Si5330x Data Sheet
Ultra-Low Additive Jitter Fanout Clock Buffers with up to 10 Universal Outputs from Any-Format Input and Wide Frequency
Range from 1 MHz to 725 MHz
The Si5330x family of Universal/Any-format fanout buffers is ideal for clock distribution
(1 MHz minimum) and redundant clocking applications. These devices feature typical
ultra-low jitter characteristics of 50 fs and operate over a wide frequency range. Built-in
LDOs deliver high PSRR performance and reduce the need for external components,
simplifying low-jitter clock distribution in noisy environments.
The Si5330x family is available in multiple configurations, with some versions offering a
selectable input clock using a 2:1 input mux. Other features include independent (synchronous) output enable, glitchless switching, LOS monitor of input clocks, output clock
division, and built-in format translation. These buffers can be paired with the Si534x
clocks and jitter attenuators, the Si5332 clocks, and the Si5xx oscillators to deliver endto-end clock tree performance.
KEY FEATURES
• Ultra-low additive jitter: 50 fs rms
• Built-in LDOs for high PSRR performance
• Up to 10 outputs
• Any-format Inputs (LVPECL, Low-power
LVPECL, LVDS, CML, HCSL, LVCMOS)
• Wide frequency range
• Output Enable option
• Multiple configuration options
• Dual Bank option
• 2:1 Input Mux operation
• Synchronous output enable
• Loss of signal (LOS) monitors for loss of
input clock
• Output clock division: /1, /2, /4
• RoHS compliant, Pb-free
• Temperature range: –40 to +85 °C
silabs.com | Building a more connected world.
Rev. 1.0
Si5330x Data Sheet
Ordering Guide
1. Ordering Guide
Table 1.1. Product Family Overview
Part
Number
Description
Input
MUX
Input
Output
Glitchless
Switch1
LOS
Output
OE
Option
Synchronous OE1
Clk Divider Option
Si53301-B-GM
6 output universal buffer
with 2:1 input mux
Yes
2
6 Diff / 12
SE
Yes
Yes
Per Bank
Yes
Per Bank
Si53302-B-GM
10 output universal buffer
with 2:1 input mux
Yes
2
10 Diff / 20
SE
Yes
Yes
Per Bank
Yes
Per Bank
Si53303-B-GM
Dual 1:5 universal buffer
No
2
5 Diff / 10
SE
No
No
Per Bank
Yes
Per Bank
Si53304-B-GM
6 output universal buffer
with 2:1 input mux
Yes
2
6 Diff / 12
SE
Yes
No
Individual
Yes
No
Si53305-B-GM
10 output universal buffer
with 2:1 input mux
Yes
2
10 Diff / 20
SE
Yes
No
Individual
Yes
No
Si53306-B-GM
4 output universal buffer,
single input
No
1
4 Diff / 8 SE
No
No
Single
Yes
No
Si53307-B-GM
2 output universal buffer
with 2:1 input mux
Yes
2
2 Diff / 4 SE
Yes
No
Single
Yes
No
Si53308-B-GM
Dual 1:3 universal buffer
No
2
3 Diff / 6 SE
No
Yes
Per Bank
Yes
Per Bank
Note:
1. The synchronous features (Glitch-less switching and Synchronous OE) of the Si533xx family require a minimum input clock frequency of 1 MHz. If the selected input clock stops, pauses, or is gapped such that the 1 MHz minimum is not met for any time
interval, then the output clock(s) will be disabled (turned off). Once the paused input clock restarts, the output clock may NOT
start up immediately. Output start-up (turning back on) may be delayed for several input clock cycles until the internal synchronizer determines the input clock is once again valid.
2. Click on the part number above to see a block diagram for each corresponding part number.
Table 1.2. Si5330x Ordering Guide
Part Number
Package
Pb-Free, ROHS-6
Temperature
Si53301-B-GM1
32-QFN
Yes
–40 to 85 °C
Si53302-B-GM1
44-QFN
Yes
–40 to 85 °C
Si53303-B-GM1
44-QFN
Yes
–40 to 85 °C
Si53304-B-GM1
32-QFN
Yes
–40 to 85 °C
Si53305-B-GM1
44-QFN
Yes
–40 to 85 °C
Si53306-B-GM1
16-QFN
Yes
–40 to 85 °C
Si53307-B-GM1
16-QFN
Yes
–40 to 85 °C
Si53308-B-GM1
32-QFN
Yes
–40 to 85 °C
Si53301/4-EVB
Evaluation Board
—
—
Note:
1. Add an "R" at the end of the OPN to denote tape and reel ordering options.
silabs.com | Building a more connected world.
