Si53106
S IX -O UTPUT PCI E G EN 3 BUFFER /Z ERO D ELAY B UFFER
Features
Six 0.7 V low-power, push-pull,
HCSL-compatible PCIe Gen 3
outputs
Individual OE HW pins for each
output clock
100 MHz /133 MHz PLL
operation, supports PCIe and
QPI
PLL bandwidth SW SMBUS
programming overrides the latch
value from HW pin
SMBus address configurable to
allow multiple buffers in a single
control network 3.3 V supply
voltage operation
Low phase jitter (Intel QPI, PCIe
Gen 1/2/3/4 common clock
compliant
Gen 3 SRNS Compliant
PLL or bypass mode
Spread spectrum tolerable
1.05 to 3.3 V I/O supply voltage
50 ps output-to-output skew
Industrial Temperature:
–40 to 85 °C
40-pin QFN
For higher output devices or
variations of this device, contact
Silicon Labs
Ordering Information:
See page 29.
Patents pending
Applications
Server
Storage
Datacenter
Enterprise Switches and Routers
Description
The Si53106 is a low-power, 6-output, differential clock buffer that meets
all of the performance requirements of the Intel DB1200ZL specification.
The device is optimized for distributing reference clocks for Intel®
QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/Gen 3/Gen 4,
SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI)
applications. The VCO of the device is optimized to support 100 MHz and
133 MHz operation. Each differential output has a dedicated hardware
output enable pin for maximum flexibility and power savings. Measuring
PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter
Tool. Download it for free at www.silabs.com/pcie-learningcenter.
Rev. 1.2 12/15
Copyright © 2015 by Silicon Laboratories
Si53106
Si53106
Functional Block Diagram
OE_[5:0]
6
SSC Compatible
PLL
CLK_IN
CLK_IN
100M_133
HBW_BYPASS_LBW
SA_0
SA_1
PWRGD / PWRDN
SDA
SCL
2
Control
Logic
Rev. 1.2
DIF_[5:0]
Si53106
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. CLK_IN, CLK_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. OE and Output Enables (Control Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. 100M_133M—Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. SA_0, SA_1—Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. PWRGD/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6. HBW_BYPASS_LBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7. Miscellaneous Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. Input Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Termination of Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1. Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2. Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5. Power Filtering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1. Ferrite Bead Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6. Pin Descriptions: 40-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9. Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Rev. 1.2
3
Si53106
1. Electrical Specifications
Table 1. DC Operating Characteristics
VDD_A = 3.3 V±5%, VDD = 3.3 V±5%
Parameter
Symbol
Test Condition
Min
Max
Unit
VDD/VDD_A
3.3 V ±5%
3.135
3.465
V
VDD_IO
1.05 V to 3.3 V ±5%
0.9975
3.465
V
3.3 V Input High Voltage
VIH
VDD
2.0
VDD+0.3
V
3.3 V Input Low Voltage
VIL
VSS-0.3
0.8
V
3.3 V Core Supply Voltage
3.3 V I/O Supply
Input Leakage
Voltage1
Current2
IIL
0 < VIN < VDD
–5
+5
µA
3
3.3 V Input High Voltage
VIH_FS
VDD
0.7
VDD+0.3
V
3
3.3 V Input Low Voltage
VIL_FS
VSS–0.3
0.35
V
3.3 V Input Low Voltage
VIL_Tri
0
0.8
V
3.3 V Input Med Voltage
VIM_Tri
1.2
1.8
V
3.3 V Input High Voltage
VIH_Tri
2.4
VDD
V
Voltage4
VOH
IOH = –1 mA
2.4
—
V
3.3 V Output Low Voltage4
VOL
IOL = 1 mA
—
0.4
V
CIN
2.5
4.5
pF
COUT
2.5
4.5
pF
LPIN
—
7
nH
–40
85
°C
3.3 V Output High
Input Capacitance
Output
5
Capacitance5
Pin Inductance
Ambient Temperature
TA
No Airflow
Notes:
1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state
current requirements.
3. Internal voltage reference is to be used to guarantee VIH_FS and VIL_FS thresholds levels over full operating range.
4. Signal edge is required to be monotonic when transitioning through this region.
5. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including pin capacitance.
