Si5320
SONET/SDH P R E C I S I O N C L O C K M U L T I P L I E R I C
Features
Ultra-low-jitter clock output with
jitter generation as low as
0.3 psRMS
No external components
(other than a resistor and
standard bypassing)
Input clock ranges at 19, 39, 78,
155, 311, and 622 MHz
Output clock ranges at 19, 155,
or 622 MHz
Digital hold for loss of input clock
Support for forward and reverse
FEC clock scaling
Selectable loop bandwidth
Loss-of-signal alarm output
Low power
Small size (9x9 mm)
Ordering Information:
Applications
Si5320
Si5320
See page 29.
SONET/SDH line/port cards
Optical modules
Core switches
Digital cross connects
Terabit routers
Description
The Si5320 is a precision clock multiplier designed to exceed the requirements of
high-speed communication systems, including OC-192/OC-48 and 10 GbE. This
device phase locks to an input clock in the 19, 39, 78, 155, 311, or 622 MHz
frequency range and generates a frequency-multiplied clock output that can be
configured for operation in the 19, 155, or 622 MHz range. Silicon Laboratories’
DSPLL™ technology delivers all PLL functionality with unparalleled performance
while eliminating external loop filter components, providing programmable loop
parameters, and simplifying design. FEC rates are supported with selectable 255/
238 or 238/255 scaling of the clock multiplication ratios. The Si5320 establishes a
new standard in performance and integration for ultra-low-jitter clock generation. It
operates from a single 3.3 V supply.
Functional Block Diagram
REXT
VSEL33
V DD
GND
Biasing & Supply Regulation
FXDDELAY
CLKIN+
CLKIN–
VALTIME
LOS
CAL_ACTV
2
÷
÷
Signal
Detect
3
INFRQSEL[2:0]
Rev. 2.3 4/05
DH_ACTV
DSPLLTM
2
2
FEC[1:0]
DBLBW
Calibration
2
CLKOUT+
CLKOUT–
FRQSEL[1:0]
RSTN/CAL
BWSEL[1:0]
Copyright © 2005 by Silicon Laboratories
Si5320
Si5320
NOTES:
2
Rev. 2.3
Si5320
TA B L E O F C O N T E N TS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1. DSPLL™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.2. Clock Input and Output Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.3. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4. Digital Hold of the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5. Hitless Recovery from Digital Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.6. Loss-of-Signal Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.7. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.10. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.13. Design and Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3. Pin Descriptions: Si5320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6. 9x9 mm CBGA Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Rev. 2.3
3
Si5320
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Ambient Temperature
Si5320 Supply Voltage3
When Using 3.3 V Supply
Symbol
Test Condition
Min1
Typ
Max1
Unit
TA
–202
25
85
°C
VDD33
3.135
3.3
3.465
V
Notes:
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.
2. The Si5320 is guaranteed by design to operate at –40° C. All electrical specifications are guaranteed for an ambient
temperature of –20 to 85° C.
3. The Si5320 specifications are guaranteed when using the recommended application circuit (including component
tolerance) of Figure 5 on page 15. 3.3 V operation uses an on-chip voltage regulator and is recommended.
4
Rev. 2.3
Si5320
C LKIN +
C LKIN –
V IS
A. O peration with Single-Ended C lock Input
N ote: W hen using single-ended clock sources, the unused clock
input on the Si5320 m ust be ac-coupled to ground.
C LKIN +
0.5 V ID
C LKIN –
(C LKIN+) – (C LKIN –)
V ID
B. O peration with D ifferential C lock Input
N ote: Transm ission line term ination, when required, m ust be provided
externally.
