0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SI8400AB-B-ISR

SI8400AB-B-ISR

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    SOIC8_150MIL

  • 描述:

    DGTL ISO 2.5KV 2CH I2C 8SOIC

  • 数据手册
  • 价格&库存
SI8400AB-B-ISR 数据手册
Si840x B IDIRECTIONAL I 2 C I SOLA TORS WITH U NIDIRECTIONAL D IGITA L C HANNELS Features  Independent, bidirectional SDA and SCL isolation channels Open drain outputs with 35 mA sink current  60-year life at rated working voltage  High electromagnetic immunity  Wide operating supply voltage 3.0 to 5.5 V I2C clocks up to 1.7 MHz  Wide temperature range –40 to +125 °C max  Unidirectional isolation channels support additional system signals  Transient immunity 25 kV/µs (Si8405)  RoHS-compliant packages  Up to 2500 VRMS isolation SOIC-8 narrow body SOIC-16 narrow body  UL, CSA, VDE recognition R N eco ew m D me es n ig de ns d fo r Supports Applications Isolated I2C, SMBus  Isolated digital power supply communications  Power over Ethernet  Description Motor Control Systems  Hot-swap applications  Intelligent Power systems  Ordering Information: See page 25. N ot The Si840x series of isolators are single-package galvanic isolation solutions for I2C and SMBus serial port applications. These products are based on Silicon Labs proprietary RF isolation technology and offer shorter propagation delays, lower power consumption, smaller installed size, and more stable operation with temperature and age versus opto couplers or other digital isolators. All devices in this family include hot-swap, bidirectional SDA and SCL isolation channels with open-drain, 35 mA sink capability and operate to a maximum frequency of 1.7 MHz. The 8-pin version (Si8400/01) supports bidirectional SDA and SCL isolation; the Si8402 supports bidirectional SDA and unidirectional SCL isolation, and the 16-pin version (Si8405) features two unidirectional isolation channels to support additional system signals, such as an interrupt or reset. All versions contain protection circuits to guard against data errors if an unpowered device is inserted into a powered system. Small size, low installed cost, low power consumption, and short propagation delays make the Si840x family the optimum solution for isolating I2C and SMBus serial ports. Safety Regulatory Approval  UL 1577 recognized Up to 2500 VRMS for 1 minute  CSA component notice 5A approval IEC 60950-1, 61010-1 (reinforced insulation) Rev. 1.6 10/13  VDE certification conformity IEC 60747-5-2 (VDE0884 Part 2) Copyright © 2013 by Silicon Laboratories Si840x N R N eco ew m D me es n ig de ns d fo r ot Si840x 2 Rev. 1.6 Si840x TABLE O F C ONTENTS Section Page N ot R N eco ew m D me es n ig de ns d fo r 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1. Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3.2. Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4. Input and Output Characteristics for Non-I2C Digital Channels . . . . . . . . . . . . . . . . 15 3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4. Typical Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1. I2C Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 4.2. I2C Isolator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3. I2C Isolator Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4. I2C Isolator Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1. Power Supply Bypass Capacitors (Revision A and Revision B) . . . . . . . . . . . . . . . . 22 6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 9. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12. Top Marking: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12.1. 8-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 13. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 13.1. 16-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 13.