Table 2. Current Consumption
TA = –40 to 85 °C; supply voltage VDD = 3.3 V ±5%
Parameter
Operating Current
Symbol
Min
Typ
Max
Unit
IDDVDD
133 MHz, VDD Rail
—
19
30
mA
IDDVDDA
133 MHz, VDDA + VDDR, PLL Mode
—
15
25
mA
IDDVDDIO
133 MHz, CL = Full Load, VDD IO Rail
—
49
65
mA
Power Down, VDD Rail
—
0.45
1
mA
IDDVDDAPD
Power Down, VDDA Rail
—
4.5
7
mA
IDDVDDIOPD
Power Down, VDD_IO Rail
—
0.23
0.5
mA
Power Down Current IDDVDDPD
4
Test Condition
Rev. 1.2
Si53106
Table 3. Output Skew, PLL Bandwidth and Peaking
TA = –40 to 85 °C; supply voltage VDD = 3.3 V ±5%
Parameter
Test Condition
Min
Typ
Max
Unit
–100
–15
100
ps
2.5
3.6
4.5
ns
CLK_IN, DIF[x:0]
Input-to-Output Delay in PLL Mode
Nominal Value1,2,3,4
CLK_IN, DIF[x:0]
Input-to-Output Delay in Bypass Mode
\Nominal Value2,4,5
CLK_IN, DIF[x:0]
Input-to-Output Delay Variation in PLL mode
Over voltage and temperature2,4,5
–100
39
100
ps
CLK_IN, DIF[x:0]
Input-to-Output Delay Variation in Bypass Mode
Over voltage and temperature2,4,5
–250
3.7
250
ps
Output-to-Output Skew across all 6 Outputs
(Common to Bypass and PLL Mode)1,2,3,4,5
0
20
50
ps
PLL Jitter Peaking
(HBW_BYPASS_LBW = 0)6
—
0.4
2.0
dB
PLL Jitter Peaking
(HBW_BYPASS_LBW = 1)6
—
0.1
2.5
dB
PLL Bandwidth
(HBW_BYPASS_LBW = 0)7
—
0.7
1.4
MHz
PLL Bandwidth
(HBW_BYPASS_LBW = 1)7
—
2
4
MHz
DIF[11:0]
Notes:
1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the
corresponding input.
2. Measured from differential cross-point to differential cross-point.
3. This parameter is deterministic for a given device.
4. Measured with scope averaging on to find mean value.
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created
by it.
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL
jitter peaking.
7. Measured at 3 db down or half power point.
Rev. 1.2
5
Si53106
Table 4. Clock Input Parameters
TA = –40 to 85 °C; supply voltage VDD = 3.3 V ±5%
Parameter
Input Frequency
Symbol
FIN
Test Condition
Min
Typ
Max
Unit
Bypass Mode
33
—
150
MHz
PLL Mode, 100 MHz
90
100
110
MHz
PLL Mode, 133.33 MHz
120
133.33
147
MHz
Input High Voltage- CLK_IN
VIHDIF
Differential inputs
single-ended measurement
600
800
1150
mV
Input Low Voltage- CLK_IN
VILDIF
Differential inputs
single-ended measurement
VSS –300
0
300
mV
Input Common Mode
Voltage - CLK_IN
VCOM
Common Mode Voltage Input
300
—
1000
mV
Input Amplitude- CLK_IN
VSwing
Peak to Peak
300
—
1450
Input Slew Rate- CLK_IN
IDDVDDAPD
Measured differentially
0.4
—
8
V/ns
Input Leakage Current
IIN
VIN = VDD, VIN = GND
-5
—
5
A
Input Duty Cycle
dtin
Measured from differential
waveform
45
—
55
%
Input Jitter, Cycle-Cycle
JDIFIN
Differential measurement
0
—
125
ps
Input SS Modulation Frequency
fMODIN
Triangle Wave Modulation
30
—
33
kHz
6
Rev. 1.2
Si53106
Table 5. Phase Jitter
Parameter
Phase Jitter
PLL Mode
Test Condition
Min
Typ
Max
Unit
—
29
86
ps
PCIe Gen 2 Low Band, Common Clock
F < 1.5 MHz1,3,4,5
—
2.3
3.0
ps
(RMS)
PCIe Gen 2 High Band, Common Clock
1.5 MHz < F < Nyquist1,3,4,5
—
2.4
3.1
ps
(RMS)
PCIe Gen 3, Common Clock
(PLL BW 2–4 MHz, CDR = 10 MHz)1,3,4,5
—
0.6
1.0
ps
(RMS)
PCIe Gen 3 Separate Reference No Spread, SRNS
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)1,3,4,5
—
0.42
0.71
ps
(RMS)
PCIe Gen 4, Common Clock
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)1,4,5,8
—
0.6
1.0
ps
(RMS)
Intel® QPI & Intel SMI
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)1,6,7
—
0.21
0.5
ps
(RMS)
Intel QPI & Intel SMI
(8 Gb/s, 100 MHz, 12 UI)1,6
—
0.13
0.3
ps
(RMS)
Intel QPI & Intel SMI
(9.6 Gb/s, 100 MHz, 12 UI)1,6
—
0.11
0.2
ps
(RMS)
PCIe Gen 1, Common Clock
1,2,3
Notes:
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a
smaller sample size have to be extrapolated to this BER target.
