0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SI7013-A10-IM1R

SI7013-A10-IM1R

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    DFN_EP

  • 描述:

    IC TEMP SENSOR RH 2% 10DFN

  • 数据手册
  • 价格&库存
SI7013-A10-IM1R 数据手册
Si7013 I 2 C H UMIDITY A N D TW O - Z ONE TEMPERATURE S ENSOR Features       Precision Relative Humidity Sensor   ± 3% RH (max), 0–80% RH  High Accuracy Temperature Sensor  ±0.4 °C (max), –10 to 85 °C  0 to 100% RH operating range Up to –40 to +125 °C operating range  Low Voltage Operation (1.9 to 3.6 V)  Low Power Consumption  150 µA active current 60 nA standby current Factory-calibrated I2C Interface Integrated on-chip heater Auxiliary Sensor input Direct readout of remote thermistor temperature in °C Package: 3x3 mm DFN Excellent long term stability Optional factory-installed cover Low-profile Protection during reflow Excludes liquids and particulates Si7013 Ordering Information: See page 35. Applications HVAC/R Thermostats/humidistats  Instrumentation  White goods Micro-environments/data centers Industrial Controls  Indoor weather stations     Pin Assignments Top View Description The Si7013 I2C Humidity and 2-Zone Temperature Sensor is a monolithic CMOS IC integrating humidity and temperature sensor elements, an analog-to-digital converter, signal processing, calibration data, and an I2C Interface. The patented use of industry-standard, low-K polymeric dielectrics for sensing humidity enables the construction of low-power, monolithic CMOS Sensor ICs with low drift and hysteresis, and excellent long term stability. The humidity and temperature sensors are factory-calibrated and the calibration data is stored in the on-chip non-volatile memory. This ensures that the sensors are fully interchangeable, with no recalibration or software changes required. SDA 1 10 AD0/VOUT 2 9 VDDD SCL GNDD 3 8 VDDA GNDA 4 7 VINN VSNS 5 6 VINP Patent Protected. Patents pending An auxiliary sensor input with power management can be tied directly to an external thermistor network or other voltage-output sensor. On-board logic performs calibration/linearization of the external input using user-programmable coefficients. The least-significant bit of the Si7013's I2C address is programmable, allowing two devices to share the same bus. The Si7013 is available in a 3x3 mm DFN package and is reflow solderable. The optional factory-installed cover offers a low profile, convenient means of protecting the sensor during assembly (e.g., reflow soldering) and throughout the life of the product, excluding liquids (hydrophobic/oleophobic) and particulates. The Si7013 offers an accurate, low-power, factory-calibrated digital solution ideal for measuring humidity, dew-point, and temperature, in applications ranging from HVAC/R and asset tracking to industrial and consumer platforms. Rev. 0.95 11/13 Copyright © 2013 by Silicon Laboratories Si7013 This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Si7013 Functional Block Diagram VSNS Vdd 1.25V Ref Calibration Memory Si7013 Humidity Sensor AD0/VOUT Temp Sensor VINP VINN Control Logic ADC Analog Input I2C Interface GND 2 Rev. 0.95 SDA SCL Si7013 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1. Relative Humidity Sensor Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3. Prolonged Exposure to High Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4.4. PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5. Protecting