0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SL28EB740AZIT

SL28EB740AZIT

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    TFSOP-56

  • 描述:

    IC CLK CK505 TNLCK/TPCLF 56TSSOP

  • 数据手册
  • 价格&库存
SL28EB740AZIT 数据手册
SL28EB740 EProClock® Generator for Intel Tunnel Creek & Top Cliff Features • Buffered Reference Clock 25MHz • 25MHz Crystal Input or Clock input • Compliant Intel CK505 Clock spec • Support Wake-On-LAN (WOL) • Low power push-pull type differential output buffers • EProClock® Programmable Technology • Integrated resistors on differential clocks • I2C support with readback capabilities • Wireless friendly 3-bits slew rate control on single-ended clocks. • Triangular Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction • Differential CPU clocks with selectable frequency • Industrial Temperature -40oC to 85oC • 100MHz Differential SRC clocks • 3.3V Power supply • 75MHz Differential SATA clocks • 56-pin TSSOP package • 96MHz Differential DOT clock • 48MHz USB clock CPU SRC • Selectable 12 or 48MHz output x2/x3 x4/x7 SATA75 DOT96 x0/x1 x1 48M x1/2 48M/12M 33M x1 x2 25M 14.318M x1 x1 • 14.318MHz output Block Diagram XIN XOUT Crystal/ CLKIN Pin Configuration REF [1:0] PLL 1 (SSC) CPU Divider SRC PCI PLL 2 (SSC) 56 NC 55 GND_14M CLKREQ#1** 3 54 14M / FSC** CLKREQ#2** 4 53 VDD_14M PCI0/ SEL_SATA75** 5 FS [ C:A] CPU_STP# NC 1 NC 2 51 VDD_SUSP VDD_PCI 7 50 25M 8 49 GND PCIF/ ITP_EN** Divider CLKREQ#3** 9 SATA75M / SRC0 ITP_EN 12M_48M/ SEL12_48* 10 VDD_48 11 PCI/SRC_STP# PLL 3 (non-SSC) DOT96 Divider 48M/ FSA** 12 GND_48 13 CLKREQ[3:1] 48M DOT96 14 DOT96# 15 SEL_SATA75 PLL 4 (non-SSC) 12 / 48M Divider FSB** 16 GND_SATA 17 SATA75M / SRC0 18 SEL_12_48 SATA75M# / SRC0# 19 14.318M VDD_SATA 20 SRC1 21 OTP SRC1# 22 SCLK SDATA Logic Core CKPWRGD/ PD# VR 52 CKPWRGD / WOL_STP# / PD# GND_PCI 6 48 XIN / CLKIN 47 XOUT 46 PCI/SRC_STP#* 45 CPU_STP#* 44 SDATA 43 SCLK 42 GND_CPU 41 CPU0 40 CPU0# 39 VDD_CPU 38 CPU1 37 CPU1# 36 CPU2_ITP / SRC6 35 CPU2#_ITP / SRC6# SRC2 23 34 VDD_SRC SRC2# 24 33 GND_SRC SRC3 25 32 SRC5 SRC3# 26 31 SRC5# GND_SRC 27 30 SRC4 VDD_SRC 28 29 SRC4# * Internal 100K-ohm pull-up resistor ** Internal 100K-ohm pull down resistor DOC#: SP-AP-0006 (Rev. AC) 400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669 Page 1 of 21 www.silabs.com SL28EB740 56-TSSOP Pin Definitions Pin No. Name 1 NC 2 NC 3 CLKREQ#1** 4 CLKREQ#2** 5 PCI0 / SEL_SATA75** Type NC NC Description No Connect. No Connect. I, PD 3.3V clock request input (internal 100K-ohm pull-down) I, PD 3.3V clock request input (internal 100K-ohm pull-down) I/O, SE 33MHz clock output/3.3V LVTTL input to enable 75MHz SATA (internal PD 100K-ohm pull-down) 0 = SATA75/SRC0 = 100MHz, 1 = SATA75/SRC0 = 75MHz 6 GND_PCI GND Ground 7 VDD_PCI PWR 3.3V Power supply 8 PCIF / ITP_EN** 9 CLKREQ#3** 10 12_48M / SEL12_48* 11 VDD_48 12 48M / FSA** 13 GND_48 14 DOT96 O, DIF Fixed true 96MHz clock output 15 DOT96# O, DIF Fixed complement 96MHz clock output 16 FSB** I/O, SE, 33 MHz free running clock output/3.3V LVTTL input to enable SRC6 or PD CPU2_ITP (sampled on the CKPWRGD assertion) 