Si5366
P RECISION C L O C K M ULTIPLIER / J I T T E R A TTENUATOR
Features
Selectable output frequencies
ranging from 8 kHz to 1050 MHz
Ultra-low jitter clock outputs
w/jitter generation as low as
0.3 ps rms (12 kHz–20 MHz)
Integrated loop filter with
selectable loop bandwidth (60 Hz
to 8.4 kHz)
Meets OC-192 GR-253-CORE
jitter specifications
Four clock inputs w/manual or
automatically controlled hitless
switching
Five clock outputs with selectable
signal format (LVPECL, LVDS,
CML, CMOS)
SONET frame sync switching
and regeneration
Support for ITU G.709 FEC ratios
(255/238, 255/237, 255/236)
LOL, LOS, FOS alarm outputs
Pin-controlled output phase
adjust
Pin-programmable settings
On-chip voltage regulator for
1.8 ±5%, 2.5 V ±10%, or
3.3 V ±10% operation
Small size: 14 x 14 mm 100-pin
TQFP
Pb-free, RoHS-compliant
Ordering Information:
See page 25.
Applications
SONET/SDH OC-48/STM-16
Optical modules
and OC-192/STM-64 line cards Test and measurement
GbE/10GbE, 1/2/4/8/10G Fibre Synchronous Ethernet
Channel line cards
ITU G.709 line cards
Description
The Si5366 is a jitter-attenuating precision clock multiplier for high-speed
communication systems, including SONET OC-48/OC-192, Ethernet, and
Fibre Channel. The Si5366 accepts four clock inputs ranging from 8 kHz
to 707 MHz and generates five frequency-multiplied clock outputs ranging
from 8 kHz to 1050 MHz. The input clock frequency and clock
multiplication ratio are selectable from a table of popular SONET,
Ethernet, and Fibre Channel frequencies. The Si5366 is based on Silicon
Laboratories' 3rd-generation DSPLL® technology, which provides anyfrequency synthesis and jitter attenuation in a highly integrated PLL
solution that eliminates the need for external VCXO and loop filter
components. The DSPLL loop bandwidth is digitally programmable,
providing jitter performance optimization at the application level.
Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5366 is ideal for
providing clock multiplication and jitter attenuation in high performance
timing applications.
Rev. 1.0 8/12
Copyright © 2012 by Silicon Laboratories
Si5366
Si5366
Functional Block Diagram
Xtal or Refclock
CKIN1
CKIN2
DSPLL
CKIN3
®
÷ NF1
CKOUT1
÷ NF2
CKOUT2
÷ NF3
CKOUT3
N1_HS
CKIN4
Input Clock Configuration
Divider Select
Manual/Auto Switch
Clock Select
÷ NF4
CKOUT4
÷ NF5
CKOUT5 (FS_OUT)
Resonator/Rate Select
LOL/LOS/FOS Alarms
Control
Output Clock2
Frequency Select
Bandwidth Select
Input Clock3
VDD (1.8, 2.5, or 3.3 V)
Skew Control
Input Clock4
GND
FSYNC Align
2
Rev. 1.0
Si5366
TABLE O F C ONTENTS
Section
Page
1. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Pin Descriptions: Si5366 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6. Package Outline: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1. Si5366 Top Marking (TQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Rev. 1.0
3
Si5366
Table 1. Recommended Operating Conditions1
Parameter
Symbol
Ambient Temperature
TA
Supply Voltage during
Normal Operation
VDD
Test Condition
Min
Typ
Max
Unit
–40
25
85
C
3.3 V Nominal2
2.97
3.3
3.63
V
2.5 V Nominal
2.25
2.5
2.75
V
1.8 V Nominal
1.71
1.8
1.89
V
Notes:
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
SIGNAL +