the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6. Bake/Hydrate Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7. Long Term Drift/Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1. Issuing a Measurement Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2. Reading and Writing User Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3. Measuring Analog Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4. Nonlinear Correction of Voltage Inputs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5. Firmware Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.6. Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.7. Electronic Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 6. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 6.1. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7. Pin Descriptions: Si7013 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1. Package Outline: 3x3 10-pin DFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2. Package Outline: 3x3 10-pin DFN with Protective Cover . . . . . . . . . . . . . . . . . . . . . 38 10. PCB Land Pattern and Solder Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 11.1. Si7013 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 12. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Rev. 0.95 3 Si7013 1. Electrical Specifications Unless otherwise specified, all min/max specifications apply over the recommended operating conditions. Table 1. Recommended Operating Conditions Parameter Symbol Power Supply Test Condition Min Typ Max Unit 1.9 — 3.6 V VDD Operating Temperature TA I and Y grade –40 — +125 °C Operating Temperature TA G grade –40 — +85 °C Table 2. General Specifications 1.9 < VDD < 3.6 V; TA = –40 to 85 °C (G grade) or –40 to 125 °C (I/Y grade); default conversion time unless otherwise noted. Symbol Test Condition Min Typ Max Unit Input Voltage High VIH AD0, SCL, SDA, VSNS pins 0.7xVDD — — V Input Voltage Low VIL AD0, SCL, SDA, VSNS pins — — 0.3xVDD V Input Voltage Range VIN SCL, SDA, RSTb pins with respect to GND 0.0 — VDD V Input Leakage IIL SCL, SDA pins; VIN = GND — — 1 μA Parameter VSNS pin (200K nominal pull up); Vin = GND Output Voltage Low Output Voltage High VOL VOH IDD — — 0.6 V SDA pin; IOL = 1.2 mA; VDD = 1.9 V — — 0.4 V — — V VDD– 0.1 — — V VOUT pin, IOH = –1.7 mA, VDD = 3.0 V VDD – 0.4 RH conversion in progress — — — V 150 180 μA — 90 120 μA — 0.06 0.62 μA — 0.06 3.8 μA — 3.5 4.0 mA — 3.5 4.0 mA — 3.1 to 94.2 — mA VOUT pin, IOH = –0.5 mA, VDD = 2.0 V VDD – 0.2 Temperature conversion in progress Standby, –40 to +85 °C2 Standby, –40 to +125 °C 2 Peak IDD during powerup 3 Peak IDD during I2C operations4 Heater Current 5 μA SDA pin; IOL = 2.5 mA; VDD = 3.3 V VOUT pin, IOH = –10 μA Current Consumption 5xVDD IHEAT Notes: 1. Initiating a RH measurement will also automatically initiate a temperature measurement. The total conversion time will be tCONV(RH) + tCONV(T). 