0= SRC6, 1= CPU2 I, PD 3.3V clock request input (internal 100K-ohm pull-down) I/O, SE 12 MHz/ 48MHz Clock output/3.3V-tolerance input for 12MHz or 48MHz PU selection (Sampled at CKPWRGD assertion) (internal 100K-ohm pull-up) 0 = 48M, 1 = 12M PWR I/O PD GND 3.3V Power supply Fixed 48 MHz clock output/3.3V-tolerant input for CPU frequency selection (internal 100K-ohm pull-down) Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. Ground I, PD 3.3V-tolerant input for CPU frequency selection (internal 100K-ohm pull-down) Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. GND Ground 17 GND_SATA 18 SATA75M / SRC0 O, DIF 75MHz or 100MHz True differential serial reference clock 19 SATA75M# / SRC0# O, DIF 75MHz or 100MHz Complement differential serial reference clock 20 VDD_SATA 21 SRC1 O, DIF 100MHz True differential serial reference clock 22 SRC1# O, DIF 100MHz Complement differential serial reference clock 23 SRC2 O, DIF 100MHz True differential serial reference clock 24 SRC2# O, DIF 100MHz Complement differential serial reference clock 25 SRC3 O, DIF 100MHz True differential serial reference clock 26 SRC3# O, DIF 100MHz Complement differential serial reference clock PWR 3.3V Power supply 27 GND_SRC GND Ground 28 VDD_SRC PWR 3.3V Power supply 29 SRC4# O, DIF 100MHz True differential serial reference clock 30 SRC4 O, DIF 100MHz Complement differential serial reference clock 31 SRC5# O, DIF 100MHz True differential serial reference clock 32 SRC5 O, DIF 100MHz Complement differential serial reference clock 33 GND_SRC GND Ground 34 VDD_SRC PWR 3.3V Power supply 35 SRC6# / CPU2#_ITP DOC#: SP-AP-0006 (Rev. AC) O, DIF Selectable complementary differential CPU or SRC clock output. ITP_EN = 0 @ CKPWRGD assertion = SRC6 ITP_EN = 1 @ CKPWRGD assertion = CPU2 Page 2 of 21 SL28EB740 56-TSSOP Pin Definitions (continued) Pin No. 36 Name SRC6 / CPU2_ITP Type Description O, DIF Selectable True differential CPU or SRC clock output. ITP_EN = 0 @ CKPWRGD assertion = SRC6 ITP_EN = 1 @ CKPWRGD assertion = CPU2 37 CPU1# O, DIF Complement differential CPU clock output 38 CPU1 O, DIF True differential CPU clock output 39 VDD_CPU PWR 3.3V Power supply 40 CPU0# O, DIF Complement differential CPU clock output 41 CPU0 O, DIF True differential CPU clock output 42 GND_CPU 43 SCLK GND I SMBus compatible SCLOCK 44 SDATA 45 CPU_STP#* I, PU 3.3V-tolerant input for stopping CPU outputs (internal 100K-ohm pull-up) 46 PCI/SRC_STP#* I, PU 3.3V-tolerant input for stopping PCI and SRC outputs (internal 100K-ohm pull-up) 47 XOUT O 25.00MHz Crystal output, Float XOUT if using only CLKIN (Clock input) 48 XIN / CLKIN I 25.00MHz Crystal input or 3.3V, 25MHzClock Input 49 GND_SUSPEND 50 25MHz 51 VDD_SUSPEND 52 CKPWRGD/WOL_STP#/PD# 53 VDD_14 54 14.318M / FSC** 55 GND_14 56 NC I/O Ground GND O PWR I PWR SMBus compatible SDATA Ground for REF clock and WOL support 25MHz reference output clock 3.3V Power Supply for REF clock and power to support WOL 3.3V LVTTL input. This pin is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled / Asynchronous active low input pin that stops all outputs except free running 25MHz when WOL_EN = “1” (Byte 1 bit 1) This pin becomes a real-time active low input for asserting power down (PD#) when WOL_EN = “0” (Byte 1 bit 1). 