Rev. 1.0 | 2
Table of Contents
1. Ordering Guide
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Universal, Any-Format Input Termination .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
2.2 Internal Input Bias Resistors
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
2.3 Voltage Reference (VREF) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
2.4 Universal, Any-Format Output Buffer
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
2.5 Input Mux (Si53301/02/04/05/07 Only) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
2.6 Glitchless Clock Input Switching .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
2.7 Synchronous Output Enable
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
2.8 Loss of Signal (LOS) Indicator .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
2.9 Flexible Output Divider .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
2.10 Power Supply (VDD and VDDOX) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
2.11 Output Clock Termination Options .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
2.12 LVCMOS Output Termination to Support 1.5 V and 1.2 V .
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
2.13 AC Timing Waveforms .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
2.14 Typical Phase Noise Performance (Differential Input Clock)
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
2.15 Typical Phase Noise Performance (Single-Ended Input Clock)
.
.
.
.
.
.
.
.
.
.
.
.
.17
2.16 Input Mux Noise Isolation .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
2.17 Power Supply Noise Rejection .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
3. Electrical Specifications
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Pin Descriptions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Si53301 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.35
5.2 Si53302 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.38
5.3 Si53303 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.41
5.4 Si53304 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.44
5.5 Si53305 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.47
5.6 Si53306 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.51
5.7 Si53307 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.53
5.8 Si53308 Pin Descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.55
6. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
6.1 16-QFN Package Diagram .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.58
6.2 32-QFN Package Diagram .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.59
6.3 44-QFN Package Diagram .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.60
7. Land Patterns
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
silabs.com | Building a more connected world.
Rev. 1.0 | 3
7.1 16-QFN Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.61
7.2 32-QFN Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.62
7.3 44-QFN Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.63
8. Top Markings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.1 Si53301/04/08 Top Markings .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
8.2 Si53302/03/05 Top Markings .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.65
8.3 Si53306/07 Top Markings .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.66
9. Revision History
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
silabs.com | Building a more connected world.
Rev. 1.0 | 4
Si5330x Data Sheet
Functional Description
2. Functional Description
The Si5330x family of low-jitter, low-skew, universal/any-format buffers accepts most common differential or LVCMOS input signals.
These devices are available in multiple configurations customized for the end application (refer to 1. Ordering Guide for more details on
configurations).
2.1 Universal, Any-Format Input Termination
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, low-power LVPECL,
LVCMOS, LVDS, HCSL, and CML. The simplified tables below summarize the various ac- and dc-coupling options supported by the
device. For the best high-speed performance, the use of differential formats is recommended. For both single-ended and differential
input clocks, the fastest possible slew rate is recommended since low slew rates can increase the noise floor and degrade jitter performance. Though not required, a minimum slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for singleended formats. See AN766: Understanding and Optimizing Clock Buffer’s Additive Jitter Performance for more information.
Table 2.1. AC-Coupled Clock Input Options
Clock Format
1.8 V
2.5/3.3 V
LVPECL/Low-power LVPECL
N/A
Yes
LVCMOS
No
Yes
LVDS
Yes
Yes
HCSL
No
Yes
CML
Yes
Yes
Table 2.2. DC-Coupled Clock Input Options
Clock Format
1.8 V
2.5/3.3 V
LVPECL/Low-power LVPECL
N/A
Yes
LVCMOS
No
Yes
LVDS
No
Yes
HCSL
No
Yes
CML
No
No
silabs.com | Building a more connected world.
Rev. 1.0 | 5
Si5330x Data Sheet
Functional Description
VDD
0.1 µF
Si5330x
CLKx
100
CLKxb
0.1 µF
Figure 2.1. Differential (HCSL, LVPECL, Low-Power LVPECL, LVDS, CML) AC-Coupled Input Termination
VDD
VDD = 3.3 V or 2.5 V
CMOS
Driver
VDD
1k
Si5330x
CLKx
50
CLKxb
Rs
VTERM = VDD/2
1k
Note:
Value for Rs should be chosen so that the total
source impedance matches the characteristic
impedance of the PCB trace.
Figure 2.2. DC-Coupled, Single-Ended (LVCMOS) Input Termination
VDD
VDD
1k
VBIAS = VDD/2
VDD = 3.3 V or 2.5 V
CMOS
Driver
VDD
1k
Si5330x
CLKx
50
CLKxb
Rs
1k
Notes:
1. Assumes all VDDs are at the same level.
2. Value for Rs should be chosen so that the total
source impedance matches the characteristic
impedance of the PCB trace.