2. No conversion or I2C transaction in progress. Typical values measured at 25 °C. 3. Occurs once during powerup. Duration is in6, out = out5+slope5*(in-in5)/256 Else if in >in7, out = out6+slope6*(in-in6)/256 Else if in >in8, out = out7+slope7*(in-in7)/256 Else if in >in9, out = out8+slope8*(in-in8)/256 Else out = out9+slope9*(in-in9) Rev. 0.95 25 Si7013 5.4.2. Entering Lookup Table Values into OTP Memory: The table is entered into memory addresses 0x82 – 0xB7 one byte at a time. Until the OTP has been programmed, all memory addresses default to a value of 0xFF. The table below indicates where the values are written: Table 16. Lookup Table Memory Map Name Memory Location Name Memory Location Name Memory Location Input1 (MSB) 0x82 Output1 (MSB) 0x94 Slope1 (MSB) 0xA6 Input1 (LSB) 0x83 Output1 (LSB) 0x95 Slope1 (LSB) 0xA7 Input2 (MSB) 0x84 Output2 (MSB) 0x96 Slope2 (MSB) 0xA8 Input2 (LSB) 0x85 Output2 (LSB) 0x97 Slope2 (LSB) 0xA9 Input3 (MSB) 0x86 Output3 (MSB) 0x98 Slope3 (MSB) 0xAA Input3 (LSB) 0x87 Output3 (LSB) 0x99 Slope3 (LSB) 0xAB Input4 (MSB) 0x88 Output4 (MSB) 0x9A Slope4 (MSB) 0xAC Input4 (LSB) 0x89 Output4 (LSB) 0x9B Slope4 (LSB) 0xAD Input5 (MSB) 0x8A Output5 (MSB) 0x9C Slope5 (MSB) 0xAE Input5 (LSB) 0x8B Output5 (LSB) 0x9D Slope5 (LSB) 0xAF Input6 (MSB) 0x8C Output6 (MSB) 0x9E Slope6 (MSB) 0xB0 Input6 (LSB) 0x8D Output6 (LSB) 0x9F Slope6 (LSB) 0xB1 Input7 (MSB) 0x8E Output7 (MSB) 0xA0 Slope7 (MSB) 0xB2 Input7 (LSB) 0x8F Output7 (LSB) 0xA1 Slope7 (LSB) 0xB3 Input8 (MSB) 0x90 Output8 (MSB) 0xA2 Slope8 (MSB) 0xB4 Input8 (LSB) 0x91 Output8 (LSB) 0xA3 Slope8 (LSB) 0xB5 Input9 (MSB) 0x92 Output9 (MSB) 0xA4 Slope9 (MSB) 0xB6 Input9 (LSB) 0x93 Output9 (LSB) 0xA5 Slope9 (LSB) 0xB7 The command code 0xC5 is used for programming, so for example, to program a Si7013 at slave address 0x40 with the 16-bit value 0x4C2F, starting at memory location 0x82, you would write: 0x40 W ACK 0xC5 ACK 0x82 ACK 0x4C ACK 0x40 W ACK 0xC5 ACK 0x83 ACK 0x2F ACK The internal memory is one-time-programmable, so it is not possible to change the values once written. However, to verify the values were written properly use command 0x84. For example, to verify that 0x4C was written to location 0x82 use 0x40 W ACK 0x84 ACK 0x82 ACK 0x40R ACK 0x4C NACK where 0x4C is the expected return value of the read transaction. 26 Rev. 0.95 Si7013 5.4.3. Example Thermistor Calculations For the Si7013 evaluation board with a 10 K ohm thermistor and two 24.3 K ohm bias resistors and assuming the A/D conversion is done using VDD as a reference with buffered inputs, the ideal input voltage versus temperature is: Vin = VDD *Rthemistor/(Rthermisor+46.4 K) Since VDD is also the reference then the expected A/D conversion result is: A/D counts = 32768* Rthemistor/(Rthermisor+46.4 K) If it is desired to linearize this result for the same temperature representation as the on board temperature sensor: Temperature °C = (Output_Code*175.72/65536 – 46.85), then the desired output code is: Output_Code = 65536*(Temperature+46.85)/175.72 Using thermistor data sheet values of resistance versus temperature and choosing to linearize at the points –15C, –5C, 5C, 15C, 25C, 35C, 45C, 55C, 65C and 75C results in the following. The values in gray are the table entries for Si7013: Table 17. Example Non-Linear Correction to Thermistor Voltage Measurements Temperature (Degrees C) Thermistor Resistance Vin/VDD A/D Codes Desired Code Slope Table Entry –15 71746 0.596164 19535 11879 –218 1 –5 41813 0.462467 15154 15608 –241 2 5 25194 0.34141 11187 19338 –298 3 15 15651 0.243592 7982 23067 –400 4 25 10000 0.170648 5592 26797 –563 5 35 6556 0.118863 3895 30527 –813 6 45 4401 0.83036 2721 34256 –1186 7 55 3019 0.058486 1916 37986 –1739 8 65 2115 0.041704 1367 41715 –2513 9 75 1509 0.030114 75 45445 Rev. 0.95 27 Si7013 Once the table entry values are calculated, they should be programmed to the Si7013 memory locations as shown below: Table 18. Example Non-Linear Thermistor Correction Entries into Si7013 Memory Memory Location A/D Codes Value Memory Location Desired Codes Value Memory Location Slope Value 82 19535 4C 94 11879 2E A6 –218 FF 4F 95 67 A7 3B 96 3C A8 32 97 F8 A9 2B 98 4B AA B3 99 8A AB 1F 9A 5A AC 2E 9B 1B AD 15 9C 68 AE D8 9D Ad AF F 9E 77 B0 37 9F 3F B1 A A0 85 B2 A1 A1 D0 B3 7 A2 94 B4 7C A3 62 B5 5 A4 A2 B6 57 A5 F3 B7 83 84 15154 85 86 11187 87 88 7982 89 8A 5592 8B 8C 3895 8D 8E 2721 8F 90 1916 91 92 93 28 1367 15608 19338 23067 26797 30527 34256 37986 41715 Rev. 0.95 26 –241 FF 0F –298 FE D6 –400 FE 70 –563 FD CD –813 FC D3 –1186 FB 5E –1739 F9 35 –2513 F6 2F Si7013 5.5. Firmware Revision The internal firmware revision can be read with the following I2C transaction: S Slave  Address W A R 0x84 A A FWREV 0xB8 A NA A S Slave  Address P The upper nibble of the FWREV byte corresponds to the major firmware revision number, while the lower nibble of the FWREV byte corresponds to the minor firmware revision number. Therefore, firmware revision 1.0 would be encoded as 0x10 in the FWREV byte. 5.6. Heater The Si7013 contains an integrated resistive heating element that may be used to raise the temperature of the sensor. This element can be used to test the sensor, to drive off condensation, or to implement dew-point measurement when the Si7013 is used in conjunction with a separate temperature sensor such as another Si7013 (the heater will raise the temperature of the internal temperature sensor). The heater can be activated using HEATER[2:0], the three least-significant bits in User Register 3. Turning on the heater will reduce the tendency of the humidity sensor to accumulate an offset due to "memory" of sustained high humidity conditions. Five different power levels are available. The various settings are described in Table 18. Table 19. Heater Control Settings HEATER[3:0] Typical Current Draw* (mA) 0000 3.09 0001 9.18 0010 15.24 ... ... 0100 27.39 ... ... 1000 51.69 ... ... 1111 94.20 *Note: Assumes VDD = 3.3 V. Rev. 0.95 29 Si7013 5.7. Electronic Serial Number The Si7013 provides a serial number individualized for each device that can be read via the I2C serial interface. Two I2C commands are required to access the device memory and retrieve the complete serial number. The command sequence, and format of the serial number response is described in the figure below: Master Slave First access: S Slave Address W ACK 0x3A ACK 0X0F ACK S Slave Address R ACK SNA_3 ACK CRC ACK SNA_2 ACK CRC ACK SNA_1 ACK CRC ACK SNA_0 ACK CRC NACK S Slave Address W ACK 0x3C ACK 0X09 ACK S Slave Address R ACK SNB_3 ACK SNB_2 ACK CRC ACK SNB_1 ACK SNB_0 ACK CRC NACK P 2nd access: P The format of the complete serial number is 64-bits in length, divided into 8 data bytes. The complete serial number sequence is shown below: SNA_3 SNA_2 SNA_1 SNA_0 SNB_3 SNB_2 SNB_1 SNB_0 The SNB3 field contains the device identification to distinguish between the different Silicon Labs relative humidity and temperature devices. The value of this field maps to the following devices according to this table: 0x00 or 0xFF engineering samples 0x0D=13=Si7013 0x14=20=Si7020 0x15=21=Si7021 30 Rev. 0.95 Si7013 6. Control Registers Table 20. Register Summary Register Bit 7 Bit 6 User Register 1 RES1 VDDS User Register 2 User Register 3 Bit 5 Bit 4 Bit 3 RSVD MEASURE _MODE1 MEASURE_ MODE0 CONV_ TIME RSVD RSVD Bit 2 Bit 1 Bit 0 HTRE RSVD RES0 VIN_BUF VREFP VOUT HEATER[3:0] Notes: 1. Any register not listed here is reserved and must not be written.The result of a read operation on these registers is undefined. 