3.3V Power supply I/O, PD Fixed 14.318MHz clock output/3.3V-tolerant input for CPU frequency selection (internal 100K-ohm pull-down) Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. GND NC Ground No Connect. EProClock® Programmable Technology EProClock® is the world’s first non-volatile programmable clock. The EProClock® technology allows board designer to promptly achieve optimum compliance and clock signal integrity; historically, attainable typically through device and/or board redesigns. - Custom frequency sets EProClock® technology can be configured through SMBus or hard coded. - Differential and single-ended slew rate control - Differential skew control on true or compliment or both - Differential duty cycle control on true or compliment or both - Differential amplitude control Features: - Program Internal or External series resistor on single-ended clocks - > 4000 bits of configurations - Program different spread profiles - Can be configured through SMBus or hard coded - Program different spread modulation rate DOC#: SP-AP-0006 (Rev. AC) Page 3 of 21 SL28EB740 Frequency Select Pin (FS) SEL_SATA FSC FSB FSA CPU SRC SATA PCI 0 0 0 0 100.00 100.00 100.00 33.33 0 0 0 1 100.00 100.00 100.00 33.33 0 0 1 0 83.33 100.00 100.00 33.33 0 0 1 1 83.33 100.00 100.00 33.33 0 1 0 0 133.33 100.00 100.00 33.33 0 1 0 1 133.33 100.00 100.00 33.33 0 1 1 0 166.67 100.00 100.00 33.33 0 1 1 1 166.67 100.00 100.00 33.33 1 0 0 0 100.00 100.00 75.00 33.33 1 0 0 1 100.00 100.00 75.00 33.33 1 0 1 0 83.33 100.00 75.00 33.33 1 0 1 1 83.33 100.00 75.00 33.33 1 1 0 0 133.33 100.00 75.00 33.33 1 1 0 1 133.33 100.00 75.00 33.33 1 1 1 0 166.67 100.00 75.00 33.33 1 1 1 1 166.67 100.00 75.00 33.33 Frequency Select Pin FS Serial Data Interface Apply the appropriate logic levels to FS inputs before CKPWRGD assertion to achieve host clock frequency selection. When the clock chip sampled HIGH on CKPWRGD and indicates that VTT voltage is stable then FS input values are sampled. This process employs a one-shot functionality and once the CKPWRGD sampled a valid HIGH, all other FS, and CKPWRGD transitions are ignored except in test mode. To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. The interface cannot be used during system operation for power management functions. Wake-On-LAN (WOL) Support When power is applied to the VDD_SUSPEND pin, the 25MHz reference clock output will be enabled under all conditions, unless the WOL_EN bit, Byte 1 bit 1, is set to “0”. When the WOL_EN bit Byte 1 bit 1, is set to “0”, the WOL_STP# pin will function as a PD# pin. By default, the WOL_EN bit is enabled and set to a “1”. The clock device will support “out-of-the-box” WOL or after a power outage by enabling the 25MHz reference clock output when the clock device powers up for the very first time with only power applied to the VDD_SUSPEND pin and all other VDD pins power have not been applied. Data Protocol The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code