®
Technology
SiI 1160 PanelLink Transmitter Data Sheet
Document # SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Silicon Image, Inc.
SiI-DS-0126-B March 2005
Application Information
To obtain the most updated Application Notes and other useful information for your design, please visit the Silicon Image web site at www.siliconimage.com or contact your local Silicon Image sales office.
Copyright Notice
This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the expressed written permission of Silicon Image, Inc. Silicon Image, the Silicon Image logo, PanelLink® and the PanelLink® Digital logo are registered trademarks of Silicon Image, Inc. TMDSTM is a trademark of Silicon Image, Inc. I2C is a trademark of Philips Semiconductor. All other trademarks are the property of their respective holders.
Trademark Acknowledgment
Disclaimer
This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights. All information contained herein is subject to change w ithout notice.
Revision History
Revision A B Date 07/07/04 03/01/05 Comment Data Sheet – 1st release Data Sheet – 2nd release – added I2C registers and pins, added dual zone PLL information, corrected recommended REXT_SW ING value from 380Ω to 510Ω, corrected package JEDEC code, added reset description.
© 2005 Silicon Image. Inc.
SiI-DS-0126-B
ii
SiI 1160 PanelLink Transmitter Data Sheet
TABLE OF CONTENTS
General Description ........................................................................................................................................ 1 Features ...................................................................................................................................................... 1 Functional Description .................................................................................................................................... 3 Electrical Specifications .................................................................................................................................. 4 Absolute Maximum Conditions ................................................................................................................... 4 Normal Operating Conditions ..................................................................................................................... 4 Digital I/O Specifications ............................................................................................................................. 4 DC Specifications ........................................................................................................................................ 5 AC Specifications ........................................................................................................................................ 5 Input Timing Diagrams ................................................................................................................................ 6 Pin Descriptions .............................................................................................................................................. 8 Input Pins .................................................................................................................................................... 8 Control and Configuration Pins ................................................................................................................... 8 Power Management Pins ............................................................................................................................ 9 Differential Signal Data Pins ....................................................................................................................... 9 Local Control (I2C) Interface ....................................................................................................................... 9 Reserved Pins ........................................................................................................................................... 10 Power and Ground Pins ............................................................................................................................ 10 Feature Information ...................................................................................................................................... 11 I2C Interface .............................................................................................................................................. 11 I2C Register Mapping ................................................................................................................................ 12 Dual Zone PLL .......................................................................................................................................... 13 Manual Zone Control ............................................................................................................................. 13 Automatic Zone Control......................................................................................................................... 14 Reset Description ...................................................................................................................................... 14 TFT Panel Data Mapping .......................................................................................................................... 15 Design Recommendations ........................................................................................................................... 20 Differences Between SiI 160 and SiI 1160 ............................................................................................... 20 EXT_SWING Selection ............................................................................................................................. 20 PCB Ground Planes .................................................................................................................................. 20 Voltage Ripple Regulation......................................................................................................................... 20 Spread Spectrum Support ......................................................................................................................... 21 Reset Circuit for I2C Application ................................................................................................................ 22 Power Control ........................................................................................................................................... 22 Decoupling Capacitors .............................................................................................................................. 23 Series Damping Resistors on Outputs...................................................................................................... 24 Source Termination Resistors on Differential Outputs .............................................................................. 24 Differential Trace Routing ......................................................................................................................... 25 Package Dimensions .................................................................................................................................... 28 Package .................................................................................................................................................... 28 Ordering Information ................................................................................................................................. 28
iii
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
LIST OF TABLES
Table 1. General I C Register Bits ................................................................................................................ 13 Table 2. Dual Zone PLL I2C Control Register Bits ........................................................................................ 14 Table 3. One Pixel/Clock Input/Output TFT Mode ........................................................................................ 15 Table 4. Two Pixels/Clock Input/Output TFT Mode ...................................................................................... 16 Table 5. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode ................................ 17 Table 6. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode ................................ 18 Table 7. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode .................................................... 19 Table 8. New Pin Functions for SiI 1160 Tx .................................................................................................. 20 Table 9. Power Consumption Characteristics .............................................................................................. 22 Table 10. Recommended Components for Bypass and Decoupling Circuits............................................... 23 Table 11. Routing Guidelines for DVI Traces................................................................................................ 27
2
LIST OF FIGURES
Figure 1. System Block Diagram – Typical Application .................................................................................. 1 Figure 2. Pin Diagram for SiI 1160 ................................................................................................................. 2 Figure 3. Functional Block Diagram ............................................................................................................... 3 Figure 4. Clock Cycle High/Low Times........................................................................................................... 6 Figure 5. Input Data Setup/Hold Time to IDCK .............................................................................................. 6 Figure 6. VSYNC, HSYNC and CTL[3:1] Delay Time from DE ...................................................................... 6 Figure 7. DE High and Low Times .................................................................................................................. 6 Figure 8. Reset Timing at Power-Up or Prior to First I2C Access ................................................................... 7 Figure 9. I2C Byte Read ................................................................................................................................ 11 Figure 10. I2C Byte Write .............................................................................................................................. 11 Figure 11. Voltage Regulation using LM317EMP ......................................................................................... 20 Figure 12. Planned Spread Spectrum Support Circuit ................................................................................. 21 Figure 13. Typical Reset Circuit.................................................................................................................... 22 Figure 14. Decoupling and Bypass Capacitor Placement ............................................................................ 23 Figure 15. Decoupling and Bypass Schematic............................................................................................. 23 Figure 16. Series Input Damping Resistors for Driving Source ................................................................... 24 Figure 17. Differential Output Source Terminations .................................................................................... 24 Figure 18. Source Termination Layout Illustration ........................................................................................ 25 Figure 19. Example of Incorrect Differential Signal Routing ........................................................................ 26 Figure 20. Example of Correct Differential Signal Routing ........................................................................... 26 Figure 21. Differential Trace Routing to DVI Connector (Top Side View) .................................................... 26 Figure 22. 100-pin TQFP Package Dimensions (JEDEC code MS-026-AED) ............................................ 28
SiI-DS-0126-B
iv
SiI 1160 PanelLink Transmitter Data Sheet
General Description
The SiI 1160 transmitter uses PanelLink Digital technology to support displays up to UXGA resolution. It supports up to true-color panels (24 bits per pixel, 16.7M colors) in 1 or 2 pixels-per-clock mode. All PanelLink products are designed on scaleable CMOS architecture to support future performance requirements while maintaining the same logical interface. The SiI 1160 transmitter follows this strategy by offering a pin-compatible upgrade to the SiI 160 transmitter that also brings longer cable support. PanelLink Digital technology simplifies the PC & display interface by resolving many of the system level issues associated with high-speed digital design, providing the system designer with a digital solution that is quicker to market and lower in cost.
