SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E
Data Sheet
Advanced-Failsafe RS-485 / RS-422 Transceivers
1/8th Unit Load, Slew-Rate Limited, ±15kV ESD-Protected
General Description
Features
The SP3082E-SP3088E family of RS-485 devices are
designed for reliable, bidirectional communication on
multipoint bus transmission lines. Each device contains one
differential driver and one differential receiver. The SP3082E,
SP3085E and SP3088E are half-duplex devices; other part
numbers are full-duplex. All devices comply with TIA/EIA-485
and TIA/EIA-422 standards. Lead-free and RoHS compliant
packages are available for all models.
■
■
■
■
These devices are ruggedized for use in harsh operating
conditions over the entire common-mode voltage range from
-7V to +12V. Receivers are specially designed to fail-safe to a
logic high output state if the inputs are left un-driven or
shorted. All RS-485 bus-pins are protected against severe
ESD events up to ±15kV (Air-Gap and Human Body Model)
and up to ±8kV Contact Discharge (IEC 61000-4-2). Drivers
are protected from excess current flow caused by bus
contention or output short-circuits by both an internal current
limit and a thermal-overload shutdown. Devices are rated for
industrial (-40 to +85ºC) operating temperatures. Receivers
have exceptionally high input impedance, which places only
1/8th the standard load on a shared bus. Up to 256
transceivers may coexist while preserving full signal margin.
All devices operate from a single 5.0V power supply and
draw negligible quiescent power. All versions except the
SP3084E may independently enable and disable their driver
and receiver and enter a low power shutdown mode if both
driver and receiver are disabled. All outputs maintain high
impedance in shutdown or when powered-off.
■
■
■
■
■
■
5.0V single supply operation
Receiver failsafe on open, shorted or terminated lines
1/8th Unit Load, 256 transceivers on bus
Robust ESD protection for RS-485 pins
±15kV Air-Gap Discharge
±15kV Human Body Model
±8kV Contact Discharge
Controlled driver slew rates
115kbps, Low EMI (SP3082E)
500kbps, Low EMI (SP3083E, SP3084E, SP3085E)
High Speed, 20Mbps (SP3088E)
Hot Swap glitch protection on control inputs
Driver short circuit current limit and thermal shutdown for
overload protection
Ultra-low 400μA quiescent current
1μA shutdown mode (except SP3084E)
Industry standard package footprints
Applications
■
■
■
■
■
Motor Control
Building Automation
Security Systems
Remote Meter Reading
Long or un-terminated transmission lines
Ordering Information - page 27
Product Selector Guide
Table 1: Product Selector Guide
Part Number
Duplex
Data Rate
(Mbps)
Shutdown
Receiver &
Driver Enable
Transceivers
on Bus
Footprint
Pin-Compatible
Upgrade from:
SP3082E
Half
0.115
Yes
Yes
256
SN75176
SP483, MAX3082
SP3083E
Full
0.5
Yes
Yes
256
SN75180
MAX3083
SP3084E
Full
0.5
No
No
256
SN75179
MAX3084
SP3085E
Half
0.5
Yes
Yes
256
SN75176
MAX3085
SP3088E
Half
20
Yes
Yes
256
SN75176
SP1481, MAX3088
• www.maxlinear.com• Rev 1.0.2
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Revision History
Revision History
Document No.
Release Date
Change Description
M
2/22/07
Legacy Sipex Datasheet.
1.0.0
06/23/09
Convert to Exar format and change revision to 1.0.0.
1.0.1
08/26/11
Correct type error to Vcc range on page 4 from Vcc = 5.0V +/-5% to Vcc = 5.0V +/-10%. Add +/
-65V transient over voltage tolerance to ABS Maximum Ratings and add Figure 11 test circuit.
1.0.2
8/29/19
Update to MaxLinear format, update Ordering Information. Move Pin Information section to just
before Detailed Description section, ESD Ratings to below Absolute Maximum Ratings section,
and Product Selector Guide to page 1. Correct Half Duplex Network Typical Application.
Removed obsolete SP3080E, SP3081E, SP3086E and SP3087E.