1k
VTERM = VDD/2
Figure 2.3. AC-Coupled, Single-Ended (LVCMOS) Input Termination
silabs.com | Building a more connected world.
Rev. 1.0 | 6
Si5330x Data Sheet
Functional Description
VDD
DC Coupled LVPECL Input Termination Scheme 1
R1
VDD
R1
VDD = 3.3 V or 2.5 V
Si5330x
CLKx
50
“Standard”
LVPECL
Driver
CLKxb
50
R2
VTERM = VDD – 2V
R1 // R2 = 50 Ohm
R2
3.3 V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5 V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Input Termination Scheme 2
VTERM = VDD – 2 V
VDD
50
VDD = 3.3 V or 2.5 V
50
Si5330x
50
“Standard”
LVPECL
Driver
CLKx
CLKxb
50
DC Coupled LVDS Input Termination
VDD
VDD = 3.3 V or 2.5 V
Si5330x
CLKx
50
Standard
LVDS
Driver
100
CLKxb
50
DC Coupled HCSL Input Termination
VDD = 3.3 V or 2.5 V
VDD
33
Si5330x
50
Standard
HCSL Driver
CLKx
CLKxb
33
50
50
50
Note: 33 Ohm series termination is optional depending on the location of the receiver.
Figure 2.4. Differential DC-Coupled Input Terminations
silabs.com | Building a more connected world.
Rev. 1.0 | 7
Si5330x Data Sheet
Functional Description
Table 2.3. AC/DC-Coupled Clock Input Requirements for Glitchless, Non-Continuous Clocks1, 2, 3
Input Clock Driver Stop State
Clock Input Type
Low
High
High-Z
DC-Coupled
Yes
Yes
No
AC-Coupled
Yes
No
No
Note:
1. "Non-continuous clocks” means any clock that can be stopped, disabled, or gapped.
2. “Yes” means this configuration is supported.
3. “No” indicates that the configuration is not supported. Operating under a "No" condition can result in erroneous clock outputs
and/or erroneous LOS indications. Operating the device in unsupported configurations is not recommended.
2.2 Internal Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected. The clock input
should not be actively driven when power is not applied to the device. The non-inverting input is biased with a 18.75 kΩ pull-down to
GND and a 75 kΩ pull-up to VDD. The inverting input is biased with a 75 kΩ pull-up to VDD.
VDD
Si5330x
RPU
CLK0 or
CLK1
RPD
RPU
+
–
RPU = 75 k
RPD = 18.75 k
Figure 2.5. Internal Input Bias Resistors
silabs.com | Building a more connected world.
Rev. 1.0 | 8
Si5330x Data Sheet
Functional Description
2.3 Voltage Reference (VREF)
The VREF pin can be used to bias the input receiver, as shown in the figure below, when a single-ended input clock (such as LVCMOS)
is used. Note that VREF = VDD/2 and should be compatible with the Vcm rating of the single-ended input clock driving the CLK0 or CLK1
inputs. To optimize jitter and duty cycle performance, use the circuit in Figure 2.3 AC-Coupled, Single-Ended (LVCMOS) Input Termination on page 6. VREF pin should be left floating when differential clocks are used.
VDDO = 3.3V , 2.5V
Si5330x
Rs
CMOS Driver
CLKx
50
CLKxb
VREF
100 nF
Figure 2.6. Using Voltage Reference with Single-Ended Input Clock
2.4 Universal, Any-Format Output Buffer
The highly flexible output drivers support a wide range of clock signal formats, including LVPECL, low power LVPECL, LVDS, CML,
HCSL, and LVCMOS. SFOUTx[1] and SFOUTx[0] are 3-level inputs that can be pinstrapped to select the Bank A and Bank B clock
signal formats independently. This feature enables the device to be used for format/level translation in addition to clock distribution,
minimizing the number of unique buffer part numbers required in a typical application and simplifying design reuse. For EMI reduction
applications, four LVCMOS drive strength options are available for each VDDO setting.
Table 2.4. Output Signal Format Selection
SFOUTx[1]
SFOUTx[0]
VDDOX = 3.3 V
VDDOX = 2.5 V
VDDOX = 1.8 V
Open1
Open1
LVPECL
LVPECL
N/A
0
0
LVDS
LVDS
LVDS
0
1
LVCMOS, 24 mA drive
LVCMOS, 18 mA drive
LVCMOS, 12 mA drive
1
0
LVCMOS, 18 mA drive
LVCMOS, 12 mA drive
LVCMOS, 9 mA drive
1
1
LVCMOS, 12 mA drive
LVCMOS, 9 mA drive
LVCMOS, 6 mA drive
Open1
0
LVCMOS, 6 mA drive
LVCMOS, 4 mA drive
LVCMOS, 2 mA drive
Open1
1
LVPECL Low power
LVPECL Low power
N/A
0
Open1
CML
CML
CML
1
Open1
HCSL
HCSL
N/A
Note:
1. SFOUTx[1:0] are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally biased to
VDD/2.
silabs.com | Building a more connected world.