described in Table 1. The block write and block read protocol is outlined in Table 2 while Table 3 outlines byte write and byte read protocol. The slave receiver address is 11010010 (D2h). Table 1. Command Code Definition Bit 7 (6:0) Description 0 = Block read or block write operation, 1 = Byte read or byte write operation Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000' DOC#: SP-AP-0006 (Rev. AC) Page 4 of 21 SL28EB740 Table 2. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 9 10 18:11 19 27:20 28 36:29 37 45:38 Description Start Block Read Protocol Bit 1 Slave address–7 bits Write 8:2 9 Acknowledge from slave Command Code–8 bits 10 18:11 Description Start Slave address–7 bits Write Acknowledge from slave Command Code–8 bits Acknowledge from slave 19 Acknowledge from slave Byte Count–8 bits 20 Repeat start Acknowledge from slave Data byte 1–8 bits Acknowledge from slave Data byte 2–8 bits 27:21 Read = 1 29 Acknowledge from slave 37:30 46 Acknowledge from slave .... Data Byte /Slave Acknowledges .... Data Byte N–8 bits .... Acknowledge from slave .... Stop Slave address–7 bits 28 38 46:39 47 55:48 Byte Count from slave–8 bits Acknowledge Data byte 1 from slave–8 bits Acknowledge Data byte 2 from slave–8 bits 56 Acknowledge .... Data bytes from slave / Acknowledge .... Data Byte N from slave–8 bits .... NOT Acknowledge .... Stop Table 3. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 Description Start Slave address–7 bits Byte Read Protocol Bit 1 8:2 Description Start Slave address–7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 19 27:20 Command Code–8 bits Acknowledge from slave Data byte–8 bits 28 Acknowledge from slave 29 Stop 18:11 19 20 27:21 Acknowledge from slave Repeated start Slave address–7 bits 28 Read 29 Acknowledge from slave 37:30 DOC#: SP-AP-0006 (Rev. AC) Command Code–8 bits Data from slave–8 bits 38 NOT Acknowledge 39 Stop Page 5 of 21 SL28EB740 Control Registers Byte 0: Control Register 0 Bit @Pup Name Description 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 Spread Enable 4 HW SEL_SATA See Table 1 for SATA/SRC selection. 3 0 RESERVED RESERVED 2 HW FSC 1 HW FSB 0 HW FSA Enable spread for CPU/SRC/PCI outputs 0=Disable, 1= -0.5% See Table 1 for CPU Frequency selection Table Byte 1: Control Register 1 Bit @Pup Name 7 1 DOT96_OE Output enable for DOT96 0 = Output Disabled, 1 = Output Enabled Description 6 1 SATA75/SRC0_OE Output enable for SATA75/SRC0 0 = Output Disabled, 1 = Output Enabled 5 1 CPU2/SRC6_OE Output enable for CPU2/SRC6 0 = Output Disabled, 1 = Output Enabled 4 1 SRC2 Output enable for SRC2 0 = Output Disabled, 1 = Output Enabled 3 1 SRC1 Output enable for SRC1 0 = Output Disabled, 1 = Output Enabled 2 1 RESERVED 1 1 WOL_EN 0 0 RESERVED RESERVED Wake-On-LAN Enable bit 25MHz free running during VDD Suspend (S-states). If this bit is set to 0, the XTAL OSC will also be powered down in the Suspend States) RESERVED Byte 2: Control Register 2 Bit @Pup Name 7 1 48M_OE 6 0 RESERVED 5 1 14M_OE Output enable for 14M 0 = Output Disabled, 1 = Output Enabled 4 1 25M_OE Output