Si86xx 1 Mbps Data Sheet
1 Mbps, 2.5 kVRMS Digital Isolators
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages over legacy isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges and throughout device service life for
ease of design and highly uniform performance. All device versions have Schmitt trigger
inputs for high noise immunity and only require VDD bypass capacitors.
All products support Data rates up to 1 Mbps and Enable inputs which provide a single
point control for enabling and disabling output drive. All products are safety certified by
UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kVRMS.
Automotive Grade is available for certain part numbers. These products are built using
automotive-specific flows at all steps in the manufacturing process to ensure the robustness and low defectivity required for automotive applications.
Industrial Applications
• Industrial automation systems
• Medical electronics
• Isolated switch mode supplies
• Isolated ADC, DAC
• Motor control
• Power inverters
• Communication systems
Safety Regulatory Approvals
• UL 1577 recognized
• Up to 5000 VRMS for 1 minute
• CSA component notice 5A approval
• IEC 60950-1, 61010-1
• VDE certification conformity
• IEC 60747-5-2 (VDE0884 Part 2)
• CQC certification approval
• GB4943.1
silabs.com | Building a more connected world.
Automotive Applications
• On-board chargers
• Battery management systems
• Charging stations
• Traction inverters
• Hybrid Electric Vehicles
• Battery Electric Vehicles
KEY FEATURES
• High-speed operation
• DC to 1 Mbps
• No start-up initialization required
• Wide Operating Supply Voltage
• 2.5 to 5.5 V
• Up to 2500 VRMS isolation
• 60-year life at rated working voltage
• High electromagnetic immunity
• Ultra low power (typical)
• 5 V Operation: 1.6 mA per channel at 1
Mbps
• 2.5 V Operation: 1.5 mA per channel at
1 Mbps
• Tri-state outputs with ENABLE
• Schmitt trigger inputs
• Transient Immunity 50 kV/µs
• AEC-Q100 qualification
• Wide temperature range
• –40 to 125 °C
• RoHS-compliant packages
• SOIC-16 wide body
• SOIC-16 narrow body
• SOIC-8 narrow body
• Automotive-grade OPNs available
• AIAG compliant PPAP documentation
support
• IMDS and CAMDS listing support
Rev. 1.03
Si86xx 1 Mbps Data Sheet
Ordering Guide
1. Ordering Guide
Industrial and Automotive Grade OPNs
Industrial-grade devices (part numbers having an “-I” in their suffix) are built using well-controlled, high-quality manufacturing flows to
ensure robustness and reliability. Qualifications are compliant with JEDEC, and defect reduction methodologies are used throughout
definition, design, evaluation, qualification, and mass production steps.
Automotive-grade devices (part numbers having an “-A” in their suffix) are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and low defectivity. These devices are supported with AIAG-compliant Production Part Approval
Process (PPAP) documentation, and feature International Material Data System (IMDS) and China Automotive Material Data System
(CAMDS) listing. Qualifications are compliant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass production steps.
