0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MXL7213-AYA-T

MXL7213-AYA-T

  • 厂商:

    SIPEX(迈凌)

  • 封装:

    BLGA144 模块

  • 描述:

    非隔离 PoL 模块 直流转换器 2 输出 0.6 ~ 5.3V 0.6 ~ 5.3V 13A,13A 4.5V - 16V 输入

  • 数据手册
  • 价格&库存
MXL7213-AYA-T 数据手册
MxL7213 Data Sheet Dual 13A or Single 26A Power Module General Description Features The MxL7213 is a dual channel, 13A step-down power module. It includes a wide 4.5V to 16V input voltage range and supports two outputs each with an output voltage range of 0.6V to 5.3V, set by a single external resistor. The MxL7213 requires just a few input and output capacitors, which simplifies design and shortens time-to-market. The module supplies either two 13A outputs, a single 26A or up to 100A when paralleled with additional MxL7213 modules. Attention to thermal design, component selection and internal construction results in higher efficiency and extended operating range relative to devices with the same industry standard pinout. ■ ■ ■ ■ Dual 13A or single 26A output ■ ■ Frequency synchronization The complete switch mode DC/DC power supply integrates the control, drivers, bootstrap diodes, bootstrap capacitors, inductors, MOSFETs and HF bypass capacitors in a single package for point-of-load conversions. Input voltage range: 4.5V to 16V Output voltage range: 0.6V to 5.3V Multiphase current sharing with multiple MxL7213s for up to 100A output Higher efficiency than competitive devices with the same industry standard pinout ■ ■ Differential remote sense amplifier Peak current mode architecture for fast transient response ■ ■ ■ ■ The MxL7213 includes a temperature diode that enables device temperature monitoring. It also has an adjustable switching frequency and utilizes a peak current mode architecture which allows fast line and load transient response. A host of protection features, including overcurrent, overtemperature, short-circuit and UVLO, help this module achieve safe operation under abnormal operating conditions. The MxL7213 is available in two space saving, RoHS compliant and thermally enhanced packages: a 15mm x 15mm x 4.41mm LGA package and a 15mm x 15mm x 5.01mm BGA package. Adjustable switching frequency (250kHz to 780kHz) Overcurrent protection Output overvoltage protection Internal temperature monitor and thermal shutdown protection ■ Thermally enhanced packages:  15mm x 15mm x 4.41mm LGA package  15mm x 15mm x 5.01mm BGA package Applications ■ ■ ■ Typical Application Telecom and Networking Equipment Industrial Equipment Test Equipment Ordering Information - page 34 INTVCC CVCC 4.7μF VOUT VIN 7V to 16V D1 5.1V Zener Optional 95 PGOOD MODE_PLLIN CLKOUT INTVCC EXTVCC PGOOD1 VIN VOUT1 CIN CSS 0.1μF TEMP RUN1 RUN2 RTEMP INTVCC VOUTS1 DIFFOUT SW1 TRACK1 TRACK2 FSET PHASMD SGND GND DIFFP COUT1 CFF VFB1 VFB2 COMP1 MxL7213 RFB 8.25k COMP2 VOUTS2 VOUT2 SW2 DIFFN PGOOD2 Efficiency (%) R1 10k Optional 100 RPGOOD 5k 90 85 80 MxL7213, 12V to 5V (750kHz) Competitor A, 12V to 5V (750kHz) VOUT 5V 26A PGOOD COUT2 75 MxL7213, 12V to 1V (400kHz) Competitor A, 12V to 1V (400kHz) 70 1 Figure 1: Typical Application: 26A, 5V Output DC/DC Power Module • www.maxlinear.com• 074DSR03 3 5 7 9 IOUT (A) 11 Figure 2: Efficiency Advantage vs. Competition 13 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Revision History Revision History Document No. Release Date Change Description 074DSR01 4/1/19 Initial release. 074DSR02 5/16/19 Remove stray line from Recommended PCB Layout. Correct number of phases sentence under Multiphase Operation and current source and external lock sentences under Frequency Selection and Phase-Lock Loop. Correct SGND to GND in INTVCC pin description. Changed TCVTEMP to -2.2mV/°C. 074DSR03 9/19/19 Update efficiency, power loss, and de-rating graphs. Removed output voltage noise graph. Update compensation section, thermal resistances, and capacitor table. VOUT maximum changed to 16V. Update ordering information. 9/19/19 074DSR03 ii MxL7213 Dual 13A or Single 26A Power Module Data Sheet Table of Contents Table of Contents General Description............................................................................................................................................. i Features............................................................................................................................................................... i Applications ......................................................................................................................................................... i Specifications ..................................................................................................................................................... 1 Absolute Maximum Ratings...........................................................................................................................................1 ESD Ratings ..................................................................................................................................................................1 Operating Conditions.....................................................................................................................................................2 Electrical Characteristics ...............................................................................................................................................3 Pin Information ................................................................................................................................................... 6 Pin Configuration ...........................................................................................................................................................6 Pin Description ..............................................................................................................................................................6 Typical Performance Characteristics................................................................................................................ 9 Functional Block Diagram ............................................................................................................................... 13 Operation........................................................................................................................................................... 14 Power Module Description ......................................................................................................................................... 14 Applications Information ................................................................................................................................ 14 Typical Application Circuit .......................................................................................................................................... 14 VIN to VOUT Step-Down Ratios................................................................................................................................... 14 Output Voltage Programming ...................................................................................................................................... 15 Input Capacitors ......................................................................................................................................................... 15 Output Capacitors ...................................................................................................................................................... 16 Pulse-Skipping Mode Operation................................................................................................................................. 16 Forced Continuous Operation .................................................................................................................................... 16 Multiphase Operation ................................................................................................................................................. 16 Input RMS Ripple Current Cancellation.......................................................................................................................18 Frequency Selection and Phase-Lock Loop............................................................................................................... 18 Minimum On-Time ...................................................................................................................................................... 19 Soft Start and Output Voltage Tracking...................................................................................................................... 19 Power Good ............................................................................................................................................................... 20 Stability and Compensation........................................................................................................................................ 21 Additional Compensation Information ................................................................................................................21 Enabling the Channels ............................................................................................................................................... 