Features
• • • • • • • • Scaleable Bandwidth: 25-165 MHz (VGA to UXGA) Backwards compatible replacement for the SiI 160 transmitter High Skew Inter pair Tolerance: 1 full input clock cycle (6ns at 165 MHz) Flexible interface: single or dual pixel input at up to 48 bits Cable Distance Support: over 20m DVI cable Fully DVI 1.0 compliant Advanced on-chip input clock jitter filter to ensure clean output to receiver Available in Universal package for both standard and Pb-Free (environmentally-friendly) applications.
control
Video Processor
even pixel data 24 / odd pixel data 24 / clock
SiI 1160 TMDS Tx
TMDS over DVI cable or flat cable
control even pixel data 24 / odd pixel data 24 / clock
Panel Controller
SiI 1161 TMDS Rx
Figure 1. System Block Diagram – Typical Application
1
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
O D D 8 -b its B L U E
IVCC
O D D 8 -b its G R E E N
DIO18
DIO17
DIO16
DIO15
DIO14
DIO13
DIO12
DIO11
DIO10
DIO9
DIO8
DIO7
O D D 8 -b its R E D
DIO20
DIO19
GND
DIO0
75
DIO6
DIO5
DIO4
DIO3
DIO2 73
DIO1 74
GND 67
VCC 56
51
52
53
54
55
57
58
59
60
61
62
63
64
65
66
68
69
70
71
72
CONTROLS
HSYNC
VSYNC
DE
GND
ID C K
IV C C
CTL3
CTL2
CTL1
PVCC2
PGND2
VCC
GND
D IE 2 3
D IE 2 2
D IE 2 1
D IE 2 0
D IE 1 9
D IE 1 8
D IE 1 7
D IE 1 6
IV C C
D IE 1 5
D IE 1 4
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
50
49
48
47
46
45
44
43
42
41
D IO 2 1
D IO 2 2
D IO 2 3
AGND
TX2+
TX2AVCC
IN P U T CLOCK
GPI
DIFFERENTIAL SIGNALS
TX1+
TX1AGND
TX0+
TX0RSVD
AGND
AVCC
TXC+
TXCAGND
PLL
IS E L /R S T
S iI 1 1 6 0
1 0 0 -P in T Q F P
( T o p V ie w )
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
EVEN 8-bits RED
E X T _ S W IN G
GND
VCC
RSVD
RSVD
RSVD
PD
PIXS
EDGE
SDA
RSVD
MSEN
SCL
PGND1
PVCC1
IVCC
DIE0
DIE1
DIE2
DIE3
DIE4
DIE5
DIE6
DIE7
VCC
GND
DIE8
DIE9
DIE10
DIE11
DIE12
E V E N 8 - b it s G R E E N
DIE13
E V E N 8 -b its B L U E
PLL
CONTROL
C O N F IG U R A T IO N P IN S
Figure 2. Pin Diagram for SiI 1160
SiI-DS-0126-B
2
SiI 1160 PanelLink Transmitter Data Sheet
Functional Description
The SiI 1160 Tx is a DVI 1.0 compliant PanelLink transmitter in a compact package. It provides 48 bits for data input to allow for panel support up to UXGA. Figure 3 shows the functional blocks of the chip.
EXT_SWING DIE[23:0] DIO[23:0] DE HSYNC VSYNC CTL3 CTL2 CTL1 I2C Registers ----------Configuration Logic ----------Message Encoder Logic CTL0 DATA Data Capture Logic CTL1 Encoder 1 24 24 DATA HSYNC VSYNC
Swing Control Tx0+ Tx0 Tx0-
Encoder 0
Tx1+ Tx1 Tx1-
EDGE PIXS SDA SCL
DATA CTL2 CTL3
config info
Encoder 2
Tx2+ Tx2 Tx2-
IDCK
Jitter Filter
Main PLL TxC
TxC+ TxC-
Figure 3. Functional Block Diagram
3
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Electrical Specifications
Absolute Maximum Conditions
Symbol
VCC1 VI VO2 Tj TSTG
Parameter
Supply Voltage 3.3V Input Voltage Input Voltage Junction Temperature (with power applied) Storage Temperature
Min
-0.3 -0.3 -0.3 -65
Typ
Max
4.0 VCC+ 0.3 VCC+ 0.3 125 150
Units
V V V °C °C
Note 1. Permanent device damage may occur if absolute maximum conditions are exceeded. 2. Functional operation should be restricted to the conditions described under normal operating conditions.
Normal Operating Conditions
Symbol
VCC VCCN TA θJA Note 1. Airflow at 0m/s.
Parameter
Supply Voltage Supply Voltage Noise Ambient Temperature (with power applied) Thermal Resistance (junction to ambient)1
Min
3.0 0
Typ
3.3 25
Max
3.6 100 70 53
Units
V mVP-P °C °C/W
Digital I/O Specifications
Under normal operating conditions unless otherwise specified. Symbol
VIH VIL VOH VOL VCINL VCIPL VCONL VCOPL IOL
Parameter
High-level Input Voltage Low-level Input Voltage High-level Input Voltage Low-level Input Voltage Input Clamp Voltage1 Input Clamp Voltage1 Input Clamp Voltage1 Input Clamp Voltage1 Input Leakage Current
Conditions
Min
2
Typ
Max
0.8
Units
V V V V V V V V µA
2.4 ICL = -18mA ICL = 18mA ICL = -18mA ICL = 18mA High Impedance 0.4 GND -0.8 IVCC + 0.8 GND -0.8 OVCC + 0.8 10
-10
Note 1. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater than 3 ns or one third of the clock cycle.
SiI-DS-0126-B
4
SiI 1160 PanelLink Transmitter Data Sheet
DC Specifications
Under normal operating conditions, with REXT_SWING = 510Ω and using source termination, unless otherwise specified. Symbol
VOD
Parameter
Differential Voltage Single ended peak to peak amplitude Differential High-level Output Voltage1 Differential Output Short Circuit Current1 Power-down Current2 Transmitter Supply Current
Conditions
RLOAD = 50Ω
Min
510
Typ
550 AVCC
Max
590
Units
mV V
VDOH IDOS IPD ICCT
VOUT = 0 V
5 5
µA mA mA
IDCK= 165 MHz, two pixel per clock mode IVCC = VCC, Worst Case Pattern3
140
200
Notes 1. Guaranteed by design. 2. Assumes all inputs to the transmitter are not toggling. 3. The Worst Case Pattern consists of a black and white checkerboard pattern, each checker one pixel wide.