enable for 25M 0 = Output Disabled, 1 = Output Enabled 3 1 12_48M_OE Output enable for 12_48M 0 = Output Disabled, 1 = Output Enabled 2 1 PCI0_OE Output enable for PCI0 0 = Output Disabled, 1 = Output Enabled 1 1 PCIF_OE Output enable for PCIF 0 = Output Disabled, 1 = Output Enabled 0 0 RESERVED DOC#: SP-AP-0006 (Rev. AC) Description Output enable for 48M 0 = Output Disabled, 1 = Output Enabled RESERVED RESERVED Page 6 of 21 SL28EB740 Byte 3: Control Register 3 Bit @Pup Name 7 1 CPU1_OE Output enable for CPU1 0 = Output Disabled, 1 = Output Enabled Description 6 1 CPU0_OE Output enable for CPU0 0 = Output Disabled, 1 = Output Enabled 5 0 CLKREQ#_3 Clock request for SRC2 0=Not controlled, 1= Controlled 4 0 CLKREQ#_3 Clock request for SRC6 (does not apply to CPU clock) 0=Not controlled, 1= Controlled 3 0 CLKREQ#_2 Clock request for SRC2 0=Not controlled, 1= Controlled 2 0 CLKREQ#_2 Clock request for SATA75M/SRC0 0=Not controlled, 1= Controlled 1 0 CLKREQ#_1 Clock request for SRC1 0=Not controlled, 1= Controlled 0 0 CLKREQ#_1 Clock request for SATA75M/SRC0 0=Not controlled, 1= Controlled Byte 4: Control Register 4 Bit @Pup Name 7 0 RESERVED 6 0 CPU1 5 HW 12_48M 4 0 CPU2 3 HW ITP_EN 2 0 RESERVED 1 0 CPU0 0 0 RESERVED Description RESERVED CPU1 Free Run Control 0= Free Running, 1= Stoppable Selectable 12_48M status 0= 48M, 1=12M CPU2 Free Run Control 0= Free Running, 1= Stoppable SelectableCPUe_ITP/ SRC6 status 0= SRC6, 1=CPU2 RESERVED CPU0 Free Run Control 0= Free Running, 1= Stoppable RESERVED Byte 5: Control Register 5 Bit @Pup Name 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 RESERVED RESERVED 4 1 SATA75/SRC0 SATA75/SRC0 Free Run Control 0= Free Running, 1= Stoppable 3 0 SRC6 SRC6 Free Run Control 0= Free Running, 1= Stoppable 2 0 SRC2 SRC2 Free Run Control 0= Free Running, 1= Stoppable 1 0 SRC1 SRC1 Free Run Control 0= Free Running, 1= Stoppable 0 0 RESERVED DOC#: SP-AP-0006 (Rev. AC) Description RESERVED Page 7 of 21 SL28EB740 Byte 6: Control Register 6 Bit @Pup Name 7 0 CPU_AMP 6 1 CPU_AMP 5 0 SRC_AMP 4 1 SRC_AMP 3 0 DOT96_AMP 2 1 DOT96_AMP 1 0 SATA_AMP 0 1 SATA_AMP Description CPU amplitude adjustment 00= 700mV, 01=800mV, 10=900mV, 11= 1000mV SRC amplitude adjustment 00= 700mV, 01=800mV, 10=900mV, 11= 1000mV DOT96 amplitude adjustment 00= 700mV, 01=800mV, 10=900mV, 11= 1000mV SATA75/SRC0 amplitude adjustment 00= 700mV, 01=800mV, 10=900mV, 11= 1000mV Byte 7: Vendor ID Bit @Pup Name 7 0 Rev Code Bit 3 Revision Code Bit 3 Description 6 0 Rev Code Bit 2 Revision Code Bit 2 5 0 Rev Code Bit 1 Revision Code Bit 1 4 1 Rev Code Bit 0 Revision Code Bit 0 3 1 Vendor ID bit 3 Vendor ID Bit 3 2 0 Vendor ID bit 2 Vendor ID Bit 2 1 0 Vendor ID bit 1 Vendor ID Bit 1 0 0 Vendor ID bit 0 Vendor ID Bit 0 Byte 8: Control Register 8 Bit @Pup Name 7 0 BC7 6 0 BC6 5 0 BC5 4 0 BC4 3 1 BC3 2 1 BC2 1 1 BC1 0 1 BC0 Description Byte count register for block read operation. The default value for Byte count is 15 In order to read beyond Byte 15, the user should change the byte count limit.to or beyond the byte that is desired to be read. Byte 9: Control Register 9 