21 INTVCC and EXTVCC.................................................................................................................................................. 22 Differential Remote Sense Amplifier........................................................................................................................... 22 9/19/19 074DSR03 iii MxL7213 Dual 13A or Single 26A Power Module Data Sheet Table of Contents SW Pins...................................................................................................................................................................... 22 Temperature Monitoring (TEMP)................................................................................................................................ 22 Fault Protection .......................................................................................................................................................... 23 Thermal Considerations and Output Current Derating ............................................................................................... 23 Power Derating........................................................................................................................................................... 24 Layout Guidelines and Example..................................................................................................................................28 Mechanical Dimensions ................................................................................................................................... 29 15mm x 15mm x 4.41mm LGA.................................................................................................................................... 29 Recommended Land Pattern and Stencil....................................................................................................... 30 15mm x 15mm x 4.41mm LGA.................................................................................................................................... 30 Mechanical Dimensions ................................................................................................................................... 31 15mm x 15mm x 5.01mm BGA ...................................................................................................................................31 Recommended Land Pattern and Stencil....................................................................................................... 32 15mm x 15mm x 5.01mm BGA ...................................................................................................................................32 MxL7213 Component Pinout ........................................................................................................................... 33 Ordering Information........................................................................................................................................ 34 9/19/19 074DSR03 iv MxL7213 Dual 13A or Single 26A Power Module Data Sheet List of Figures List of Figures Figure 1: Typical Application: 26A, 5V Output DC/DC Power Module................................................................... i Figure 2: Efficiency Advantage vs. Competition .................................................................................................... i Figure 3: Pin Configuration ................................................................................................................................... 6 Figure 4: Efficiency: Single Phase, VIN = 5V ........................................................................................................ 9 Figure 5: Efficiency: Single Phase, VIN = 12V ...................................................................................................... 9 Figure 6: Efficiency: Dual Phase, VIN = 12V......................................................................................................... 9 Figure 7: Output Current Sharing ......................................................................................................................... 9 Figure 8: 12V to 1V Load Step Response .......................................................................................................... 10 Figure 9: 12V to 1.2V Load Step Response ....................................................................................................... 10 Figure 10: 12V to 1.5V Load Step Response ..................................................................................................... 10 Figure 11: 12V to 1.8V Load Step Response ..................................................................................................... 10 Figure 12: 12V to 2.5V Load Step Response ..................................................................................................... 11 Figure 13: 12V to 3.3V Load Step Response ..................................................................................................... 11 Figure 14: 12V to 5V Load Step Response ........................................................................................................ 11 Figure 15: Single Phase Start-Up, 12V to 1.5V, No Load................................................................................... 12 Figure 16: Single Phase Start-Up, 12V to 1.5V, 13A Load................................................................................. 12 Figure 17: Short-Circuit, 12V to 1.5V, 0A Load .................................................................................................. 12 Figure 18: Short-Circuit, 12V to 1.5V, 13A Load ................................................................................................ 12 Figure 19: Functional Block Diagram.................................................................................................................. 13 Figure 20: Typical 5VIN to 16VIN, 1.5V and 1.2V Outputs .................................................................................. 15 Figure 21: 4-Phase Parallel Configuration.......................................................................................................... 16 Figure 22: Examples of 2-Phase, 4-Phase and 6-Phase Operation with PHASMD Table ................................. 17 Figure 23: Normalized Input RMS Ripple Current vs. Duty Cycle, One to Six Phases ...................................... 18 Figure 24: Operating Frequency vs. FSET Pin Voltage...................................................................................... 18 Figure 25: VOUT and VTRACK versus Time ......................................................................................................... 19 Figure 26: Example of Output Tracking Application Circuit ................................................................................ 20 Figure 27: Output Coincident Tracking Waveform.............................................................................................. 20 Figure 28: CFF Phase Boost vs. Frequency Fzero Normalized to 1 ................................................................... 21 Figure 29: Diode Voltage vs. Temperature......................................................................................................... 22 Figure 30: 2-Phase, 5V at 26A with Temperature Monitoring............................................................................. 22 Figure 31: Graphical Representation of Thermal Coefficients............................................................................ 24 Figure 32: Power Loss, VOUT = 1.0V.................................................................................................................. 25 Figure 33: Current Derating, VIN = 5V, VOUT = 1.0V .......................................................................................... 25 9/19/19 074DSR03 v MxL7213 Dual 13A or Single 26A Power Module Data Sheet List of Figures Figure 34: Current Derating, VIN = 12V, VOUT = 1.0V ........................................................................................ 25 Figure 35: Power Loss, VOUT = 2.5V.................................................................................................................. 25 Figure 36: Current Derating, VIN = 5V, VOUT = 2.5V .......................................................................................... 25 Figure 37: Current Derating, VIN = 12V, VOUT = 2.5V ........................................................................................ 25 Figure 38: Power Loss, VOUT = 5V..................................................................................................................... 26 Figure 39: Current Derating, VIN = 12V, VOUT = 5V ........................................................................................... 26 Figure 40: Recommended PCB Layout .............................................................................................................. 28 Figure 41: Mechanical Dimensions, LGA ........................................................................................................... 29 Figure 42: Recommended Land Pattern and Stencil, LGA................................................................................. 30 Figure 43: Mechanical Dimensions, BGA ........................................................................................................... 