Rev. 1.0 | 9
Si5330x Data Sheet
Functional Description
2.5 Input Mux (Si53301/02/04/05/07 Only)
The Si53301/02/04/05/07 provide two clock inputs for applications that need to select between one of two clock sources. The CLK_SEL
pin selects the active clock input and has an internal pulldown resistor. The following table summarizes the input and output clock
based on the input mux pin settings.
Table 2.5. Input Mux Logic
CLK_SEL
CLK0
CLK1
Q1
Qb
L
L
X
L
H
L
H
X
H
L
H
X
L
L
H
H
X
H
H
L
Note:
1. On the next negative transition of CLK0 or CLK1.
2.6 Glitchless Clock Input Switching
The Si53301/2/4/5/7 feature glitchless switching between two valid input clocks. The following figure illustrates that switching between
input clocks does not generate runt pulses or glitches at the output.
CLK1
CLK0
CLK_SEL
Note 1
Note 2
Note 3
Qn
Notes:
1. Qn continues with CLK0 for 2-3 falling edges of CLK0.
2. Qn is disabled low for 2-3 falling edges of CLK1 .
3. Qn starts on the first rising edge after 1 + 2.
Figure 2.7. Glitchless Input Clock Switch
The Si53301/2/4/5/7 support glitchless switching between clock inputs with a frequency variance up to 10x. When a switchover to a
new clock is made, the output will disable low after two or three clock cycles of the previously selected input clock. The outputs will
remain low for up to three clock cycles of the newly-selected clock, after which the outputs will start from the newly-selected input. If a
switchover to an absent clock is made, the output will glitchlessly stop low and wait for edges of the newly-selected clock. A switchover
from an absent clock to a live clock will also be glitchless. Note that the CLK_SEL input should not be toggled faster than 1/250th the
frequency of the slower input clock.
2.7 Synchronous Output Enable
The Si5330x features a synchronous output enable (disable) feature. The output enable pin is sampled and synchronized to the falling
edge of the input clock. This feature prevents runt pulses from being generated when the outputs are enabled or disabled.
When OE is low, Q is held low and Qb is held high for differential output formats. For LVCMOS output format options, both Q and Qb
are held low when OE is set low. The output enable pin has an internal pull-up that enables the outputs when left unconnected. See
Table 3.10 AC Characteristics on page 23 for output enable and output disable times.
silabs.com | Building a more connected world.
Rev. 1.0 | 10
Si5330x Data Sheet
Functional Description
2.8 Loss of Signal (LOS) Indicator
Si53301/2/8 feature a Loss of Signal (LOS) indicator. The LOS0 and LOS1 indicators are used to check for the presence of input clocks
CLK0 and CLK1. The LOS0 and LOS1 pins must be checked prior to selecting the clock input or should be polled to check for the
presence of the currently selected input clock. In the event that an input clock is not present, the associated LOSx pin will assume a
logic high (LOSx = 1) state. When a clock is present at the associated input clock pin, the LOSx pin will assume a logic low (LOSx = 0)
state.
2.9 Flexible Output Divider
The Si53301/02/03/08 provide optional clock division in addition to clock distribution. The divider setting for each bank of output clocks
is selected via 3-level control pins as shown in the table below. Leaving the DIVx pins open will force a divider value of 1, which is the
default mode of operation.
Table 2.6. Divider Selection
DIVx1
Divider Value
Open
÷1 (default)
0
÷2
1
÷4
Notes:
1. DIVx are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally biased to VDD/2.
2.10 Power Supply (VDD and VDDOX)
The device includes separate core (VDD) and output driver supplies (VDDOX). This feature allows the core to operate at a lower voltage
than V DDO, reducing current consumption in mixed supply applications. The core VDD supports 3.3, 2.5, or 1.8 V. Control signals, such
as CLK_SEL, DIV, and OE, are in the VDD domain. Each output bank has its own VDDOX supply, supporting 3.3, 2.5, or 1.8 V.
silabs.com | Building a more connected world.