Bit @Pup Name 7 1 SRC5 Output enable for SRC5 0 = Output Disabled, 1 = Output Enabled 6 1 SRC4 Output enable for SRC4 0 = Output Disabled, 1 = Output Enabled 5 1 SRC3 Output enable for SRC3 0 = Output Disabled, 1 = Output Enabled 4 0 SRC5 SRC5 Free Run Control 0= Free Running, 1= Stoppable 3 0 SRC4 SRC4 Free Run Control 0= Free Running, 1= Stoppable 2 0 SRC3 SRC3 Free Run Control 0= Free Running, 1= Stoppable DOC#: SP-AP-0006 (Rev. AC) Description Page 8 of 21 SL28EB740 Byte 9: Control Register 9 (continued) 1 0 PCI0 PCI0 Free Run Control 0= Free Running, 1= Stoppable 0 1 PCIF PCIF Free Run Control 0= Free Running, 1= Stoppable Byte 10: Control Register 10 Bit @Pup Name Description 7 0 RESERVED RESERVED 6 0 RESERVED RESERVED 5 0 RESERVED RESERVED 4 0 RESERVED RESERVED 3 0 RESERVED RESERVED 2 0 RESERVED RESERVED 1 0 RESERVED RESERVED 0 0 RESERVED RESERVED Byte 11: Control Register 11 Bit @Pup Name 7 1 14M_Bit2 6 0 14M_Bit1 5 1 14M_Bit0 4 1 25M_Bit2 3 0 25M_Bit1 2 1 25M_Bit0 1 1 12_48M_Bit2 0 1 12_48M_Bit0 Description Drive Strength Control - Bit[2:0] Normal mode default ‘101’ Wireless Friendly Mode default to ‘111’ Byte 12: Byte Count Bit @Pup Name 7 1 48M_Bit2 6 0 48M_Bit1 5 1 48M_Bit0 4 1 PCI0_Bit2 3 0 PCI0_Bit1 2 1 PCI0_Bit0 1 0 RESERVED 0 0 12_48M_Bit1 DOC#: SP-AP-0006 (Rev. AC) Description Drive Strength Control - Bit[2:0] Normal mode default ‘101’ Wireless Friendly Mode default to ‘111’ Page 9 of 21 SL28EB740 Byte 13: Control Register 13 Bit @Pup Name Description 7 1 PCIF_Bit2 6 0 PCIF_Bit1 Drive Strength Control - Bit[2:0] Normal mode default ‘101’ Wireless Friendly Mode default to ‘111’ 5 1 PCIF_Bit0 4 0 RESERVED RESERVED 3 0 RESERVED RESERVED 2 0 RESERVED RESERVED 1 0 RESERVED 0 0 Wireless Friendly mode RESERVED Wireless Friendly Mode 0 = Disabled, Default all single-ended clocks slew rate config bits to ‘101’ 1 = Enabled, Default all single-ended clocks slew rate config bits to ‘111’ Byte 14: Control Register 14 Bit @Pup Name 7 1 RESERVED RESERVED Description 6 0 RESERVED RESERVED 5 1 RESERVED RESERVED 4 0 OTP_4 3 0 OTP_3 2 0 OTP_2 1 0 OTP_1 0 0 OTP_0 OTP_ID Idenification for programmed device . Table 4. Output Driver Status during CPU_STP# & PCIS_STP# CPU_STP# Asserted Single-ended Clocks Stoppable Differential Clocks PCI_STP# Asserted CLKREQ# Asserted Running Driven Low Running Non stoppable Running Running Running Stoppable Clock driven high Clock driven high Clock driven low Non stoppable Clock# driven low Clock# driven low Clock# driven low Running Running Running SMBus OE Disabled Driven low Clock driven low Table 5. Output Driver Status All Single-ended Clocks PD# = 0 (Power down) All Differential Clocks w/o Strap w/ Strap Clock Low Hi-z Low Clock# Low C DOC#: SP-AP-0006 (Rev. AC) Page 10 of 21 SL28EB740 PD# (Power down) Clarification The CKPWRGD/PD# pin is a dual-function pin. During initial power up, the pin functions as CKPWRGD. Once CKPWRGD has been sampled HIGH by the clock chip, the pin assumes PD# functionality. The PD# pin is an asynchronous active LOW input used to shut off all clocks cleanly before shutting off power to the