8/29/19
Rev 1.0.2
ii
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Table of Contents
Table of Contents
General Description............................................................................................................................................. i
Features............................................................................................................................................................... i
Applications ......................................................................................................................................................... i
Product Selector Guide....................................................................................................................................... i
Device Architecture and Block Diagrams ........................................................................................................ 1
14-pin Full Duplex: ....................................................................................................................................................... 1
8-pin Full Duplex: ......................................................................................................................................................... 1
8-pin Half Duplex: ......................................................................................................................................................... 1
Specifications ..................................................................................................................................................... 2
Absolute Maximum Ratings...........................................................................................................................................2
ESD Ratings ..................................................................................................................................................................2
Recommended Operating Conditions ...........................................................................................................................3
Electrical Characteristics ...............................................................................................................................................4
Timing Characteristics ...................................................................................................................................................5
Typical Performance Characteristics................................................................................................................ 7
Test Circuits and Timing Diagrams................................................................................................................. 15
Function Tables ................................................................................................................................................ 20
Pin Information ................................................................................................................................................. 21
Pin Configurations .......................................................................................................................................................21
Pin Descriptions ..........................................................................................................................................................21
Detailed Description ......................................................................................................................................... 22
Receiver Input Filtering .............................................................................................................................................. 22
Advanced Fail Safe .................................................................................................................................................... 22
Hot-Swap Capability ................................................................................................................................................... 22
±15kV ESD Protection................................................................................................................................................ 22
ESD Test Conditions .................................................................................................................................................. 23
IEC 61000-4-2 ............................................................................................................................................................ 23
Machine Model ........................................................................................................................................................... 23
256 Transceivers on the Bus...................................................................................................................................... 23
Low Power Shutdown Mode....................................................................................................................................... 23
Driver Output Protection ............................................................................................................................................. 23
Line Length, EMI and Reflections .............................................................................................................................. 23
Typical Applications.................................................................................................................................................... 24
8/29/19
Rev 1.0.2
iii
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Table of Contents
Mechanical Dimensions ................................................................................................................................... 25
NSOIC8 ....................................................................................................................................................................... 25
Mechanical Dimensions ................................................................................................................................... 26
NSOIC14 ..................................................................................................................................................................... 26
Ordering Information........................................................................................................................................ 27
8/29/19
Rev 1.0.2
iv
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
List of Figures
List of Figures
Figure 1: 14-pin Full Duplex.................................................................................................................................. 1
Figure 2: 8-pin Full Duplex.................................................................................................................................... 1