Differential I/Os VICM , VOCM
V
VISE , VOSE
SIGNAL –
(SIGNAL +) – (SIGNAL –)
Differential Peak-to-Peak Voltage
VID,VOD
VICM, VOCM
Single-Ended
Peak-to-Peak Voltage
t
SIGNAL +
VID = (SIGNAL+) – (SIGNAL–)
SIGNAL –
Figure 1. Differential Voltage Characteristics
80%
CKIN, CKOUT
20%
tF
tR
Figure 2. Rise/Fall Time Characteristics
4
Rev. 1.0
Si5366
Table 2. DC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
LVPECL Format
622.08 MHz Out
All CKOUTs Enabled
—
394
435
mA
LVPECL Format
622.08 MHz Out
1 CKOUT Enabled
—
253
284
mA
CMOS Format
19.44 MHz Out
All CKOUTs Enabled
—
278
400
mA
CMOS Format
19.44 MHz Out
1 CKOUT Enabled
—
229
261
mA
Disable Mode
—
165
—
mA
1.8 V ± 5%
0.9
—
1.4
V
2.5 V ± 10%
1
—
1.7
V
3.3 V ± 10%
1.1
—
1.95
V
CKNRIN
Single-ended
20
40
60
k
Single-Ended Input
Voltage Swing
(See Absolute Specs)
VISE
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Differential Input
Voltage Swing
(See Absolute Specs)
VID
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Supply Current1,6
CKINn Input Pins2
Input Common Mode
Voltage (Input Threshold Voltage)
Input Resistance
VICM
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD ≥ 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When
there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
Rev. 1.0
5
Si5366
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
CKOVCM
LVPECL 100 load
line-to-line
VDD –1.42
—
VDD –1.25
V
Differential Output
Swing
CKOVD
LVPECL 100 load
line-to-line
1.1
—
1.9
VPP
Single Ended Output
Swing
CKOVSE
LVPECL 100 load
line-to-line
0.5
—
0.93
VPP
Differential Output
Voltage
CKOVD
CML 100 load line-toline
350
425
500
mVPP
CKOVCM
CML 100 load line-toline
—
VDD-0.36
—
V
CKOVD
LVDS
100 load line-to-line
500
700
900
mVPP
Low Swing LVDS
100 load line-to-line
350
425
500
mVPP
CKOVCM
LVDS 100 load lineto-line
1.125
1.2
1.275
V
CKORD
CML, LVPECL, LVDS
—
200
—
Output Voltage Low
CKOVOLLH
CMOS
—
—
0.4
V
Output Voltage High
CKOVOHLH
VDD = 1.71 V
CMOS
0.8 x VDD
—
—
V
CKOIO
VDD = 1.8 V
—
7.5
—
mA
VDD = 3.3 V
—
32
—
mA
Output Clocks (CKOUTn)3,5,6
Common Mode
Common Mode Output
Voltage
Differential Output
Voltage
Common Mode Output
Voltage
Differential Output
Resistance
Output Drive Current
(CMOS driving into
CKOVOL for output low
or CKOVOH for output
high. CKOUT+ and
CKOUT– shorted
externally)
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD ≥ 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When
there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
6
Rev. 1.0
Si5366
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD = 1.71 V
—
—
0.5
V
VDD = 2.25 V
—
—
0.7
V
VDD = 2.97 V
—
—
0.8
V
VDD = 1.89 V
1.4
—
—
V
VDD = 2.25 V
1.8
—
—
V
VDD = 3.63 V
2.5
—
—
V
2-Level LVCMOS Input Pins
Input Voltage Low
Input Voltage High
VIL
VIH
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD ≥ 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When
there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
Rev. 1.0
7
Si5366
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3-Level Input Pins4
Input Voltage Low
VILL
—
—
0.15 x VDD
V
Input Voltage Mid
VIMM
0.45 x VDD
—
0.55 x VDD
V
Input Voltage High
VIHH
0.85 x VDD
—
—
V
Input Low Current
IILL
See Note 4
–20
—
—
µA
Input Mid Current