2. ζ = 0.54 implies a jitter peaking of 3 dB.
3. PCIe* Gen 3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest
specification.
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be
extrapolated to this BER target.
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.
Rev. 1.2
7
Si53106
Table 5. Phase Jitter (Continued)
Additive Phase Jitter
Bypass Mode
PCIe Gen 11,2,3
—
10
—
ps
PCIe Gen 2 Low Band
F < 1.5 MHz1,3,4,5
—
1.6
—
ps
(RMS)
PCIe Gen 2 High Band
1.5 MHz < F < Nyquist1,3,4,5
—
1.6
—
ps
(RMS)
PCIe Gen 3
(PLL BW 2–4 MHz, CDR = 10 MHz)1,3,4,5
—
0.4
—
ps
(RMS)
PCIe Gen 4, Common Clock
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)1,4,5,8
—
0.4
—
ps
(RMS)
Intel QPI & Intel® SMI
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)1,6,7
—
0.12
—
ps
(RMS)
Intel QPI & Intel® SMI
(8 Gb/s, 100 MHz, 12 UI)1,6
—
0.1
—
ps
(RMS)
Intel QPI & Intel® SMI
(9.6 Gb/s, 100 MHz, 12 UI)1,6
—
0.09
—
ps
(RMS)
Notes:
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a
smaller sample size have to be extrapolated to this BER target.
2. ζ = 0.54 implies a jitter peaking of 3 dB.
3. PCIe* Gen 3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest
specification.
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be
extrapolated to this BER target.
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.
8
Rev. 1.2
Si53106
Table 6. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1
Parameter
Symbol
CLK 100 MHz, 133 MHz
Min
Typ
Max
Unit
Notes
2
Clock Stabilization Time
TSTAB
—
1.5
1.8
ms
Long Term Accuracy
LACC
—
—
100
ppm
Absolute Host CLK Period (100MHz)
TABS
9.94900
—
10.05100
ns
346
Absolute Host CLK Period (133MHz)
TABS
7.44925
—
7.55075
ns
346
Edge_rate
1.0
—
4.0
V/ns
347
Rise Time Variation
∆ TRISE
—
—
125
ps
389
Fall Time Variation
∆ TFALL
—
—
125
ps
389
Rise/Fall Matching
TRISE_MAT/
TFALL_MAT
—
—
20
%
3 8 10 11
Voltage High (typ 0.7 V)
VHIGH
660
—
850
mV
3,8,12
Voltage Low (typ 0.7 V)
VLOW
–150
—
150
mV
3,8,13
Maximum Voltage
VMAX
—
—
1150
mV
8
Absolute Crossing Point Voltages
VoxABS
250
—
550
mV
3,8,14,15,
Total Variation of VCROSS Over All
Edges
Total ∆
Vox
—
—
140
mV
3,8,18
Duty Cycle
DC
45
—
55
%
3,4
Maximum Voltage (Overshoot)
Vovs
—
—
VHigh + 0.3
V
3,8,19
Maximum Voltage (Undershoot)
Vuds
—
—
VLow – 0.3
V
3,8,20
Edge Rate
Rev. 1.2
34
, ,5
, ,
, ,
, ,
, ,
, ,
, , ,
16
9
Si53106
Table 6. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1 (Continued)
Parameter
Ringback Voltage
Symbol
Vrb
CLK 100 MHz, 133 MHz
Min
Typ
Max
0.2
—
N/A
Unit
Notes
V
38
,
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the time
that stable clocks are output from the buffer chip (PLL locked).