Figure 3: 8-pin Half Duplex ................................................................................................................................... 1
Figure 4: No-Load Supply Current vs. Temperature............................................................................................. 7
Figure 5: Shutdown Current vs. Temperature ...................................................................................................... 7
Figure 6: Supply Current vs. Signaling Rate (SP3082E) ...................................................................................... 7
Figure 7: Supply Current vs. Signaling Rate (SP3083E, - SP3085E)................................................................... 7
Figure 8: Supply Current vs. Signaling Rate (SP3088E) ...................................................................................... 7
Figure 9: Output Current vs. Driver Output Low Voltage ...................................................................................... 7
Figure 10: Output Current vs. Driver Output High Voltage ................................................................................... 8
Figure 11: Driver Output Current vs. Differential Output Voltage ......................................................................... 8
Figure 12: Driver Differential Output Voltage vs. Temperature............................................................................. 8
Figure 13: Receiver Output Low Voltage vs. Temperature................................................................................... 8
Figure 14: Receiver Output High Voltage vs. Temperature.................................................................................. 8
Figure 15: Receiver Output Voltage vs. Differential Input Voltage ....................................................................... 8
Figure 16: Output Current vs. Receiver Output Low Voltage ............................................................................... 9
Figure 17: Driver Average Propagation Delay vs. Temperature (SP3082E) ........................................................ 9
Figure 18: Driver Propagation Delay vs. Temperature (SP3082E)....................................................................... 9
Figure 19: Driver Average Propagation Delay vs. Temperature (SP3083E - SP3085E)...................................... 9
Figure 20: Output Current vs. Receiver Output High Voltage............................................................................... 9
Figure 21: Driver Propagation Delay vs. Temperature (SP3083E - SP3085E) .................................................... 9
Figure 22: Driver Propagation Delay vs. Temperature (SP3088E)..................................................................... 10
Figure 23: Receiver Average Propagation Delay vs.Temperature (SP3082E)................................................... 10
Figure 24: Receiver Propagation Delay vs. Temperature (SP3082E) ................................................................ 10
Figure 25: Receiver Propagation Delay vs. Temperature (SP3083E - SP3085E).............................................. 10
Figure 26: Driver Average Propagation Delay vs. Temperature (SP3088E) ...................................................... 10
Figure 27: Receiver Propagation Delay vs. Temperature (SP3088E) ................................................................ 10
Figure 28: Driver Propagation Delay (SP3082E)................................................................................................ 11
Figure 29: Driver and Receiver Hot Swap Performance vs. VCC ....................................................................... 11
Figure 30: Receiver Average Propagation Delay vs. Temperature (SP3088E).................................................. 11
Figure 31: Driver Output Waveform Low to High (SP3082E) ............................................................................. 11
Figure 32: Driver Output Waveform High to Low (SP3082E) ............................................................................. 11
Figure 33: Driver and Receiver Waveform High to Low (SP3082E)................................................................... 12
8/29/19
Rev 1.0.2
v
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
List of Figures
Figure 34: Driver Propagation Delay (SP3083E - SP3085E) ............................................................................. 12
Figure 35: Driver Output Waveform Low to High (SP3083E - SP3085E)........................................................... 12
Figure 36: Driver Output Waveform High to Low (SP3083E - SP3085E)........................................................... 12
Figure 37: Driver and Receiver Waveform Low to High (SP3082E)................................................................... 12
Figure 38: Driver and Receiver Waveform Low to High (SP3083E - SP3085E) ................................................ 12
Figure 39: Driver Propagation Delay (SP3088E)................................................................................................ 13
Figure 40: Driver Output Waveform Low to High (SP3088E) ............................................................................. 13
Figure 41: Driver Output Waveform High to Low (SP3088E) ............................................................................. 13
Figure 42: Driver and Receiver Waveform Low to High (SP3088E)................................................................... 13
Figure 43: Driver and Receiver Waveform High to Low (SP3083E - SP3085E) ................................................ 13
Figure 44: Driver and Receiver Waveform High to Low (SP3088E)................................................................... 13
Figure 45: Receiver Propagation Delay (SP3088E) ........................................................................................... 14
Figure 46: Receiver Propagation Delay (SP3082E) ........................................................................................... 14
Figure 47: Receiver Propagation Delay (SP3083E - SP3085E)......................................................................... 14
Figure 48: Driver DC Test Circuit........................................................................................................................ 15
Figure 49: Receiver DC Test Circuit ................................................................................................................... 15
Figure 50: Driver Propagation Delay Time Test Circuit and Timing Diagram..................................................... 15
Figure 51: Driver Short Circuit Current Limit Test Circuit ................................................................................... 16
Figure 52: Driver Differential Output Test Circuit................................................................................................ 16
Figure 53: Driver Enable and Disable Times Test Circuit and Timing Diagram ................................................. 16