2. Except where noted, reserved register bits must always be written as zero; the result of a read operation on these bits is undefined. Rev. 0.95 31 Si7013 6.1. Register Descriptions Register 1. User Register 1 Bit D7 D6 Name RES1 VDDS Type R/W R D5 D4 D3 D2 D1 D0 RSVD HTRE RSVD RES0 R/W R/W R/W R/W Reset Settings = 0011_1010 Bit Name D7; D0 RES[1:0] D6 Function Measurement Resolution: RH 00: 12 bit 01: 8 bit 10: 10 bit 11: 11 bit VDDS VDD Status: 0: 1: Temp 14 bit 12 bit 13 bit 11 bit VDD OK VDD Low The minimum recommended operating voltage is 1.9 V. A transition of the VDD status bit from 0 to 1 indicates that VDD is between 1.8 V and 1.9 V. If the VDD drops below 1.8 V, the device will no longer operate correctly. D5, D4, D3 RSVD Reserved D2 HTRE 1=On-chip Heater Enable 0=On-chip Heater Disable D1 RSVD Reserved Register 2. User Register 2 Bit D7 D6 D5 D4 D3 D2 D1 D0 Name RSVD MEASURE_ MODE1 MEASURE_ MODE0 CONV_ TIME RSVD VIN_BUF VREFP VOUT Type R/W R/W R/W R/W R/W R/W R/W R/W Reset Settings = 0000_100x 32 Rev. 0.95 Si7013 Bit Name D7 RSVD D6:D5 MEASURE_MODE [1:0] Function Reserved Measurement Mode. Selects the mode of the voltage measurement function. D6 D5 Function 0 0 Voltage measurement hold master mode without thermistor correction. This is the recommended mode when temperature or humidity measurements are done. 0 1 Voltage measurement hold master mode with thermistor correction. No humidity or internal temperature measurements are allowed in this mode. 1 0 Voltage measurement no hold master mode with no thermistor correction. 1 1 Voltage measurement no hold master mode with thermistor correction. No humidity or internal temperature measurements are allowed in this mode. Note: If no hold master mode is selected, ALL commands are no hold. D4 CONV_TIME Conversion Time. Selects conversion time and noise floor of the voltage ADC. 0 Conversion time 7 ms max noise floor 25 µV typical with VREF = 1.25 V. 1 Conversion time 3.1 ms max noise floor 50 µV typical with VREF = 1.25 V. D3 RSVD Reserved D2 VIN_BUF 0: VINN and VINP inputs are unbuffered 1: VINN and VINP inputs are buffered D1 VREFP 0: A/D reference source is internal 1.25V 1: A/D reference source is VDDA D0 VOUT* 0: VOUT pin is set to GNDD 1: VOUT pin is set to VDDD Note: Default is powerup state of VOUT pin *Note: VOUT is generally used for driving an external thermistor interface. Default setting is the same as the power up setting. Rev. 0.95 33 Si7013 Register 3. User Register 3 Bit D7 D6 D5 D4 D3 D2 Name RSVD Heater [3:0] Type R/W R/W Reset Settings = 0000_0000 Bit D3:D0 Name HEATER[3:0] Function Heater Current D3 D2 D1 D0 0 0 0 0 3.09 mA 0 0 0 1 9.18 mA 0 0 1 0 15.24 mA 0 27.39 mA 0 51.69 mA 1 94.20 mA ... 0 1 0 ... 1 0 0 ... 