device. This signal is synchronized internally to the device before powering down the clock synthesizer. PD# is also an asynchronous input for powering up the system. When PD# is asserted LOW, clocks are driven to a LOW value and held before turning off the VCOs and the crystal oscillator. PD# (Power down) Assertion When PD# is sampled LOW by two consecutive rising edges of CPUC, all single-ended outputs will be held LOW on their next HIGH-to-LOW transition and differential clocks must held LOW. When power down mode is desired as the initial power on state, PD# must be asserted LOW in less than 10 s after asserting CKPWRGD. PD# Deassertion The power up latency is less than 1.8 ms. This is the time from the deassertion of the PD# pin or the ramping of the power supply until the time that stable clocks are generated from the clock chip. All differential outputs stopped in a three-state condition, resulting from power down are driven high in less than 300 s of PD# deassertion to a voltage greater than 200 mV. After the clock chip’s internal PLL is powered up and locked, all outputs are enabled within a few clock cycles of each clock. Figure 2 is an example showing the relationship of clocks coming up. PD# CPUT, 133MHz CPUC, 133MHz SRCT 100MHz SRCC 100MHz USB, 48MHz DOT96T DOT96C PCI, 33 MHz REF Figure 1. Power down Assertion Timing Waveform Ts ta b le < 1 .8 m s PD# C P U T , 1 3 3 MH z C P U C , 1 3 3 MH z S R C T 1 0 0 MH z S R C C 1 0 0 MH z U S B , 4 8 MH z D OT 9 6 T D OT 9 6 C P C I, 3 3 MH z REF Td r iv e _ PW R D N # 2 00m V Figure 2. Power down Deassertion Timing Waveform DOC#: SP-AP-0006 (Rev. AC) Page 11 of 21 SL28EB740 FS _A, FS _B ,FS_C ,FS _D CKPWRGD P W R G D _V R M 0.2-0.3 m s D elay V D D C lock G en C lock S tate C lock O utputs C lock V C O S tate 0 W ait for V TT_PW R G D # D evice is not affected, V TT_P W R G D # is ignored S am ple S els S tate 1 State 2 O ff State 3 On On O ff Figure 3. CKPWRGD Timing Diagram CPU_STP# Assertion CPU_STP# Deassertion The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are set with the SMBus configuration to be stoppable are stopped within two to six CPU clock periods after sampled by two rising edges of the internal CPUC clock. The final states of the stopped CPU signals are CPUT = HIGH and CPUC = LOW. The deassertion of the CPU_STP# signal causes all stopped CPU outputs to resume normal operation in a synchronous manner. No short or stretched clock pulses are produced when the clock resumes. The maximum latency from the deassertion to active outputs is no more than two CPU clock cycles. CPU_STP# CPUT CPUC Figure 4. CPU_STP# Assertion Waveform CPU_STP# CPUT CPUC CPUT Internal CPUC Internal Tdrive_CPU_STP#,10 ns>200 mV Figure 5. CPU_STP# Deassertion Waveform DOC#: SP-AP-0006 (Rev. AC) Page 12 of 21 SL28EB740 PCI/SRC_STP# Assertion The PCI/SRC_STP# signal is an active LOW input used for synchronously stopping and starting the PCI outputs while the rest of the clock generator continues to function. The set-up time for capturing PCI/SRC_STP# going LOW is 10 ns (tSU). (See Figure 6.) The PCIF and SRC