Figure 54: Driver Enable and Disable Times Test Circuit and Timing Diagram ................................................. 17
Figure 55: Receiver Propagation Delay Test Circuit and Timing Diagram ......................................................... 17
Figure 56: Receiver Enable and Disable Times Test Circuit .............................................................................. 18
Figure 57: Receiver Enable and Disable Timing Diagram.................................................................................. 18
Figure 58: Transient Over Voltage Tolerance Test Circuit ................................................................................. 19
Figure 59: Pin Configurations ............................................................................................................................. 21
Figure 60: Half-Duplex Network.......................................................................................................................... 24
Figure 61: Bi-Directional Full-Duplex Network.................................................................................................... 24
Figure 62: Point to Multi-Point Repeater............................................................................................................. 24
Figure 63: Mechanical Dimension, NSOIC8 ....................................................................................................... 25
Figure 64: Mechanical Dimensions, NSOIC14 ................................................................................................... 26
8/29/19
Rev 1.0.2
vi
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
List of Tables
List of Tables
Table 1: Product Selector Guide............................................................................................................................ i
Table 1: Absolute Maximum Ratings .................................................................................................................... 2
Table 2: ESD Ratings ........................................................................................................................................... 2
Table 3: Recommended Operating Conditions..................................................................................................... 3
Table 4: Electrical Characteristics ........................................................................................................................ 4
Table 5: SP3082E Driver Characteristics ............................................................................................................. 5
Table 6: SP3083E, SP3084E, SP3085E Driver Characteristics........................................................................... 5
Table 7: SP3088E Driver Characteristics ............................................................................................................. 6
Table 8: Receiver Characteristics......................................................................................................................... 6
Table 9: SP3083E (Full Duplex) ......................................................................................................................... 20
Table 10: SP3083E (Full Duplex) ....................................................................................................................... 20
Table 11: SP3084E (Full Duplex) ....................................................................................................................... 20
Table 12: SP3084E (Full Duplex) ....................................................................................................................... 20
Table 13: SP3082E, SP3085E, SP3088E (Half Duplex) .................................................................................... 20
Table 14: SP3082E, SP3085E, SP3088E (Half Duplex) .................................................................................... 20
Table 15: Pin Descriptions.................................................................................................................................. 21
Table 16: Ordering Information........................................................................................................................... 27
8/29/19
Rev 1.0.2
vii
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Device Architecture and Block Diagrams
Device Architecture and Block Diagrams
Devices are available in three industry standard architectures and footprints. In each footprint, there are three speed
grades available.
NC
RO
14
13
12
11
1
2
R
RE 3
4
DE
DI
GND
GND
10
5
6
7
D
9
8
Vcc
NC
A
B
14-pin Full Duplex:
SP3083E, 500kbps slew limited
Z
Y
NC
Figure 2: 14-pin Full Duplex
Vcc
RO
DI
GND
1
2
8 A
7
B
R
6
3
D
4
Z
5 Y
8-pin Full Duplex:
SP3084E, 500kbps slew limited
Figure 3: 8-pin Full Duplex
RO
1
R
2
RE
DE 3
DI
4
D
8 VCC
8-pin Half Duplex:
7 B
6 A
SP3082E, 115kbps slew limited
5
SP3085E, 500kbps slew limited
GND
SP3088E, 20Mbps
Figure 4: 8-pin Half Duplex
8/29/19
Rev 1.0.2
1
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Specifications
Specifications
Absolute Maximum Ratings
Important: These are stress ratings only and functional operation of the device at these ratings or any other above those
indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating
conditions for extended periods of time may affect reliability.
Table 1: Absolute Maximum Ratings
Parameter
Minimum
Supply voltage VCC
Maximum
Units
7.0
V
Input voltage at control input pins (RE, DE)
–0.3
VCC+ 0.3
V
Driver input voltage (DI)
–0.3
VCC+ 0.3
V
Driver output voltage (A, B, Y & Z)
–13
13
V
Receiver output voltage (RO)
–0.3
VCC+ 0.3
V
Receiver input voltage (A, B)
–13
13
V
Voltage input range, transient pulse, A, B, Y and Z through 100Ω,
see Figure 59
-65
65
V
150
°C
8-pin SO ѲJA
128.4
°C/W
14-pin SO ѲJA
86
°C/W
150
°C
300
°C
Package Power Dissipation
Maximum junction temperature
Operating Temperature Ranges
Storage temperature range
–65
Lead temperature (soldering, 10s)
ESD Ratings
Table 2: ESD Ratings
Parameter
Limit
Units
HBM - Human Body Model (pins A, B, Y & Z)
±15
kV
HBM - Human Body Model (pins RO, DI, DE)
±2
kV
IEC 1000-4-2 Airgap Discharge (pins Y, Z, A & B)
±15
kV
IEC 1000-4-2 Contact Discharge (pins Y, Z, A & B)
±8
kV
8/29/19
Rev 1.0.2
2
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Recommended Operating Conditions
Recommended Operating Conditions
VCC = 5V ±10%, TMIN to TMAX, unless otherwise noted, typical values are VCC = 5V and TA = 25°C
Table 3: Recommended Operating Conditions
Recommended Operating Conditions
Minimum
Typical
Maximum
Unit
Supply voltage VCC
4.5
5
5.5
V
Input voltage on A and B pins
–7
12
V
High-level input voltage (DI, DE or RE), VIH
2
VCC
V
Low-level input voltage (DI, DE or RE), VIH
0
0.8
V
Driver
–60
60
Receiver
–8
8
Output current
SP3082E
Signaling rate, 1/tUI
Operating free air temperature, TA
mA
0.115
SP3083E, SP3084E, SP3085E
0.5
SP3088E
20
Industrial grade (E)