AC Specifications
Under normal operating conditions with source termination and the recommended REXT_SWING value unless otherwise specified. Symbol
TCIP FCIP TCIP FCIP TCIH TCIL TSIDF THIDF TSIDR THIDR TDDF TDDR THDE TLDE TI2CDVD TRESET
Parameter
IDCK Period, 1 Pixel/Clock IDCK Frequency, 1 Pixel/Clock IDCK Period, 2 Pixels/Clock IDCK Frequency, 2 Pixels/Clock IDCK High Time at 165MHz IDCK Low Time at 165MHz Data, DE, VSYNC, HSYNC, and CTL[3:1] Setup Time to IDCK falling edge Data, DE, VSYNC, HSYNC, and CTL[3:1] Hold Time from IDCK falling edge Data, DE, VSYNC, HSYNC, and CTL[3:1] Setup Time to IDCK rising edge Data, DE, VSYNC, HSYNC, and CTL[3:1] Hold Time from IDCK rising edge VSYNC, HSYNC, and CTL[3:1] Delay from DE falling edge1 VSYNC, HSYNC, and CTL[3:1] Delay to DE rising edge1 DE high time1 DE low time1 SDA Data Valid Delay from SCL high to low transition ISEL/RST Signal High Time required for valid I2C reset
Conditions
Min
6 25 12 12 2 2 1.5 1.5 1.5 1.5 TCIP TCIP
Max
40 165 80 81
Units
ns MHz ns MHz ns ns ns ns ns ns ns ns ns ns ns µs
EDGE = 0 EDGE = 0 EDGE = 1 EDGE = 1
8191TCIP 128TCIP CL = 400pf 50 1000
Notes 1. Guaranteed by design. 2. All TMDS signaling is guaranteed to meet the DVI 1.0 specifications. 2 3. All Standard mode I C (100kHz and 400kHz) timing requirements are guaranteed by design.
5
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Input Timing Diagrams
TCIP TCIH 80% VCC 80% VCC 80% VCC
20% VCC TCIL
20% VCC
Figure 4. Clock Cycle High/Low Times
IDCK TSIDF D[23:0], DE, HSYNC,VSYNC 50 %
50 % THIDF
50 %
50 % TSIDR THIDR
Figure 5. Input Data Setup/Hold Time to IDCK
DE
20% VCC
DE
20% VCC
TDDF
VSYNC, HSYNC, CTL[3:1] 20% VCC VSYNC, HSYNC, CTL[3:1]
TDDR
20% VCC
Figure 6. VSYNC, HSYNC and CTL[3:1] Delay Time from DE
THDE
DE
80% VCC 80% VCC 20% VCC
20% VCC
TLDE
Figure 7. DE High and Low Times
SiI-DS-0126-B
6
SiI 1160 PanelLink Transmitter Data Sheet
VCCmax VCCmin VCC TRESET ISEL/RST
Figure 8. Reset Timing at Pow er-Up or Prior to First I2C Access
TRESET
7
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Pin Descriptions
Input Pins
Pin Name DIE23DIE0 Pin # See SiI 1160 Pin Diagram Type Description In Input Even Data[23:0] corresponds to 24-bit pixel data for 1-pixel/clock input mode and to the first 24-bit pixel data for 2-pixels/clock mode. Input data is synchronized with Input data clock (IDCK). Data can be latched on the rising of the falling edge of IDCK depending on whether EDGE is high or low, respectively. Refer to TFT Panel Data Mapping in this document and DSTN Panel Data Mapping application note (SiI-AN-0007-A), which tabulates the relationship between the input data to the transmitter and output data from the Receiver In Input Odd Data[23:0] corresponds to the second 24-bit pixel data for 2-pixels/clock mode. Tie all pins to low when not in use. Input data is synchronized with Input data clock (IDCK). Data can be latched on the rising of the falling edge of IDCK depending on whether EDGE is high or low, respectively. Dual Link is not supported. In Input Data Clock. Input data and control signals can be valid either on the falling or the rising edge of IDCK as selected by the EDGE pin. In Input Data Enable. This signal qualifies the active data area. DE is always required by the transmitter and must be high during active display time and low during blanking time. In Horizontal Sync input control signal. In Vertical Sync input control signal.
DIO23DIO0
See SiI 1160 Pin Diagram
IDCK DE HSYNC VSYNC
80 78 76 77
Control and Configuration Pins
Pin Name EDGE Pin # 24 Type Description In Data/Control Latching Edge. A LOW level indicates that all input signals(DIE/DIO[23:0], HSYNC, VSYNC, DE and CTL[3:1] are latched on the falling edge of IDCK, while a HIGH level(3.3V) indicates that all input signals are latched on the rising edge of IDCK. When the I2C interface is enabled (ISEL/RST=LOW), this pin is ignored and the EDGE register bit is used instead. In Pixel Select. A LOW level indicates one pixel (up to 24-bits) per clock mode using DIE[23:0]. A HIGH level (3.3V) indicates two pixels (up to 48-bits) per clock mode using DIE[23:0] for the first pixel and DIO[23:0] for the second pixel. In General Input control signal 1. Spread Spectrum Clock Input (future). A planned future variation of this device will allow a spread spectrum version of SS_CLK_OUT to be driven into this pin, at which time pin 29 will become CTL1. In General Input control signal 2. Out Spread Spectrum Clock Output (future). A planned future variation of this device will allow a clock to be driven out of this pin for conditioning by a spread spectrum device, at which time pin 28 will become CTL2. In General Input control signal 3. In Reserved. Must be tied HIGH for normal operation. Spread Spectrum Enable. A planned future variation of this device will use this pin to enable pins 83 and 84 to handle spread spectrum clock. Low = Spread Spectrum feature enabled on pins 83 and 84 High = Pins 83 and 84 are CTL2 and CTL1 outputs (default)
PIXS
25
CTL1 SS_CLK_IN
84
CTL2 SS_CLK_OUT
83
CTL3 RSVD SS_EN#
82 27
SiI-DS-0126-B
8
SiI 1160 PanelLink Transmitter Data Sheet
Power Management Pins
Pin Name PD Pin # 26 Type Description In Power Down (active LOW). A HIGH level indicates normal operation. A LOW level indicates power down mode. During power down mode, all data (DIE/DIO[23:0]), data enable (DE), clock (IDCK) and control signals (HSYNC, VSYNC, CTL[3:1]), input buffers are disabled, all output buffers are tri-stated and all internal circuitry is powered down. When the I2C interface is enabled (ISEL/RST=LOW), this pin is ignored and the PD register bit is used instead. Tie this pin low if not used.
Differential Signal Data Pins
Pin Name TX0+ TX0TX1+ TX1TX2+ TX2TXC+ TXCEXT_SWING Pin # 40 39 43 42 46 45 35 34 32 Type Analog Analog Analog Analog Analog Analog Analog Analog Analog Description TMDS Low Voltage Differential Signal input data pairs. These pins are tri-stated when PD is asserted.
TMDS Low Voltage Differential Signal input clock pair. These pins are tri-stated when PD is asserted. Voltage Swing Adjust. A resistor should tie this pin to AVCC. This resistor determines the amplitude of the voltage swing. A smaller resistor value sets a larger voltage swing and vice versa. For remote display applications with source termination, a 510Ω resistor is recommended (see page 24). Without the source termination, use a 560Ω resistor.