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Rev. 1.6 3 Si840x 1. Electrical Specifications Table 1. Absolute Maximum Ratings1 Parameter Symbol Min Typ Max Unit TSTG –65 — 150 °C TA –40 — 125 °C Supply Voltage (Revision A)3 VDD –0.5 — 5.75 V B)3 VDD –0.5 — 6.0 V Input Voltage VI –0.5 — VDD + 0.5 V Output Voltage VO –0.5 — VDD + 0.5 V IO — — ±10 mA channels) IO — — ±15 mA Side B output current drive (I2C channels) IO — — ±75 mA Lead Solder Temperature (10 s) — — 260 °C Maximum Isolation Voltage (1 s) — — 3600 VRMS Storage Temperature2 Ambient Temperature Under Bias Supply Voltage (Revision Output Current Drive (non-I2C channels) R N eco ew m D me es n ig de ns d fo r Side A output current drive (I2C Notes: 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. 2. VDE certifies storage temperature from –40 to 150 °C. 3. See "7.Ordering Guide" on page 25 for more information. Table 2. Si840x Power Characteristics* 3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C (See Figures 2 and 16 for test diagrams.) Parameter Symbol Test Condition Min Typ Max Unit Idda Iddb All channels = 0 dc — — 4.2 3.9 6.3 5.9 mA mA Idda Iddb All channels = 1 dc — — 2.3 1.9 3.5 2.9 mA mA Idda Iddb All channels = 1.7 MHz — — 3.2 2.9 4.8 4.4 mA mA AVDD current BVDD current Idda Iddb All non-I2C channels = 0 All I2C channels = 1 — — 3.2 2.9 4.8 4.4 mA mA AVDD current BVDD current Idda Iddb All non-I2C channels = 1 All I2C channels = 0 — — 6.2 6.0 9.3 9.0 mA mA AVDD current BVDD current Idda Iddb All non-I2C channels = 5 MHz All I2C channels = 1.7 MHz — — 4.7 4.5 7.1 6.8 mA mA AVDD current BVDD current N AVDD current BVDD current ot Si8400/01/02 Supply Current AVDD current BVDD current Si8405 Supply Current *Note: All voltages are relative to respective ground. 4 Rev. 1.6 Si840x Table 3. Si8400/01/02/05 Electrical Characteristics for Bidirectional I2C Channels1 3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C unless otherwise noted. Parameter Symbol Logic Levels Side A Logic Input Threshold2 Logic Low Output Voltages3 Input/Output Logic Low Level Difference4 I2CVT (Side A) I CVOL (Side A) 2 I2CV (Side A) Test Condition Min Typ Max Unit ISDAA = ISCLA = 3.0 mA ISDAA = ISCLA = 0.5 mA 450 650 550 50 — — — — 780 910 825 — mV mV mV mV — 2.0 — — — — 0.8 — 400 V V mV — 2.0 10 µA — — 10 10 — — pF pF I2CVIL (Side B) I2CVIH (Side B) I2CVOL (Side B) ISCLB = 35 mA SCL and SDA Logic High Leakage Isdaa, Isdab Iscla, Isclb SDAA, SCLA = VSSA SDAB, SCLB = VSSB R N eco ew m D me es n ig de ns d fo r Logic Levels Side B Logic Low Input Voltage Logic High Input Voltage Logic Low Output Voltage Pin capacitance SDAA, SCLA, SDAB, SDBB CA CB N ot Notes: 1. All voltages are relative to respective ground. 2. VIL < 0.450 V, VIH > 0.780 V. 3. Logic low output voltages are 910 mV max from –10 to 125 °C at 3.0 mA. Logic low output voltages are 955 mV max from –40 to 125 °C at 3.0 mA. Logic low output voltages are 825 mV max from –10 to 125 °C at 0.5 mA. Logic low output voltages are 875 mV max from –40 to 125 °C at 0.5 mA. See “AN375: Design Considerations for Isolating an I2C Bus or SMBus” for additional information. 4. I2CV (Side A) = I2CVOL (Side A) – I2CVT (Side A). To ensure no latch-up on a given bus, I2CV (Side A) is the minimum difference between the output logic low level of the driving device and the input logic threshold. 5. Side A measured at 0.6 V. Rev. 1.6 5 Si840x Table 3. Si8400/01/02/05 Electrical Characteristics for Bidirectional I2C Channels1 (Continued) 3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C unless otherwise noted. Parameter Symbol Test Condition Min Typ Max Unit — — 1.7 MHz Timing Specifications (Measured at 1.40 V Unless Otherwise Specified) Propagation Delay 5 V Operation Side A to side B rising5 Side A to side B falling5 Side B to side A rising Side B to side A falling 3.3 V Operation Side A to side B rising5 Side A to side B falling5 Side B to side A rising Side B to side A falling Fmax Tphab Tplab Tphba Tplba No bus capacitance, R1 = 1400, R2 = 499, See Figure 2 — — — — 25 15 20 9.0 29 22 30 12 ns ns ns ns Tphab Tplab Tphba Tplba R1 = 806 R2 = 499 — — — — 28 13 20 10 35 18 40 15 ns ns ns ns PWDAB PWDBA No bus capacitance, R1 = 1400, R2 = 499, See Figure 2 — — 9.0 11 15 20 ns ns PWDAB PWDBA R1 = 806, R2 = 499 — — 15 11 22 30 ns ns R N eco ew m D me es n ig de ns d fo r Maximum I2C bus Frequency Pulse width distortion 5V Side A low to Side B low5 Side B low to Side A low 3.3 V Side A low to Side B low5 Side B low to Side A low N ot Notes: 1. All voltages are relative to respective ground. 