Rev. 1.0 | 11
Si5330x Data Sheet
Functional Description
2.11 Output Clock Termination Options
The recommended output clock termination options for ac and dc are shown below. Unused outputs should be left unconnected.
AC-Coupled LVPECL Output Termination Scheme 1
VDD
R1
VDDOX
Si5330x
R1
0.1 uF
VDD = 3.3 V or 2.5 V
50
Q
LVPECL
Receiver
Qb
50
0.1 uF
Rb
R2
Rb
3.3 V LVPECL: R1 = 82.5
; R2 = 127
; Rb = 120
2.5 V LVPECL: R1 = 62.5
; R2 = 250
; Rb = 90
VBIAS = VDD – 1.3 V
R1 // R2 = 50
R2
AC-Coupled LVPECL Output Termination Scheme 2
VDDOX
Si5330x
0.1 uF
VDD = 3.3 V or 2.5 V
50
Q
LVPECL
Receiver
Qb
50
Rb
0.1 uF
50
Rb
50
VBIAS = VDD – 1.3 V
3.3 V LVPECL: Rb = 120
2.5 V LVPECL: Rb = 90
DC-Coupled LVPECL Output Termination Scheme 1
Note: VDDOX = VDDOA or VDDOB = 3.3 V, 2.5 V
VDDO
R1
R1
VDDOX
Si5330x
VDD = VDDOX
Q
50
LVPECL
Receiver
Qb
50
R2
3.3 V LVPECL: R1 = 127
2.5 V LVPECL: R1 = 250
VTERM = VDDO – 2 V
R1 // R2 = 50
R2
; R2 = 82.5
; R2 = 62.5
DC-Coupled LVPECL Output Termination Scheme 2
Note: VDDOX = VDDOA or VDDOB = 3.3 V, 2.5 V
VDDOX
Si5330x
VDD = VDDOX
Q
50
LVPECL
Receiver
Qb
50
50
50
VTERM = VDDO – 2 V
Figure 2.8. LVPECL AC and DC Output Terminations
silabs.com | Building a more connected world.
Rev. 1.0 | 12
Si5330x Data Sheet
Functional Description
DC Coupled LVDS and Low-Power LVPECL Termination
VDDOX = 3.3 V or 2.5 V, or 1.8 V (LVDS only)
Si5330x
VDD
50
Q
Standard
LVDS
Receiver
100
Qn
50
AC Coupled LVDS and Low-Power LVPECL Termination
VDDOX = 3.3 V or 2.5 V or 1.8 V (LVDS only)
Si5330x
0.1 uF
VDD
50
Q
Standard
LVDS
Receiver
100
Qn
50
0.1 uF
AC Coupled CML Termination
VDDOX = 3.3V or 2.5V or 1.8V
Si5330x
0.1 uF
VDD
50
Q
Standard
CML
Receiver
100
Qn
50
0.1 uF
DC Coupled HCSL Receiver Termination
VDDOX = 3.3 V or 2.5 V
Si5330x
VDD (3.3 V or 2.5 V only)
50
Q
Standard
HCSL
Receiver
Qn
50
50
50
DC Coupled HCSL Source Termination
VDDO = 3.3V
Si5330x
VDD
42.2
50
Q
Qn
Standard
HCSL
Receiver
42.2
50
86.6
86.6
Figure 2.9. LVDS, CML, HCSL, and Low-Power LVPECL Output Terminations
CMOS
Receivers
Si5330x
CMOS Driver
Zo
Rs
Zout
50
Figure 2.10. LVCMOS Output Termination
Table 2.7. Recommended LVCMOS RS Series Termination
SFOUTX[1]
0
SFOUTX[0]
1
silabs.com | Building a more connected world.
RS (Ω)
3.3 V
2.5 V
1.8 V
33
33
33
Rev. 1.0 | 13
Si5330x Data Sheet
Functional Description
SFOUTX[1]
SFOUTX[0]
RS (Ω)
1
0
33
33
33
1
1
33
33
0
Open
0
0
0
0
2.12 LVCMOS Output Termination to Support 1.5 V and 1.2 V
LVCMOS clock outputs are natively supported at 1.8, 2.5, and 3.3 V. However, 1.2 V and 1.5 V LVCMOS clock outputs can be supported via a simple resistor divider network that will translate the buffer’s 1.8 V output to a lower voltage as shown in the following figure.