Table 1.1. Ordering Guide for Valid OPNs1, 2, 4
Default
Output
State
Isolation
Rating
(kV)
Package
1
Low
2.5
SOIC-8
0
1
Low
2.5
SOIC-8
1
1
1
Low
2.5
SOIC-8
Si8630AB-AS
3
0
1
Low
2.5
WB SOIC-16
Si8630AB-B-IS1
Si8630AB-AS1
3
0
1
Low
2.5
NB SOIC-16
Si8631AB-B-IS
Si8631AB-AS
2
1
1
Low
2.5
WB SOIC-16
Si8631AB-B-IS1
Si8631AB-AS1
2
1
1
Low
2.5
NB SOIC-16
Si8640AB-B-IS1
Si8640AB-AS1
4
0
1
Low
2.5
NB SOIC-16
Si8640AB-B-IS
Si8640AB-AS
4
0
1
Low
2.5
WB SOIC-16
Si8641AB-B-IS1
Si8641AB-AS1
3
1
1
Low
2.5
NB SOIC-16
Si8641AB-B-IS
Si8641AB-AS
3
1
1
Low
2.5
WB SOIC-16
Si8642AB-B-IS1
Si8642AB-AS1
2
2
1
Low
2.5
NB SOIC-16
Si8642AB-B-IS
Si8642AB-AS
2
2
1
Low
2.5
WB SOIC-16
Si8650AB-B-IS1
Si8650AB-AS1
5
0
1
Low
2.5
NB SOIC-16
Si8651AB-B-IS1
Si8651AB-AS1
4
1
1
Low
2.5
NB SOIC-16
Si8652AB-B-IS1
Si8652AB-AS1
3
2
1
Low
2.5
NB SOIC-16
Si8660AB-B-IS1
Si8660AB-AS1
6
0
1
Low
2.5
NB SOIC-16
Si8661AB-B-IS1
Si8661AB-AS1
5
1
1
Low
2.5
NB SOIC-16
Si8662AB-B-IS1
Si8662AB-AS1
4
2
1
Low
2.5
NB SOIC-16
Si8663AB-B-IS1
Si8663AB-AS1
3
3
1
Low
2.5
NB SOIC-16
Max
Number Number
Data
of Inof InRate
puts
puts
VDD2 (Mbps)
VDD1
Side
Side
Ordering Part Number
(OPN)
Automotive OPNs5, 6
Si8610AB-B-IS
Si8610AB-AS
1
0
Si8620AB-B-IS
Si8620AB-AS
2
Si8621AB-B-IS
Si8621AB-AS
Si8630AB-B-IS
silabs.com | Building a more connected world.
Rev. 1.03 | 2
Si86xx 1 Mbps Data Sheet
Ordering Guide
Ordering Part Number
(OPN)
Automotive OPNs5, 6
Max
Number Number
Data
of Inof InRate
puts
puts
VDD2 (Mbps)
VDD1
Side
Side
Default
Output
State
Isolation
Rating
(kV)
Package
Notes:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.
2. “Si” and “SI” are used interchangeably.
3. An "R" at the end of the part number denotes tape and reel packaging option.
4. Temperature range is –40 to 125 °C.
5. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters
to their Industrial-Grade (with an "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is included on shipping labels.
6. In the top markings of each device, the Manufacturing Code represented by either “RTTTTT” or “TTTTTT” contains as its first
character a letter in the range N through Z to indicate Automotive-Grade.
silabs.com | Building a more connected world.
Rev. 1.03 | 3
Table of Contents
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Ordering Guide
2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Theory of Operation .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Device Startup .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
3.2 Undervoltage Lockout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
3.3 Layout Recommendations .
3.3.1 Supply Bypass . . .
3.3.2 Output Pin Termination.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5. Pin Descriptions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.30
5.2 Pin Descriptions (Si863x)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.31
5.3 Pin Descriptions (Si864x)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.32
5.4 Pin Descriptions (Si8650/51/52) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.33
5.5 Pin Descriptions (Si866x)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.34
6. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
.
.
.
6.1 Package Outline (16-Pin Wide Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.35
6.2 Package Outline (16-Pin Narrow Body SOIC).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.37
6.3 Package Outline (8-Pin Narrow Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.39
7. Land Patterns
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1 Land Pattern (16-Pin Wide-Body SOIC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.40
7.2 Land Pattern (16-Pin Narrow Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.41
7.3 Land Pattern (8-Pin Narrow Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.42
8. Top Markings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1 Top Marking (16-Pin Wide Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.43
8.2 Top Marking (16-Pin Narrow Body SOIC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.44
8.3 Top Marking (8-Pin Narrow Body SOIC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.45
9. Revision History
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
silabs.com | Building a more connected world.
Rev. 1.03 | 4
Si86xx 1 Mbps Data Sheet
Functional Description
2. Functional Description
2.1 Theory of Operation
The operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified
block diagram for a single Si86xx channel is shown in the figure below.
Transmitter
Receiver
RF
OSCILLATOR
A
MODULATOR
SemiconductorBased Isolation
Barrier
DEMODULATOR
B
Figure 2.1. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to
magnetic fields. See the figure below for more details.
Input Signal
Modulation Signal
Output Signal
Figure 2.2. Modulation Scheme
silabs.com | Building a more connected world.