1 D7,D6, D5,D4 34 D1 RSVD 1 1 Reserved Rev. 0.95 D0 Si7013 7. Pin Descriptions: Si7013 (Top View) SDA 1 10 AD0/VOUT 2 9 VDDD GNDD 3 8 VDDA GNDA 4 7 VINN VSNS 5 6 VINP SCL Pin Name Pin # Pin Description SDA 1 I2C data. AD0/VOUT 2 Dual function pin. This pin can be switched high or low and is generally used to drive an external thermistor interface. On powerup, this pin acts as a device address select pin. Tie high or low to set device address LSB. See Figure 5 and Figure 6. GNDD 3 Digital ground. This pin is connected to ground on the circuit board. GNDA 4 Analog ground. This pin is connected to ground on the circuit board. VSNS 5 Voltage Sense Input. Tie to VDD.* VINP 6 Analog to digital converter positive input. VINN 7 Analog to digital converter negative input. VDDA 8 Analog power. This pin is connected to power on the circuit board. VDDD 9 Digital power. This pin is connected to power on the circuit board. SCL 10 I2C clock TGND Paddle This pad is connected to GND internally. This pad is the main thermal input to the onchip temperature sensor. The paddle should be soldered to a floating pad. *Note: VSNS must be high at power up or device will be held in reset. Rev. 0.95 35 Si7013 8. Ordering Guide Table 21. Device Ordering Guide P/N Description Max. Accuracy Temp RH Pkg Operating Range (°C) Protective Cover Packing Format Si7013-A10-GM Digital temperature/ humidity sensor ±0.4 °C ± 3% DFN 6 –40 to +85 °C N Tube Si7013-A10-GMR Digital temperature/ humidity sensor ±0.4 °C ± 3% DFN 6 –40 to +85 °C N Tape & Reel Si7013-A10-GM1 Digital temperature/ humidity sensor ±0.4 °C ± 3% DFN 6 –40 to +85 °C Y Cut Tape Si7013-A10-GM1R Digital temperature/ humidity sensor ±0.4 °C ± 3% DFN 6 –40 to +85 °C Y Tape & Reel Si7013-A10-IM Digital temperature/ humidity sensor— industrial temp range ±0.4 °C ± 3% DFN 6 –40 to +125 °C N Tube Si7013-A10-IMR Digital temperature/ humidity sensor— industrial temp range ±0.4 °C ± 3% DFN 6 –40 to +125 °C N Tape & Reel Si7013-A10-IM1 Digital temperature/ humidity sensor— industrial temp range ±0.4 °C ± 3% DFN 6 –40 to +125 °C Y Cut Tape Si7013-A10-IM1R Digital temperature/ humidity sensor— industrial temp range ±0.4 °C ± 3% DFN 6 –40 to +125 °C Y Tape & Reel Si7013-A10-YM Digital temperature/ humidity sensor— automotive ±0.4 °C ± 3% DFN 6 –40 to +125 °C N Tube Si7013-A10-YMR Digital temperature/ humidity sensor— automotive ±0.4 °C ± 3% DFN 6 –40 to +125 °C N Tape & Reel Si7013-A10-YM1 Digital temperature/ humidity sensor— automotive ±0.4 °C ± 3% DFN 6 –40 to +125 °C Y Cut Tape Si7013-A10-YM1R Digital temperature/ humidity sensor— automotive ±0.4 °C ± 3% DFN 6 –40 to +125 °C Y Tape & Reel 36 Rev. 0.95 Si7013 9. Package Outline 9.1. Package Outline: 3x3 10-pin DFN Figure 11 illustrates the package details for the Si7013. Table 21 lists the values for the dimensions shown in the illustration.   Figure 11. 10-pin DFN Package Drawing Table 22. 10-Pin DFN Package Dimensions Dimension Min Nom Max Dimension Min Nom Max A 0.70 0.75 0.80 H2 1.39 1.44 1.49 A1 0.00 0.02 0.05 L 0.50 0.55 0.60 b 0.18 0.25 0.30 aaa 0.10 bbb 0.10 ccc 0.05 D D2 3.00 BSC. 1.20 1.30 1.40 e 0.50 BSC. ddd 0.10 E 3.00 BSC. eee 0.05 fff 0.05 E2 2.40 2.50 2.60 H1 0.85 0.90 0.95 Notes: 1. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 2. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 0.95 37 Si7013 9.2. Package Outline: 3x3 10-pin DFN with Protective Cover Figure 12 illustrates the package details for the Si7013 with the optional protective cover. Table 22 lists the values for the dimensions shown in the illustration. Figure 12. 10-pin DFN with Protective Cover Table 23. 