R1
VDDO = 1.8 V
50
R2
1.5V LVCMOS: R1 = 43
1.2V LVCMOS: R1 = 58
, R2 = 300
, R2 = 150
, IOUT = 12 mA
, IOUT = 12 mA
R1
LVCMOS
50
R2
Figure 2.11. 1.5 V and 1.2 V LVCMOS Low-Voltage Output Termination
2.13 AC Timing Waveforms
TPHL
CLK
TSK
QN
VPP/2
Q
VPP/2
VPP/2
QM
VPP/2
TPLH
TSK
Propagation Delay
Q
Output-Output Skew
80% VPP
20% VPP
Q
TF
80% VPP
20% VPP
TR
Rise/Fall Time
Figure 2.12. AC-Coupled Timing Waveforms
silabs.com | Building a more connected world.
Rev. 1.0 | 14
Si5330x Data Sheet
Functional Description
2.14 Typical Phase Noise Performance (Differential Input Clock)
Each of the phase noise plots superimposes Source Jitter, Total SE Jitter, and Total Diff Jitter on the same diagram.
• Source Jitter—Reference clock phase noise (measured Single-ended to PNA).
• Total Jitter (SE)—Combined source and clock buffer phase noise measured as a single-ended output to the phase noise analyzer
and integrated from 12 kHz to 20 MHz.
• Total Jitter (Diff)—Combined source and clock buffer phase noise measured as a differential output to the phase noise analyzer
and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is made using a balun. For more information, see 3. Electrical Specifications.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).
PSPL 5310A
CLK SYNTH
SMA103A
PSPL 5310A
CLKx
50
Si5330x
Balun
AG E5052 Phase Noise
Analyzer
50ohm
CLKxb
50
Balun
Figure 2.13. Differential Measurement Method Using a Balun
Frequency
(MHz)
Differential
Input Slew Rate (V/ns)
Source Jitter
(fs)
Total Jitter
(SE) (fs)
Additive Jitter
(SE) (fs)
Total Jitter
(Differential) (fs)
Additive Jitter
(Differential) (fs)
156.25
1.0
38.2
147.8
142.8
118.3
112.0
Figure 2.14. Total Jitter Differential Input (156.25 MHz)
silabs.com | Building a more connected world.
Rev. 1.0 | 15
Si5330x Data Sheet
Functional Description
Frequency
(MHz)
Differential
Input Slew Rate (V/ns)
Source Jitter
(fs)
Total Jitter
(SE) (fs)
Additive Jitter
(SE) (fs)
Total Jitter
(Differential) (fs)
Additive Jitter
(Differential) (fs)
312.5
1.0
33.10
94.39
88.39
83.80
76.99
Figure 2.15. Total Jitter Differential Input (312.5 MHz)
Frequency
(MHz)
Differential
Input Slew Rate (V/ns)
Source Jitter
(fs)
Total Jitter
(SE) (fs)
Additive Jitter
(SE) (fs)
Total Jitter
(Differential) (fs)
Additive Jitter
(Differential) (fs)
625
1.0
23
57
52
59
54
Figure 2.16. Total Jitter Differential Input (625 MHz)
silabs.com | Building a more connected world.
Rev. 1.0 | 16
Si5330x Data Sheet
Functional Description
2.15 Typical Phase Noise Performance (Single-Ended Input Clock)
For single-ended phase noise measurements, the phase noise analyzer was connected directly without the use of a balun.
The following figure shows three phase noise plots superimposed on the same diagram.
Frequency
(MHz)
Single-Ended
Input Slew Rate (V/ns)
Source Jitter
(fs)
Total Jitter
(SE) (fs)
Additive Jitter
(SE) (fs)
Total Jitter
(Differential) (fs)
Additive Jitter
(Differential) (fs)
156.25
1.0
40.74
182.12
177.51
125.22
118.41
Figure 2.17. Total Jitter Single-Ended Input (156.25 MHz)
silabs.com | Building a more connected world.
Rev. 1.0 | 17
Si5330x Data Sheet
Functional Description
2.16 Input Mux Noise Isolation
The input clock mux is designed to minimize crosstalk between CLK0 and CLK1. This improves phase jitter performance when clocks
are present at both the CLK0 and CLK1 inputs. The following figure shows a measurement of the input mux’s noise isolation.
Figure 2.18. Input Mux Noise Isolation (Differential Input Clock, 44-QFN Package)
Figure 2.19. Input Mux Noise Isolation (Single-Ended Input Clock, 44-QFN Package)
2.17 Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject power supply noise and simplify low-jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and SoCs and may reduce board-level filtering requirements.
See AN491: Power Supply Rejection for Low-Jitter Clocks for more information.
silabs.com | Building a more connected world.
