0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SL28610BLCT

SL28610BLCT

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    WFQFN-48

  • 描述:

    IC CLK GEN INTEL CK610 48QFN

  • 数据手册
  • 价格&库存
SL28610BLCT 数据手册
SL28610 Low Power Clock Generator for Intel® Ultra Mobile Platform Features • Supports intel's Moorestown and Menlow clocking requirements ® • Buffered Reference Clock 14.318MHz • Compliant to Intel CK610 • 14.318 MHz Crystal Input or Clock Input • Low power push-pull type differential output buffers • Low-voltage frequency select input • Integrated voltage regulator • I2C support with readback capabilities • Integrated resistors on differential clocks • Triangular Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction • Differential CPU clocks with selectable frequency • 100MHz Differential PCIe clocks • 100MHz LCD Video Clock • 96MHz Differential DOT clock • Industrial Temperature -40°C to 85°C • 48-pin QFN package CPU PCIe DOT96 LCD REF x3 x3 x1 x1 x1 Block Diagram Pin Configuration * 100K-ohm Internal pull down ** 10K-ohm Internal pull-up ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 1 of 23 400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669 www.silabs.com SL28610 Pin Definitions Pin No. Name Type Description 1 CPU_STP# I, SE 3.3V input for CPU_STP# (active low) functionality 2 CKPWRGD#/PD I, SE 3.3V LVTTL input (active low) 3 XOUT O, SE 3.3V, 14.31818MHz crystal output (When used a clock input, float XOUT) 4 XIN/CLKIN I, SE 3.3V, 14.31818MHz crystal input, 3.3V Clock Input. 5 VDD3.3V PWR 3.3V power supply for single-ended clock 6 REF / PCIe_SEL 7 VSS GND 8 VDD1.5_CORE PWR 1.5V power supply for core 9 FSC I, SE 1.05V Frequency Select C 10 TEST_MODE I, SE 3.3V-tolerant input to selects Ref/N or Tri-state when in test mode. 0 = Tri-state, 1 = Ref/N 11 TEST_SEL I, SE 3.3V-tolerant input to selects TEST_SEL 0 = Normal, 1 = Test Entry 12 SCLK I, SE 3.3V SMBus Clock Line 13 SDATA IO, PD, 3.3V, 14.31818MHz output / 1.5V input active high signal latched on CKPWRGD# SE signal to select PCIe from PLL3 (share with LCD PLL; 100K-ohm internal pull-down) Ground I/O, SE 3.3V SMBus Data Line 14 VDD1.5_CORE PWR 1.5V power supply for core 15 VDD1.5_IO PWR 1.5V power supply for differential outputs 16 DOT96# O, DIFF Fixed complimentary 96MHz clock output 17 DOT96 O, DIFF Fixed true 96MHz clock output 18 VSS GND Ground 19 VSS GND Ground 20 LCD_SSC# O, DIF Complementary 100MHz Differential clock 21 LCD_SSC O, DIF True 100MHz Differential clock 22 VDD1.5_IO PWR 1.5V power supply for differential outputs 23 VDD1.5_CORE PWR 1.5V power supply for core 24 OE_0# I, SE Output enable for PCIe0, (10K-ohm internal pull-up) 0 =enable, 1=disable 25 VSS GND Ground 26 PCIe0# O, DIF Complementary 100MHz Differential clock 27 PCIe0 O, DIF True 100MHz Differential clock 28 OE_1# I, SE Output enable for PCIe1, (10K-ohm internal pull-up) 0 =enable, 1=disable 29 VDD1.5_CORE PWR 1.5V Power Supply for core 30 VDD1.5_IO PWR 1.5V Power Supply for differential output 31 PCIe1# O, DIF Complementary 100MHz Differential clock 32 PCIe1 O, DIF True 100MHz Differential clock 