Figure 1. CLKIN Voltage Characteristics
80%
20%
tF
tR
Figure 2. Rise/Fall Time Measurement
(C L K IN + ) – (C L K IN – )
0 V
tLOS
Figure 3. Transitionless Period on CLKIN for Detecting a LOS Condition
Rev. 2.3
5
Si5320
Table 2. DC Characteristics, VDD = 3.3 V
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Supply Current 1
Supply Current 2
Power Dissipation Using 3.3 V Supply
Clock Output
Common Mode Input Voltage
(CLKIN)
1,2,3
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
Clock in = 622.08 MHz
Clock out = 19.44 MHz
—
141
155
mA
IDD
Clock in = 19.44 MHz
Clock out = 622.08 MHz
—
135
145
mA
PD
Clock in = 19.44 MHz
Clock out = 622.08 MHz
—
445
479
mW
1.0
1.5
2.0
V
VICM
Single-Ended Input Voltage2,3,4
(CLKIN)
VIS
See Figure 1A
200
—
5004
mVPP
Differential Input Voltage Swing2,3,4
(CLKIN)
VID
See Figure 1B
200
—
5004
mVPP
Input Impedance
(CLKIN+, CLKIN–)
RIN
—
80
—
kΩ
Differential Output Voltage Swing
(CLKOUT)
VOD
100 Ω Load
Line-to-Line
816
906
1100
mVPP
Output Common Mode Voltage
(CLKOUT)
VOCM
100 Ω Load
Line-to-Line
1.4
1.8
2.2
V
Output Short to GND (CLKOUT)
ISC(–)
–60
—
—
mA
Output Short to VDD25 (CLKOUT)
ISC(+)
—
15
—
mA
Input Voltage Low (LVTTL Inputs)
VIL
—
—
0.8
V
Input Voltage High (LVTTL Inputs)
VIH
2.0
—
—
V
Input Low Current (LVTTL Inputs)
IIL
—
—
50
µA
Input High Current (LVTTL Inputs)
IIH
—
—
50
µA
Internal Pulldowns (All LVTTL Inputs)
Ipd
—
—
50
µA
Input Impedance (LVTTL Inputs)
RIN
50
—
—
kΩ
Output Voltage Low (LVTTL Outputs)
VOL
IO = .5 mA
—
—
0.4
V
Output Voltage High (LVTTL Outputs)
VOH
IO = .5 mA
2.0
—
—
V
Notes:
1. The Si5320 device provides weak 1.5 V internal biasing that enables ac-coupled operation.
2. Clock inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input should be ac
coupled to ground.
3. Transmission line termination, when required, must be provided externally.
4. Although the Si5320 device can operate with input clock swings as high as 1500 mVPP, Silicon Laboratories recommends
maintaining the input clock amplitude below 500 mVPP for optimal performance.
6
Rev. 2.3
Si5320
Table 3. AC Characteristics
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Input Clock Frequency (CLKIN)
FEC[1:0] = 00 (non FEC)
INFRQSEL[2:0] = 001
INFRQSEL[2:0] = 010
INFRQSEL[2:0] = 011
INFRQSEL[2:0] = 100
INFRQSEL[2:0] = 101
INFRQSEL[2:0] = 110
fCLKIN
No FEC Scaling
Input Clock Frequency (CLKIN)
FEC[1:0] = 01 (forward FEC)
INFRQSEL[2:0] = 001
INFRQSEL[2:0] = 010
INFRQSEL[2:0] = 011
INFRQSEL[2:0] = 100
INFRQSEL[2:0] = 101
INFRQSEL[2:0] = 110
fCLKIN
Input Clock Frequency (CLKIN)
FEC[1:0] = 10 (reverse FEC)
INFRQSEL[2:0] = 001
INFRQSEL[2:0] = 010
INFRQSEL[2:0] = 011
INFRQSEL[2:0] = 100
INFRQSEL[2:0] = 101
INFRQSEL[2:0] = 110
fCLKIN
Input Clock Rise Time (CLKIN)
tR
Input Clock Fall Time (CLKIN)
tF
Input Clock Duty Cycle
Min
Typ
Max
Unit
19.436
38.872
77.744
155.48
310.97
621.95
—
—
—
—
—
—
21.685
43.369
86.738
173.48
346.95
693.90
MHz
18.142
36.284
72.568
145.13
290.27
580.54
—
—
—
—
—
—
20.239
40.478
80.955
161.91
323.82
647.64
MHz
20.826
41.652
83.305
166.61
333.22
666.44
—
—
—
—
—
—
23.234
46.465
92.934
185.87
371.74
743.47
MHz
Figure 2
—
—
11
ns
Figure 2