Local Control (I2C) Interface
The transmitter can operate with or without an I2C interface connection. Refer to the Feature Information section for details on using the I2C registers. Pin Name
ISEL/RST
Pin #
87
Type
In
Description
I2C Interface Select. If LOW, then the I2C interface is active. If HIGH, the interface is inactive and chip configuration is taken from strap and default settings. This pin also acts as an asynchronous reset to the I2C interface controller. Switching this input from HIGH to LOW after a minimum TRESET high time resets the I2C logic. Monitor Sense. The behavior of this output depends on whether the I2C interface is enabled or disabled. No I2C (ISEL = HIGH) MSEN=HIGH: a powered on receiver is detected at the TMDS outputs. MSEN=LOW: a powered on receiver is not detected. This Receiver Sense function can only be used in DC-coupled systems. 2 I C enabled (ISEL = LOW) 2 The output is programmable through the I C interface and can indicate the Hot Plug or Receiver Sense signal state, or can instead generate a status change interrupt for those signals. This pin is an open collector output. An external pull-up resistor (5KΩ recommended) is required on this pin if the MSEN signal will be used. Otherwise the signal should be tied low. I2C Clock. When the I2C interface is enabled (ISEL=LOW), this pin acts as the I2C clock input. This pin is an open collector output. It must be pulled high to VCC through a resistor; a value of 2.2KΩ is recommended for I2C applications, 2-5KΩ otherwise. This pin is not 5V-tolerant. I2C Data. When the I2C interface is enabled (ISEL=LOW), this pin acts as the I2C data input and output. This pin is an open collector output. It must be pulled high to VCC through a resistor; a value of 2.2KΩ is recommended for I2C applications, 2-5KΩ otherwise. This pin is not 5V-tolerant.
MSEN
21
Out
SCL
20
In
SDA
23
In/Out
9
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Reserved Pins
It is preferable to tie indicated pins HIGH through a 2-5KΩ resistor; direct connection to VCC is not recommended.
Pin Name RSVD RSVD RSVD RSVD Pin # 22 28 29 38 Type In In In -Description Reserved. Must be tied HIGH for normal operation. Reserved. Must be tied HIGH for normal operation. Reserved. Must be tied HIGH for normal operation. Reserved. Should be left unconnected (but can be tied to AVCC for existing SiI 160 designs).
Power and Ground Pins
Pin Name VCC GND IVCC AVCC AGND PVCC1 PVCC2 PGND1 Pin # 8,30,56,88 7,31,57,67,79,89 17,66,81,98 36,44 33,37,41,47 18 85 19 Type Power Ground Power Power Ground Power Power Ground Description Digital Core VCC, must be set to 3.3V. Digital Core GND. Input VCC, must be set to 3.3V. Analog VCC must be set to 3.3V. Analog GND. Primary PLL Analog VCC must be set to 3.3V. Filter PLL Analog VCC must be set to 3.3V. PLL Analog GND. PGND1 should not be directly connected to PGND2 before being connected to the GROUND plane. They should be connected individually to the GROUND plane. PLL Analog GND. PGND2 should not be directly connected to PGND1 before being connected to the GROUND plane. They should be connected individually to the GROUND plane.
PGND2
86
Ground
SiI-DS-0126-B
10
SiI 1160 PanelLink Transmitter Data Sheet
Feature Information
I2C Interface
The SiI 1160 Tx provides an I2C slave interface for more precise control of the chip features. Use of this interface is optional and is selected by the ISEL/RST pin. If not used, the chip register settings return to a default state; the EDGE and PD features then come under the control of the respective strap pins instead. The I2C slave state machine operates from an internal clock derived from the incoming SCL signal. No video clock and input is required to read and write to the I2C registers from address 0x00 to 0x0F. These accesses can also take place using only the SCL clock in power down mode. The transmitter responds to the seven-bit binary I2C address of 0x70. A read or write transaction is determined by bit 0 of the I2C address. Setting this bit to 0 will enable a write transaction and setting this bit to 1 will enable a read transaction. The I2C read operation is shown in Figure 9, and the write operation in Figure 10. Page mode is not supported.
Start
Start
Bus Activity : Master
Slave Address
Register Address
Slave Address
SDA
S A C K A C K
S A C K
Data
No A C K
Figure 9. I2C Byte Read
Start Bus Activity : Master Slave Address Register Address Data Stop
SDA
S A C K A C K A C K
P
Figure 10. I2C Byte Write
11
SiI-DS-0126-B
Stop P
SiI 1160 PanelLink Transmitter Data Sheet
I2C Register Mapping
Addr. 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB0xD 0xE 0xF RSVD write to 00 EZONE RSVD write to 00 VEN RSVD RSVD write to 1000000 RSVD ZONEF ZONEO RSVD write to 001 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 VND_IDL VND_IDH DEV_IDL DEV_IDH DEV_REV RSVD FRQ_LOW FRQ_HIGH HEN RSVD write to 01 RSEN EDGE RSVD CTL0 PD 0x19 0x64 00110100 read only 10000001 5, 6 4 00000001 4 3, 5, 6 Default Value 0x01 0x00 0x06 0x00 0x00 4 Notes
RSVD
Notes: 1. Hexadecimal values use a prefix of ‘0x’. All values use bit 7 as most significant, bit 0 as least significant. 2. Read-only or read/write capabilities are noted on the next page. 3. On any reset assertion event, registers that have default values lose their previously programmed value and are set back to the default values listed. 4. Registers listed as RSVD and shaded gray are reserved for factory use and should not be accessed.
5. Write RSVD bits to the values indicated when writing other bits in the register. 6. Write PD to 1 for normal operation; write CTL0 to 0 for HDMI applications.
SiI-DS-0126-B
12
SiI 1160 PanelLink Transmitter Data Sheet
Table 1. General I2C Register Bits
Register Name VND_IDL VND_IDH DEV_IDL DEV_IDH DEV_REV FRQ_LOW FRQ_HIGH HEN Access RO RO RO RO RO RO RO RW Description Vendor ID Low byte (0x01) Vendor ID High byte (0x00) Device ID Low byte (0x06) Device ID High byte (0x00) Device Revision (0x00) IDCK. Low frequency limit is 25MHz. (0x19) IDCK High frequency limit is 165MHz. Value is offset over 65MHz. (0x64) Horizontal Sync Enable 0 – HSYNC input is transmitted as fixed LOW 1 – HSYNC input is transmitted as input. → Default Vertical Sync Enable 0 – VSYNC input is transmitted as fixed LOW 1 – VSYNC input is transmitted as input. → Default Edge Select (same function as EDGE pin) 0 – Input data low order bits latched first → Default 1 – Input data high order bits latched first Power Down mode (same function as PD# pin) 0 – Power Down. → Default after RESET 1 – Normal operation Receiver Sense. This bit is HIGH if a powered on receiver is connected to the transmitter outputs, LOW otherwise. This function is only available for use in DC-coupled systems. Control 0. CTL0, CTL1, CTL2, CTL3 are sent over TMDS interface when DE is LOW. CTL1-3 are driven in from external pins, but CTL0 is not available externally and therefore must be set through this register. Set to 0 for HDMI applications. 0 – Transmit CTL0 as LOW 1 – Transmit CTL0 as HIGH Note that when not in I2C mode, CTL0 is always transmitted as HIGH.