IIMM
See Note 4
–2
—
+2
µA
Input High Current
IIHH
See Note 4
—
—
20
µA
VOL
IO = 2 mA
VDD = 1.71 V
—
—
0.4
V
IO = 2 mA
VDD = 2.97 V
—
—
0.4
V
IO = –2 mA
VDD = 1.71 V
VDD –0.4
—
—
V
IO = –2 mA
VDD = 2.97 V
VDD –0.4
—
—
V
LVCMOS Output Pins
Output Voltage Low
Output Voltage Low
Output Voltage High
Output Voltage High
VOH
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD ≥ 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When
there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
8
Rev. 1.0
Si5366
Table 3. AC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)
Input Resistance
XARIN
RATE[1:0] = LM, MH,
ac-coupled
—
12
—
k
Input Voltage Swing
XAVPP
RATE[1:0] = LM, MH,
ac-coupled
0.5
—
1.2
VPP
0.5
—
2.4
VPP
Differential Reference Clock Input Pins (XA/XB)
Input Voltage Swing
XA/XBVPP
RATE[1:0] = LM, MH
CKINn Input Pins
Input Frequency
CKNF
.008
—
707.35
MHz
CKIN3 and CKIN4
used as FSYNC pins
CKNF
—
8
—
kHz
40
—
60
%
2
—
—
ns
—
—
3
pF
—
—
11
ns
Input Duty Cycle
(Minimum Pulse
Width)
CKNDC
Input Capacitance
CKNCIN
Input Rise/Fall Time
CKNTRF
Whichever is smaller
(i.e., the 40% / 60%
limitation applies only
to high frequency
clocks)
20–80%
See Figure 2
CKOUTn Output Pins
(See ordering section for speed grade vs frequency limits)
Output Frequency
(Output not configured for CMOS or
Disabled)
CKOF
0.008
—
1050
MHz
Maximum Output
Frequency in CMOS
Format
CKOF
—
—
212.5
MHz
Output Rise/Fall
(20–80 %) @
622.08 MHz output
CKOTRF
Output not configured for
CMOS or Disabled
See Figure 2
—
230
350
ps
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 1.71
CLOAD = 5 pF
—
—
8
ns
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.
Rev. 1.0
9
Si5366
Table 3. AC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 2.97
CLOAD = 5 pF
—
—
2
ns
Output Duty Cycle
Uncertainty @
622.08 MHz
CKODC
100 Load
Line-to-Line
Measured at 50% Point
(Not for CMOS)
—
—
±40
ps
tRSTMN
1
—
—
µs
Cin
—
—
3
pF
LVCMOS Input Pins
Minimum Reset Pulse
Width
Input Capacitance
LVCMOS Output Pins
Rise/Fall Times
tRF
CLOAD = 20 pF
See Figure 2
—
25
—
ns
LOSn Trigger Window
LOSTRIG
From last CKINn to
Internal detection of LOSn
—
—
4.5 x N3
TCKIN
Time to Clear LOL
after LOS Cleared
tCLRLOL
LOS to LOL
Fold = Fnew
Stable XA/XB reference
—
10
—
ms
Output Clock Skew
tSKEW
of CKOUTn to of
CKOUT_m, CKOUTn
and CKOUT_m at same
frequency
—
—
100
ps
Phase Change due to
Temperature
Variation*
tTEMP
Max phase changes from
–40 to +85 °C
—
300
500
ps
Device Skew
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.
10
Rev. 1.0
Si5366
Table 3. AC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
PLL Performance
(fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL)
Lock Time
tLOCKMP
Start of ICAL to of LOL
—
35
1200
ms
Output Clock Phase
Change
tP_STEP
After clock switch
f3 128 kHz
—
200
—
ps
—
0.05
0.1
dB
Closed Loop Jitter
Peaking
JPK
Jitter Tolerance
JTOL
Jitter Frequency Loop
Bandwidth
5000/BW
—
—
ns pk-pk
CKOPN
1 kHz Offset
—
–106
—
dBc/Hz
10 kHz Offset
—
–121
—
dBc/Hz
100 kHz Offset
—
–132
—
dBc/Hz
1 MHz Offset
—
–131
—
dBc/Hz
Max spur @ n x F3
(n 1, n x F3 < 100 MHz)
—
–93
–70
dBc
Phase Noise
fout = 622.08 MHz
Spurious Noise
SPSPUR
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.