Rev. 1.03 | 5
Si86xx 1 Mbps Data Sheet
Device Operation
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on
page 8, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to
determine outputs when power supply (VDD) is not present. Additionally, refer to Table 3.2 Enable Input Truth1 on page 7 for logic
conditions when enable pins are used.
Table 3.1. Si86xx Logic Operation
VI
Input1,2
EN
Input1,2,3,4
VDDI
State1,5,6
VDDO
State1,5,6
VO Output1,2
H
H or NC
P
P
H
L
H or NC
P
P
L
X7
L
P
P
Hi-Z8
X7
H or NC
UP
P
L
X7
L
UP
P
Hi-Z8
X7
X7
P
UP
Undetermined
Comments
Enabled, normal operation.
Disabled.
Upon transition of VDDI from unpowered to powered, VO returns to the same state as VI in less than 1 µs.
Disabled.
Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within 1 µs, if EN is in either the
H or NC state. Upon transition of VDDO from unpowered to
powered, VO returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the
enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy
environments.
4. No Connect (NC) replaces EN1 on some devices. No Connects are not internally connected and can be left floating, tied to VDD,
or tied to GND.
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
silabs.com | Building a more connected world.
Rev. 1.03 | 6
Si86xx 1 Mbps Data Sheet
Device Operation
Table 3.2. Enable Input Truth1
P/N
EN11,2
EN21,2
Si861x/2x
—
—
Outputs are enabled and follow input state.
Si8630
—
H
Outputs B1, B2, B3 are enabled and follow input state.
—
L
Outputs B1, B2, B3 are disabled and in high impedance state.3
H
X
Output A3 enabled and follows input state.
L
X
Output A3 disabled and in high impedance state.3
X
H
Outputs B1, B2 are enabled and follow input state.
X
L
Outputs B1, B2 are disabled and in high impedance state.3
—
H
Outputs B1, B2, B3, B4 are enabled and follow the input state.
—
L
Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
H
X
Output A4 enabled and follows the input state.
L
X
Output A4 disabled and in high impedance state.3
X
H
Outputs B1, B2, B3 are enabled and follow the input state.
X
L
Outputs B1, B2, B3 are disabled and in high impedance state.3
H
X
Outputs A3 and A4 are enabled and follow the input state.
L
X
Outputs A3 and A4 are disabled and in high impedance state.3
X
H
Outputs B1 and B2 are enabled and follow the input state.
X
L
Outputs B1 and B2 are disabled and in high impedance state.3
—
H
Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
—
L
Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state.3
H
X
Output A5 enabled and follow input state.
L
X
Output A5 disabled and in high impedance state.3
X
H
Outputs B1, B2, B3, B4 are enabled and follow input state.
X
L
Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
H
X
Outputs A4 and A5 are enabled and follow input state.
L
X
Outputs A4 and A5 are disabled and in high impedance state.3
X
H
Outputs B1, B2, B3 are enabled and follow input state.
X
L
Outputs B1, B2, B3 are disabled and in high impedance state.3
—
—
Outputs are enabled and follow input state.
Si8631
Si8640
Si8641
Si8642
Si8650
Si8651
Si8652
Si866x
Operation
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally
pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high or low) or left
floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused,
it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
silabs.com | Building a more connected world.
Rev. 1.03 | 7
Si86xx 1 Mbps Data Sheet
Device Operation
3.1 Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow
the states of inputs.
3.2 Undervoltage Lockout
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
UVLO+
UVLO-
VDD1
UVLO+
UVLO-
VDD2
INPUT
tSTART
tSD
tSTART
tSTART
tPHL
tPLH
OUTPUT
Figure 3.1. Device Behavior during Normal Operation
3.3 Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the
safety extra-low voltage circuits (SELV is a circuit with 109
Ω
>109
Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21.
Table 4.9. IEC Safety Limiting Values1
Max
Parameter
Case Temperature
Safety Input, Output, or
Supply Current
Symbol
Test Condition
WB
SOIC-16
NB
SOIC-16
NB
SOIC-8
Unit
150
150
150
°Χ
220
215
160
mA
415
415
150
mW
TS
ΙS
θJA = 100 °C/W (WB SOIC-16), 105
°C/W (NB SOIC-16),
140 °C/W (NB SOIC-8),
VI = 5.5 V, TJ = 150 °C, TA = 25 °C
Device Power
Dissipation2
PD
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 Figure 5.4 on page 28,
Figure 4.5 Figure 5.5 on page 28 and Figure 4.6 Figure 5.6 on page 29.