31 Figure 44: Recommended Land Pattern and Stencil, BGA ................................................................................ 32 9/19/19 074DSR03 vi MxL7213 Dual 13A or Single 26A Power Module Data Sheet List of Tables List of Tables Table 1: Absolute Maximum Ratings .................................................................................................................... 1 Table 2: ESD Ratings ........................................................................................................................................... 1 Table 3: Operating Conditions .............................................................................................................................. 2 Table 4: Electrical Characteristics ....................................................................................................................... 3 Table 5: Pin Description........................................................................................................................................ 6 Table 6: VFB Resistor Table vs. Various Output Voltages ................................................................................. 15 Table 7: ѲJA and Derating Curves Corresponding to 1.0V Output..................................................................... 24 Table 8: ѲJA and Derating Curves Corresponding to 2.5V Output..................................................................... 24 Table 9: ѲJA and Derating Curves Corresponding to 5V Output........................................................................ 24 Table 10: Capacitors Used for Output Voltage Response Matrix ....................................................................... 27 Table 11: Output Voltage Response vs. Component Matrix............................................................................... 27 Table 12: MxL7213 Component Pinout .............................................................................................................. 33 Table 13: Ordering Information........................................................................................................................... 34 9/19/19 074DSR03 vii MxL7213 Dual 13A or Single 26A Power Module Data Sheet Specifications Specifications Absolute Maximum Ratings Important: The stresses above what is listed under Table 1 may cause permanent damage to the device. This is a stress rating only—functional operation of the device above what is listed under Table 1 or any other conditions beyond what MaxLinear recommends is not implied. Exposure to conditions above what is listed under Table 3 for extended periods of time may affect device reliability. Solder reflow profile is specified in the IPC/JEDEC J-STD-020C standard. Table 1: Absolute Maximum Ratings Parameter Minimum Maximum Units –0.3 18 V –1 23 V PGOOD1, PGOOD2, COMP1, COMP2 –0.3 6 V INTVCC, EXTVCC VIN VSW1, VSW2 –0.3 6 V MODE/PLLIN, fSET, TRACK1, TRACK2 –0.3 INTVCC V DIFFOUT –0.3 INTVCC - 1.1V V PHASMD –0.3 INTVCC V VOUT1, VOUT2, VOUTS1, VOUTS2 –0.3 6 V DIFFP, DIFFN –0.3 INTVCC V RUN1, RUN2, VFB1, VFB2 –0.3 INTVCC V 100 mA 150 °C 245 °C Maximum Units 2k V 500 V INTVCC Peak Output Current Storage Temperature Range –65 Peak Package Body Temperature ESD Ratings Table 2: ESD Ratings Parameter Minimum HBM (Human Body Model) CDM (Charged Device Model) 9/19/19 074DSR03 1 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Operating Conditions Operating Conditions Table 3: Operating Conditions Parameter Minimum Typical Maximum Units VIN 4.5 16 V INTVCC 4.5 5.5 V EXTVCC 4.7 6 V PGOOD 0 INTVCC V Switching Frequency 250 780 kHz Junction Temperature Range (TJ) –40 125 °C Thermal Resistance from Junction to Ambient (ѲJA) 7 °C/W Thermal Resistance from Junction to Bottom of Module Case (ѲJCbottom) 1.5 °C/W Thermal Resistance from Junction to Top of Module Case (ѲJCtop) 3.86 °C/W 9/19/19 074DSR03 2 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Electrical Characteristics Electrical Characteristics Specifications are for Operating Junction Temperature of TJ = 25°C only; limits applying over the full Operating Junction Temperature range are denoted by a "•". Typical values represent the most likely parametric norm at TJ = 25°C and are provided for reference purposes only. Unless otherwise indicated, VIN = 12V and VRUN1, VRUN2 = 5V. Per Figure 20. Table 4: Electrical Characteristics Symbol Parameter Conditions • Min • Typ Max Units 4.5 16 V • 0.6 5.3 V • 1.477 1.5 1.523 V 1.1 1.25 1.40 V DC Specifications VIN(DC) VOUT1(RANGE) VOUT2(RANGE) Input DC voltage Output DC range VIN = 5.5V to 16.0V CIN = 22 µF x 3 VOUT1 (DC) VOUT2 (DC) VOUT total variation with line and load COUT = 100µF x 1 Ceramic, 220µF POSCAP, MODE_PLLIN = GND VIN = 12V, VOUT = 1.5V Input Specifications VRUN1, VRUN2 RUN pin on/off threshold VRUN1HYS, VRUN2HYS RUN pin ON hysteresis IINRUSH(VIN) Input inrush current at start-up IQ(VIN) IS(VIN) Input supply bias current Input supply current RUN rising IOUT = 0A, CIN = 3 x 22µF, CSS = 0.01µF, COUT = 3 x 100µF, VOUT1 = 1.5V, 170 mV 0.5 A VOUT2 = 1.5V, VIN = 12V VIN = 12V, VOUT = 1.5V, pulse-skipping mode 5 VIN = 12V, VOUT = 1.5V, switching CCM 85 Shutdown, RUN = 0, VIN = 12V 50 VIN = 5V, VOUT = 1.5V, IOUT = 13A 4.34 VIN = 12V, VOUT = 1.5V, IOUT = 13A 1.82 mA µA A Output Specifications IOUT1(DC), IOUT2(DC) Output continuous current range(1) VIN = 12V, VOUT = 1.5V ∆VOUT1(LINE)/VOUT1 ∆VOUT2(LINE)/VOUT2 Line regulation accuracy VOUT = 1.5V, VIN from 4.75V to 16V IOUT = 0A for each output • ∆VOUT1(LOAD)/VOUT1 ∆VOUT2(LOAD)/VOUT2 Load regulation accuracy(1) VOUT = 1.5V, 0A to 13A, VIN = 12V • VOUT1(AC), VOUT2(AC) Output ripple voltage For each output; IOUT = 0A, COUT = 100µF x 3 / X7R / ceramic, 470µF POSCAP, VIN = 12V, VOUT = 1.5V, frequency = 400kHz 26 mVPP fS (each channel) Output ripple voltage frequency(2) VIN = 12V, VOUT = 1.5V, fSET = 1.25V 500 kHz fSYNC (each channel) SYNC capture range 9/19/19 0 400 074DSR03 13 A 0.016 0.025 %/V 0.35 0.5 ±% 780 kHz 3 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Electrical Characteristics Table 4: (Continued) Electrical Characteristics Symbol • Parameter Conditions Turn-on overshoot COUT = 100µF / X5R / ceramic, 470µF POSCAP, VOUT = 1.5V, IOUT = 0A, VIN = 12V Each channel 10 mV tSTART1, tSTART2 Turn-on time COUT = 100µF / X5R / ceramic, 470µF POSCAP, No load, TRACK/SS with 0.01µF to GND, VIN = 12V Each channel 4.8 ms ∆VOUT1(LS) ∆VOUT2(LS) Peak deviation for dynamic load Load: 0% to 50% to 0% of full load COUT = 22µF x 3 / X5R / ceramic, 470µF POSCAP, VIN = 12V, VOUT = 1.5V Each channel 30 mV tSETTLE1, tSETTLE2 Settling time for dynamic load step Load: 0% to 50% to 0% of full load, VIN = 12V, COUT = 100µF, 470µF POSCAP Each channel 20 µs Output current limit VIN = 12V, VOUT = 1.5V Each channel 20 A VFB1, VFB2 Voltage at VFB pins IOUT = 0A, VOUT = 1.5V IFB Current at VFB pins VOVL Feedback overvoltage lockout TRACK1 (I), TRACK2 (I) Track pin soft-start pull-up current UVLO Undervoltage lockout ∆VOUT1START ∆VOUT2START IOUT1(PK) IOUT2(PK) Min Typ Max Units Control Section • • TRACK1 (I), TRACK2 (I) start at 0V 0.594 0.600 0.606 V –5 –20 nA 0.64 0.66 0.68 V 1.1 1.25 1.4 µA VIN falling 3.66 V VIN rising 4.25 V 600 mV 90 ns UVLO Hysteresis tON(MIN) Minimum on-time RFBHI1, RFBHI2 Resistor between VOUTS1, VOUTS2 and VFB1, VFB2 Each output VPGOOD1 LOW, VPGOOD2 LOW PGOOD voltage low IPGOOD = 2mA IPGOOD PGOOD leakage current VPGOOD = 5V VPGOOD PGOOD trip level 60.05 60.4 60.75 kΩ 35 50 mV ±5 µA VFB with respect to set output voltage VFB ramping negative –10 VFB with respect to set output voltage VFB ramping positive 10 % INTVCC Linear Regulator VINTVCC Internal VCC voltage 6V < VIN < 16V VINTVCC INTVCC load regulation ICC = 0mA to 50mA Load Regulation 9/19/19 074DSR03 4.8 5 5.2 V 1 2 % 4 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Electrical Characteristics Table 4: (Continued) Electrical Characteristics Symbol Parameter Conditions • Min Typ VEXTVCC EXTVCC switchover voltage EXTVCC ramping positive • 4.5 4.7 VEXTVCC(DROP) EXTVCC dropout ICC = 20mA, VEXTVCC = 5V VEXTVCC(HYST) EXTVCC hysteresis 19 Max Units V 50 156 mV mV Oscillator and Phase-Locked Loop Frequency Nominal Nominal frequency FSET = 1.2V 450 500 550 kHz Frequency Low Lowest frequency FSET = 0V 210 250 290 kHz Frequency High Highest frequency FSET > 2.4V, up to INTVCC 700 780 860 kHz IFSET Frequency set current 9 10 11 µA fSYNC SYNC capture range 780 kHz RMODE_PLLIN MODE_PLLIN input resistance CLKOUT Phase (relative to VOUT1) CLK High Clock High output voltage CLK Low Clock Low output voltage Each channel 250 250 kΩ PHASMD = GND 60 Deg PHASMD = float 90 Deg PHASMD = INTVCC 120 Deg 2 V 0.2 V Differential Amplifier AV Gain RIN Input resistance Measured at DIFFP Input VOS Input offset voltage VDIFFP = VDIFFOUT = 1.5V, IDIFFOUT = 100µA PSRR Power Supply Rejection Ratio 5V < VIN < 16V ICL Maximum Output current VDIFFOUT(MAX) Maximum output voltage GBW Gain Bandwidth Product VTEMP Diode Connected PNP I = 100µA TCVTEMP Temperature Coefficient OT Thermal shutdown threshold 80 kΩ mV 90 dB 3 mA INTVCC - 1.4 • Thermal hysteresis V/V 2 IDIFFOUT = 300µA Rising temperature 1 V 3 MHz 0.636 V –2.2 mV/°C 145 °C 15 °C 1. See output current derating curves for different VIN, VOUT and TA. 2. The switching frequency is programmable from 250kHz to 780kHz. 9/19/19 074DSR03 5 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Pin Information Pin Information Pin Configuration TEMP