2. VIL < 0.450 V, VIH > 0.780 V. 3. Logic low output voltages are 910 mV max from –10 to 125 °C at 3.0 mA. Logic low output voltages are 955 mV max from –40 to 125 °C at 3.0 mA. Logic low output voltages are 825 mV max from –10 to 125 °C at 0.5 mA. Logic low output voltages are 875 mV max from –40 to 125 °C at 0.5 mA. See “AN375: Design Considerations for Isolating an I2C Bus or SMBus” for additional information. 4. I2CV (Side A) = I2CVOL (Side A) – I2CVT (Side A). To ensure no latch-up on a given bus, I2CV (Side A) is the minimum difference between the output logic low level of the driving device and the input logic threshold. 5. Side A measured at 0.6 V. 6 Rev. 1.6 Si840x Table 4. Electrical Characteristics for Unidirectional Non-I2C Digital Channels (Si8402/05) 3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C Parameter Symbol Test Condition Min Typ Max Unit High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA AVDD, BVDD –0.4 4.8 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V IL — — ±10 µA ZO — 85 —  Maximum Data Rate 0 — 10 Mbps Minimum Pulse Width — — 40 ns Input Leakage Current 1 Output Impedance Propagation Delay Pulse Width Distortion |tPLH - tPHL| R N eco ew m D me es n ig de ns d fo r Timing Characteristics Propagation Delay Skew2 Channel-Channel Skew Output Rise Time Output Fall Time tPHL, tPLH See Figure 1 — — 20 ns PWD See Figure 1 — — 12 ns tPSK(P-P) — — 20 ns tPSK — — 10 ns tr C3 = 15 pF See Figure 1 and Figure 2 — 4.0 6.0 ns tf C3 = 15 pF See Figure 1 and Figure 2 — 3.0 4.3 ns N ot Notes: 1. The nominal output impedance of a non-I2C isolator driver channel is approximately 85 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. Rev. 1.6 7 Si840x Table 5. Electrical Characteristics for All I2C and Non-I2C Channels 3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ AVDD, BVDD rising 2.15 2.3 2.5 V VDD Negative-going Lockout Hysteresis VDDH– AVDD, BVDD falling 45 75 95 mV CMTI VI = VDD or 0 V — 25 — kV/µs tSD — 3.0 — µs tSTART — 15 40 µs Common Mode Transient Immunity Shut Down Time from UVLO Start-up Time* R N eco ew m D me es n ig de ns d fo r *Note: Start-up time is the time period from the application of power to valid data at the output. 1.4 V Typical Input tPLH tPHL 90% 90% 10% 10% 1.4 V Typical Output tr tf Figure 1. Propagation Delay Timing (Non-I2C Channels) 1.1. Test Circuits N ot Figure 2 depicts the timing test diagram. R1 C1 AVDD R1 C1 BVDD NC C3 R2 NC ASDA BSDA ADIN BDOUT ADOUT BDIN ASCL BSCL NC NC AGND BGND Si840x C3 C2 Figure 2. Simplified Timing Test Diagram 8 Rev. 1.6 R2 C2 Si840x Table 6. Regulatory Information* CSA The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 61010-1: Up to 300 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. 60950-1: Up to 130 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. VDE The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001. 60747-5-2: Up to 560 Vpeak for basic insulation working voltage. UL The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 2500 VRMS isolation voltage for basic insulation. R N eco ew m D me es n ig de ns d fo r *Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. For more information, see "7.Ordering Guide" on page 25. Table 7. Insulation and Safety-Related Specifications Parameter Nominal Air Gap (Clearance) Symbol 1 Nominal External Tracking (Creepage)1 Minimum Internal Gap (Internal Clearance) Tracking Resistance (Proof Tracking Index) Erosion Depth Resistance (Input-Output)2 Capacitance (Input-Output)2 ot Input Capacitance3 Test Condition Value Unit NB SOIC-8 NB SOIC-16 L(1O1) 4.9 4.9 mm L(1O2) 4.01 4.01 mm 0.008 0.008 mm 600 600 VRMS ED 0.040 0.019 mm RIO 1012 1012  1.0 2.0 pF 4.0 4.0 pF PTI CIO IEC60112 f = 1 MHz CI N Notes: 1. The values in this table correspond to the nominal creepage and clearance values as detailed in “8. Package Outline: 8-Pin Narrow Body SOIC” and “10. Package Outline: 16-Pin Narrow Body SOIC”. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-8 package and 4.7 mm minimum for the NB SOIC-16 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-8 package and 3.9 mm minimum for the NB SOIC-16 package. 2. To determine resistance and capacitance, the Si840x, SO-16, is converted into a 2-terminal device. Pins 1–8 (1-4, SO8) are shorted together to form the first terminal and pins 9–16 (5–8, SO-8) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 3. Measured from input pin to ground. Rev. 1.6 9 Si840x Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings Parameter Test Condition Basic Isolation Group Specification Material Group Installation Classification I Rated Mains Voltages < 150 VRMS I-IV Rated Mains Voltages < 300 VRMS I-III Rated Mains Voltages < 400 VRMS I-II Rated Mains Voltages < 600 VRMS I-II Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB* Parameter Symbol Characteristic Unit 560 V peak VIORM Maximum Working Insulation Voltage Input to Output Test Voltage V peak VPR Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) 1050 VIOTM t = 60 sec 4000 R N eco ew m D me es n ig de ns d fo r Transient Overvoltage Test Condition 2 Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V V peak >109 RS  *Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21. Table 10. IEC Safety Limiting Values1 Parameter Case Temperature Symbol Test Condition TS IS N ot Safety Input Current Device Power Dissipation2 JA = 105 °C/W (NB SOIC-16), 140 °C/W (NB SOIC-8) AVDD, BVDD = 5.5 V, TJ = 150 °C, TA = 25 °C PD NB SOIC-8 NB SOIC-16 Unit 150 150 °C 160 210 mA 220 275 W Notes: 1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 3 and Figure 4. 2. The Si840x is tested with AVDD, BVDD = 5.5 V; TJ = 150 ºC; C1, C2 = 0.1 µF; C3 = 15 pF; R1, R2 = 3kinput 1 MHz 50% duty cycle square wave. 10 Rev. 1.6 Si840x Table 11. Thermal Characteristics Parameter Symbol JA IC Junction-to-Air Thermal Resistance NB SOIC-8 NB SOIC-16 Unit 140 105 °C/W 400 300 270 200 AVDD, BVDD = 3.6 V 160 AVDD, BVDD = 5.5 V 100 R N eco ew m D me es n ig de ns d fo r Safety-Limiting Values (mA) Test Condition 0 0 50 100 150 Case Temperature (ºC) 200 Figure 3. NB SOIC-8 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 400 350 300 AVDD , BVDD = 3.6 V N ot Safety-Limiting Current (mA) 500 210 200 AVDD , BVDD = 5.5 V 100 0 0 50 100 Temperature (ºC) 150 200 Figure 4. NB SOIC-16 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2 Rev. 1.6 11 Si840x 2. Functional Description 2.1. Theory of Operation The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single unidirectional Si84xx channel is shown in Figure 5. Transmitter Receiver RF OSCILLATOR A DEMODULATOR R N eco ew m D me es n ig de ns d fo r MODULATOR SemiconductorBased Isolation Barrier B Figure 5. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See Figure 6 for more details. Input Signal N ot Modulation Signal Output Signal Figure 6. Modulation Scheme 12 Rev. 1.6 Si840x 3. Device Operation Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLO– are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when power supply (VDD) is not present. 3.1. Device Startup Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs. 3.2. Under Voltage Lockout UVLO+ UVLO- AVDD UVLO+ UVLO- BVDD tSD tSTART tSTART tPHL tPLH N tSTART ot INPUT R N eco ew m D me es n ig de ns d fo r Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own under voltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when AVDD falls below AVDDUVLO– and exits UVLO when AVDD rises above AVDDUVLO+. Side B operates the same as Side A with respect to its BVDD supply. OUTPUT Figure 7. Device Behavior during Normal Operation Rev. 1.6 13 Si840x 3.3. Layout Recommendations To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with
SI8400AB-B-ISR 价格&库存

很抱歉,暂时无法提供与“SI8400AB-B-ISR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SI8400AB-B-ISR
    •  国内价格
    • 50+13.79730
    • 200+13.54870
    • 800+13.17580

    库存:1431

    SI8400AB-B-ISR
      •  国内价格
      • 1+16.24240

      库存:1