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.
Table 4.10. Thermal Characteristics
Parameter
IC Junction-to-Air Thermal
Resistance
silabs.com | Building a more connected world.
Symbol
WB SOIC-16
NB SOIC-16
NB SOIC-8
Unit
θJA
100
105
140
ºC/W
Rev. 1.03 | 27
Si86xx 1 Mbps Data Sheet
Electrical Specifications
Safety-Limiting Current (mA)
500
450
VDD1, VDD2 = 2.70 V
400
370
VDD1, VDD2 = 3.6 V
300
220
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Safety-Limiting Current (mA)
500
430
400
VDD1, VDD2 = 2.70 V
360
VDD1, VDD2 = 3.6 V
300
215
200
VDD1, VDD2 = 5.5 V
100
0
0
50
100
Temperature (ºC)
150
200
Figure 4.5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
silabs.com | Building a more connected world.
Rev. 1.03 | 28
Si86xx 1 Mbps Data Sheet
Safety-Limiting Values (mA)
Electrical Specifications
400
320
VDD1, VDD2 = 2.5 V
300 270
VDD1, VDD2 = 3.3 V
200
160
VDD1, VDD2 = 5.5 V
100
0
0
50
100
150
Case Temperature (ºC)
200
Figure 4.6. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Table 4.11. Absolute Maximum Ratings1
Parameter
Symbol
Min
Max
Unit
TSTG
–65
150
ºC
Ambient Temperature Under Bias
TA
–40
125
ºC
Junction Temperature
TJ
—
150
°C
VDD1, VDD2
–0.5
7.0
V
Input Voltage
VI
–0.5
VDD + 0.5
V
Output Voltage
VO
–0.5
VDD + 0.5
V
Output Current Drive Channel
(All devices unless otherwise stated)
IO
—
10
mA
Output Current Drive Channel
(All Si86xxxA-x-xx devices)
IO
—
22
mA
Latchup Immunity3
—
100
V/ns
Lead Solder Temperature (10 s)
—
260
ºC
Maximum Isolation (Input to Output) (1 sec)
NB SOIC-16, SOIC-8
—
4500
VRMS
Maximum Isolation (Input to Output) (1 sec)
WB SOIC-16
—
6500
VRMS
Storage Temperature2
Supply Voltage
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to
conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
3. Latchup immunity specification is for slew rate applied across GND1 and GND2.
silabs.com | Building a more connected world.
Rev. 1.03 | 29
Si86xx 1 Mbps Data Sheet
Pin Descriptions
5. Pin Descriptions
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8)
VDD1
RF
XMITR
A1
VDD1/NC
GND1
I
s
o
l
a
t
i
o
n
VDD2
RF
RCVR
Si8610 NB SOIC-8
VDD1
GND2/NC A1
RF
XMITR
A2
RF
XMITR
B1
GND2
GND1
I
s
o
l
a
t
i
o
n
VDD2
VDD1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
RCVR
Si8620 NB SOIC-8
GND2
GND1
I
s
o
l
a
t
i
o
n
VDD2
RF
RCVR
B1
RF
XMITR
B2
Si8621 NB SOIC-8
GND2
Figure 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions
Table 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions
Name
SOIC-8 Pin#
SOIC-8 Pin#
Type
Description
Si861x
Si862x
VDD1/NC*
1,3
1
Supply
Side 1 power supply.
GND1
4
4
Ground
Side 1 ground.
A1
2
2
Digital I/O
Side 1 digital input or output.
A2
NA
3
Digital I/O
Side 1 digital input or output.
B1
6
7
Digital I/O
Side 2 digital input or output.
B2
NA
6
Digital I/O
Side 2 digital input or output.
VDD2
8
8
Supply
Side 2 power supply.
GND2/NC*
5, 7
5
Ground
Side 2 ground.