10-pin DFN with Protective Cover Diagram Dimensions Dimension Min Nom Max Dimension Min Nom Max A — — 1.21 F1 2.80 2.85 2.90 A1 0.00 0.02 0.05 F2 2.80 2.85 2.90 A2 0.70 0.75 0.80 h 0.76 0.83 0.90 b 0.18 0.25 0.30 L 0.50 0.55 0.60 R1 0.45 0.50 0.55 D D2 3.00 BSC. 1.20 1.30 1.40 0.10 e 0.50 BSC. bbb 0.10 E 3.00 BSC. ccc 0.05 ddd 0.10 eee 0.05 E2 2.40 2.50 2.60 Notes: 1. All dimensions shown are in millimeters (mm). 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 38 aaa Rev. 0.95 Si7013 10. PCB Land Pattern and Solder Mask Design   Table 24. PCB Land Pattern Dimensions Symbol mm C1 2.80 E 0.50 P1 1.40 P2 2.60 X1 0.30 Y1 1.00 Notes: General 1. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. 2. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins. 7. A 2x1 array of 0.95 mm square openings on 1.25 mm pitch should be used for the center ground pad to achieve a target solder coverage of 50%. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 0.95 39 Si7013 11. Top Marking 11.1. Si7013 Top Marking 11.2. Top Marking Explanation 40 Mark Method: Laser Pin 1 Indicator: Circle = 0.30 mm Diameter Upper-Left Corner Font Size: 0.30 mm Line 1 Marking: TTTT = Mfg Code Rev. 0.95 Si7013 12. Additional Reference Resources AN607: Si70xx Humidity Sensor Designer’s Guide Rev. 0.95 41 Si7013 Added Section 5.5. Firmware Revision  Updated Section 6. Control Registers  Updated Table 21. Device Ordering Guide DOCUMENT CHANGE LIST  Revision 0.1 to Revision 0.6                  Updates to Section 1. Electrical Specifications. Updated Table 2. General Specifications. Updated Figure 1. I2C Interface Timing Diagram. Updated Table 6. Voltage Converter Specifications. Updated Table 7. Thermal Characteristics. Updated Section 2. Typical Applications Circuits. Updated Figure 5. Typical Application Circuit for Thermistor Interface with AD0 = 1. Updated Table 15. I2C Command Table. Updated Section 4.4 PCB Assembly. Updated Section 5.3 Measuring Relative Humidity. Updated Section 5.4 Measuring Temperature. Updated Section 5.6 Nonlinear Correction of Voltage Inputs. Updated Section 5.7 Heater. Removed Section 5.8 Device Identification and added device identification information to Section 5.9. Updated Section 6. Control Registers. Updated Section 9. Package Outline. Updated Section 11. Top Marking. Revision 0.6 to Revision 0.95                Updated Table 1. Recommended Operating Conditions Updated Table 2. General Specifications Updated Table 3. I2C Interface Specifications Updated Table 4 Humidity Sensor Updated Table 5. Temperature Sensor Updated Table 8. Absolute Maximum Ratings Updated Figure 5. Typical Application Circuit for Thermistor Interface with AD0 = 1 Updated Figure 6. Typical Application Circuit for Thermistor Interface with AD0 = 0 Updated Figure 8. Si7013 Block Diagram Updated Section 4.1. Relative Humidity Sensor Accuracy Updated Section 4.4.1. Soldering Updated Table 15. Analog Input Ranges Updated Section 5.1. Issuing a Measurement Command Updated Section 5.2. Reading and Writing User Registers Updated Section 5.4. Nonlinear Correction of Voltage Inputs Rev. 0.95 42 Si7013 CONTACT INFORMATION Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. Patent Notice Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. Rev. 0.95 43
SI7013-A10-IM1R 价格&库存

很抱歉,暂时无法提供与“SI7013-A10-IM1R”相匹配的价格&库存,您可以联系我们找货

免费人工找货