VEN
RW
EDGE
RW
PD
RW
RSEN CTL0
RO RW
Notes: 1. RO = Read Only Registers 2. RW = Read/Write Registers 3. ‘Default’ indicates value set after a reset event. Not all bits default to a defined state after reset.
Dual Zone PLL
The SiI 1160 Tx offers a dual-zone PLL that changes its operational parameters depending on the frequency zone selected. In the low zone, operation is ideal in the low frequency range, from 20MHz to around 120MHz. High zone operation is optimized in the high frequency range, above 100MHz. In the overlapping range, either low zone or high zone operation can be used. Operating zone optimization contributes to robust operation over long cables. For example, optimized PLL characteristics account for the ability of the transmitter to send video at UXGA over 20m cables. PLL zone selection is controlled either manually or automatically. Manual zone control is the preferred mode of operation.
Manual Zone Control
Whenever the application allows it, PLL zone selection should be made manually. The I2C register bits ZONEF and EZONE allow the host graphics controller to set the optimal zone for the current video resolution being transmitted. For frequencies over 100MHz, the controller should select high zone PLL operation. Table 2 describes the relevant register bits.
13
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Automatic Zone Control
For applications that are not able to program the I2C registers, the chip incorporates an automatic zone control circuit. This circuit determines whether the input pixel clock is operating in the low frequency range or the high frequency range, and sets the PLL zone selection accordingly. The chip defaults to the automatic mode of zone selection after reset. The zone determination depends primarily on input frequency, but is also affected by operating voltage and chip temperature. Therefore, it is possible for an automatic zone switch to occur while video input is stable, causing momentary (~1µs) unevenness in the video output clock and data streams. This could occur, for example, while the chip is still warming up to its normal operating temperature. However, the automatic selection circuit provides wide hysteresis to ensure that there will not be any oscillation around the zone switch point. Table 2. Dual Zone PLL I2C Control Register Bits
Register Name ZONEF Access RW Description Zone Force. Enable external selection of main PLL operating zone. When ZONEF=1, the main PLL zone is selected by EZONE. 0 – Automatic zone selection – EZONE bit disabled (default) 1 – Manual zone selection – EZONE bit enabled External Zone Select. Selects operating zone of main PLL, but only when ZONEF=1 (disabled by default). 0 – Low zone (recommended for 20-120MHz) 1 – High zone (recommended for > 100MHz) Zone Output – indicates current operating zone. When ZONEF=0 (automatic), ZONEO indicates that PLL is operating in zone optimized for: 0 = Lower frequencies 1 = Higher frequencies. When ZONEF=1 (manual), ZONEO information is not used.
EZONE
RW
ZONEO
RO
Reset Description
The input pin ISEL/RST serves as an asynchronous reset for the I2C slave controller in I2C mode. The programming registers, which are accessible over the I2C bus, lose their previously programmed values as soon as ISEL/RST is switched from HIGH to LOW. I2C registers whose default values are not correct for normal operation must then be manually set to their appropriate value. ISEL/RST serves only to set the registers to their default values, and to restore the interface to a known initial state. Without an initial reset, the I2C interface may not respond properly. The minimum ISEL/RST high time for proper reset, after nominal VCC values have been reached, is TRESET. Register bit function PD is disabled after reset to eliminate any unexpected chip output before initialization. The state of this bit is set during the reset period according to the following rule: After a reset, the chip is turned off; the power down control bit, PD, is forced to 0. When the chip comes out of reset (ISEL/RST goes LOW), the TMDS outputs will be disabled and the transmitter will be turned off. To turn the transmitter back on, the PD bit must be set to 1 over the I2C bus.
SiI-DS-0126-B
14
SiI 1160 PanelLink Transmitter Data Sheet
TFT Panel Data Mapping
The following TFT data mapping tables are strictly listed for single link TFT applications only. For DSTN mapping please refer to Application Note SiI-AN-0007-A. SiI 1151 and SiI 1161 have the same pinout. Table 3. One Pixel/Clock Input/Output TFT Mode TFT VGA Output 24-bpp 18-bpp
B0 B1 B2 B3 B4 B5 B6 B7 G0 G1 G2 G3 G4 G5 G6 G7 R0 R1 R2 R3 R4 R5 R6 R7 Shift CLK VSYNC HSYNC DE
Tx Input Data Rx Output Data TFT Panel Input 1160 164 1161 141B 24-bpp 18-bpp
DIE0 DIE1 DIE2 DIE3 DIE4 DIE5 DIE6 DIE7 DIE8 DIE9 DIE10 DIE11 DIE12 DIE13 DIE14 DIE15 DIE16 DIE17 DIE18 DIE19 DIE20 DIE21 DIE22 DIE23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 QE0 QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10 QE11 QE12 QE13 QE14 QE15 QE16 QE17 QE18 QE19 QE20 QE21 QE22 QE23 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 B0 B1 B2 B3 B4 B5 B6 B7 G0 G1 G2 G3 G4 G5 G6 G7 R0 R1 R2 R3 R4 R5 R6 R7
B0 B1 B2 B3 B4 B5
B0 B1 B2 B3 B4 B5
G0 G1 G2 G3 G4 G5
G0 G1 G2 G3 G4 G5
R0 R1 R2 R3 R4 R5
R0 R1 R2 R3 R4 R5
Shift IDCK IDCK ODCK ODCK Shift CLK Shift CLK CLK VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC DE DE DE DE DE DE DE
For 18-bit mode, the Flat Panel Graphics Controller interfaces to the transmitter exactly the same as in the 24-bit mode; however, 6 bits per channel (color) are used instead of 8. It is recommended that unused data bits be tied low. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB justified. The data is sent during active display time while the control signals are sent during blank time. Note that the three data channels (CH0, CH1, CH2) are mapped to Blue, Green and Red data respectively.