–40
85
Mbps
°C
1. The least positive (most negative) limit is designated as the maximum value.
8/29/19
Rev 1.0.2
3
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Electrical Characteristics
Electrical Characteristics
Table 4: Electrical Characteristics
Parameter
Test Condition
Minimum
Typical
Maximum
Units
Digital Input Signals: DI, DE, RE
High, VIH
Logic input thresholds
2.0
Low, VIL
0.8
Logic input current
TA = 25°C, after first transition
±1
Input hysteresis
TA = 25°C
100
V
µA
mV
Driver
Differential driver output (VOD)
VCC
No load
RL= 100Ω (RS-422)
2
RL= 54Ω (RS-485)
1.5
Differential driver output, Test 2
VCM = -7 to +12V
1.5
Change in magnitude of differential output
voltage (∆VOD)(1)
RL= 54Ω or 100Ω
Driver common mode output voltage (VCC)
RL= 54Ω or 100Ω
Change in common mode output voltage
(∆VOC)
Differential driver output, Test 1
VCC
2.7
VCC
V
V
VCC
V
±0.2
V
3
V
RL= 54Ω or 100Ω
±0.2
uA
Driver short circuit current limit
-7V ≤ VOUT ≤ 12V(5)
±250
mA
Output leakage current (Full-duplex versions,
Y & Z pins)(2)
DE = 0, RE = 0,
VCC = 0 or 5.5V
1
VOUT = 12V
VOUT = -7V
125
–100
µA
Receiver
Receiver input resistance
-7V ≤ VCM ≤ 12V
Input current (A, B pins)
DE = 0, RE = 0
VCC = 0 or 5.5V
Receiver differential threshold (VA - VB)
-7V ≤ VCM ≤ 12V
96
kΩ
VIN = 12V
VIN = -7V
125
–100
–200
Receiver input hysteresis
–125
–40
25
µA
mV
mV
VOH
IOUT = -8mA, VID = -40mV
VOL
IOUT = -8mA, VID = -200mV
0.4
High-Z receiver output current
VCC = 5.5V, 0 ≤ VOUT ≤ VCC
±1
µA
Receiver output short circuit current
0 ≤ VRO ≤ VCC
±95
mA
Receiver output voltage
8/29/19
Rev 1.0.2
VCC - 1.5
V
4
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Switching Characteristics
Table 4: Electrical Characteristics
Parameter
Test Condition
Minimum
Typical
Maximum
Units
400
900
µA
1
µA
Supply and Protection
Supply current
IQ, active
mode
No load, DI = 0 or VCC
Shutdown
mode
DE = 0, RE = VCC, DI = VCC
Thermal shutdown temperature
Junction temperature
165
Thermal shutdown hysteresis
°C
15
1. Change in magnitude of differential output voltage and change in magnitude of common mode output voltage are the changes in output voltage when
DI input changes state.
2. Except devices which don’t have DE or RE inputs.
3. The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50ns, the device does not enter
shutdown. If the enable inputs are held in this state for at least 600ns, the device is assured to be in shutdown. In this low power mode, most circuitry is
disabled and supply current is typically 1nA.
4. Characterized, not 100% tested.
5. See Figure 52.
Timing Characteristics
Unless otherwise noted, VCC = 5.0 ±0.5V, ambient temperature TA from -40 to 85°C.