—
—
11
ns
CDUTY_IN
40
50
60
%
fO_19
fO_155
fO_622
—
19.436
155.48
621.95
—
—
—
—
—
21.685
173.48
693.90
255/238 FEC Scaling
238/255 FEC Scaling
Range*
CLKOUT Frequency
FRQSEL[1:0] = 00 (no output)
FRQSEL[1:0] = 01
FRQSEL[1:0] = 10
FRQSEL[1:0] = 11
MHz
CLKOUT Rise Time
tR
Figure 2; single-ended; after
3 cm of 50 Ω FR4 stripline
—
213
260
ps
CLKOUT Fall Time
tF
Figure 2; single-ended; after
3 cm of 50 Ω FR4 stripline
—
191
260
ps
Output Clock Duty Cycle
CDUTY_OUT
Differential:
(CLKOUT+) – (CLKOUT–)
48
—
52
%
RSTN/CAL Pulse Width
tRSTN
20
—
—
ns
*Note: The Si5320 provides a 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, or 32x clock frequency multiplication function with an
option for additional frequency scaling by a factor of 255/238 or 238/255 for FEC rate compatibility.
Rev. 2.3
7
Si5320
Table 3. AC Characteristics (Continued)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Transitionless Period Required on
CLKIN for Detecting a LOS
Condition.
INFRQSEL[2:0] = 001
INFRQSEL[2:0] = 010
INFRQSEL[2:0] = 011
INFRQSEL[2:0] = 100
INFRQSEL[2:0] = 101
INFRQSEL[2:0] = 110
tLOS
Figure 3
Recovery Time for Clearing an
LOS Condition
VALTIME = 0
VALTIME = 1
tVAL
Min
24/
/fo_622
12
/fo_622
10/
fo_622
9
/fo_622
9
/fo_622
—
—
—
—
—
—
0.09
12.0
—
—
16
Measured from when a valid
reference clock is applied
until the LOS flag clears
Typ
fo_622
Max
Unit
32/
fo_622
s
0.22
14.1
s
32
/fo_622
32
/fo_622
32/
fo_622
32
/fo_622
32
/fo_622
*Note: The Si5320 provides a 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, or 32x clock frequency multiplication function with an
option for additional frequency scaling by a factor of 255/238 or 238/255 for FEC rate compatibility.
8
Rev. 2.3
Si5320
Table 4. AC Characteristics (PLL Performance Characteristics)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max Unit
JTOL(PP)
f = 8 Hz
1000
—
—
ns
f = 80 Hz
100
—
—
ns
f = 800 Hz
10
—
—
ns
12 kHz to 20 MHz
—
0.87
1.2
ps
50 kHz to 80 MHz
—
0.26
0.35
ps
12 kHz to 20 MHz
—
0.85
1.2
ps
50 kHz to 80 MHz
—
0.26
0.35
ps
12 kHz to 20 MHz
—
7.3
10.0
ps
50 kHz to 80 MHz
—
3.7
5.0
ps
12 kHz to 20 MHz
—
7.2
10.0
ps
50 kHz to 80 MHz
—
3.8
5.0
ps
FBW
BW = 800 Hz
—
800
—
Hz
JP
< 800 Hz
—
0.0
0.05
dB
f = 16 Hz
500
—
—
ns
f = 160 Hz
50
—
—
ns
f = 1600 Hz
5
—
—
ns
12 kHz to 20 MHz
—
0.78
1.2
ps
50 kHz to 80 MHz
—
0.25
0.35
ps
12 kHz to 20 MHz
—
7.0
9.0
ps
50 kHz to 80 MHz
—
3.8
5.0
ps
FBW
BW = 1600 Hz
—
1600
—
Hz
JP
< 1600 Hz
—
0.00
0.05
dB
Wander/Jitter at 800 Hz Bandwidth
(BWSEL[1:0] = 10 and DBLBW = 0)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
JGEN(RMS)
CLKOUT RMS Jitter Generation
FEC[1:0 = 01, 10
JGEN(RMS)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0 = 00
JGEN(PP)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0 = 01, 10
JGEN(PP)
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
Wander/Jitter at 1600 Hz Bandwidth
(BWSEL[1:0] = 10 and DBLBW = 1)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
JGEN(RMS)
JGEN(PP)
Notes:
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of
nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude for the
Si5320 (tPT_MTIE) never reaches one nanosecond.