15
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet Table 4. Tw o Pixels/Clock Input/Output TFT Mode TFT VGA Output 24-bpp 18-bpp
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0 B6 - 0 B7 - 0 G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0 G6 - 0 G7 - 0 R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0 R6 - 0 R7 - 0 B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1 B6 - 1 B7 - 1 G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1 G6 - 1 G7 - 1 R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 R6 - 1 R7 - 1 ShiftClk/2 VSYNC HSYNC DE
Tx Input Data Rx Output Data 1160 1161
DIE0 DIE1 DIE2 DIE3 DIE4 DIE5 DIE6 DIE7 DIE8 DIE9 DIE10 DIE11 DIE12 DIE13 DIE14 DIE15 DIE16 DIE17 DIE18 DIE19 DIE20 DIE21 DIE22 DIE23 DIO0 DIO1 DIO2 DIO3 DIO4 DIO5 DIO6 DIO7 DIO8 DIO9 DIO10 DIO11 DIO12 DIO13 DIO14 DIO15 DIO16 DIO17 DIO18 DIO19 DIO20 DIO21 DIO22 DIO23 IDCK VSYNC HSYNC DE QE0 QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10 QE11 QE12 QE13 QE14 QE15 QE16 QE17 QE18 QE19 QE20 QE21 QE22 QE23 QO0 QO1 QO2 QO3 QO4 QO5 QO6 QO7 QO8 QO9 QO10 QO11 QO12 QO13 QO14 QO15 QO16 QO17 QO18 QO19 QO20 QO21 QO22 QO23 ODCK VSYNC HSYNC DE
TFT Panel Input 24-bpp 18-bpp
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0 B6 - 0 B7 - 0 G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0 G6 - 0 G7 - 0 R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0 R6 - 0 R7 - 0 B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1 B6 - 1 B7 - 1 G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1 G6 - 1 G7 - 1 R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 R6 - 1 R7 - 1 Shift CLK VSYNC HSYNC DE
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0
G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0
G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0
R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0
R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0
B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1
B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1
G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1
G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1
R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 ShiftClk/2 VSYNC HSYNC DE
R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 Shift CLK VSYNC HSYNC DE
SiI-DS-0126-B
16
SiI 1160 PanelLink Transmitter Data Sheet Table 5. 24-bit One Pixel/Clock Input w ith 24-bit Tw o Pixels/Clock Output TFT Mode TFT VGA Output 24-bpp
B0 B1 B2 B3 B4 B5 B6 B7 G0 G1 G2 G3 G4 G5 G6 G7 R0 R1 R2 R3 R4 R5 R6 R7
Tx Input Data 1160 164
DIE0 DIE1 DIE2 DIE3 DIE4 DIE5 DIE6 DIE7 DIE8 DIE9 DIE10 DIE11 DIE12 DIE13 DIE14 DIE15 DIE16 DIE17 DIE18 DIE19 DIE20 DIE21 DIE22 DIE23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23
Rx Output Data TFT Panel Input 1161 24-bpp
QE0 QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10 QE11 QE12 QE13 QE14 QE15 QE16 QE17 QE18 QE19 QE20 QE21 QE22 QE23 QO0 QO1 QO2 QO3 QO4 QO5 QO6 QO7 QO8 QO9 QO10 QO11 QO12 QO13 QO14 QO15 QO16 QO17 QO18 QO19 QO20 QO21 QO22 QO23 ODCK VSYNC HSYNC DE B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0 B6 - 0 B7 - 0 G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0 G6 - 0 G7 - 0 R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0 R6 - 0 R7 - 0 B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1 B6 - 1 B7 - 1 G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1 G6 - 1 G7 - 1 R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 R6 - 1 R7 - 1 Shift CLK/2 VSYNC HSYNC DE
Shift CLK VSYNC HSYNC DE
IDCK VSYNC HSYNC DE
IDCK VSYNC HSYNC DE
17
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet Table 6. 18-bit One Pixel/Clock Input w ith 18-bit Tw o Pixels/Clock Output TFT Mode TFT VGA Output 18-bpp Tx Input Data 1160 164
DIE0 DIE1 DIE2 DIE3 DIE4 DIE5 DIE6 DIE7 DIE8 DIE9 DIE10 DIE11 DIE12 DIE13 DIE14 DIE15 DIE16 DIE17 DIE18 DIE19 DIE20 DIE21 DIE22 DIE23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23
Tx Output Data 1161 141B
QE0 QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10 QE11 QE12 QE13 QE14 QE15 QE16 QE17 QE18 QE19 QE20 QE21 QE22 QE23 QO0 QO1 QO2 QO3 QO4 QO5 QO6 QO7 QO8 QO9 QO10 QO11 QO12 QO13 QO14 QO15 QO16 QO17 QO18 QO19 QO20 QO21 QO22 QO23 ODCK VSYNC HSYNC DE
TFT Panel Input 18-bpp
B0 B1 B2 B3 B4 B5
Q0 Q1 Q2 Q3 Q4 Q5
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0
G0 G1 G2 G3 G4 G5
Q6 Q7 Q8 Q9 Q10 Q11
G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0
R0 R1 R2 R3 R4 R5
Q12 Q13 Q14 Q15 Q16 Q17
R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0
Q18 Q19 Q20 Q21 Q22 Q23
B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1
Q24 Q25 Q26 Q27 Q28 Q29
G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1
Shift CLK VSYNC HSYNC DE
IDCK VSYNC HSYNC DE
IDCK VSYNC HSYNC DE
Q30 Q31 Q32 Q33 Q34 Q35 Shift CLK/2 VSYNC HSYNC DE
R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 Shift CLK/2 VSYNC HSYNC DE
SiI-DS-0126-B
18
SiI 1160 PanelLink Transmitter Data Sheet Table 7. Tw o Pixels/Clock Input w ith One Pixel/Clock Output TFT Mode TFT VGA Output 24-bpp 18-bpp
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0 B6 - 0 B7 - 0 G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0 G6 - 0 G7 - 0 R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0 R6 - 0 R7 - 0 B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1 B6 - 1 B7 - 1 G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1 G6 - 1 G7 - 1 R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 R6 - 1 R7 - 1 ShiftClk/2 VSYNC HSYNC DE
Tx Input Data 1160
DIE0 DIE1 DIE2 DIE3 DIE4 DIE5 DIE6 DIE7 DIE8 DIE9 DIE10 DIE11 DIE12 DIE13 DIE14 DIE15 DIE16 DIE17 DIE18 DIE19 DIE20 DIE21 DIE22 DIE23 DIO0 DIO1 DIO2 DIO3 DIO4 DIO5 DIO6 DIO7 DIO8 DIO9 DIO10 DIO11 DIO12 DIO13 DIO14 DIO15 DIO16 DIO17 DIO18 DIO19 DIO20 DIO21 DIO22 DIO23 IDCK VSYNC HSYNC DE
Rx Output Data 1161 141B
QE0 QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10 QE11 QE12 QE13 QE14 QE15 QE16 QE17 QE18 QE19 QE20 QE21 QE22 QE23 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23
TFT Panel Input 24-bpp 18-bpp
B0 B1 B2 B3 B4 B5 B6 B7 G0 G1 G2 G3 G4 G5 G6 G7 R0 R1 R2 R3 R4 R5 R6 R7
B0 - 0 B1 - 0 B2 - 0 B3 - 0 B4 - 0 B5 - 0
B0 B1 B2 B3 B4 B5
G0 - 0 G1 - 0 G2 - 0 G3 - 0 G4 - 0 G5 - 0
G0 G1 G2 G3 G4 G5
R0 - 0 R1 - 0 R2 - 0 R3 - 0 R4 - 0 R5 - 0
R0 R1 R2 R3 R4 R5
B0 - 1 B1 - 1 B2 - 1 B3 - 1 B4 - 1 B5 - 1