33 VSS GND Ground 34 PCIe2# O, DIF Complementary 100MHz Differential clock 35 PCIe2 O, DIF True 100MHz Differential clock 36 OE_2# I, SE Output enable for PCIe2, (10K-ohm internal pull-up) 0 =enable, 1=disable I, SE 1.05V Frequency Select B 37 FSB 38 CPU0# O, DIF Complementary Host Differential clock 39 CPU0 O, DIF True Host Differential clock ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 2 of 23 SL28610 Pin Definitions (continued) Pin No. Name Type Description 40 VSS GND Ground 41 VDD1.5_IO PWR 1.5V Power Supply for differential output 42 VDD1.5_CORE PWR 1.5V Power Supply for core 43 CPU1# O, DIF Complementary Host Differential clock 44 CPU1 O, DIF True Host Differential clock 45 VSS_CPU GND Ground 46 VDD1.5_IO PWR 1.5V Power Supply for differential output 47 CPU2# O, DIF Complementary Host Differential clock 48 CPU2 O, DIF True Host Differential clock Table 1. Frequency Select Pin (FSB and FSC) FSC FSB CPU PCIe LCD DOT96 REF 1 0 100 MHz 100 MHz 100 MHz 96 MHz 14.318 MHz 0 0 133 MHz 100 MHz 100 MHz 96 MHz 14.318 MHz 0 1 166 MHz 100 MHz 100 MHz 96 MHz 14.318 MHz 1 1 200 MHz 100 MHz 100 MHz 96 MHz 14.318 MHz Frequency Select Pin (FSB and FSC) Apply the appropriate logic levels to FSB and FSC inputs before CKPWRGD assertion to achieve host clock frequency selection. When the clock chip sampled LOW on CKPWRGD and indicates that VTT voltage is stable then FSB and FSC input values are sampled. This process employs a one-shot functionality and once the CKPWRGD sampled a valid LOW, all other FSB, FSC, and CKPWRGD transitions are ignored except in test mode. Serial Data Interface To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. The interface cannot be used during system operation for power management functions. Data Protocol The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code described in Table 2. The block write and block read protocol is outlined in Table 3 while Table 4 outlines byte write and byte read protocol. The slave receiver address is 11010010 (D2h). . Table 2. Command Code Definition Bit 7 Description 0 = Block read or block write operation, 1 = Byte read or byte write operation (6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000' Table 3. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 Description Start Slave address–7 bits Block Read Protocol Bit 1 8:2 Description Start Slave address–7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 19 Command Code–8 bits Acknowledge from slave ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 3 of 23 18:11 19 Command Code–8 bits Acknowledge from slave SL28610 Table 3. Block Read and Block Write Protocol (continued) Block Write Protocol Bit 27:20 28 36:29 37 45:38 46 Block Read Protocol Description Bit Byte Count–8 bits (Skip this step if I2C_EN bit set) 20 Acknowledge from slave 27:21 Description Repeat start Slave address–7 bits Data byte 1–8 bits 28 Read = 1 Acknowledge from slave 29 Acknowledge from slave Data byte 2–8 bits 37:30 Acknowledge from slave .... Data Byte /Slave Acknowledges .... Data Byte N–8 bits 38 46:39 47 .... Acknowledge from slave .... Stop 55:48 Byte Count from slave–8 bits Acknowledge Data byte 1 from slave–8 bits Acknowledge Data byte 2 from slave–8 bits 56 Acknowledge .... Data bytes from slave / Acknowledge .... Data Byte N from slave–8 bits .... NOT Acknowledge .... Stop Table 4. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 Description Start Slave address–7 bits Byte Read Protocol Bit 1 8:2 Description Start Slave address–7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 19 27:20 Command Code–8 bits Acknowledge from slave Data byte–8 bits 28 Acknowledge from slave 29 Stop 18:11 19 20 27:21 Acknowledge from slave Repeated start Slave address–7 bits 28 Read 29 Acknowledge from slave 37:30 ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 4 of 23 Command Code–8 bits Data from slave–8 bits 38 NOT Acknowledge 39 Stop SL28610 Control Registers Byte 0: Control Register 0 Bit @Pup Name Description 7 1 PLL1_EN PLL1 Enable 0 = Disabled, 1 = Enabled 6 1 PLL2_EN PLL2 Enable 0 = Disabled, 1 = Enabled 5 1 PLL3_EN PLL3 Enable 0 = Disabled, 1 = Enabled 4 0 RESERVED 3 1 CPU_DIV CPU Output Divider Enable 0 = Disabled, 1 = Enabled 2 1 PCIe_DIV PCIe Output Divider Enable 0 = Disabled, 1 = Enabled 1 1 LCD_DIV LCD Output Divider Enable 0 = Disabled, 1 = Enabled 0 1 DOT96_DIV RESERVED DOT96 Output Divider Enable 0 = Disabled, 1 = Enabled Byte 1: Control Register 1 Bit @Pup Name 7 1 PLL1_Spread _EN PLL1 Spread Enable 0 = Disabled, 1 = Enabled Description 6 1 PLL3_Spread _EN PLL3 Spread Enable 0 = Disabled, 1 = Enabled 5 0 PLL3_CFB2 4 0 PLL3_CFB1 3 0 PLL3_CFB0 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED Description PLL3 Spread Spectrum Select PLL3_CFB[2:0] 000 = -%0.5 (Down Spread) - Default 001 = -%1.0, DS 010 = -%1.5, DS 011 = -% 2.0, DS 100 = %+0.30 (Center Spread) 101 = %+0.50, CS 110 = %+1.00, CS 111 = %+1.25, CS Byte 2: Control Register 2 Bit @Pup Name 7 1 CPU0_OE Output enable for CPU0 0 = Output Disabled, 1 = Output Enabled 6 1 CPU1_OE Output enable for CPU1 0 = Output Disabled, 1 = Output Enabled 5 1 CPU2_OE Output enable for CPU2 0 = Output Disabled, 1 = Output Enabled 4 1 PCIe0_OE Output enable for PCIe0 0 = Output Disabled, 1 = Output Enabled 3 1 PCIe1_OE Output enable for PCIe1 0 = Output Disabled, 1 = Output Enabled ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 5 of 23 SL28610 Byte 2: Control Register 2 (continued) Bit @Pup Name Description 2 1 PCIe2_OE Output enable for SCR2 0 = Output Disabled, 1 = Output Enabled 1 1 DOT96_OE Output enable for DOT96 0 = Output Disabled, 1 = Output Enabled 0 1 LCD_OE Output enable for LCD 0 = Output Disabled, 1 = Output Enabled Byte 3: Control Register 3 Bit @Pup Name Description 7 1 RESERVED RESERVED 6 1 RESERVED RESERVED 5 1 REF_OE Output enable for REF 0 = Output Disabled, 1 = Output Enabled 4 1 REF_Bit1 REF Slew Rate Control Bit2(see Byte 16 Bit [7:6] for Slew Rate REF_Bit0 & REF_Bit2) 0 = 1 load, 1 = 2 loads 3 0 RESERVED RESERVED 2 0 CPU0_STP# CPU0 CPU_STP# Control 0 = Free Running, 1 = Stopped with CPU_STP# 1 0 CPU1_STP# CPU1 CPU_STP# Control 0 = Free Running, 1 = Stopped with CPU_STP# 0 0 CPU2_STP# CPU2 CPU_STP# Control 0 = Free Running, 1 = Stopped with