3. Test configuration is RS = 33.2 , RP = 49.9, 2 pF for 100 transmission line; RS = 27 , RP = 42.2, 2 pF for 85
transmission line.
4. Measurement taken from differential waveform.
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are
99,750,00 Hz, 133,000,000 Hz.
6. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum
specified period.
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from
–150 mV to +150 mV on the differential waveform . Scope is set to average because the scope sample clock is making
most of the dynamic wiggles along the clock edge Only valid for Rising clock and Falling CLOCK. Signal must be
monotonic through the VOL to VOH region for TRISE and TFALL.
8. Measurement taken from single-ended waveform.
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.
10. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of clock verses the
falling edge rate (average) of CLOCK.
11. Rise/Fall matching is derived using the following, 2*(TRISE - TFALL) / (TRISE + TFALL).
12. VHIGH is defined as the statistical average High value as obtained by using the Oscilloscope VHIGH Math function.
13. VLOW is defined as the statistical average Low value as obtained by using the Oscilloscope VLOW Math function.
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of
CLK.
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is
crossing.
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
17. VCROSS(rel) Min and Max are derived using the following, VCROSS(rel) Min = 0.250 + 0.5 (VHAVG – 0.700), VCROSS(rel)
Max = 0.550 – 0.5 (0.700 – VHAVG), (see Figures 3-4 for further clarification).
18. VCROSS is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the
maximum allowed variance in VCROSS for any particular system.
19. Overshoot is defined as the absolute value of the maximum voltage.
20. Undershoot is defined as the absolute value of the minimum voltage.
10
Rev. 1.2
Si53106
Table 7. Clock Periods Differential Clock Outputs with SSC Disabled
SSC ON
Center
Freq, MHz
Measurement Window
1 Clock
1 µs
–C–C
Jitter
AbsPer
Min
0.1 s
–SSC
–ppm
Long
Short
Term
AVG
Term AVG
Min
Min
0.1 s
Unit
0.1 s
1 µs
0 ppm
Period
Nominal
+SSC
+ppm
Short
Long
Term AVG Term AVG
Max
Max
1 Clock
+C–C
Jitter
AbsPer
Max
100.00
9.94900
9.99900
10.00000
10.00100
10.05100
ns
133.33
7.44925
7.49925
7.50000
7.50075
7.55075
ns
Table 8. Clock Periods Differential Clock Outputs with SSC Enabled
SSC ON
Center
Freq, MHz
Measurement Window
1 Clock
1 µs
0.1 s
–ppm
–SSC
Long
Short
Term
AVG
Term AVG
Min
Min
–C–C
Jitter
AbsPer
Min
0.1 s
0.1 s
Unit
1 µs
0 ppm
Period
Nominal
+SSC
+ppm
Short
Long
Term AVG Term AVG
Max
Max
1 Clock
+C–C
Jitter
AbsPer
Max
99.75
9.94900
9.99900
10.02406
10.02506
10.02607
10.05126
10.10126
ns
133.33
7.44925
7.49925
7.51805
7.51880
7.51955
7.53845
7.58845
ns
Table 9. Absolute Maximum Ratings
Parameter
Symbol
Min
Max
Unit
VDD/VDD_A
—
4.6
V
VDD_IO
—
4.6
V
VIH
—
4.6
V
VIL
−0.5
—
V
Storage Temperature1
ts
–65
150
°C
Input ESD protection3
ESD
2000
—
V
3.3 V Core Supply Voltage1
3.3 V I/O Supply Voltage1
3.3 V Input High Voltage
1,2
3.3 V Input Low Voltage1
Notes:
1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.