Table 5: SP3082E Driver Characteristics
Driver Characteristics
Conditions
Data signaling rate (1 / tUI)
Minimum
Duty cycle 40 to 60%
Driver propagation delay (tPHL, tPLH)
Typical
Maximum
115
Unit
kbps
2600
ns
2500
ns
Driver differential skew (tPLH - tPHL)
±200
ns
Shutdown to driver output valid (tDZV)
6000
ns
Maximum
Unit
Driver output rise / fall time (tR, tF)
500
RL = 54Ω, CL = 50pF
667
1200
Table 6: SP3083E, SP3084E, SP3085E Driver Characteristics
Driver Characteristics
Conditions
Minimum
Data signaling rate (1 / tUI)
Duty cycle 40 to 60%
Driver propagation delay (tPHL, tPLH)
Typical
500
kbps
1000
ns
750
ns
Driver differential skew (tPLH - tPHL)
±100
ns
Driver enable to output high (tDZH)
2500
ns
2500
ns
100
ns
Driver disable from output low (tDLZ)
100
ns
Shutdown to driver output valid (tDZV)
4500
ns
Driver output rise / fall time (tR, tF)
Driver enable to output low (tDZL)
Driver disable from output high (tDHZ)
8/29/19
250
RL = 54Ω, CL = 50pF
SP3083E, SP3084E
Rev 1.0.2
200
530
5
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Switching Characteristics
Table 7: SP3088E Driver Characteristics
Receiver Characteristics
Conditions
Data signaling rate (1 / tUI)
Minimum
Duty cycle 40 to 60%
Typical
Maximum
20
Driver propagation delay (tPHL, tPLH)
Unit
Mbps
12
20
ns
6
10
ns
Driver differential skew (tPLH - tPHL)
±5
ns
Shutdown to driver output valid (tDZV)
250
ns
Typical
Maximum
Unit
75
200
ns
75
ns
±30
ns
±5
ns
15
ns
Receiver enable to output high (tZH)
50
ns
Receiver enable from output low (tZL)
50
ns
Receiver disable from high (tHZ)
50
ns
Receiver disable from low (tLZ)
50
ns
3500
ns
600
ns
Driver output rise / fall time (tR, tF)
RL = 54Ω, CL = 50pF
Table 8: Receiver Characteristics
Receiver Characteristic
Conditions
Minimum
Receiver prop. delay SP3082E - SP3085E
Receiver prop. delay SP3088E
Prop. delay skew SP3082E - SP3085E
CL = 15pF, VID = ±2V
Prop. delay skew SP3088E
Receiver output rise / fall time
CL = 15pF
Shutdown to receiver output valid (tROV)
Time to shutdown(2, 3, 4)
8/29/19
50
Rev 1.0.2
200
6
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
Typical Performance Characteristics
700
325
DE = Vcc
Shutdown Current (nA)
No-Load Supply Current (uA)
350
300
275
250
DE = GND
650
600
550
225
200
500
-60
-40
-20
0
20
40
60
80
100
-60
-40
-20
0
Temperature (ºC)
60
80
100
1000
1000
No Load
VCC=5V
TA=25ºC
50% Square wave input
No Load
VCC=5V
TA=25ºC
50% Square wave input
100
Supply Current (mA)
100
Supply Current (mA)
40
Figure 6: Shutdown Current vs. Temperature
Figure 5: No-Load Supply Current vs. Temperature
Driver and Receiver
10
Driver and Receiver
10
1
1
Receiver
Receiver
0.1
0.1
1
10
100
1000
1
10
Signaling Rate (kbps )
100
1000
Signaling Rate (kbps )
Figure 7: Supply Current vs. Signaling Rate (SP3082E)
Figure 8: Supply Current vs. Signaling Rate
(SP3083E - SP3085E)
100
100
No Load
VCC=5V
TA=25ºC
50% Square wave input
90
80
Output Current (mA)
Supply Current (mA)
20
Tem perature (ºC)
10
Driver and Receiver
1
70
60
50
40
30
20
Receiver
10
0.1
0
1
10
100
1000
10000
100000
0
Signaling Rate (kbps )
2
3
4
5
6
Output Low Voltage (V)
Figure 9: Supply Current vs. Signaling Rate (SP3088E)
8/29/19
1
Rev 1.0.2
Figure 10: Output Current vs.
Driver Output Low Voltage
7
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
100
-120
10
Output Current (mA)
Output Current (mA)
-100
-80
-60
-40
1
0.1
-20
0
0.01
-2
0
2
4
0
6
1
3
4
5
6
Figure 12: Driver Output Current vs.