CPU_STP# Byte 4: Control Register 4 Bit @Pup Name 7 HW PLL1 M DIV 7 6 HW PLL1 M DIV 6 5 HW PLL1 M DIV 5 4 HW PLL1 M DIV 4 3 HW PLL1 M DIV 3 2 HW PLL1 M DIV 2 1 HW PLL1 M DIV 1 0 HW PLL1 M DIV 0 Description This is a read only register of the multiplier used for PLL1 M Divider HW= Read Only Byte 5: Control Register 5 Bit @Pup Name 7 HW PLL1 N DIV 7 6 HW PLL1 N DIV 6 5 HW PLL1 N DIV 5 4 HW PLL1 N DIV 4 3 HW PLL1 N DIV 3 2 HW PLL1 N DIV 2 1 HW PLL1 N DIV 1 0 HW PLL1 N DIV 0 Description This is a read only register of the multiplier used for PLL1 N Divider HW= Read Only ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 6 of 23 SL28610 Byte 6: Control Register 6 Bit @Pup Name Description 7 HW PLL2 N DIV 8 6 HW PLL2 N DIV 9 This is a read only register of the multiplier used for PLL2 M and N Dividers HW= Read Only 5 HW PLL2 M DIV 5 4 HW PLL2 M DIV 4 3 HW PLL2 M DIV 3 2 HW PLL2 M DIV 2 1 HW PLL2 M DIV 1 0 HW PLL2 M DIV 0 Byte 7: Control Register 7 Bit @Pup Name 7 HW PLL2 N DIV 7 6 HW PLL2 N DIV 6 5 HW PLL2 N DIV 5 4 HW PLL2 N DIV 4 3 HW PLL2 N DIV 3 2 HW PLL2 N DIV 2 1 HW PLL2 N DIV 1 0 HW PLL2 N DIV 0 Description This is a read only register of the multiplier used for PLL2 N Divider HW= Read Only Byte 8: Control Register 8 Bit @Pup Name 7 HW PLL3 M DIV 7 6 HW PLL3 M DIV 6 5 HW PLL3 M DIV 5 4 HW PLL3 M DIV 4 3 HW PLL3 M DIV 3 2 HW PLL3 M DIV 2 1 HW PLL3 M DIV 1 0 HW PLL3 M DIV 0 Description This is a read only register of the multiplier used for PLL3 M Divider HW= Read Only Byte 9: Control Register 9 Bit @Pup Name 7 HW PLL3 N DIV 7 6 HW PLL3 N DIV 6 5 HW PLL3 N DIV 5 4 HW PLL3 N DIV 4 3 HW PLL3 N DIV 3 2 HW PLL3 N DIV 2 1 HW PLL3 N DIV 1 0 HW PLL3 N DIV 0 Description This is a read only register of the multiplier used for PLL3 N Divider HW= Read Only ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 7 of 23 SL28610 Byte 10: Control Register 10 Bit @Pup Name 7 HW FSB Description FSB status bit, CPU Frequency Select Bit, read only 6 HW FSC 5 HW OE#_0 OE#_0 status bit, PCIe0 enable status, read only 0 = PCIe0 disabled, 1 = PCIe0 enabled FSC status bit, CPU Frequency Select Bit, read only 4 HW OE#_1 OE#_0 status bit, PCIe1 enable status, read only 0 = PCIe1 disabled, 1 = PCIe1 enabled 3 HW OE#_2 OE#_0 status bit, PCIe2 enable status, read only 0 = PCIe2 disabled, 1 = PCIe2 enabled 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED Description Byte 11: Control Register 11 Bit @Pup Name 7 1 Vendor ID bit 3 Vendor ID Bit 3 6 0 Vendor ID bit 2 Vendor ID Bit 2 5 0 Vendor ID bit 1 Vendor ID Bit 1 4 0 Vendor ID bit 0 Vendor ID Bit 0 3 0 Rev Code Bit 3 Revision Code Bit 3 2 0 Rev Code Bit 2 Revision Code Bit 2 1 0 Rev Code Bit 1 Revision Code Bit 1 0 1 Rev Code Bit 0 Revision Code Bit 0 Byte 12: Byte Count 12 Bit @Pup Name 7 1 Device_ID3 Description 6 0 Device_ID2 5 1 Device_ID1 4 0 Device_ID0 7 0 RESERVED RESERVED 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED 0000 = Reserved 0001 = Reserved 0010 = Reserved 0011 = Reserved 0100 = Reserved 0101 = Reserved 0110 = Reserved 0111 = Reserved 1000 = Reserved 1001 = Reserved 1010 = CK610 Yellow Cover Device, 48-pin QFN 1011 = Reserved 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 8 of 23 SL28610 Byte 13: Control Register 13 Bit @Pup Name Description 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 RESERVED RESERVED 4 0 RESERVED RESERVED 3 0 RESERVED RESERVED 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED Byte 14: Control Register 14 Bit @Pup Name Description 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 RESERVED RESERVED 4 0 RESERVED RESERVED 7 0 RESERVED RESERVED 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED Description Byte 15: Control Register 15 Bit @Pup Name 7 0 BC7 Byte count 7 6 0 BC6 Byte count 6 5 0 BC5 Byte count 5 4 1 BC4 Byte count 4 3 0 BC3 Byte count 3 2 1 BC2 Byte count 2 1 1 BC1 Byte count 1 0 0 BC0 Byte count 0 Byte 16: Control Register 16 Bit @Pup Name 7 0 REF_Bit2 6 1 REF_Bit0 5:0 0 RESERVED Description REF Slew Rate Control Bit2 & Bit0 (see Byte 3 Bit 4 for Slew Rate REF_Bit1) ........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 9 of 23 RESERVED SL28610 Byte 17: Control Register 17 Bit @Pup Name Description 7 0 PLL1_DAF_N7 6 0 PLL1_DAF_N6 If Prog_PLL1_EN is set, the values programmed in PLL1_DAF_N[7:0] and PLL1_DAF_M[7:0] are used to determine the PLL1 output frequency. 5 0 PLL1_DAF_N5 4 0 PLL1_DAF_N4 7 0 PLL1_DAF_N3 2 0 PLL1_DAF_N2 1 0 PLL1_DAF_N1 0 0 PLL1_DAF_N0 Byte 18: Control Register 18 Bit @Pup Name Description If Prog_PLL1_EN is set, the values programmed in PLL1_DAF_N[7:0] and PLL1_DAF_M[7:0] are used to determine the PLL1 output frequency. 7 0 PLL1_DAF_M7 6 0 PLL1_DAF_M6 5 0 PLL1_DAF_M5 4 0 PLL1_DAF_M4 7 0 PLL1_DAF_M3 2 0 PLL1_DAF_M2 1 0 PLL1_DAF_M1 0 0 PLL1_DAF_M0 Byte 19: Control Register 19 Bit @Pup Name Description 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 Prog_PLL1_EN Programmable PLL1 frequency enable 0 = Disabled, 1= Enabled 4 0 Prog_PLL3_EN Programmable PLL3 frequency enable 0 = Disabled, 1= Enabled 3 0 CPU_OEB_DRIVE _Mode Controls CPU Output Drive States 1 = OUT=LOW and OUT#=LOW 0= OUT=HIGH and OUT#=LOW 2 0 PCIe_OEB_DRIVE _Mode Controls PCIe Output Drive States 1 = OUT=LOW and OUT#=LOW 0= OUT=HIGH and OUT#=LOW 1 0 LVDS_OEB_DRIVE _Mode Controls LVDS Output Drive States 1 = OUT=LOW and OUT#=LOW 0= OUT=HIGH and OUT#=LOW 0 0 DOT_OEB_DRIVE _Mode Controls DOT Output Drive States 1 = OUT=LOW and OUT#=LOW 0= OUT=HIGH and OUT#=LOW ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 10 of 23 SL28610 Byte 20: Control Register 20 Bit @Pup Name Description 7 0 PLL3_DAF_N7 6 0 PLL3_DAF_N6 If Prog_PLL3_EN is set, the values programmed in PLL3_DAF_N[7:0] and PLL3_DAF_M[7:0] are used to determine the PLL3 output frequency. 5 0 PLL3_DAF_N5 4 0 PLL3_DAF_N4 7 0 PLL3_DAF_N3 2 0 PLL3_DAF_N2 1 0 PLL3_DAF_N1 0 0 PLL3_DAF_N0 Byte 21: Control Register 21 Bit @Pup Name Description If Prog_PLL3_EN is set, the values programmed in PLL3_DAF_N[7:0] and PLL3_DAF_M[7:0] are used to determine the PLL3 output frequency. 