Rev. 1.0
11
Si5366
Table 4. Jitter Generation
Parameter
Jitter Gen
OC-192
Symbol
JGEN
Test Condition*
Measurement
Filter
DSPLL
BW2
0.02–80 MHz
120 Hz
4–80 MHz
0.05–80 MHz
Jitter Gen
OC-48
JGEN
0.12–20 MHz
Min
Typ
Max
GR-253Specification
Unit
—
4.2
6.2
30
psPP
—
.27
.42
N/A
psrms
—
3.7
6.4
10
psPP
—
.14
.31
N/A
psrms
—
4.4
6.9
10
psPP
—
.26
.41
1.0
ps rms
—
3.5
5.4
40.2
psPP
—
.27
.41
4.02
ps rms
120 Hz
120 Hz
120 Hz
*Note: Test conditions:
1. fIN = fOUT = 622.08 MHz.
2. Clock input: LVPECL .
3. Clock output: LVPECL.
4. PLL bandwidth: 120 Hz.
5. 114.285 MHz 3rd OT crystal used as XA/XB input.
6. VDD = 2.5 V.
7. TA = 85 °C.
8. Jitter integration bands include low-pass (–20 dB/Dec) and high-pass (–60 dB/Dec) roll-offs per Telecordia GR-253CORE.
Table 5. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Thermal Resistance Junction to Ambient
12
Symbol
Test Condition
Value
Unit
JA
Still Air
31
C°/W
Rev. 1.0
Si5366
-
Table 6. Absolute Maximum Ratings*
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
—
3.8
V
VDD+0.3
V
DC Supply Voltage
VDD
–0.5
LVCMOS Input Voltage
VDIG
–0.3
CKINn Voltage Level Limits
CKNVIN
0
—
VDD
V
XA/XB Voltage Level Limits
XAVIN
0
—
1.2
V
Operating Junction Temperature
TJCT
–55
—
150
ºC
Storage Temperature Range
TSTG
–55
—
150
ºC
2
—
—
kV
ESD MM Tolerance; All pins
except CKIN+/CKIN–
150
—
—
V
ESD HBM Tolerance
(100 pF, 1.5 k); CKIN+/CKIN–
700
—
—
V
ESD MM Tolerance;
CKIN+/CKIN–
100
—
—
V
ESD HBM Tolerance
(100 pF, 1.5 k); All pins except
CKIN+/CKIN–
Latch-up Tolerance
JESD78 Compliant
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to the conditions specified in the operational sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods of time may affect device reliability.
Rev. 1.0
13
Si5366
1. Typical Phase Noise Performance
Figure 3. Typical Phase Noise Plot
Table 7. RMS Jitter by Band
Jitter Band
RMS Jitter
SONET_OC48, 12 kHz to 20 MHz
249 fs
SONET_OC192_A, 20 kHz to 80 MHz
274 fs
SONET_OC192_B, 4 MHz to 80 MHz
166 fs
SONET_OC192_C, 50 kHz to 80 MHz
267 fs
Brick Wall_800 Hz to 80 MHz
274 fs
*Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass
(–60 dB/Dec) roll-offs per Telcordia GR-253-CORE.
14
Rev. 1.0
Si5366
2. Typical Application Schematic
C10
System
Power
Supply
Ferrite
Bead
Option 2:
Ext.
Refclk–
Ext.
