom
Max
A
—
—
1.75
A1
0.10
—
0.25
b
0.20
—
0.30
c
0.10
—
0.25
D
8.65 BSC
E
6.00 BSC
E1
3.90 BSC
e
0.635 BSC
L
0.40
—
1.27
L2
0.25 BSC
θ
0°
—
8°
aaa
0.20
bbb
0.18
ccc
0.10
ddd
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AE.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
30
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
8. PCB Land Pattern
8.1. Si4704/05-D60 QFN
Figure 14 illustrates the PCB land pattern details for the Si4704/05-D60-GM QFN. Table 16 lists the values for the
dimensions shown in the illustration.
Figure 14. PCB Land Pattern
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
31
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
Table 16. PCB Land Pattern Dimensions
Millimeters
Millimeters
Symbol
Symbol
Min
D
D2
Max
2.71 REF
GE
2.10
—
0.34
W
—
0.50 BSC
X
—
E
2.71 REF
Y
1.60
f
GD
1.80
Max
e
E2
1.60
Min
1.80
2.53 BSC
2.10
0.28
0.61 REF
ZE
—
3.31
ZD
—
3.31
—
Notes: General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Notes: Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Notes: Stencil Design
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should
be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides
approximately 70% solder paste coverage on the pad, which is optimum to assure
correct component stand-off.
Notes: Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
32
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
8.2. Si4704/05-D60 SSOP
Figure 15 illustrates the PCB land pattern details for the Si4704/05-D60-GU SSOP. Table 17 lists the values for the
dimensions shown in the illustration.
Figure 15. PCB Land Pattern
Table 17. PCB Land Pattern Dimensions
Dimension
Min
Max
C
5.20
5.30
E
0.635 BSC
X
0.30
0.40
Y1
1.50
1.60
General:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on the IPC-7351 guidelines.
Solder Mask Design:
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Stencil Design:
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should
be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
Card Assembly:
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
33
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
9. Top Markings
9.1. Si4704/05-D60 Top Marking (QFN)
0560
DTTT
YWW
0460
DTTT
YWW
9.2. Top Marking Explanation (QFN)
Mark Method:
YAG Laser
Line 1 Marking:
Part Number
04 = Si4704, 05 = Si4705-D60.
Firmware Revision
60 = Firmware Revision 6.0.
Die Revision
D = Revision D Die.
TTT = Internal Code
Internal tracking code.
Circle = 0.5 mm Diameter
(Bottom-Left Justified)
Pin 1 Identifier.
Y = Year
WW = Workweek
Assigned by the Assembly House. Corresponds to the last significant
digit of the year and work week of the mold date.
Line 2 Marking:
Line 3 Marking:
34
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
9.3. Si4704/05-D60 Top Marking (SSOP)
470XD60GU
YYWWTTTTTT
9.4. Top Marking Explanation (SSOP)
Mark Method:
Line 1 Marking:
Line 2 Marking:
YAG Laser
Part Number
4704 = Si4704; 4705 = Si4705-D60.
Die Revision
D = Revision D die.
Firmware Revision
60 = Firmware Revision 6.0.
Package Type
GU = 24-pin SSOP Pb-free package
YY = Year
WW = Work week
TTTTTT = Manufacturing code
Assigned by the Assembly House.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
35
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
10. Additional Reference Resources
Contact your local sales representatives for more information or to obtain copies of the following references:
EN55020 Compliance Test Certificate
AN332: Si47xx Programming Guide
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure
Si47xx EVB User’s Guide
Customer Support Site: www.skyworksinc.com/en/Support
36
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Si4704/05-D60
DOCUMENT CHANGE LIST:
Revision 0.4 to Revision 1.0
Updated application schematic.
Updated pin descriptions.
Revision 1.0 to Revision 1.1
Updated front page pin assignments.
Updated Table 6, “Digital Audio Interface
Characteristics,” on page 10.
Updated Table 9, “Reference Clock and Crystal
Characteristics,” on page 14.
Added Table 10, “Thermal Conditions,” on page 14.
Updated Section "5. Pin Descriptions" on page 26.
Updated Section "5.1. Si4704/05-D60-GM" on page
26.
Updated Section "5.2. Si4704/05-D60-GU" on page
27.
Revision 1.1 to Revision 1.2
Deleted the AUXIN feature.
Updated Table 3, “Reset Timing Characteristics.”
Updated Table 10, “Thermal Conditions.”
Updated Section 4.19, “Reset, Powerup, and
Powerdown.”
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
37
Rev. 1.2 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • November 1, 2021
Connecting Everyone
and Everything,
All the Time
Portfolio
Quality
Support & Resources
www.skyworksinc.com
www.skyworksinc.com/quality
www.skyworksinc.com/support
Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the
information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer.
Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation,
products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or
information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability
for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or
materials, except as may be provided in Skyworks’ Terms and Conditions of Sale.
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY
INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR
ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT
OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks
products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such
applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of
design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating
safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any
equipment resulting from the use of Skyworks products outside of Skyworks’ published specifications or parameters.
Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or
registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for
identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at
www.skyworksinc.com, are incorporated by reference.
Skyworks Solutions, Inc. | Nasdaq: SWKS | sales@skyworksinc.com | www.skyworksinc.com
USA: 781-376-3000 | Asia: 886-2-2735 0399 | Europe: 33 (0)1 43548540 |