7 0 PLL3_DAF_M7 6 0 PLL3_DAF_M6 5 0 PLL3_DAF_M5 4 0 PLL3_DAF_M4 7 0 PLL3_DAF_M3 2 0 PLL3_DAF_M2 1 0 PLL3_DAF_M1 0 0 PLL3_DAF_M0 CKPWRGD#/PD (Power down) Clarification The CKPWRGD#/PD pin is a dual-function pin. During initial power up, the pin functions as CKPWRGD#. Once CKPWRGD# has been sampled HIGH by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active HIGH input used to shut off all clocks cleanly before shutting off power to the device. This signal is synchronized internally to the device before powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted HIGH, clocks are driven to a LOW value and held before turning off the VCOs and the crystal oscillator. CKPWRGD#/PD (Power down) Assertion When PD is sampled HIGH by two consecutive rising edges of CPUC, all single-ended outputs will be held HIGH on their ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 11 of 23 next HIGH-to-LOW transition and differential clocks must held HIGH. When PD mode is desired as the initial power on state, PD must be asserted HIGH in less than 10 s after asserting CKPWRGD. CKPWRGD#/PD (Power Down) Deassertion The power up latency is less than 1.8 ms. This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are generated from the clock chip. All differential outputs stopped in a three-state condition, resulting from power down are driven high in less than 300 s of PD deassertion to a voltage greater than 200 mV. After the clock chip’s internal PLL is powered up and locked, all outputs are enabled within a few clock cycles of each clock. Figure 2 is an example showing the relationship of clocks coming up. SL28610 Figure 1. Power down Assertion Timing Waveform Figure 2. Power down Deassertion Timing Waveform ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 12 of 23 SL28610 Figure 3. CKPWRGD# Timing Diagram ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 13 of 23 SL28610 CPU_STP# Assertion CPU_STP# Deassertion The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are set with the SMBus configuration to be stoppable are stopped within two to six CPU clock periods after sampled by two rising edges of the internal CPUC clock. The final states of the stopped CPU signals are CPUT = HIGH and CPUC = LOW. The deassertion of the CPU_STP# signal causes all stopped CPU outputs to resume normal operation in a synchronous manner. No short or stretched clock pulses are produced when the clock resumes. The maximum latency from the deassertion to active outputs is no more than two CPU clock cycles. CPU_STP# CPUT CPUC Figure 4. CPU_STP# Assertion Waveform CPU_STP# CPUT CPUC CPUT Internal CPUC Internal Tdrive_CPU_STP#,10 ns>200 mV Figure 5. CPU_STP# Deassertion Waveform . . Table 1. Output Driver Status during PCI_STPPCI_STP# and CPU_STP# CPU_STP# Asserted Single-ended Clocks Stoppable Differential Clocks OE# Pins Disabled Running Non stoppable Running Stoppable Clock driven high Clock# driven low Non stoppable SMBus Disabled Driven low Clock driven high* Driven Low Running Note: *Differential clocks output state can be configured through Byte 19 bits 3:.0 ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 14 of 23 Driven low Clock# driven low* SL28610 Absolute Maximum Conditions Parameter Min. Max. Unit 3.3V Supply Voltage Functional –0.5 4.6 V 1.5V_VDD_CORE 1.5V Supply Voltage Functional –0.5 2.1 V 1.5V_VDD_IO DIFF I/O Supply Voltage Functional –0.5 2.1 V VIN Input Voltage Relative to VSS –0.5 4.6 VDC TS Temperature, Storage Non-functional –65 150 °C TA Commercial Temperature, Operating Ambient Functional 0 85 °C -40 +85 °C – 150 °C 3.3V_VDD Description Condition Industrial Temperature, Operating Ambient TJ Temperature, Junction Functional ØJC Dissipation, Junction to Case JEDEC (JESD 51) – 20 °C/W ØJA Dissipation, Junction to Ambient JEDEC (JESD 51) – 60 °C/W ESDHBM ESD Protection (Human Body Model) JEDEC (JESD 22-A114) 2000 – V UL-94 Flammability Rating UL (CLASS) V–0 Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. DC Electrical Specifications Parameter Description Condition Min. Max. Unit 1.5V_VDD_CORE 1.5V Operating Voltage 1.5V ± 5% 1.425 1.575 V 1.5V_VDD_IO 1.5V Differential I/O Supply Voltage 1.5V ± 5% 1.425 1.575 V 3.3V_VDD 3.3V Operating Voltage 3.3 ± 5% 3.135 3.465 V 3.3V_VIH 3.3V Input High Voltage (SE) 3.3V_VDD 2 3.3V_CORE+ 0.3 V 3.3V_VIL 3.3V Input Low Voltage (SE) VSS – 0.3 0.8 V VIHI2C Input High Voltage SDATA, SCLK 2.2 – V VILI2C Input Low Voltage SDATA, SCLK – 1.0 V VIH_FS FS_[C,B] Input High Voltage 1.05V_CORE VIL_FS FS_[C,B] Input Low Voltage VIH OE# Input High Voltage VIL OE# Input Low Voltage VIH PCIe_SEL Input High Voltage VIL PCIe_SEL Input Low Voltage IIH Input High Leakage Current IIL Input Low Leakage Current VOH 3.3V Output High Voltage (SE) IOH = –1 mA VOL 3.3V Output Low Voltage (SE) 1.5V_CORE 3.3V_CORE 0.9 1.5V_CORE + 0.3 V GND-0.3 0.25 V 1.2 1.5V_CORE + 0.3 V GND-0.3 0.3 V 2.0 VDD+0.3 V GND-0.3 0.8 V Except internal pull-down resistors, 0 < VIN < VDD – 5 A Except internal pull-up resistors, 0 < VIN < VDD –5 – A IOL = 1 mA 2.4 – V – 0.4 V VDD IO Low Voltage IO Supply Voltage 0.72 0.88 IOZ High-impedance Output Current –10 10 A CIN Input Pin Capacitance 1.5 5 pF ...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 15 of 23 SL28610 DC Electrical Specifications (continued) Parameter Description COUT Output Pin Capacitance LIN Pin Inductance VXIH Xin High Voltage VXIL Power Condition Min. Max. Unit 6 pF – 7 nH 0.7VDD VDD V Xin Low Voltage 0 0.3VDD V Power Consumption – 100 mW AC Electrical Specifications Parameter Description Condition Min. Max. Unit 47.5 52.5 % 69.841 71.0 ns – 10.0 ns Crystal TDC XIN Duty Cycle The device operates reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification TPERIOD XIN Period When XIN is driven from an external clock source TR/TF XIN Rise and Fall Times Measured between 0.3VDD and 0.7VDD TCCJ XIN Cycle to Cycle Jitter As an average over 1-s duration – 500 ps LACC Long-term Accuracy Measured at VDD/2 differential – 250 ppm TDC CLKIN Duty Cycle Measured at VDD/2 47 53 % Clock Input TR/TF CLKIN Rise and Fall Times Measured between 0.2VDD and 0.8VDD 0.5 4.0 V/ns TCCJ CLKIN Cycle to Cycle Jitter Measured at VDD/2 – 250 ps TLTJ CLKIN Long Term Jitter Measured at VDD/2 – 350 ps VIL Input Low Voltage XIN / CLKIN pin – 0.8 V VIH Input High Voltage XIN / CLKIN pin 2 VDD+0.3 V IIL Input LowCurrent XIN / CLKIN pin, 0 < VIN
SL28610BLCT 价格&库存

很抱歉,暂时无法提供与“SL28610BLCT”相匹配的价格&库存,您可以联系我们找货

免费人工找货