Refclk+
C1–9
VDD = 3.3 V
0.1 µF
0.1 µF
CKIN1+
XA
XB
XA
XB
130
GND
0.1 µF
VDD
130
Option 1:
114.285 MHz
Crystal
1 µF
CKIN1–
82
82
CKOUT1+
0.1 µF
+
100
CKOUT1–
Input
Clock
Sources1
0.1 µF
–
VDD = 3.3 V
130
130
CKIN4+
CKIN4–
82
CKOUT4+
CKOUT4–
VDD
CKOUT5/FS_OUT+
15 k
RATE2
CKOUT5/FS_OUT–
CK_CONF
VDD
+
0.1 µF
0.1 µF
–
+
100
15 k
Input Clock Configuration
Control
Clock
Outputs
100
82
Crystal/Ref Clk Rate
0.1 µF
0.1 µF
–
15 k
Manual/Automatic Clock
Selection (L)
15 k
AUTOSEL2
Input Clock Select
VDD
CKSEL[1:0]3
Si5366
15 k
Frequency Offset Control
VDD
15 k
Frequency Table Select
VDD
15 k
Frequency Select
Bandwidth Select
FOS_CTL2
15 k
FRQTBL2
15 k
VDD
15 k
FRQSEL[3:0]2
15 k
BWSEL[1:0]2
15 k
Skew Increment
INC
Skew Decrement
VDD
DEC
15 k
Signal Format Select
VDD
15 k
CKOUT3 and CKOUT4
Divider Control
15 k
Clock Output 2 Disable/
Bypass Mode Control
Clock Outputs 3 and 4
Disable
SFOUT[1:0]2
15 k
VDD
DIV34_[1:0]2
15 k
DBL2_BY2
15 k
VDD
DBL34
15 k
FS_OUT Disable
DBL_FS2
15 k
FSYNC Inputs to Clock
Selection Enable
FS_SW
FSYNC Realignment
Control
FS_ALIGN
Reset
RST
ALRMOUT
Alarm Output Indicator
CKnB
CKINn Invalid Indicator
(n = 1 to 3)
LOL
PLL Loss of Lock
Indicator
Notes: 1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
3. Assumes manual input clock selection.
Figure 4. Si5366 Typical Application Circuit
Rev. 1.0
15
Si5366
3. Functional Description
The Si5366 is a jitter-attenuating precision clock
multiplier for high-speed communication systems,
including SONET OC-48/OC-192, Ethernet, and Fibre
Channel. The Si5366 accepts four clock inputs ranging
from 8 kHz to 707 MHz and generates five frequencymultiplied clock outputs ranging from 8 kHz to
1050 MHz. By default the four clock inputs are at the
same frequency and the five clock outputs are at the
same frequency. Two of the output clocks can be
divided down further to generate an integer sub-multiple
frequency. Optionally, the fifth clock output can be
configured as
a 8 kHz SONET/SDH frame
synchronization output that is phase aligned with one of
the high-speed output clocks. The input clock frequency
and clock multiplication ratio are selectable from a table
of popular SONET, Ethernet, and Fibre Channel
frequencies. In addition to providing clock multiplication
in SONET and datacom applications, the Si5366
supports SONET-to-datacom frequency translations.
Silicon Laboratories offers a PC-based software utility,
DSPLLsim, that can be used to look up valid Si5366
frequency translations. This utility can be downloaded
from
http://www.silabs.com/timing
(click
on
Documentation).
The Si5366 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides anyfrequency synthesis and jitter attenuation in a highly
integrated PLL solution that eliminates the need for
external VCXO and loop filter components. The Si5366
PLL loop bandwidth is selectable via the BWSEL[1:0]
pins and supports a range from 60 Hz to 8.4 kHz. The
DSPLLsim software utility can be used to calculate valid
loop bandwidth settings for a given input clock
frequency/clock multiplication ratio.
The Si5366 supports hitless switching between input
clocks in compliance with GR-253-CORE and GR-1244CORE that greatly minimizes the propagation of phase
transients to the clock outputs during an input clock
transition (