Note: No connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
silabs.com | Building a more connected world.
Rev. 1.03 | 30
Si86xx 1 Mbps Data Sheet
Pin Descriptions
5.2 Pin Descriptions (Si863x)
VDD1
GND1
A1
RF
XMITR
A2
RF
XMITR
A3
RF
XMITR
NC
I
s
o
l
a
t
i
o
n
GND2
VDD2
GND1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RCVR
B3
A3
RF
RCVR
NC
NC
EN2
EN1
NC
GND1
VDD1
VDD2
Si8630
GND2
GND1
I
s
o
l
a
t
i
o
n
GND2
RF
RCVR
B1
RF
RCVR
B2
RF
XMITR
B3
NC
EN2
GND2
Si8631
Figure 5.2. Si863x Pin Descriptions
Table 5.2. Si863x Pin Descriptions
Name
SOIC-16 Pin#
Type
Description
VDD1
1
Supply
Side 1 power supply.
GND1
21
Ground
Side 1 ground.
A1
3
Digital Input
Side 1 digital input.
A2
4
Digital Input
Side 1 digital input.
A3
5
Digital I/O
NC
6
NA
EN1/NC2
7
Digital Input
GND1
81
Ground
Side 1 ground.
GND2
91
Ground
Side 2 ground.
EN2
10
Digital Input
NC
11
NA
B3
12
Digital I/O
B2
13
Digital Output
Side 2 digital output.
B1
14
Digital Output
Side 2 digital output.
GND2
151
Ground
Side 2 ground.
VDD2
16
Supply
Side 2 power supply.
Side 1 digital input or output.
No Connect.
Side 1 active high enable. NC on Si8630
Side 2 active high enable.
No Connect.
Side 2 digital input or output.
Notes:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be
connected to external ground.
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
silabs.com | Building a more connected world.
Rev. 1.03 | 31
Si86xx 1 Mbps Data Sheet
Pin Descriptions
5.3 Pin Descriptions (Si864x)
VDD1
VDD2
GND1
A1
RF
XMITR
A2
RF
XMITR
A3
RF
XMITR
A4
RF
XMITR
I
s
o
l
a
t
i
o
n
GND2
VDD2
GND1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RCVR
B3
A3
RF
XMITR
RF
RCVR
B4
A4
RF
RCVR
EN2
NC
GND1
VDD1
GND2
Si8640
I
s
o
l
a
t
i
o
n
GND2
VDD2
GND1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RCVR
B3
A3
RF
RCVR
RF
XMITR
B4
A4
RF
RCVR
EN2
EN1
GND1
VDD1
Si8641
GND2
I
s
o
l
a
t
i
o
n
GND2
RF
RCVR
B1
RF
RCVR
B2
RF
RF
XMITR
RCVR
B3
RF
XMITR
B4
EN1
GND1
Si8642
EN2
GND2
Figure 5.3. Si864x Pin Descriptions
Table 5.3. Si864x Pin Descriptions
Name
SOIC-16 Pin#
Type
Description
VDD1
1
Supply
Side 1 power supply.
GND1
21
Ground
Side 1 ground.
A1
3
Digital Input
Side 1 digital input.
A2
4
Digital Input
Side 1 digital input.
A3
5
Digital I/O
Side 1 digital input or output.
A4
6
Digital I/O
Side 1 digital input or output.
EN1/NC2
7
Digital Input
GND1
81
Ground
Side 1 ground.
GND2
91
Ground
Side 2 ground.
EN2
10
Digital Input
B4
11
Digital I/O
Side 2 digital input or output.
B3
12
Digital I/O
Side 2 digital input or output.
B2
13
Digital Output
Side 2 digital output.
B1
14
Digital Output
Side 2 digital output.
GND2
151
Ground
Side 2 ground.
VDD2
16
Supply
Side 2 power supply.
Side 1 active high enable. NC on Si8640.
Side 2 active high enable.
Notes:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be
connected to external ground.
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
silabs.com | Building a more connected world.