Rev. 2.3
9
Si5320
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max Unit
JTOL(PP)
f = 16 Hz
1000
—
—
ns
f = 160 Hz
100
—
—
ns
f = 1600 Hz
10
—
—
ns
12 kHz to 20 MHz
—
0.82
1.0
ps
50 kHz to 80 MHz
—
0.26
0.35
ps
12 kHz to 20 MHz
—
0.79
1.0
ps
50 kHz to 80 MHz
—
0.26
0.35
ps
12 kHz to 20 MHz
—
7.3
10.0
ps
50 kHz to 80 MHz
—
3.8
5.0
ps
12 kHz to 20 MHz
—
7.1
10.0
ps
50 kHz to 80 MHz
—
4.3
5.0
ps
FBW
BW = 1600 Hz
—
1600
—
Hz
JP
< 1600 Hz
—
0.0
0.1
dB
f = 32 Hz
500
—
—
ns
f = 320 Hz
50
—
—
ns
f = 3200 Hz
5
—
—
ns
12 kHz to 20 MHz
—
0.72
0.9
ps
50 kHz to 80 MHz
—
0.24
0.3
ps
Wander/Jitter at 1600 Hz Bandwidth
(BWSEL[1:0] = 01 and DBLBW = 0)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
JGEN(RMS)
CLKOUT RMS Jitter Generation
FEC[1:0] = 01, 10
JGEN(RMS)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00
JGEN(PP)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 01, 10
JGEN(PP)
Jitter Transfer Bandwidth (see Figure 10)
Wander/Jitter Transfer Peaking
Wander/Jitter at 3200 Hz Bandwidth
(BWSEL[1:0] = 01 and DBLBW = 1)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
JGEN(RMS)
Notes:
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of
nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude for the
Si5320 (tPT_MTIE) never reaches one nanosecond.
10
Rev. 2.3
Si5320
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
Symbol
Test Condition
Min
Typ
Max Unit
JGEN(PP)
12 kHz to 20 MHz
—
6.8
10.0
ps
50 kHz to 80 MHz
—
3.7
5.0
ps
FBW
BW = 3200 Hz
—
3200
—
Hz
JP
< 3200 Hz
—
0.05
0.1
dB
JTOL(PP)
f = 32 Hz
1000
—
—
ns
f = 320 Hz
100
—
—
ns
f = 3200 Hz
10
—
—
ns
12 kHz to 20 MHz
—
0.86
1.2
ps
50 kHz to 80 MHz
—
0.29
0.4
ps
12 kHz to 20 MHz
—
0.79
1.2
ps
50 kHz to 80 MHz
—
0.28
0.4
ps
12 kHz to 20 MHz
—
7.7
10.0
ps
50 kHz to 80 MHz
—
3.9
5.0
ps
12 kHz to 20 MHz
—
7.2
10.0
ps
50 kHz to 80 MHz
—
4.0
5.0
ps
FBW
BW = 3200 Hz
—
3200
—
Hz
JP
< 3200 Hz
—
0.05
0.1
dB
f = 64 Hz
500
—
—
ns
f = 640 Hz
50
—
—
ns
f = 6400 Hz
5
—
—
ns
12 kHz to 20 MHz
—
0.7
1.0
ps
50 kHz to 80 MHz
—
0.25
0.3
ps
12 kHz to 20 MHz
—
6.6
9.0
ps
50 kHz to 80 MHz
—
3.8
5.0
ps
Wander/Jitter at 3200 Hz Bandwidth
(BWSEL[1:0] = 00 and DBLBW = 0)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
JGEN(RMS)
CLKOUT RMS Jitter Generation
FEC[1:0] = 01, 10
JGEN(RMS)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00
JGEN(PP)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 01, 10
JGEN(PP)
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
Wander/Jitter at 6400 Hz Bandwidth
(BWSEL[1:0] = 00 and DBLBW = 1)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00
JGEN(RMS)
JGEN(PP)
Notes:
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of
nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude for the
Si5320 (tPT_MTIE) never reaches one nanosecond.