G0 - 1 G1 - 1 G2 - 1 G3 - 1 G4 - 1 G5 - 1
R0 - 1 R1 - 1 R2 - 1 R3 - 1 R4 - 1 R5 - 1 ShiftClk/2 VSYNC HSYNC DE
ODCK VSYNC HSYNC DE
ODCK VSYNC HSYNC DE
ShiftClk VSYNC HSYNC DE
ShiftClk VSYNC HSYNC DE
19
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Design Recommendations
Differences Between SiI 160 and SiI 1160
The SiI 1160 Tx is a pin-compatible upgrade to the SiI 160 Tx. It provides improved cable length support without any changes to the pinout. Interrupt capability is also a new option using the optional MSEN pin. The SiI 1160 Tx can also act as to repeat HDMI signals when its internal registers are programmed appropriately; this application requires the use of an I2C interface, optionally available on the SDA and SCL pins. Table 8. New Pin Functions for SiI 1160 Tx Pin
20 21 23 87 SiI 160 RSVD – Tied HIGH RSVD – Tied LOW RSVD – Tied HIGH RSVD – Tied HIGH SiI 1160 Optional I2C interface pin SCL Optional interrupt output MSEN Optional I2C interface pin SDA ISEL/RST
EXT_SWING Selection
The recommended REXT_SWING resistor value for the EXT_SWING pin is provided in the Pin Descriptions section. This value can be adjusted as needed to optimize the DVI signal swing levels according to the needs of the application. This adjustment might become necessary, for example, when deviating from the recommended source termination values (described in the Source Termination Resistors on Differential Outputs section) to optimize for a specific cabling environment.
PCB Ground Planes
All ground pins on the device should be connected to the same, contiguous ground plane in the PCB. This helps to avoid ground loops and inductances from one ground plane segment to another. Such low-inductance ground paths are critical for return currents, which affect EMI performance. The entire ground plane surrounding the PanelLink transmitter should be one piece, and include the ground vias for the DVI connector.
Voltage Ripple Regulation
The power supply to PVCC is very important to the proper operation of the Transmitter chips. PVCC does not draw much current so any voltage regulator that can supply 50mA or more is sufficient. A suggested regulator circuit using a low-dropout regulator is shown in Figure 11. Note that alternative voltage regulator circuits should be considered only if they meet the LM317 standards of line/load regulation. Decoupling and bypass capacitors are also involved with power supply connections, as described in detail in Figure 14 and Figure 15.
LM317EMP
Vin 12V Vin ADJ Vout 240 Ω 1% Vout 3.3V
390 Ω 1%
Figure 11. Voltage Regulation using LM317EMP SiI-DS-0126-B 20
SiI 1160 PanelLink Transmitter Data Sheet
Spread Spectrum Support
TMDS architecture is inherently jitter-tolerant. Spread spectrum clocking can be applied to the clock and parallel data inputs of the SiI 1160 to allow for reduced EMI. The spread will be propagated throughout the system due to TMDS clock architecture, which passes nearly all low-frequency components of the incoming clock without attenuation. The amount of spread that can be applied without affecting the DVI eye is limited to ±0.5% with the current part, depending on the spreading algorithm employed by the external spread spectrum device. A planned future variation of this chip will allow its internal clock to be coupled directly to a spread spectrum device. The expected result will be the ability to accommodate larger amounts of spread, and it will also work in 48-bit mode as well as 24-bit mode. Designs should make accommodations using pins 27, 83, and 84 as noted in the Pin Descriptions section so that the planned part can become a drop-in replacement for the SiI 1160. Figure 12 illustrates how a design can anticipate the expected future chip version. Contact PhaseLink Corporation for additional information on their spread spectrum device.
3.3V
1160: Stuff
SS: Stuff 27-SS_EN#
SiI 1160 / or future SS version
83-SS_CLK_OUT
84-SS_CLK_IN 1160: No Stuff SS: Stuff 0Ω
PhaseLink PLL701-21
1-FIN VDD-8 S3-7 2-S2 3-S1 FOUT-6 4-S0 GND-5
3.3V
3.3V
Figure 12. Planned Spread Spectrum Support Circuit
21
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Reset Circuit for I2C Application
If the design uses the I2C interface to control the transmitter features, it must also provide a means of toggling the ISEL/RST pin to achieve the correct TRESET timing. If a local microcontroller is hosting the I2C connection, the easiest way to provide the reset is to connect a GPIO pin from the microcontroller to the transmitter chip as shown in Figure 13. The reset pulse can then be commanded either at power-up time or just prior to initial use of the I2C interface as shown in Figure 8.
uC
SiI 1160
SCL SDA ISEL/RST
Figure 13. Typical Reset Circuit
Power Control
The low-power standby state feature of the chip provides a design option of leaving the chip always powered, as opposed to powering it on and off. Leaving the chip powered and using the PD pin to put it in a lower power state may result in faster system response time, depending on the system Vcc supply ramp-up delay. Table 9 provides information on chip functional mode current requirements. These values are not specifications, but are representative of typical chip power consumption. PVCC1 and PVCC2 are the power planes that are most sensitive to excessive noise. Noise on these planes can be more easily controlled when they are regulated separately from digital VCC. Table 9. Pow er Consumption Characteristics Symbol
ICCT IAVCC IPVCC1 IPVCC2 IVCC + IIVCC IVCCPD + IIVCCPD
Parameter
Total Transmitter Operating Current Current on AVCC Current on PVCC1 Current on PVCC2 Current on digital core VCC and input plan IVCC Standby mode current on VCC and IVCC
Conditions
165MHz
Typ
17-19 31-33 10-11 38-41 >97
Units
see spec. % of total ICCT % of total ICCT % of total ICCT % of total ICCT % of total IPD
PD pin driven low1 DVI clock stopped
Note 2 1. For I C mode: bit PD=0.
SiI-DS-0126-B
22
SiI 1160 PanelLink Transmitter Data Sheet
Decoupling Capacitors
Designers should include decoupling and bypass capacitors at each power pin in the layout. These are shown schematically in Figure 15. Place these components as close as possible to the PanelLink device pins, and avoid routing through vias if possible, as shown in Figure 14, which is representative of the various types of power pins on the transmitter.