clocks are affected by this pin if their corresponding control bit in the SMBus register is set to allow them to be free running. For SRC clocks assertion description, please refer to CPU_STP# description. . Figure 6. PCI/SRC_STP# Assertion Waveform PCI/SRC_STP# Deassertion The deassertion of the PCI/SRC_STP# signal causes all PCI and stoppable PCIF to resume running in a synchronous manner within two PCI clock periods, after PCI/SRC_STP# transitions to a HIGH level. Simlarly, PCI/SRC_STP# deassertion will cause stoppable SRC clocks to resume running. For SRC clocks deassertion description, please refer to CPU_STP# description. . Figure 7. PCI/SRC_STP# Deassertion Waveform . . DOC#: SP-AP-0006 (Rev. AC) Page 13 of 21 SL28EB740 Absolute Maximum Conditions Parameter Description Condition VDD_3.3V Main Supply Voltage VIN Input Voltage Relative to VSS TS Temperature, Storage Non-functional TA Temperature, Operating Ambient Functional Functional Min. Max. Unit – 4.6 V –0.5 4.6 VDC –65 150 °C –40 85 °C TJ Temperature, Junction Functional – 150 °C ØJC Dissipation, Junction to Case JEDEC (JESD 51) – 20 °C/ W ØJA Dissipation, Junction to Ambient JEDEC (JESD 51) – 60 °C/ W ESDHBM ESD Protection (Human Body Model) JEDEC (JESD 22 - A114) 2000 – V UL-94 Flammability Rating UL (Class) V–0 Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. DC Electrical Specifications Parameter Description Min. Max. Unit 3.135 3.465 V 3.3V Input High Voltage (SE) 2.0 VDD + 0.3 V 3.3V Input Low Voltage (SE) VSS – 0.3 0.8 V VDD core 3.3V Operating Voltage VIH VIL Condition 3.3 ± 5% VIHI2C Input High Voltage SDATA, SCLK 2.2 – V VILI2C Input Low Voltage SDATA, SCLK – 1.0 V VIH_FS FS Input High Voltage 0.7 VDD+0.3 V VIL_FS FS Input Low Voltage VSS – 0.3 0.35 V IIH Input High Leakage Current Except internal pull-down resistors, 0 < VIN < VDD – 5 A IIL Input Low Leakage Current Except internal pull-up resistors, 0 < VIN < VDD –5 – A VOH 3.3V Output High Voltage (SE) IOH = –1 mA 3.3V Output Low Voltage (SE) IOL = 1 mA 2.4 – V – 0.4 V IOZ High-impedance Output Current –10 10 A CIN Input Pin Capacitance 1.5 5 pF COUT Output Pin Capacitance LIN Pin Inductance IDD_PD Power Down Current IDD_3.3V Dynamic Supply Current VOL DOC#: SP-AP-0006 (Rev. AC) – All outputs enabled. SE clocks with 5” traces. Differential clocks with 5” traces. Loading per CK505 spec. 6 pF 7 nH – 1 mA – 115 mA Page 14 of 21 SL28EB740 AC Electrical Specifications Parameter Description Condition Min. Max. Unit – 250 ppm Crystal LACC Long-term Accuracy Measured at VDD/2 differential Clock Input TDC CLKIN Duty Cycle Measured at VDD/2 47 53 % TR/TF CLKIN Rise and Fall Times Measured between 0.2VDD and 0.8VDD 0.5 4.0 V/ns TCCJ CLKIN Cycle to Cycle Jitter Measured at VDD/2 – 250 ps TLTJ CLKIN Long Term Jitter Measured at VDD/2 – 350 ps VIH Input High Voltage XIN / CLKIN pin 2 VDD+0.3 V VIL Input Low Voltage XIN / CLKIN pin – 0.8 V IIH Input HighCurrent XIN / CLKIN pin, VIN = VDD – 35 uA IIL Input LowCurrent XIN / CLKIN pin, 0 < VIN
SL28EB740AZIT 价格&库存

很抱歉,暂时无法提供与“SL28EB740AZIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货