TEMP EXTVCC M M L L VIN K J CLKOUT H SW1 G PHASMD F MODE_PLLIN VOUTS1 VIN K J TRACK1 VFB1 EXTVCC SGND RUN1 COMP1 COMP2 GND E INTVCC SW2 PGOOD1 PGOOD2 RUN2 DIFFOUT DIFFP DIFFN GND SGND VFB2 TRACK2 D CLKOUT SW1 PHASMD MODE_PLLIN TRACK1 VFB1 FSET SGND VOUTS2 C VOUTS1 B VOUT1 A 1 2 3 GND 4 5 6 8 9 10 G RUN1 F DIFFOUT DIFFP DIFFN GND FSET SGND VOUTS2 C VOUT1 1 12 SGND SGND VFB2 TRACK2 D A 11 INTVCC SW2 PGOOD1 PGOOD2 RUN2 COMP1 COMP2 GND E B VOUT2 7 H LGA, Top View 144-Lead 15mm x 15mm x 4.41mm 2 3 GND 4 5 6 7 VOUT2 8 9 10 11 12 BGA, Top View 144-Lead 15mm x 15mm x 5.01mm Figure 3: Pin Configuration Pin Description Table 5: Pin Description Pin Number Pin Name Description A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4 VOUT1 Output of the channel 1 power stage. Connect the corresponding output load from the VOUT1 pins to the PGND pins. Direct output decoupling capacitance from VOUT1 to PGND is recommended. A6, A7, B6, B7, D1, D2, D3, D4, D9, D10, D11, D12, E1, E2, E3, E4, E10, E11, E12, F1, F2, F3, F10, F11, F12, G1, G3, G10, G12, H1, H2, H3, H4, H5, H6, H7, H9, H10, H11, H12, J1, J5, J8, J12, K1, K5, K6, K7, K8, K12, L1, L12, M1, M12 GND Ground for the power stage. Connect to the application’s power ground plane. A8, A9, A10, A11, A12, B8, B9, B10, B11, B12, C9, C10, C11, C12 VOUT2 Output of the channel 2 power stage. Connect the corresponding output load from the VOUT2 pins to the PGND pins. Direct output decoupling capacitance from VOUT2 to PGND is recommended. 9/19/19 074DSR03 6 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Pin Description Table 5: Pin Description (Continued) Pin Number Pin Name Description VOUTS1, VOUTS2 These pins are connected internally to the top of the feedback resistor for each output. Connect this pin directly to its specific output or to DIFFOUT when using the remote sense amplifier. When paralleling modules, connect one of the VOUTS pins to DIFFOUT when remote sensing or directly to VOUT when not remote sensing. These pins must be connected to either DIFFOUT or VOUT. This connection provides the feedback path and cannot be left open. C6 FSET This pin is used to set the operating frequency via two methods: Connect a resistor from this pin to ground Drive this pin with a DC voltage This pin sources a 10µA current. See Figure 24 for frequency of operation vs. FSET voltage. C7, D6, G6, G7, F6, F7 SGND Ground pin for all analog signals and low power circuits. Connect to GND in one place. See layout guidelines in Figure 40. VFB1, VFB2 Feedback input to the negative side of the error amplifier for each channel. These pins are each internally connected to VOUTS1 and VOUTS2 via a precision 60.4kΩ resistor. Vary each output voltage by adding a feedback resistor from VFB to SGND. Tie VFB1 and VFB2 together for parallel operation. TRACK1, TRACK2 Soft-Start and Output Voltage Tracking pins. Each channel has a 1.25μA pull-up current source. When one channel is configured as a master, adding a capacitor from this pin to ground sets a soft-start ramp rate. The other channel can be set up as the slave and have the master output applied through a voltage divider to the slave’s output TRACK pin. For coincidental tracking, this voltage divider is equal to the slave’s output feedback divider. COMP1, COMP2 Current control threshold and error amplifier compensation point for each channel. The current comparator threshold increases with this control voltage. The MxL7213 is internally compensated, however a feed-forward CFF is frequently required (see Table 11). RCOMP and CCOMP may be required for certain operating conditions (see Figure 20). When paralleling both channels, connect the COMP1 and COMP2 pins together. C5, C8 D5, D7 E5, D8 E6, E7 E8 DIFFP This pin is the remote sense amplifier’s positive input and is connected to the output voltage’s remote sense point. If the remote sense amplifier is not used, connect this pin to SGND. Important: The differential amplifier cannot be used for outputs > 3.3V. E9 DIFFN This pin is the remote sense amplifier’s negative input and is connected to the remote sense point GND. If the remote sense amplifier is not used, connect this pin to SGND. Important: The differential amplifier cannot be used for outputs >3.3V. F4 F5, F9 F8 Selects between Forced Continuous Mode or Pulse-Skipping Mode and provides the external synchronization input to the Phase Detector Pin. There are three connection options: MODE_PLLIN 1. Connect this pin to SGND to force both channels into Forced Continuous Mode. 2. Connect this pin to INTVCC or leave it floating to enable Pulse-Skipping Mode. 3. Connect this pin to an external clock to force both channels into Forced Continuous Mode that are synchronized to the external clock. RUN1, RUN2 DIFFOUT The RUN1 and RUN2 pins enable and disable the module’s two channels: A voltage above 1.4V will turn on the related channel. A voltage below 1.1V will turn off the related channel. Each RUN pin has a 1μA pull-up current; once the RUN pin reaches ~1.25V, an additional 4.5μA pull-up current is added to the RUN pin. Output of the internal remote sense amplifier. If remote sensing on channel 1, connect to VOUTS1. If remote sensing on channel 2, connect to VOUTS2. When paralleling modules, connect one of the VOUTS pins to DIFFOUT when remote sensing. Important: The differential amplifier cannot be used for outputs >3.3V. 9/19/19 074DSR03 7 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Pin Description Table 5: Pin Description (Continued) Pin Number Pin Name Description G2, G11 SW1, SW2 Use these pins to access the switching node of each channel. An RC snubber can be connected to reduce switch node ringing. Otherwise, leave these pins floating. G4 PHASMD This pin selects the CLKOUT phase as follows: Connect to SGND for 60 degrees Connect to INTVCC for 120 degrees Leave floating for 90 degrees G5 CLKOUT This is the clock output. Its phase is set with the PHASMD pin. It is also used during Multiphase Operation. Refer to the Application Section on Multiphase Operation for more details. G9, G8 PGOOD1, PGOOD2 Power Good outputs. This open-drain output is pulled low when the VOUT of its respective channel is more than ±10% outside regulation. H8 INTVCC Internal 5V Regulator Output. This voltage powers the control circuits and internal gate driver. Decouple to GND with a 4.7μF ceramic capacitor. INTVCC is activated when either RUN1 or RUN2 is activated. J6 TEMP The internal temperature sensing diode monitors the temperature change with voltage change on VBE. Connect to VIN through a resistor to limit the current to 100µA. R = (VIN - 0.6V) / 100μA EXTVCC External power input that is enabled through a switch to INTVCC whenever EXTVCC is >4.7V. Do not exceed 6V on this input. Connect this pin to VIN when operating VIN on 5V. An efficiency increase that is a function of (VIN - INTVCC) multiplied by the power MOSFET driver current occurs when the feature is used. VIN must be applied before EXTVCC, and EXTVCC must be removed before VIN. To increase efficiency, a 5V output can be tied to this pin. J7 M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, L2, L3, L4, L5, L6, L7, L8, VIN L9, L10, L11, J2, J3, J4, J9, J10, J11, K2, K3, K4, K9, K10, K11 Power input pins. Connect input voltage from these pins to GND. Direct input decoupling capacitance from VIN to GND is recommended. 1. Use test points to monitor signal pin connections. 9/19/19 074DSR03 8 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Typical Performance Characteristics Typical Performance Characteristics See Figure 20 for typical application schematic. 95 95 Efficiency (%) 100 Efficiency (%) 100 90 85 5V to 3.3V (700kHz) 5V to 2.5V (650kHz) 5V to 1.8V (600kHz) 5V to 1.5V (500kHz) 5V to 1.2V (400kHz) 5V to 1V (400kHz) 80 75 70 0 1 2 3 4 5 6 7 8 9 10 11 12 90 12V to 5V (750kHz), tie 5VOUT to EXTVCC 12V to 3.3V (700kHz) 12V to 2.5V (650kHz) 12V to 1.8V (600kHz) 12V to 1.5V (500kHz) 12V to 1.2V (400kHz) 12V to 1V (400kHz) 85 80 75 70 13 0 1 2 3 4 IOUT (A) Each Channel Current (A) Efficiency (%) 95 90 12V to 3.3V (700kHz) 12V to 2.5V (650kHz) 12V to 1.8V (600kHz) 12V to 1.5V (500kHz) 12V to 1.2V (400kHz) 12V to 1V (400kHz) 75 70 0 2 4 6 8 10 12 14 16 18 20 22 24 8 9 10 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 11 12 13 IOUT1 IOUT2 0 26 IOUT (A) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Total Output Current (A) 12VIN, 1.5VOUT, COUT = 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic Figure 6: Efficiency: Dual Phase, VIN = 12V 9/19/19 7 Figure 5: Efficiency: Single Phase, VIN = 12V 100 80 6 IOUT (A) Figure 4: Efficiency: Single Phase, VIN = 5V 85 5 Figure 7: Output Current Sharing 074DSR03 9 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Typical Performance Characteristics See Figure 20 for typical application schematic. 20mV / div(1) 20mV / div(1) 5A / div, 6A / µs step 5A / div, 6A / µs step 40µs / div 40µs / div COUT: 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic; COUT: 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic; CFF = 180pF CFF = 180pF Figure 9: 12V to 1.2V Load Step Response Figure 8: 12V to 1V Load Step Response 50mV / div(1) 50mV / div(1) 5A / div, 6A / µs step 5A / div, 6A / µs step 40us / div COUT: 220µF / 9mΩ POSCAP, 100µF ceramic; CFF = 100pF, 40us / div COUT: 220µF / 9mΩ POSCAP, 100µF ceramic; CFF = 47pF Figure 10: 12V to 1.5V Load Step Response Figure 11: 12V to 1.8V Load Step Response 1. Waveform averaged to remove high frequency ripple. 