Rev. 1.0 | 18
Si5330x Data Sheet
Electrical Specifications
3. Electrical Specifications
Table 3.1. Recommended Operating Conditions
Parameter
Symbol
Ambient Operating Temperature
TA
Test Condition
Min
Typ
Max
Unit
–40
—
85
°C
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
LVPECL, low power LVPECL,
LVCMOS
2.38
2.5
2.63
V
2.97
3.3
3.63
V
HCSL
2.97
3.3
3.63
V
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
LVPECL, low power LVPECL,
LVCMOS
2.38
2.5
2.63
V
2.97
3.3
3.63
V
HCSL
2.97
3.3
3.63
V
LVDS, CML
Supply Voltage Range1
VDD
LVDS, CML, LVCMOS
Output Buffer Supply Voltage1
VDDOX
Note:
1. Core supply VDD and output buffer supplies VDDO are independent. LVCMOS clock input is not supported for VDD = 1.8 V but is
supported for LVCMOS clock output for VDDOX = 1.8 V. LVCMOS outputs at 1.5 V and 1.2 V can be supported via a simple resistor divider network.
2. See 2.12 LVCMOS Output Termination to Support 1.5 V and 1.2 V.
Table 3.2. Input Clock Specifications
(VDD=1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, TA= –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Input Common
Mode Voltage
VCM
VDD = 2.5 V ± 5%, 3.3 V ± 10%
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
LVCMOS Input High Voltage
VIH
VDD = 2.5 V ± 5%, 3.3 V ± 10%
VDD × 0.7
—
—
V
LVCMOS Input Low Voltage
VIL
VDD = 2.5 V ± 5%, 3.3 V ± 10%
—
—
VDD × 0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
silabs.com | Building a more connected world.
Rev. 1.0 | 19
Si5330x Data Sheet
Electrical Specifications
Table 3.3. DC Common Characteristics
(VDD = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Supply Current
Symbol
IDDOX
@ 200MHz (CMOS)
Voltage Reference
Input High Voltage
Input Mid Voltage
Input Low Voltage
Min
Typ
Max
Unit
—
65
100
mA
LVPECL (3.3 V)
Si53301/2/3/4/5/6/8
—
35
—
mA
LVPECL (3.3 V) Si53307
—
40
—
mA
Low Power LVPECL (3.3 V)
Si53301/2/4/5/6/7/8
—
35
—
mA
Low Power LVPECL (3.3 V)
Si53303
—
30
—
mA
LVDS (3.3 V)
—
20
—
mA
CML (3.3V), Si53301/4/8
—
35
—
mA
CML (3.3V), Si53302/3/5
—
30
—
mA
CML (3.3V), Si53306
—
40
—
mA
CML (3.3V), Si53307
—
60
—
mA
HCSL, 100 MHz, 2 pF load
(3.3 V)
—
35
—
mA
CMOS (1.8 V, SFOUT =
Open/0), per output, CL = 5 pF,
200 MHz
—
5
—
mA
CMOS (2.5 V, SFOUT =
Open/0), per output, CL = 5 pF,
200 MHz
—
8
—
mA
CMOS (3.3 V, SFOUT = 0/1),
per output, CL = 5 pF, 200 MHz
Si53306/7
—
20
—
mA
CMOS (3.3 V, SFOUT = 0/1),
per output, CL = 5 pF, 200 MHz
Si53301/2/3/4/5/8
—
15
—
mA
VREF pin, IREF = ±500 µA
—
VDD/2
—
V
SFOUTx, DIVx, CLK_SEL, OEx
Si53303
0.85 × VDD
—
—
V
SFOUTx, DIVx, CLK_SEL, OEx
Si53301/2/4/5/6/7/8
0.8 × VDD
—
—
V
SFOUTx, DIVx
3-level input pins
0.45 × VDD
0.5 × VDD
0.55 × VDD
V
SFOUTx, DIVx, CLK_SEL, OEx
Si53301/2/4/5/6/7/8
—
—
0.2 × VDD
V
SFOUTx, DIVx, CLK_SEL, OEx
Si53303
—
—
0.15 × VDD
V
IDD
Output Buffer Supply Current
(Per Clock Output)
@ 100 MHz (differential)
Test Condition
VREF
VIH
VIM
VIL
Output Voltage High (LOSx)
VOH
IDD = –1 mA
0.8 x VDD
—
—
V
Output Voltage Low (LOSx)
VOL
IDD = 1 mA
—
—
0.2 x VDD
V
Internal Pull-down Resistor
RDOWN
CLK_SEL, DIVx, SFOUTx,
—
25
—
kΩ
silabs.com | Building a more connected world.