Rev. 1.03 | 32
Si86xx 1 Mbps Data Sheet
Pin Descriptions
5.4 Pin Descriptions (Si8650/51/52)
VDD1
VDD2
A1
RF
XMITR
A2
RF
XMITR
A3
RF
XMITR
A4
RF
XMITR
A5
RF
XMITR
I
s
o
l
a
t
i
o
n
VDD2
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RCVR
B3
A3
RF
XMITR
RF
RCVR
B4
A4
RF
XMITR
RF
RCVR
B5
A5
RF
RCVR
EN2
NC
GND1
VDD1
GND2
Si8650
I
s
o
l
a
t
i
o
n
VDD2
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
XMITR
RF
RCVR
B3
A3
RF
XMITR
RF
RCVR
B4
A4
RF
RCVR
RF
XMITR
B5
A5
RF
RCVR
EN2
EN1
GND1
VDD1
Si8651
GND2
I
s
o
l
a
t
i
o
n
RF
RCVR
B1
RF
RCVR
B2
RF
RCVR
B3
RF
RF
XMITR
RCVR
B4
RF
XMITR
B5
EN1
GND1
Si8652
EN2
GND2
Figure 5.4. Si865x Pin Descriptions
Table 5.4. Si865x Pin Descriptions
Name
SOIC-16 Pin#
Type
Description
VDD1
1
Supply
A1
2
Digital Input
Side 1 digital input.
A2
3
Digital Input
Side 1 digital input.
A3
4
Digital Input
Side 1 digital input.
A4
5
Digital I/O
Side 1 digital input or output.
A5
6
Digital I/O
Side 1 digital input or output.
EN1/NC*
7
Digital Input
GND1
8
Ground
Side 1 ground.
GND2
9
Ground
Side 2 ground.
EN2
10
Digital Input
B5
11
Digital I/O
Side 2 digital input or output.
B4
12
Digital I/O
Side 2 digital input or output.
B3
13
Digital Output
Side 2 digital output.
B2
14
Digital Output
Side 2 digital output.
B1
15
Digital Output
Side 2 digital output.
VDD2
16
Supply
Side 2 power supply.
Side 1 power supply.
Side 1 active high enable. NC on Si8650.
Side 2 active high enable.
Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
silabs.com | Building a more connected world.
Rev. 1.03 | 33
Si86xx 1 Mbps Data Sheet
Pin Descriptions
5.5 Pin Descriptions (Si866x)
VDD1
VDD1
VDD2
A1
RF
XMITR
A2
RF
XMITR
A3
RF
XMITR
A4
RF
XMITR
A5
RF
XMITR
A6
RF
XMITR
GND1
I
s
o
l
a
t
i
o
n
Si8660
RF
RCVR
RF
RCVR
RF
RCVR
RF
RCVR
VDD2
A1
RF
XMITR
B2
A2
RF
XMITR
B3
A3
RF
XMITR
A4
RF
XMITR
B1
B4
RF
RCVR
B5
A5
RF
XMITR
RF
RCVR
B6
A6
RF
RCVR
GND2
GND1
I
s
o
l
a
t
i
o
n
RF
RCVR
RF
RCVR
RF
RCVR
RF
RCVR
RF
RCVR
RF
XMITR
VDD1
A1
RF
XMITR
B2
A2
RF
XMITR
B3
A3
RF
XMITR
B1
A4
RF
XMITR
B5
A5
RF
RCVR
B6
A6
RF
RCVR
B4
GND2 GND1
Si8661
VDD2
I
s
o
l
a
t
i
o
n
RF
RCVR
RF
RCVR
RF
RCVR
VDD2
A1
RF
XMITR
B2
A2
RF
XMITR
B3
A3
RF
XMITR
A4
RF
RCVR
B1
RF
RCVR
VDD1
B4
RF
XMITR
B5
A5
RF
RCVR
RF
RF
XMITR
RCVR
B6
A6
RF
RCVR
GND2 GND1
Si8662
I
s
o
l
a
t
i
o
n
RF
RCVR
B1
RF
RCVR
B2
RF
RCVR
B3
RF
XMITR
B4
RF
XMITR
B5
RF
RF
XMITR
RCVR
B6
Si8663
GND2
Figure 5.5. Si866x Pin Descriptions
Table 5.5. Si866x Pin Descriptions
Name
SOIC-16 Pin#
Type
VDD1
1
Supply
A1
2
Digital Input
Side 1 digital input.