9/19/19 074DSR03 10 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Typical Performance Characteristics See Figure 20 for typical application schematic. 50mV / div(1) 100mV / div(1) 5A / div, 6A / µs step 5A / div, 6A / µs step 40µs / div 40µs / div COUT: 100µF / 18mΩ POSCAP, 100µF ceramic; CFF = 47pF COUT: 220µF / 9mΩ POSCAP, 100µF ceramic Figure 13: 12V to 3.3V Load Step Response Figure 12: 12V to 2.5V Load Step Response 200mV / div(1) 5A / div, 6A / µs step 40µs / div COUT: 100µF ceramic; CFF = 22pF Figure 14: 12V to 5V Load Step Response 1. Waveform averaged to remove high frequency ripple. 9/19/19 074DSR03 11 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Typical Performance Characteristics See Figure 20 for typical application schematic. VOUT, 500mV / div VOUT, 500mV / div IOUT, 5A / div IOUT, 2A / div 2ms / div 2ms / div 12VIN, 1.5VOUT, soft-start capacitor = 0.01µF, COUT = 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic, use RUN pin to control start-up 12VIN, 1.5VOUT, soft-start capacitor = 0.01µF, COUT = 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic, use RUN pin to control start-up Figure 16: Single Phase Start-Up, 12V to 1.5V, 13A Load Figure 15: Single Phase Start-Up, 12V to 1.5V, No Load VOUT, 500mV / div VOUT, 500mV / div IOUT, 10A / div IOUT, 10A / div 10ms / div 12VIN, 1.5VOUT, soft-start capacitor = 0.01µF, COUT = 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic 10ms / div 12VIN, 1.5VOUT, soft-start capacitor = 0.01µF, COUT = 2 x 470µF / 10mΩ each POSCAP, 100µF ceramic Figure 17: Short-Circuit, 12V to 1.5V, 0A Load 9/19/19 Figure 18: Short-Circuit, 12V to 1.5V, 13A Load 074DSR03 12 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Functional Block Diagram Functional Block Diagram VIN TRACK1 CSS RTEMP = 100μA VIN GND RTEMP TEMP Q TOP SW1 CLKOUT 0.56μH RUN1 Q BOTTOM MODE_PLLIN GND PHASMD VOUT1 COUT1 VOUTS1 60.4k COMP1 VFB1 INTERNAL COMP SGND PGOOD1 POWER CONTROL RFB1 PGOOD2 VIN TRACK2 INTVCC CSS VOUT1 CVCC 4.7μF 1μF GND CIN Q TOP EXTVCC 0.56μH SW2 VOUT2 Q BOTTOM RUN2 GND VOUT2 COUT2 LOAD VIN - 0.6V CIN 1μF VOUTS2 60.4k COMP2 Optional External Control FSET RfSET SGND + – VFB2 RFB2 INTERNAL COMP MxL7213 INTERNAL FILTER DIFFOUT DIFFN DIFFP Figure 19: Functional Block Diagram 9/19/19 074DSR03 13 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Operation Operation Power Module Description light loads. This light load feature extends battery life. The MxL7213 is a dual-channel, standalone, synchronous step-down power module that provides two 13A outputs or one 26A output. This power module has a continuous input voltage range of 4.5V to 16V and has been optimized for 12V conversions. It provides precisely regulated output voltages from 0.6V to 5.3V that are set by a single external resistor. See typical application schematic in Figure 20. The module employs a constant frequency, peak current mode control loop architecture. It also has an internal feedback loop compensation. These features ensure the MxL7213 has sufficient stability margins as well as good transient performance over a wide range of output capacitors, including low ESR ceramic capacitors. The peak current mode control supports cycle-by-cycle fast current limit and current limit hiccup in overcurrent or output short circuit conditions. The open-drain PGOOD outputs are pulled low when the output voltage exceeds ±10% of its set point. Once the output voltage exceeds +10%, the high side MOSFET is kept off while the low side MOSFET turns on, clamping the output voltage. The overvoltage and undervoltage detection are referenced to the feedback pin. The RUN1 and RUN2 pins enable and disable the module’s two channels. Pulling a RUN pin below 1.1V forces the respective regulator into shutdown mode and turns off both the high side and low side MOSFETs. The TRACK pins are used for either programming the output voltage ramp and voltage tracking during start-up, or for soft-starting the channels. The EXTVCC pin allows an external 5V supply to power the module and reduce the power dissipation in the internal 5V LDO. EXTVCC has a threshold of 4.7V for activation and a max rating of 6V. It must sequence on after VIN and sequence off before VIN. Monitor the internal die temperature by using the TEMP pin. Pull the anode up to VIN through an external resistor to set the bias current in the diode. Thermal simulation has shown that the thermal monitor on the controller die is within 5°C of the MOSFETs. Applications Information Typical Application Circuit The typical MxL7213 application circuit is shown in Figure 20. External component selection is primarily determined by the maximum load current and output voltage. Refer to Table 11 for a selection of various design solutions. Additional information about selecting external compensation components can be found in the Stability and Compensation section. VIN to VOUT Step-Down Ratios The MxL7213 includes a differential remote sense amplifier (with a gain of +1). This amplifier can be used to accurately sense the voltage at the load point on one of the module’s two outputs or on a single parallel output. The switching frequency is programmed from 250kHz to 780kHz using an external resistor on the FSET pin. For noise sensitive applications, the module can be synchronized to an external clock. The MxL7213 module can be configured to current share between channels. It can also be set to current share between modules (multiphase or ganged operation). Using the MODE_PLLIN, PHASMD and CLKOUT pins, multiphase operation of up to 8 phases is possible with multiple MxL7213s running in parallel. For a given input voltage, there are limitations to the maximum possible VIN and VOUT stepdown ratios. The MxL7213 has a maximum duty cycle of 90% at 500kHz, meaning the maximum output voltage will be approximately 0.9 x VIN. When running at high duty cycle, output current can be limited by the power dissipation in the high-side MOSFET. The minimum output voltage from a given input is controlled by the minimum on-time which is 90ns. The minimum output voltage is VIN x fSW(MHz) x 0.09µs. To get a lower output voltage, reduce the switching frequency. Using the the MODE_PLLIN pin to operate in pulseskipping mode results in high efficiency performance at 9/19/19 074DSR03 14 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Output Voltage Programming INTVCC INTVCC CVCC 4.7μF RPGOOD1 10kΩ PGOOD1 R1 10kΩ Optional D1 5.1V Zener Optional MODE_PLLIN VIN C1-C4 22μF 25V CSS1 0.1μF RTEMP 100kΩ CLKOUT INTVCC EXTVCC PGOOD1 VOUT1 VOUTS1 TEMP RUN1 SW1 RUN2 VFB1 TRACK1 VFB2 TRACK2 COMP1 MxL7213 FSET CSS2 0.1μF COMP2 VOUTS2 PHASMD VOUT2 SW2 RSET 121kΩ SGND GND DIFFP PGOOD2 DIFFN DIFFOUT COUT1 100μF 6.3V CFF1(1) 180pF RCOMP1(2) CCOMP1(2) RFB2 60.4kΩ COUT2 470μF 6.3V x2 RFB1 40.2kΩ RCOMP2(2) CCOMP2(2) COUT3 INTVCC 100μF RPGOOD2 6.3V 10kΩ PGOOD2 VOUT1 1.5V 13A CFF2(1) 180pF VOUT2 1.2V 13A COUT4 470μF 6.3V x2 LOAD VIN 1. See Table 11. 2. May be necessary for certain operating conditions. Figure 20: Typical 5VIN to 16VIN, 1.5V and 1.2V Outputs Output Voltage Programming The PWM controller has an internal 0.6V reference. A resistor RFB between the VFB and SGND pins programs the output voltage. A 60.4kΩ internal feedback resistor is connected from VOUTS1 to VFB1 and from VOUTS2 to VFB2, as illustrated in the functional block diagram. RFB values for corresponding standard VOUT values are shown in Table 6. Use the following equation to determine the RFB value for other VOUT levels: V OUT 0.6   60.4 + R FB  = --------------------------------------------R FB When paralleling multiple channels and devices: Tie all COMP pins together for current sharing between the phases. 9/19/19 ■ Tie the TRACK pins together and use a single soft-start capacitor to soft-start the regulator. Increase the soft-start current parameter by the number of paralleled channels when solving the softstart equation. (Refer to the Soft Start and Output Voltage Tracking section). Table 6: VFB Resistor Table vs. Various Output Voltages VOUT 0.6V RFB When paralleling multiple channels and devices, a common RFB resistor may be used. Select the RFB as explained above. Note that VFB pins have an IFB max of 20nA per channel. To reduce VOUT error due to IFB, use an additional RFB and connect corresponding VOUTS to VOUT as shown in Figure 21. ■ ■ 1.0V 1.2V 1.5V 1.8V 2.5V 3.3V 5V Open 90.9k 60.4k 40.2k 30.2k 19.1k 13.3k 8.25k Input Capacitors Connect the MxL7213 to a low impedance DC source. Use four 22µF ceramic input capacitors to reduce RMS ripple current on the regulator input. A bulk input capacitor is required if the source impedance is high or the source capacitance is low. For additional bulk input capacitance, use a surface mount 47µF to 100µF aluminum electrolytic bulk capacitor. 