Rev. 2.3
11
Si5320
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
Symbol
Test Condition
Min
Typ
Max Unit
FBW
BW = 6400 Hz
—
6400
—
Hz
JP
< 6400 Hz
—
0.05
0.1
dB
JTOL(PP)
f = 64 Hz
1000
—
—
ns
f = 640 Hz
100
—
—
ns
f = 6400 Hz
10
—
—
ns
12 kHz to 20 MHz
—
1.0
1.4
ps
50 kHz to 80 MHz
—
0.38
0.5
ps
12 kHz to 20 MHz
—
0.94
1.4
ps
50 kHz to 80 MHz
—
0.41
0.6
ps
12 kHz to 20 MHz
—
9.4
12.0
ps
50 kHz to 80 MHz
—
4.7
5.5
ps
12 kHz to 20 MHz
—
8.3
12.0
ps
50 kHz to 80 MHz
—
4.6
5.5
ps
FBW
BW = 6400 Hz
—
6400
—
Hz
JP
< 6400 Hz
—
0.05
0.1
dB
f = 128 Hz
500
—
—
ns
f = 1280 Hz
50
—
—
ns
f = 12800 Hz
5
—
—
ns
12 kHz to 20 MHz
—
0.74
1.0
ps
50 kHz to 80 MHz
—
0.30
0.4
ps
12 kHz to 20 MHz
—
6.9
9.0
ps
50 kHz to 80 MHz
—
4.0
5.0
ps
FBW
BW = 12,800 Hz
—
12800
—
Hz
JP
< 12,800 Hz
—
0.05
0.1
dB
Wander/Jitter at 6400 Hz Bandwidth
(BWSEL[1:0] = 11 and DBLBW = 0)
Jitter Tolerance (see Figure 7) (1/1 Scaling)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00 (1/1 Scaling)
JGEN(RMS)
CLKOUT RMS Jitter Generation
FEC[1:0] = 01, 10 (255/238, 238/255 scaling)
JGEN(RMS)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00 (1/1 Scaling)
JGEN(PP)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 01, 10 (255/238, 238/255 scaling)
JGEN(PP)
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
Wander/Jitter at 12800 Hz Bandwidth
(BWSEL[1:0] = 11 and DBLBW = 1)
Jitter Tolerance (see Figure 7)
CLKOUT RMS Jitter Generation
FEC[1:0] = 00 (1/1 Scaling)
CLKOUT Peak-Peak Jitter Generation
FEC[1:0] = 00 (1/1 Scaling)
Jitter Transfer Bandwidth (see Figure 6)
Wander/Jitter Transfer Peaking
JGEN(RMS)
JGEN(PP)
Notes:
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of
nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude for the
Si5320 (tPT_MTIE) never reaches one nanosecond.
12
Rev. 2.3
Si5320
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max Unit
TAQ
RSTN/CAL high to
CAL_ACTV low, with valid
clock input and
VALTIME = 0
—
300
350
ms
Clock Output Wander with
Temperature Gradient 1,2
CCO_TG
Stable Input Clock;
Temperature
Gradient