Differential Output Voltage
Figure 11: Output Current vs.
Driver Output High Voltage
3.4
0.35
IOUT=8m A, VID=-200m V
3.2
0.3
R L =100ȍ
3
Output Low Voltage (V)
Output Voltage (V)
2
Dif f erential Output Voltage (V)
Output High Voltage (V)
2.8
2.6
R L=54ȍ
2.4
0.25
0.2
0.15
2.2
2
-60
-40
-20
0
20
40
60
80
0.1
-60
100
-40
4
20
40
60
80
100
5
VCC=5V
TA=25ºC
Receiver Output Voltage (V)
IOUT=8m A, VID=-40m V
3.9
Output High Voltage (V)
0
Figure 14: Receiver Output Low Voltage
vs. Temperature
Figure 13: Driver Differential Output Voltage
vs. Temperature
3.8
3.7
3.6
3.5
-60
4
3
2
1
0
-40
-20
0
20
40
60
80
100
Temperature (º C)
-200 -180 -160 -140 -120 -100
-80
-60
-40
-20
0
Differential Input Voltage (m V)
Figure 15: Receiver Output High Voltage
vs. Temperature
8/29/19
-20
Temperature (º C)
Tem perature (ºC)
Figure 16: Receiver Output Voltage vs.
Differential Input Voltage
Rev 1.0.2
8
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
960
60
R L=54ȍ,C L=50pF
950
Propagation Delay (ns)
Output Current (mA)
50
40
30
20
940
930
920
910
900
890
10
880
0
0
1
2
3
4
870
-60
5
-40
-20
Output Low Voltage (V)
20
40
60
80
100
Temperature (º C)
Figure 18: Driver Average Propagation Delay
vs. Temperature (SP3082E)
Figure 17: Output Current vs.
Receiver Output Low Voltage
435
960
R L=54ȍ,C L=50pF
R L=54ȍ,CL=50pF
950
430
940
Propagation Delay (ns)
Propagation Delay (ns)
0
930
tPLH
920
910
900
tPHL
890
425
420
415
880
870
-60
-40
-20
0
20
40
60
80
100
410
-60
-40
-20
Temperature (ºC)
0
20
40
60
80
100
Temperature (º C)
Figure 19: Driver Propagation Delay vs.
Temperature (SP3082E)
Figure 20: Driver Average Propagation Delay vs.
Temperature (SP3083E - SP3085E)
460
35
R L=54ȍ,C L=50pF
450
tPLH
Propagation Delay (ns)
Output Current (mA)
30
25
20
15
10
440
430
420
410
tPHL
400
5
0
0
1
2
3
4
390
-60
5
Output High Voltage (V)
-20
0
20
40
60
80
100
Temperature (º C)
Figure 22: Driver Propagation Delay vs.
Temperature (SP3083E - SP3085E)
Figure 21: Output Current vs.
Receiver Output High Voltage
8/29/19
-40
Rev 1.0.2
9
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
120
15
C L=15pF, VID=±2V
R L=54ȍ,C L=50pF
110
13
Propagation Delay (ns)
Propagation Delay (ns)
14
tPLH
12
11
tPHL
10
100
90
80
9
8
-60
-40
-20
0
20
40
60
80
70
-60
100
Tem perature (ºC)
-40
-20
0
20
40
60
80
100
Temperature (º C)
Figure 24: Receiver Average Propagation Delay
vs.Temperature (SP3082E)
Figure 23: Driver Propagation Delay vs. Temperature
(SP3088E)
120
155
C L=15pF, VID=±2V
150
110
100
Propagation Delay (ns)
Propagation Delay (ns)
C L=15pF, VID=±2V
tPHL
90
tPLH
145
tPHL
140
135
130
tPLH
125
80
120
70
-60
-40
-20
0
20
40
60
80
115
-60
100
-40
-20
0
Temperature (ºC)
20
40
60
80
100
Temperature (º C)
Figure 26: Receiver Propagation Delay vs.
Temperature (SP3083E - SP3085E)
Figure 25: Receiver Propagation Delay vs.