2. Maximum VIH is not to exceed maximum VDD.
3. Human body model.
Rev. 1.2
11
Si53106
2. Functional Description
2.1. CLK_IN, CLK_IN
The differential input clock can be sourced from a clock synthesizer, e.g. CK420BQ, CK509B, or CK410B+.
2.2. OE and Output Enables (Control Registers)
Each output can be individually enabled or disabled by SMBus control register bits. Additionally, each output of the
DIF[11:0] has a dedicated OE pin. The OE pins are asynchronous, asserted-low signals. The Output Enable bits in
the SMBus registers are active high and are set to enable by default. The disabled state for the Si53106 NMOS
push-pull output is Low/Low. Please note that the logic level for assertion or deassertion is different in software
than it is on hardware. This follows hardware default nomenclature for communication channels (e.g., output is
enabled if the OE# pin is pulled low) and still maintains software programming logic (e.g., output is enabled if OE
register is true). Table 10 is a truth table depicting enabling and disabling of outputs via hardware and software.
Note that, for the output to be active, the control register bit must be a 1 and the OE pin must be a 0.
Note: The assertion and deassertion of this signal is absolutely asynchronous.
Table 10. Si53106 Output Management
Inputs
OE Hardware Pins and Control Register Bits
Outputs
PLL State
PWRGD/
PWRDN
CLK_IN/
CLK_IN
SMBUS
Enable Bit
OE Pin
DIF/DIF[11:0]
FB_OUT/
FB_OUT
0
x
x
x
Low/Low
Low/Low
OFF
0
x
Low/Low
Running
ON
1
0
Running
Running
ON
1
1
Low/Low
Running
ON
1
Running
2.2.1. OE Assertion (Transition from 1 to 0)
All differential outputs that were disabled are to resume normal operation in a glitch-free manner. The latency from
the assertion to active outputs is 4 to 12 DIF clock periods.
2.2.2. OE De-Assertion (Transition from 0 to 1)
The impact of deasserting OE is that each corresponding output will transition from normal operation to disabled in
a glitch-free manner. A minimum of four valid clocks will be provided after the deassertion of OE. The maximum
latency from the deassertion to disabled outputs is 12 DIF clock periods.
2.3. 100M_133M—Frequency Selection
The Si53106 is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz.
100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs.
Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53106 is operated in 1:1
mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pull-down
resistor is attached to this pin to select the input/output frequency. The functionality is summarized in Table 11.
Table 11. Frequency Program Table
100M_133M
Optimized Frequency (CLK_IN = CLK_OUT)
0
133.33 MHz
1
100.00 MHz
Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.
12
Rev. 1.2
Si53106
2.4. SA_0, SA_1—Address Selection
SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the Si53106. The two trilevel input pins that can configure the device to nine different addresses.
Table 12. SMBUS Address Table
SA_1
SA_0
SMBUS Address
L
L
D8
L
M
DA
L
H
DE
M
L
C2
M
M
C4
M
H
C6
H
L
CA
H
M
CC
H
H
CE
2.5. PWRGD/PWRDN
PWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to
indicating a power-down condition. PWRGD (assertion) is used by the Si53106 to sample initial configurations,
such as frequency select condition and SA selections. After PWRGD has been asserted high for the first time, the
pin becomes a PWRDN (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to
invoke power-saving mode. PWRDN is a completely asynchronous active low input. When entering power-saving
mode, PWRDN should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down
in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior to turning off the VCO. When
PWRDN is deasserted high, all clocks will start and stop without any abnormal behavior and will meet all ac and dc
parameters.
Note: The assertion and deassertion of PWRDN is absolutely asynchronous.
Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended.
Operation in this mode may result in glitches, excessive frequency shifting, etc.
Table 13. PWRGD/PWRDN Functionality
PWRGD/
PWRDN
DIF
DIF
0
Low
Low
1
Normal
Normal
Rev. 1.2
13
Si53106
2.5.1. PWRDN Assertion
When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held LOW/
LOW on the next DIF high-to-low transition.
PWRDWN
DIF
DIF
Figure 1. PWRDN Assertion
2.5.2. PWRGD Assertion
The power-up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion
of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs
stopped in a LOW/LOW condition resulting from power down must be driven high in less than 300 µs of PWRDN
deassertion to a voltage greater than 200 mV.
Tstable
0 and