VCC C1 C2 L1
VCC
Ferrite
GND
Via to GND
C3
Figure 14. Decoupling and Bypass Capacitor Placement
VCC
L1 VCCPIN C1 C2 C3
Figure 15. Decoupling and Bypass Schematic
The values shown in Table 10 are recommendations that should be adjusted according to the noise characteristics of the specific board-level design. Pins in one group (such as IVCC) may share C2, L1, and C3, each pin having C1 placed as close to the pin as possible. PGND1 and PGND2 should be tied individually to ground. Table 10. Recommended Components for Bypass and Decoupling Circuits C1
100 – 300 pF
C2
2.2 – 10 uF
C3
10 uF
L1
200+ Ω
23
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Series Damping Resistors on Outputs
Series resistors are often effective in lowering data-related emissions and reducing reflections. Series resistors with a value close to the impedance of the board traces are generally most effective in reducing reflections from the inputs of the transmitter. If used, resistors should be placed close to the output pins of the VGA Source or Graphics chip, as shown in Figure 16.
DIE[0..23]/ DIO[0..23]
VGA
Figure 16. Series Input Damping Resistors for Driving Source
Source Termination Resistors on Differential Outputs
Source termination, consisting of a 300Ω resistor and a 0.1µF capacitor, may be used on the differential outputs of the SiI 1160 to improve signal swings. See Figure 17 for an illustration. Repeat the circuit for each of the four differential output pairs: TX0+, TX1+, TX2+, TXC+. Note that the specific value for the source termination resistor and capacitor will depend on the PCB layout and construction. Different values may be needed to create optimum DVI-compliant output waveforms from the transmitter.
TX0+ TX0TX1+ TX2TX3+ TX3TXC+ TXC0.1uF 300 ohm 0.1uF 300 ohm 0.1uF 300 ohm 0.1uF 300 ohm
Figure 17. Differential Output Source Terminations Source termination suppresses signal reflection to prevent non-DVI compliant receivers from erroneously sampling the TMDS signals at high frequencies (beyond 135MHz). The impact on DVI compliant receivers is minimal. Therefore Silicon Image recommends source termination for most applications. Note that the capacitor is required to meet DVI idle mode DC offset requirements and must not be omitted. Note also that the signal suppression requires the REXT_SWING value to be changed. Power consumption will be slightly higher when using source termination.
SiI-DS-0126-B
24
SiI 1160 PanelLink Transmitter Data Sheet
C
R
Detail of Source termination (magnified) R and C 0603 components installed.
Figure 18. Source Termination Layout Illustration The layout in Figure 18 has been developed to minimize trace stubs on the differential TMDS lines, while providing pads for the source termination components (left-hand magnified view). Source termination components should be placed close to the transmitter pins. The resistor and capacitor are shown installed on the pads provided (right-hand magnified view).
Differential Trace Routing
The routing for the SiI 1160 chip is relatively simple since no spiral skew compensation is needed. However, a few small precautions are required to achieve the full performance and reliability of DVI. The Transmitter can be placed fairly far from the output connector, but care should be taken to route each differential signal pair together and achieve impedance of 100Ω between the differential signal pair. However, note that the longer the differential traces are between the transmitter and the output connector, the higher the chance that external signal noise will couple onto the low-voltage signals and affect image quality. Do not split or have asymmetric trace routing between the differential signal pair. Vias are very inductive and can cause phase delay problems if applied unevenly within a differential pair. Vias should be minimized or avoided if possible by placing all differential traces on the top layer of the PCB. Figure 19 illustrates an incorrect routing of the differential signal from the SiI 1160 to the DVI connector. Figure 20 illustrates the correct method to route the differential signal from the SiI 1160 to the DVI connector. Figure 21 illustrates recommended routing for differential traces at the DVI connector.
25
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
TX
Figure 19. Example of Incorrect Differential Signal Routing
TX
Figure 20. Example of Correct Differential Signal Routing
24 16 8
17 9 1
TxCTxC+
Figure 21. Differential Trace Routing to DVI Connector (Top Side View )
Tx2Tx2+
Tx1Tx1+
Tx0Tx0+
SiI-DS-0126-B
26
SiI 1160 PanelLink Transmitter Data Sheet In addition to following the trace routing recommendations, length differences between intra-pair traces listed in column 2 of Table 11 and inter-pair traces listed in column 3 of Table 11, should be controlled to minimize DVI skew. Spacing between inter-pair DVI traces should be observed to reduce trace-to-trace couplings. For example, having wider gaps between inter-pair DVI traces will minimize noise coupling. It is also strongly advised that ground not be placed adjacent to the DVI traces on the same layer. Table 11 lists the recommended limits for the parameters listed above. Table 11. Routing Guidelines for DVI Traces
Intra-pair (length of each trace within a pair)
+0.75 inch
Parameter
Inter-pair (length of each pair compared to other pairs)
+3 inch
Recommended Inter–pair Trace Separation Based on 2 Layer Board
Recommended Inter– pair Trace Separation Based on 4 Layer Board
Max Min
2x trace width
2x trace width
27
SiI-DS-0126-B
SiI 1160 PanelLink Transmitter Data Sheet
Package Dimensions
Package
100-pin TQFP Package Dimensions and Marking Specification
L1
JEDEC Package Code MS-026-AED
typ max 1.20 0.15 1.00 14.00 14.00 16.00 16.00 1.00 0.20 0.20 0.50 1.05
TMDS™
Device # Lot # Date Code Trace Code SiI1160CTU LLLLLL.LLLL YYWW TTTTTTm
E1
F1
A A1 A2 D1 E1 F1 G1 L1 b c e
Thickness Stand-off Body Thickness Body Size Body Size Footprint Footprint Lead Length Lead Width Lead Thickness Lead Pitch
Dimensions in millimeters. Overall thickness A=A1+A2.
D1 G1 c A2 A1 e b
Package: SiI1160CTU Legend LLLLLL.LLLL YY WW TTTTTT m Description Lot Number Year of Mfr Week of Mfr Trace Code Maturity Code =0: engineering samples =1: pre-production >1: production
Figure 22. 100-pin TQFP Package Dimensions (JEDEC code MS-026-AED)
Ordering Information
Standard Part Number: SiI1160CTU (‘U’ indicates Universal package usable in both standard and lead-free environments)
SiI-DS-0126-B
28
SiI 1160 PanelLink Transmitter Data Sheet
© 2005 Silicon Image. Inc. SiI-DS-0126-B Silicon Image, Inc. 1060 E. Arques Avenue Sunnyvale, CA 94085 USA Tel: Fax: E-mail: Web: (408) 616-4000 (408) 830-9530 salessupport@siimage.com www.siliconimage.com
29
SiI-DS-0126-B