074DSR03 15 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Output Capacitors The bulk output capacitors, denoted as COUT, need to have low enough effective series resistance (ESR) to meet output voltage ripple and transient requirements. The MxL7213 can use low ESR tantalum capacitors, low ESR polymer capacitors, ceramic capacitors or a combination for COUT. Refer to Table 11 for COUT recommendations that optimize performance for different output voltages. Output Voltage Programming shows an example of parallel operation and Figure 22 shows examples of 2-phase, 4-phase and 6-phase designs. COMP1 VOUT1 COMP2 VOUT2 4 Paralleled Outputs for 1.2V at 50A 60.4k VOUTS1 VOUTS2 Optional Connection VFB1 Pulse-Skipping Mode Operation 60.4k TRACK1 VFB2 TRACK2 Pulse-skipping mode enables the module to skip cycles at light loads which reduces switching losses and increases efficiency at low to intermediate currents. To enable this mode, connect the MODE_PLLIN pin to the INTVCC pin. COMP1 VOUT1 COMP2 VOUT2 Optional RFB 60.4k 60.4k VOUTS1 VOUTS2 Forced Continuous Operation Forced continuous operation is recommended when fixed frequency is more important than light load efficiency, and when the lowest output ripple is desired. To enable this mode, connect the MODE_PLLIN pin to GND. Multiphase Operation Multiphase operation is used to achieve output currents greater than 13A. It can be used with both MxL7213 channels to achieve one 26A output. It can also be used by paralleling multiple MxL7213s and running them out of phase to attain one single high current output, up to 100A. Ripple current in both the input and output capacitors is substantially lower using a multiphase design when the number of phases multiplied by the output voltage is less than the input voltage. Input RMS ripple current and output ripple amplitude is reduced by the number of phases used while the effective ripple frequency is multiplied by the number of phases used. The MxL7213 is a peak current mode controlled device which results in very good current sharing between parallel modules and balances the thermal loading. Use to lower total equivalent resistance to lower IFB voltage error VFB1 60.4k TRACK1 VFB2 TRACK2 CSS 0.1μF RFB 60.4k Figure 21: 4-Phase Parallel Configuration Up to 8 phases can be paralleled by using each MxL7213 channel’s PHASMD, MODE_PLLIN and CLKOUT pins. When the CLKOUT pin is connected to the following stage’s MODE_PLLIN pin, the frequency and the phase of both devices are locked. Phase difference can be obtained between MODE_PLLIN and CLKOUT of 120 degrees, 60 degrees or 90 degrees respectively by connecting the PHASMD pin to INTVCC, SGND or left floating. Figure 21 9/19/19 074DSR03 16 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Output Voltage Programming 2-PHASE DESIGN PHASMD SGND FLOAT INTVCC 0 0 0 CONTROLLER1 FLOAT CLKOUT MODE_PLLIN 0 PHASE 180 PHASE VOUT1 VOUT2 PHASMD CONTROLLER2 180 180 240 CLOCKOUT 60 90 120 4-PHASE DESIGN 90 DEGREE CLKOUT MODE_PLLIN 0 PHASE 180 PHASE VOUT1 VOUT2 FLOAT PHASMD CLKOUT MODE_PLLIN 90 PHASE 270 PHASE VOUT1 VOUT2 FLOAT PHASMD 6-PHASE DESIGN 60 DEGREE 60 DEGREE CLKOUT MODE_PLLIN 0 PHASE 180 PHASE VOUT1 VOUT2 SGND PHASMD CLKOUT MODE_PLLIN 60 PHASE 240 PHASE VOUT1 VOUT2 SGND PHASMD CLKOUT MODE_PLLIN 120 PHASE 300 PHASE VOUT1 VOUT2 FLOAT PHASMD Figure 22: Examples of 2-Phase, 4-Phase and 6-Phase Operation with PHASMD Table 9/19/19 074DSR03 17 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation Figure 23 illustrates the RMS ripple current reduction that is expected as a function of the number of interleaved phases. Input RMS Ripple Current Cancellation An external clock with a frequency range of 250kHz to 780kHz and a voltage range of 0V to INTVCC can be connected to the MODE_PLLIN pin. The high level threshold of the clock input is 1.6V and the low level threshold of the clock input is 1V. The MxL7213 integrates the PLL loop filter components. Ensure that the initial switching frequency is set with an external resistor before locking to an external clock. Both regulators will operate in continuous mode while being synchronized to an external clock signal. The PLL phase detector output charges and discharges the internal filter network with a pair of complementary current sources. When an external clock is connected, an internal switch disconnects the external FSET frequency resistor. The switching frequency then locks to the incoming external clock. If no external clock is connected, then the internal switch is on, which connects the external FSET frequency set resistor. 900 Figure 23: Normalized Input RMS Ripple Current vs. Duty Cycle, One to Six Phases Frequency (kHz) 800 Frequency Selection and Phase-Lock Loop 700 600 500 400 300 200 100 0 To increase efficiency, the MxL7213 works over a range of frequencies. For lower output voltages or duty cycles, lower frequencies are recommended to lower MOSFET switching losses and improve efficiency. For higher output voltages or duty cycles, higher frequencies are recommended to limit inductor ripple current. Refer to the efficiency graphs and their operating frequency conditions. When selecting an operating frequency, keep the highest output voltage in mind. 0.0 0.5 1.0 1.5 2.0 2.5 Voltage (V) Figure 24: Operating Frequency vs. FSET Pin Voltage Use an external resistor between the FSET pin and SGND to set the switching frequency. An accurate 10µA current source into the resistor sets a voltage that programs the frequency. Alternately, a DC voltage can be applied to FSET to program the frequency. Figure 24 illustrates the operating frequency versus FSET pin voltage. 9/19/19 074DSR03 18 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Minimum On-Time Minimum On-Time tON(MIN) is the shortest time the controller can turn on the high-side MOSFET of either channel. Approaching this time may be more of an issue in low duty cycle applications. Use the following equation to make sure the on-time is above this minimum: V OUT ------------------------------t V IN  FREQ ON  MIN  If the on-time falls below this minimum, the channel will start to skip cycles. In this case, the output voltage continues to regulate, however output ripple increases. Lowering the switching frequency increases on-time. Minimum on-time specified in the electrical characteristics is 90ns. Input RMS Ripple Current Cancellation The MODE_PLLIN pin selects between forced continuous mode or pulse-skipping mode during steady-state operation. Regardless of the mode selected, the module channels will always start in pulse-skipping mode up to TRACK = 0.5V. Between TRACK = 0.5V and 0.54V, it will operate in forced continuous mode. Once TRACK > 0.54V, it will follow the selected mode. The TRACK pins can be used to externally program the output voltage tracking. The output may be tracked up and down with another regulator. The master regulator’s output is divided down with an external resistor divider that is the same as the slave regulator’s feedback divider to implement coincident tracking. Note that each MxL7213 channel has an internal accurate 60.4kΩ for the top feedback resistor. Refer to the equation below, which is applicable for VTRACK(SLAVE) < 0.8V. An example of coincident tracking is shown in Figure 26. 60.4k V OUT  SLAVE  =  1 + -------------  V TRACK  SLAVE   R TA  Soft Start and Output Voltage Tracking A capacitor CSS can be connected from the TRACK pin to ground to implement soft start. The TRACK pin is charged by a 1.25µA current source up to the reference voltage and then on to INTVCC. The MxL7213 has a smooth transition from TRACK to VOUT as shown in Figure 25. If the RUN pin is below 1.2V, the TRACK pin is pulled low. The following equation can be used to calculate soft-start time, defined as when PGOOD asserts: C SS t SOFTSTART =  ------------------  0.65V  1.25A Voltage (mV) 1000 900 VTRACK 800 VOUT = 0.6V 700 600 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 time (ms) Figure 25: VOUT and VTRACK versus Time 9/19/19 074DSR03 19 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation INTVCC INTVCC CVCC 4.7μF RPGOOD1 10kΩ PGOOD1 R1 10kΩ Optional D1 5.1V Zener Optional CIN CSS 0.1μF RTEMP RTB 60.4kΩ RTA 19.1kΩ INTVCC CLKOUT INTVCC EXTVCC PGOOD1 VOUT1 TEMP VOUTS1 RUN1 SW1 RUN2 VFB1 TRACK1 VFB2 TRACK2 COMP1 MxL7213 FSET COUT1 100μF 6.3V CFF1 47pF RFB2 19.1kΩ COMP2 VOUT2 VOUT1 3.3V SW2 GND DIFFP PGOOD2 DIFFN DIFFOUT COUT2 100μF 6.3V VOUT1 3.3V 13A RFB1 13.3kΩ VOUT2 VOUTS2 PHASMD SGND MASTER SLAVE 2.5V 13A COUT3 100μF RPGOOD2 6.3V 10kΩ PGOOD2 INTVCC COUT4 220μF 6.3V LOAD MODE_PLLIN VIN VIN Figure 26: Example of Output Tracking Application Circuit possible, populate RTA with the same capacitor as the master’s TRACK capacitor and do not populate RTB. Capacitors with 10% accuracy are recommended. MASTER OUTPUT Power Good SLAVE OUTPUT OUTPUT VOLTAGE TIME Figure 27: Output Coincident Tracking Waveform The ramping voltage is applied to the track pin of the slave. Since the same resistor values are used to divide down the output of the master and to set the output of the slave, the slave tracks with the master coincidentally until its final value it achieved. The master continues from the slave’s regulation point to its final value. In Figure 26, RTA is equal to RFB2 for coincident tracking. Each channel’s open drain PGOOD pin can be used to monitor if its respective VOUT is outside ±10% of the set point. The PGOOD pin is pulled low when the output of either channel is outside the monitoring window, the RUN pin is below its threshold (1.25V), or the MxL7213 is in the soft start or tracking phase. The PGOOD pin will flag power good immediately when both VFB pins are within the monitoring window. Note that there is an internal 20µs delay when VFB voltage goes out of the monitoring window. If desired, a pull up resistor can be connected from the PGOOD pins to a supply voltage with a maximum level of ≤ 6V. Ratiometric power up can be implemented by tying the TRACK pins together and connecting a capacitor from TRACK to ground. For existing designs where this is not 9/19/19 074DSR03 20 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation Stability and Compensation The MxL7213 is internally compensated across the range of all input and output voltages so additional compensation is not typically required. Table 11 covers most application requirements. For low output capacitance or low output voltage applications, sometimes a reasonable loop bandwidth and improved phase margin can be obtained by adding a series R-C circuit between the COMP pin and SGND. Phase Boost (Degrees) 60 50 40 30 20 10 0 Additional Compensation Information 0.1 When the loop gain crosses 0dB at a slope steeper than -20dB / decade, the phase margin sometimes can be inadequate. This is when a small CFF capacitor may offer some help. This CFF capacitor is connected between the VOUTS and FB pins and is in parallel with the 60.4kΩ internal upper feedback resistor. The CFF, together with the upper and lower feedback resistors, form a lead compensation network that inserts a "Zero" in the loop at a frequency followed by a "Pole" at a higher frequency. This gives the loop a phase boost mainly between the Zero and Pole frequencies. CFF, in conjunction with the upper 60.4k feedback resistor located inside the module, creates a feedback “Zero” (Fz). 1 Fz = -------------------------------------------------2    60400  C FF 1.0 10.0 100.0 Frequency (Hz) Figure 28: CFF Phase Boost vs. Frequency Fzero Normalized to 1 As a starting point, calculate CFF from the following equation, where FCO is the crossover frequency. 1 C FF = -------------------------------------------------2    60400  F CO Since the addition of a CFF also brings about a gain boost, the final crossover frequency will increase somewhat. So it may take several iterations to achieve the highest phase margin. Enabling the Channels This added zero makes it easier for high frequency signals to pass from the output back to the FB pin which helps boost the loop’s phase margin. The "Pole" in the lead compensation network can be calculated as: 60400 + R FB Fp = -----------------------------------------------------------2  60400  R FB  C FF For maximum effect, CFF should be selected to place the peak of the phase boost right at the crossover frequency. Figure 28 shows the available phase boost normalized to the Fz frequency of 1. 9/19/19 5.0V, Fp = 8.32Hz 3.3V, Fp = 5.54Hz 2.5V, Fp =4.16Hz 1.8V, Fp = 3.06Hz 1.5V, Fp = 2.5Hz 1.2V, Fp = 2.0Hz 1.0V, Fp = 1.67Hz The RUN1 and RUN2 pins enable and disable the module’s two channels. If either channel is activated using a run pin, then INTVCC is activated. The typical enable threshold of the RUN pins is 1.25V, with a hysteresis of 150mV and a maximum of 1.4V. For 5V operation, they can be pulled up to VIN. For higher than 5V operation, a 10kΩ to 100kΩ resistor and 5V Zener diode can be used to enable the channels. Alternately, the RUN pins can be left floating and the channels will turn on upon application of VIN. For output voltage sequencing applications, the RUN pins can be connected to another channel’s or device’s PGOOD pins. When using paralleled mode, connect the RUN pins together and use a single control. See Figure 20. 074DSR03 21 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation INTVCC and EXTVCC Temperature Monitoring (TEMP) The VIN input voltage powers an internal 5V low dropout regulator. The regulator output (INTVCC) provides voltage to the control circuitry of the module. Alternatively, the EXTVCC pin allows an external 5V supply to be used to eliminate the 5V LDO power dissipation in power sensitive applications. An internal temperature sensing diode / PNP transistor is used to monitor its VBE voltage over temperature, thus serving as a temperature monitor. Its forward voltage and temperature coefficient are shown in the electrical characteristics section and plotted in Figure 29. It is connected to VIN through a pullup resistor RTEMP to limit the current to 100μA. It is recommended to set a 60µA minimum current in applications where VIN varies over a wide range. See Figure 30 for an example on how to use this feature. For output voltages ≤3.3V, the MxL7213’s differential remote sense amplifier can be used to accurately sense voltages at the load. This is particularly useful in high current load conditions. The DIFFP and DIFFN pins must be connected properly to the remote load point, and the DIFFOUT pin must be connected to the corresponding VOUTS1 or VOUTS2 pin. SW Pins 0.80 I = 100μA 0.75 0.70 0.65 V TEMP (V) Differential Remote Sense Amplifier 0.60 0.55 0.50 0.45 Use the SW pins to monitor the switching node of each channel. These pins are generally used for testing or monitoring. During normal operation, these pins should be unconnected and left floating. However, in conjunction with an external series R-C snubber circuit, these pins can be used to dampen ringing on the switch node which may be caused by LC parasitics in the switched current paths. 0.40 0.35 0.30 -60 -40 0 20 40 60 80 100 120 140 Temperature (ࣙC) Figure 29: Diode Voltage vs. Temperature INTVCC VIN – 0.6V VIN RTEMP = 100μA RTEMP CVCC 4.7μF INTVCC RPGOOD 5k A/D PGOOD VIN MODE_PLLIN CLKOUT INTVCC EXTVCC PGOOD1 VOUT1 VIN CIN R1 10k Optional D1 5.1V Zener Optional -20 TRACK1 CSS 0.1μF INTVCC TEMP VOUTS1 RUN1 SW1 RUN2 VFB1 TRACK1 VFB2 TRACK2 COMP1 MxL7213 FSET COUT1 RFB 8.25k COMP2 VOUTS2 PHASMD VOUT2 COUT2 SW2 SGND GND DIFFP PGOOD2 DIFFN DIFFOUT VOUT 5V 26A PGOOD Figure 30: 2-Phase, 5V at 26A with Temperature Monitoring 9/19/19 074DSR03 22 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Fault Protection Thermal Considerations and Output Current Derating The MxL7213 modules support overcurrent, output overvoltage, and overtemperature protection. The overcurrent triggers at a nominal load of 20A. Overcurrent during four consecutive switching cycles initiates a hiccup mode. During hiccup, the high-side and low-side MOSFETs are turned off for 100ms. A soft start is attempted following the hiccup. If the overcurrent persists, the hiccup will continue. The overvoltage triggers when the output voltage is 10% above set-point and the high-side MOSFET is kept off while the low-side MOSFET turns on, clamping the output voltage. The overtemperature triggers at 145°C and turns off the two MOSFETs. When the temperature cools down below 130°C, the module soft-starts. A fuse or circuit breaker should be selected to limit the current to the regulator during overvoltage in case of an internal top MOSFET fault. If the internal top MOSFET fails, then turning it off will not resolve the overvoltage, thus the internal bottom MOSFET will turn on indefinitely trying to protect the load. Under this fault condition, the input voltage will source very large currents to ground through the failed internal top MOSFET and enabled internal bottom MOSFET. This can cause excessive heat and board damage depending on how much power the input voltage can deliver to this system. A fuse or circuit breaker can be used as a secondary fault protector in this situation. 9/19/19 Input RMS Ripple Current Cancellation The design of the MxL7213 module removes heat from the bottom side of the package effectively. Thermal resistance from the bottom substrate material to the printed circuit board is very low. Proper thermal design is critical in controlling device temperatures and in achieving robust designs. There are many factors that affect the thermal performance. One key factor is the temperature rise of the devices in the package, which is a function of the thermal resistances of the devices inside the package and the power being dissipated. The thermal resistances of the MxL7213 are shown in the “Operating Ratings” section of this datasheet. The JEDEC ѲJA thermal resistance provided is based on tests that comply with the JESD51-2A “Integrated Circuit Thermal Test Method Environmental Conditions – Natural Convection” standard. JESD51 is a group of standards whose intent is to provide comparative data based on a standard test condition which includes a defined board construction. Since the actual board design in the final application will be different from the board defined in the standard, the thermal resistances in the final design may be different from those shown. Figure 33, Figure 34, Figure 36, Figure 37 and Figure 39 show output current derating versus ambient temperature for various VIN and VOUT (VIN / VOUT) ratios with 0, 200, and 400 LFM of airflow. The total package power dissipation (PPKG) is dependent on the final application and is the sum of the losses for the two channels. The power losses for a channel will depend mainly on the input voltage, output voltage, and output current. Figure 32, Figure 35 and Figure 38 show the power losses for input voltages of 5V and 12V and for VOUT voltages of 1V, 2.5V, and 5.0V respectively (VIN / VOUT). 