Rev. 1.0 | 20
Si5330x Data Sheet
Electrical Specifications
Parameter
Internal Pull-up Resistor
Symbol
Test Condition
Min
Typ
Max
Unit
RUP
OEx, DIVx, SFOUTx
—
25
—
kΩ
Table 3.4. Output Characteristics (LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output DC Common Mode
Voltage
VCOM
VDDOX – 1.595
—
VDDOX – 1.245
V
Single-Ended Output Swing
VSE
0.55
0.80
1.050
V
Typ
Max
Unit
VDDOX – 1.275
V
0.85
V
Note:
1. Unused outputs can be left floating. Do not short unused outputs to ground.
Table 3.5. Output Characteristics (Low Power LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Output DC Common Mode
Voltage
VCOM
RL = 100 Ω across Qn
and Qn
VDDOX – 1.895
Single-Ended Output Swing
VSE
RL = 100 Ω across Qn
and Qn
0.25
0.60
Table 3.6. Output Characteristics (CML)
(VDDOX = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Single-Ended Output Swing
Symbol
Test Condition
Min
Typ
Max
Unit
VSE
Terminated as shown in Figure
2.9 LVDS, CML, HCSL, and LowPower LVPECL Output Terminations
on page 13 (CML termination).
300
400
550
mV
silabs.com | Building a more connected world.
Rev. 1.0 | 21
Si5330x Data Sheet
Electrical Specifications
Table 3.7. Output Characteristics (LVDS)
(VDDOX = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%, TA = –40 to 85 °C)
Parameter
Symbol
Output Common Mode Voltage
(VDDO = 1.8 V)
Min
Typ
Max
Unit
RL = 100 Ω across QN and QN
Si53301/2/4/5/6/7/8
247
—
490
mV
RL = 100 Ω across QN and QN
Si53303
247
—
454
mV
VDDOX = 2.38 to 2.63 V, 2.97 to 3.63 V,
RL = 100 Ω across QN and QN
1.10
1.25
1.35
V
VDDOX = 1.71 to 1.89 V, RL = 100 Ω
across QN and QN
Si53301/2/4/5/6/7/8
0.85
0.97
1.25
V
VDDOX = 1.71 to 1.89 V, RL = 100 Ω
across QNand QN
Si53303
0.85
0.97
1.1
V
VSE
Single-Ended Output Swing
Output Common Mode Voltage
(VDDO = 2.5 V or 3.3V)
Test Condition
VCOM1
VCOM2
Table 3.8. Output Characteristics (LVCMOS)
(VDDOX = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output Voltage High
VOH
Output Voltage Low
VOL
Test Condition
Min
Typ
Max
Unit
Si53301/2/4/5/6/7/8
0.75 × VDDOX
—
—
V
Si53303
0.8 × VDDOX
—
—
V
Si53301/2/4/5/6/7/8
—
—
0.25 × VDDOX
V
Si53303
—
—
0.2 × VDDOX
V
Note:
1. IOH and IOL per the Output Signal Format Table for specific VDDOX and SFOUTx settings.
Table 3.9. Output Characteristics (HCSL)
(VDDOX = 2.5 V ± 5% or 3.3 V ± 10%, TA = –40 to 85 °C))
Parameter
Output Voltage High
Symbol
VOH
Test Condition
Min
Typ
Max
Unit
RL = 50 Ω to GND
Si53301/2/3/4/5/6/8
550
700
900
mV
RL = 50 Ω to GND
Si53307
550
700
850
mV
Output Voltage Low
VOL
RL = 50 Ω to GND
–150
0
150
mV
Single-Ended Output Swing
VSE
RL = 50 Ω to GND
550
700
850
mV
Crossing Voltage
VC
RL = 50 Ω to GND
250
350
550
mV
silabs.com | Building a more connected world.
Rev. 1.0 | 22
Si5330x Data Sheet
Electrical Specifications
Table 3.10. AC Characteristics
(VDD = VDDOX = 1.8 V ± 5%, 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
LOSx Clear Time
TLOSCLR
LOSx Activation Time
TLOSACT
Frequency
Duty Cycle6
Minimum Input Clock Slew
Rate5
Output Rise/Fall Time
Minimum Input Pulse Width
Propagation Delay
F
DC
SR
TR/TF
Test Condition
Min
Typ
Max
Unit
F < 100 MHz
—
TPER + 15
—
ns
F > 100 MHz
—
25
—
ns
—
15
—
µs
LVPECL, low power LVPECL,
LVDS, CML, HCSL1
1
—
725
MHz
LVCMOS
1
—
200
MHz
200 MHz, 20/80% TR/TF