A2
3
Digital Input
Side 1 digital input.
A3
4
Digital Input
Side 1 digital input.
A4
5
Digital I/O
Side 1 digital input or output.
A5
6
Digital I/O
Side 1 digital input or output.
A6
7
Digital I/O
Side 1 digital input or output.
GND1
8
Ground
Side 1 ground.
GND2
9
Ground
Side 2 ground.
B6
10
Digital I/O
Side 2 digital input or output.
B5
11
Digital I/O
Side 2 digital input or output.
B4
12
Digital I/O
Side 2 digital input or output.
B3
13
Digital Output
Side 2 digital output.
B2
14
Digital Output
Side 2 digital output.
B1
15
Digital Output
Side 2 digital output.
VDD2
16
Supply
Side 2 power supply.
silabs.com | Building a more connected world.
Description
Side 1 power supply.
Rev. 1.03 | 34
Si86xx 1 Mbps Data Sheet
Package Outlines
6. Package Outlines
6.1 Package Outline (16-Pin Wide Body SOIC)
The figure below illustrates the package details for the Si86xx Digital Isolator. The table below lists the values for the dimensions shown
in the illustration.
Figure 6.1. 16-Pin Wide Body SOIC
silabs.com | Building a more connected world.
Rev. 1.03 | 35
Si86xx 1 Mbps Data Sheet
Package Outlines
Table 6.1. Package Diagram Dimensions
Dimension
Min
Max
A
—
2.65
A1
0.10
0.30
A2
2.05
—
b
0.31
0.51
c
0.20
0.33
D
10.30 BSC
E
10.30 BSC
E1
7.50 BSC
e
1.27 BSC
L
0.40
1.27
h
0.25
0.75
θ
0°
8°
aaa
—
0.10
bbb
—
0.33
ccc
—
0.10
ddd
—
0.25
eee
—
0.10
fff
—
0.20
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.
silabs.com | Building a more connected world.
Rev. 1.03 | 36
Si86xx 1 Mbps Data Sheet
Package Outlines
6.2 Package Outline (16-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC (SO-16). The table below lists the values
for the dimensions shown in the illustration.
Figure 6.2. 16-pin Small Outline Integrated Circuit (SOIC) Package
silabs.com | Building a more connected world.
Rev. 1.03 | 37
Si86xx 1 Mbps Data Sheet
Package Outlines
Table 6.2. Package Diagram Dimensions
Dimension
Min
Max
A
—
1.75
A1
0.10
0.25
A2
1.25
—
b
0.31
0.51
c
0.17
0.25
D
9.90 BSC
E
6.00 BSC
E1
3.90 BSC
e
1.27 BSC
L
0.40
L2
1.27
0.25 BSC
h
0.25
0.50
θ
0°
8°
aaa
0.10
bbb
0.20
ccc
0.10
ddd
0.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.03 | 38
Si86xx 1 Mbps Data Sheet
Package Outlines
6.3 Package Outline (8-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si86xx. The table below lists the values for the dimensions shown in the illustration.
Figure 6.3. 8-pin Small Outline Integrated Circuit (SOIC) Package
Table 6.3. Package Diagram Dimensions
Symbol
Millimeters
Min
Max
A
1.35
1.75
A1
0.10
0.25
A2
1.40 REF
1.55 REF
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
e
1.27 BSC
H
5.80
6.20
h
0.25
0.50
L
0.40
1.27
0°
8°
silabs.com | Building a more connected world.
Rev. 1.03 | 39
Si86xx 1 Mbps Data Sheet
Land Patterns
7. Land Patterns
7.1 Land Pattern (16-Pin Wide-Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC. The table below lists the
values for the dimensions shown in the illustration.
Figure 7.1. 16-Pin SOIC Land Pattern
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
9.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
silabs.com | Building a more connected world.
Rev. 1.03 | 40
Si86xx 1 Mbps Data Sheet
Land Patterns
7.2 Land Pattern (16-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin narrow-body SOIC. The table below lists
the values for the dimensions shown in the illustration.