074DSR03 23 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation Power Derating JUNCTION-TO-AMBIENT RESISTANCE CASE (TOP)-TO-AMBIENT RESISTANCE JUNCTION-TO-CASE (TOP) RESISTANCE JUNCTION-TO-BOARD RESISTANCE JUNCTION JUNCTION-TO-CASE CASE (BOTTOM)-TO-BOARD (BOTTOM) RESISTANCE RESISTANCE AMBIENT BOARD-TO-AMBIENT RESISTANCE Figure 31: Graphical Representation of Thermal Coefficients Table 7: ѲJA and Derating Curves Corresponding to 1.0V Output Derating Curve VIN (V) Power Loss Curve Airflow (LFM) LGA θJA (ᵒC/W) BGA θJA (ᵒC/W) Figure 33, Figure 34 5, 12 Figure 32 0 7 7 Figure 33, Figure 34 5, 12 Figure 32 200 5.5 5.5 Figure 33, Figure 34 5, 12 Figure 32 400 5 5 Table 8: ѲJA and Derating Curves Corresponding to 2.5V Output Derating Curve VIN (V) Power Loss Curve Airflow (LFM) LGA θJA (ᵒC/W) BGA θJA (ᵒC/W) Figure 36, Figure 37 5, 12 Figure 35 0 7 7 Figure 36, Figure 37 5, 12 Figure 35 200 6 6 Figure 36, Figure 37 5, 12 Figure 35 400 4.5 4.5 LGA θJA (ᵒC/W) BGA θJA (ᵒC/W) Table 9: ѲJA and Derating Curves Corresponding to 5V Output Derating Curve VIN (V) Power Loss Curve Airflow (LFM) Figure 39 12 Figure 38 0 7 7 Figure 39 12 Figure 38 200 6 6 Figure 39 12 Figure 38 400 4.5 4.5 9/19/19 074DSR03 24 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation 7 12V to 1V 5V to 1V Load Current (A) Power Loss (W) 6 5 4 3 2 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 24 22 20 18 16 14 12 10 8 6 4 2 0 26 400 LFM 200 LFM 0 LFM 0 20 Load Current (A) 100 120 Figure 33: Current Derating, VIN = 5V, VOUT = 1.0V 12V to 2.5V 6 5V to 2.5V Power Loss (W) Load Current (A) 80 7 26 24 22 20 18 16 14 12 10 8 6 4 2 0 400 LFM 200 LFM 20 5 4 3 2 1 0 LFM 0 40 60 80 100 0 120 2 Ambient Temperature (°C) 6 8 10 12 14 16 18 20 22 24 26 Figure 35: Power Loss, VOUT = 2.5V 30 25 25 Load Current (A) 30 20 15 10 400 LFM 5 4 Load Current (A) Figure 34: Current Derating, VIN = 12V, VOUT = 1.0V Load Current (A) 60 Ambient Temperature (°C) Figure 32: Power Loss, VOUT = 1.0V 200 LFM 20 15 10 400 LFM 200 LFM 5 0 LFM 0 LFM 0 0 0 20 40 60 80 100 120 0 Ambient Temperature (°C) Figure 36: Current Derating, VIN = 5V, VOUT = 2.5V 9/19/19 40 20 40 60 80 100 120 Ambient Temperature (°C) Figure 37: Current Derating, VIN = 12V, VOUT = 2.5V 074DSR03 25 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation 6 30 12V to 5V 25 Load Current (A) Power Loss (W) 5 4 3 2 1 20 15 10 400 LFM 5 200 LFM 0 LFM 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 20 40 60 80 100 120 Ambient Temperature (°C) Load Current (A) Figure 38: Power Loss, VOUT = 5V 9/19/19 0 Figure 39: Current Derating, VIN = 12V, VOUT = 5V 074DSR03 26 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Input RMS Ripple Current Cancellation Table 10: Capacitors Used for Output Voltage Response Matrix Vendor Value Part Number ESR (mΩ) Murata, COUT1 Ceramic 100µF, 6.3V GRM32ER60J107ME20L ~2 Taiyo Yuden, COUT1 Ceramic 100µF, 6.3V JMK325BJ107MY ~2 Panasonic POSCAP, COUT2 470µF, 6.3V 6TPF470MAH 10 Panasonic POSCAP, COUT2 220µF, 6.3V 6TPF220ML 12 Panasonic POSCAP, COUT2 220µF, 2.5V 2R5TPE220M9 9 Panasonic POSCAP, COUT2 100µF, 6.3V 6TPE100MI 18 Nichicon, CIN Bulk 150µF, 25V UCD1E151MNL1GS Table 11: Output Voltage Response vs. Component Matrix VOUT (V) CIN (µF) 1 1 CIN(1) COUT1 COUT2 P-P DEVIATION at 6A LOAD STEP (mV) Recovery Time (µs) LOAD STEP (A/µs) RFB (kΩ) FREQ (kHz) 27 54 15 6 90.9 400 26 56 15 6 90.9 400 (µF) (µF) (BULK) (µF) CFF (pF) VIN (V) DROOP (mV) 3 x 22 150 100 2 x 470 180 5 3 x 22 150 100 2 x 470 180 12 (CERAMIC) (BULK) (CERAMIC) 1 3 x 22 150 3 x 100 470 180 12 40 81 17 6 90.9 400 1.2 3 x 22 150 3 x 100 470 180 12 39 79 15 6 60.4 500 1.2 3 x 22 150 100 2 x 470 180 5 28 57 16 6 60.4 500 1.2 3 x 22 150 100 2 x 470 180 12 28 56 16 6 60.4 500 1.5 3 x 22 150 100 2 x 470 180 5 26 53 21 6 40.2 550 1.5 3 x 22 150 100 2 x 470 180 12 25 52 21 6 40.2 550 1.5 3 x 22 150 100 220 100 12 51 104 22 6 40.2 550 1.8 3 x 22 150 100 220 47 12 51 106 14 6 30.2 600 47 1.8 3 x 22 150 100 220 2.5 3 x 22 150 100 220 2.5 3 x 22 150 3 x 100 3.3 3 x 22 150 100 100 5 54 110 14 6 30.2 600 12 47 100 20 6 19.1 650 62 12 73 155 25 6 19.1 650 47 12 65 134 20 6 13.3 700 3.3 3 x 22 150 2 x 100 47 12 96 198 25 6 13.3 700 5 3 x 22 150 100 22 12 172 356 25 6 8.25 750 5 3 x 22 150 12 126 260 15 6 8.25 750 100 1. Bulk capacitance is optional if VIN has very low input impedance. 9/19/19 074DSR03 27 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Layout Guidelines and Example Layout Guidelines and Example The MxL7213’s high level of integration simplifies PCB board design. However, some layout considerations are still recommended for optimal electrical and thermal performance. ■ ■ ■ ■ ■ ■ Use large PCB copper areas for high current paths, including VIN, VOUT1 and VOUT2 and GND to minimize conduction loss and thermal stress in the PCB. Use a dedicated power ground layer, placed under the MxL7213. ■ Use a separated SGND ground copper area for components that are connected to the signal pins. The SGND to GND should be connected underneath the module. Place high frequency ceramic input and output capacitors next to the VIN, VOUT and PGND pins to minimize high frequency noise. When paralleling modules, connect the VFB, VOUT and COMP pins together closely with an internal layer. For soft-start mode, the TRACK pins may be tied together via a common capacitor. Use multiple vias to interconnect the top layer and other power layers to minimize via conduction loss and module thermal stress. ■ Cap or plate over any vias that are directly placed on the pad. An example layout for the top PCB layer is recommended for both LGA and BGA packages in Figure 40. Test points can be brought out for monitoring the signal pins. LGA BGA CIN2 CIN1 CIN1 CIN2 VIN VIN M GND M L L K K GND J GND H H G COUT1 GND J G SGND F COUT2 E COUT1 COUT2 E D D C C B B A SGND F A 1 2 3 4 5 VOUT1 6 7 8 9 GND CNTRL 10 11 12 1 VOUT2 2 3 4 5 VOUT1 CNTRL 6 7 8 9 GND CNTRL 10 11 12 VOUT2 CNTRL Figure 40: Recommended PCB Layout 9/19/19 074DSR03 28 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Mechanical Dimensions Mechanical Dimensions 15mm x 15mm x 4.41mm LGA TOP VIEW BOTTOM VIEW SIDE VIEW PAD LOCATION TERMINAL DETAILS Drawing No.: POD-00000083 Revision: B Figure 41: Mechanical Dimensions, LGA 9/19/19 074DSR03 29 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Recommended Land Pattern and Stencil Recommended Land Pattern and Stencil 15mm x 15mm x 4.41mm LGA ∅ ౗ TYPICAL RECOMMENDED LAND PATTERN ∅ ౗ TYPICAL RECOMMENDED STENCIL Drawing No.: POD-00000083 Revision: B Figure 42: Recommended Land Pattern and Stencil, LGA 9/19/19 074DSR03 30 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Mechanical Dimensions Mechanical Dimensions 15mm x 15mm x 5.01mm BGA TOP VIEW BOTTOM VIEW SIDE VIEW TERMINAL DETAILS PAD LOCATION Drawing No.: POD-00000084 Revision: B Figure 43: Mechanical Dimensions, BGA 9/19/19 074DSR03 31 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Recommended Land Pattern and Stencil Recommended Land Pattern and Stencil 15mm x 15mm x 5.01mm BGA ∅ TYPICAL RECOMMENDED LAND PATTERN ∅ TYPICAL RECOMMENDED STENCIL Drawing No.: POD-00000084 Revision: B Figure 44: Recommended Land Pattern and Stencil, BGA 9/19/19 074DSR03 32 MxL7213 Dual 13A or Single 26A Power Module Data Sheet MxL7213 Component Pinout MxL7213 Component Pinout Table 12: MxL7213 Component Pinout Pin ID Function Pin ID Function Pin ID Function Pin ID Function Pin ID Function Pin ID Function A1 VOUT1 B1 VOUT1 C1 VOUT1 D1 GND E1 GND F1 GND A2 VOUT1 B2 VOUT1 C2 VOUT1 D2 GND E2 GND F2 GND A3 VOUT1 B3 VOUT1 C3 VOUT1 D3 GND E3 GND F3 GND A4 VOUT1 B4 VOUT1 C4 VOUT1 D4 GND E4 GND F4 MODE_PLLIN A5 VOUT1 B5 VOUT1 C5 VOUTS1 D5 VFB1 E5 TRACK1 F5 RUN1 A6 GND B6 GND C6 FSET D6 SGND E6 COMP1 F6 SGND A7 GND B7 GND C7 SGND D7 VFB2 E7 COMP2 F7 SGND A8 VOUT2 B8 VOUT2 C8 VOUTS2 D8 TRACK2 E8 DIFFP F8 DIFFOUT A9 VOUT2 B9 VOUT2 C9 VOUT2 D9 GND E9 DIFFN F9 RUN2 A10 VOUT2 B10 VOUT2 C10 VOUT2 D10 GND E10 GND F10 GND A11 VOUT2 B11 VOUT2 C11 VOUT2 D11 GND E11 GND F11 GND A12 VOUT2 B12 VOUT2 C12 VOUT2 D12 GND E12 GND F12 GND G1 GND H1 GND J1 GND K1 GND L1 GND M1 GND G2 SW1 H2 GND J2 VIN K2 VIN L2 VIN M2 VIN G3 GND H3 GND J3 VIN K3 VIN L3 VIN M3 VIN G4 PHASMD H4 GND J4 VIN K4 VIN L4 VIN M4 VIN G5 CLKOUT H5 GND J5 GND K5 GND L5 VIN M5 VIN G6 SGND H6 GND J6 TEMP K6 GND L6 VIN M6 VIN G7 SGND H7 GND J7 EXTVCC K7 GND L7 VIN M7 VIN G8 PGOOD2 H8 INTVCC J8 GND K8 GND L8 VIN M8 VIN G9 PGOOD1 H9 GND J9 VIN K9 VIN L9 VIN M9 VIN G10 GND H10 GND J10 VIN K10 VIN L10 VIN M10 VIN G11 SW2 H11 GND J11 VIN K11 VIN L11 VIN M11 VIN G12 GND H12 GND J12 GND K12 GND L12 GND M12 GND 9/19/19 074DSR03 33 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Ordering Information Ordering Information Table 13: Ordering Information(1) Ordering Part Number MxL7213-AYA-T MxL7213-ABA-T Operating Temperature Range -40°C ≤ TJ ≤ 125°C MSL Rating 3 Lead-Free Yes(2) Package LGA144 15x15 BGA144 15x15 MxL7213-EVK-1 MxL7213 LGA Power Module Dual-Phase EVK MxL7213-EVK-3 MxL7213 BGA Power Module Dual-Phase EVK Packaging Method Tray 1. Refer to www.maxlinear.com/MxL7213 for most up-to-date Ordering Information. 2. Visit www.maxlinear.com for additional information on Environmental Rating. 9/19/19 074DSR03 34 MxL7213 Dual 13A or Single 26A Power Module Data Sheet Disclaimer MaxLinear, Inc. 5966 La Place Court, Suite 100 Carlsbad, CA 92008 760.692.0711 p. 760.444.8598 f. www.maxlinear.com The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc. Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances. MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear’s subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners. © 2019 MaxLinear, Inc. All rights reserved.
MXL7213-AYA-T 价格&库存

很抱歉,暂时无法提供与“MXL7213-AYA-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货