Figure 7.2. 16-Pin Narrow Body SOIC PCB Land Pattern
Table 7.2. 16-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
5.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
silabs.com | Building a more connected world.
Rev. 1.03 | 41
Si86xx 1 Mbps Data Sheet
Land Patterns
7.3 Land Pattern (8-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in an 8-pin narrow-body SOIC. The table below lists
the values for the dimensions shown in the illustration.
Figure 7.3. PCB Land Pattern: 8-Pin Narrow Body SOIC
Table 7.3. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)
Dimension
Feature
(mm)
C1
Pad Column Spacing
5.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
silabs.com | Building a more connected world.
Rev. 1.03 | 42
Si86xx 1 Mbps Data Sheet
Top Markings
8. Top Markings
8.1 Top Marking (16-Pin Wide Body SOIC)
Si86XYSV
YYWWRTTTTT
e4
CC
Figure 8.1. 16-Pin Wide Body SOIC
Table 8.1. Top Marking Explanation (16-Pin Wide Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV
Line 2 Marking: YY = Year
WW = Workweek
RTTTTT = Mfg Code
Assigned by assembly subcontractor. Corresponds to the year
and work week of the mold date.
Manufacturing code from assembly house
“R” indicates revision
Line 3 Marking: Circle = 1.7 mm Diameter
“e4” Pb-free symbol
(Center-Justified)
Country of Origin ISO Code Abbreviation
silabs.com | Building a more connected world.
CC = Country of Origin ISO Code Abbreviation
• TW = Taiwan
• TH = Thailand
Rev. 1.03 | 43
Si86xx 1 Mbps Data Sheet
Top Markings
8.2 Top Marking (16-Pin Narrow Body SOIC)
e3
Si86XYSV
YYWWRTTTTT
Figure 8.2. 16-Pin Narrow Body SOIC
Table 8.2. Top Marking Explanation (16-Pin Narrow Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See 1. Ordering Guide for more information.)
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV
Line 2 Marking: Circle = 1.2 mm Diameter
YY = Year
WW = Work Week
RTTTTT = Mfg Code
“e3” Pb-Free Symbol
Assigned by the assembly subcontractor. Corresponds to the
year and work week of the mold date.
Manufacturing code from assembly house
“R” indicates revision
silabs.com | Building a more connected world.
Rev. 1.03 | 44
Si86xx 1 Mbps Data Sheet
Top Markings
8.3 Top Marking (8-Pin Narrow Body SOIC)
Si86XYSV
YYWWRT
e3 TTTT
Figure 8.3. 8-Pin Narrow Body SOIC
Table 8.3. Top Marking Explanation (8-Pin Narrow Body SOIC)
Line 1 Marking: Base Part Number
Si86 = Isolator Product Series
Ordering Options
XY = Channel Configuration
(See 1. Ordering Guide for more information).
S = Speed Grade (max data rate)
V = Insulation rating
Line 2 Marking: YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and workweek of the mold date.
R = Product Revision
T = First character of the manufacturing code
Line 3 Marking: Circle = 1.1 mm Diameter
TTTT = Last four characters of the manufacturing code
silabs.com | Building a more connected world.
“e3” Pb-Free Symbol.
Last four characters of the manufacturing code.
Rev. 1.03 | 45
Si86xx 1 Mbps Data Sheet
Revision History
9. Revision History
Revision 1.03
September 2019
• Updated Ordering Guide.
Revision 1.02
February 2018
• Added SI8641AB-AS1 and SI8642AB-AS1 to Ordering Guide for Automotive-Grade OPN options
Revision 1.01
January 2018
• Updated data sheet format.
• Added new table to Ordering Guide for Automotive-Grade OPN options
• Updated Table 4.5 Regulatory Information1 on page 25.
• Added CQC certificate numbers.
• Updated 1. Ordering Guide.
• Removed references to moisture sensitivity levels.
• Removed note 2.
silabs.com | Building a more connected world.
Rev. 1.03 | 46
Smart.
Connected.
Energy-Friendly.
Products
Quality
www.silabs.com/products
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to
design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required
or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails,
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs
disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri
DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.
Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective
holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com