Temperature (SP3082E)
55
13.5
R L=54ȍ,C L=50pF
C L=15pF, VID=±2V
53
51
Propagation Delay (ns)
Propagation Delay (ns)
Propagation Delay (ns)
13
12.5
12
11.5
11
49
47
tPHL
45
43
tPLH
41
39
10.5
37
10
-60
-40
-20
0
20
40
60
80
100
Temperature (º C)
35
-60
-40
-20
0
20
40
60
80
100
Temperature (º C)
Figure 27: Driver Average Propagation Delay vs.
Temperature (SP3088E)
8/29/19
Figure 28: Receiver Propagation Delay vs.
Temperature (SP3088E)
Rev 1.0.2
10
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Figure 29: Driver Propagation Delay (SP3082E)
Typical Performance Characteristics
Figure 30: Driver and Receiver Hot Swap Performance
vs. VCC
54
C L =15pF, V
Propagation Delay (ns)
52
ID =±2V
50
48
46
44
42
40
-60
-40
-20
0
20
40
60
80
100
Temperature (ºC)
Figure 32: Driver Output Waveform Low to High
(SP3082E)
Figure 31: Receiver Average Propagation Delay vs.
Temperature (SP3088E)
Figure 33: Driver Output Waveform High to Low (SP3082E)
8/29/19
Rev 1.0.2
11
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
Figure 34: Driver and Receiver Waveform High to Low
(SP3082E)
Figure 35: Driver Propagation Delay
(SP3083E - SP3085E)
Figure 36: Driver Output Waveform Low to High
(SP3083E - SP3085E)
Figure 37: Driver Output Waveform High to Low
(SP3083E - SP3085E)
Figure 38: Driver and Receiver Waveform Low to High
(SP3082E)
Figure 39: Driver and Receiver Waveform Low to High
(SP3083E - SP3085E)
8/29/19
Rev 1.0.2
12
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
Figure 40: Driver Propagation Delay (SP3088E)
Figure 41: Driver Output Waveform Low to High
(SP3088E)
Figure 42: Driver Output Waveform High to Low
(SP3088E)
Figure 43: Driver and Receiver Waveform Low to High
(SP3088E)
Figure 44: Driver and Receiver Waveform High to Low
(SP3083E - SP3085E)
Figure 45: Driver and Receiver Waveform High to Low
(SP3088E)
8/29/19
Rev 1.0.2
13
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Typical Performance Characteristics
Figure 47: Receiver Propagation Delay (SP3082E)
Figure 46: Receiver Propagation Delay (SP3088E)
-
Figure 48: Receiver Propagation Delay (SP3083E - SP3085E)
8/29/19
Rev 1.0.2
14
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Test Circuits and Timing Diagrams
Test Circuits and Timing Diagrams
A
R/2
DI
VID
VOD
D
R/2 V
O
VCC
RE
Figure 49: Driver DC Test Circuit
Figure 50: Receiver DC Test Circuit
RL
54
Y
DI
OUT
R
B
CL
50pF
VOD
D
Z
3.3V
VCC
DI
0
Z
Y
V CC /2
V CC /2
t PLH
VO 1/2 V O
t DPLH
+
VO
V DIFF
0V
V Y - VZ VO -
t PHL
tR
t DPHL
90%
10%
90%
10%
t SKEW = | t
DPLH
- t DPHL |
tF
Figure 51: Driver Propagation Delay Time Test Circuit and Timing Diagram
8/29/19
Rev 1.0.2
15
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
DE = 0 or VCC
Test Circuits and Timing Diagrams
A/Y
DI = 0 or VCC
IOSD
D
100
B/Z
-7V to +12V V
Figure 52: Driver Short Circuit Current Limit Test Circuit
DE = 3.3V
DI = 0 or Vcc
375Ω
A/Y
VOD
D
60Ω
B/Z
375Ω
VCM
Figure 53: Driver Differential Output Test Circuit
Y
0 or V CC
DI
OUT
D
Z
GENERATOR
S1
CL = 50pF
RL = 500
50
V CC
DE
V CC /2
0
tZL, t ZL(SHDN)
V OM = (V OL + V CC ) / 2
OUT
0.25V
tLZ
0
Figure 54: Driver Enable and Disable Times Test Circuit and Timing Diagram
8/29/19
Rev 1.0.2
16
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Test Circuits and Timing Diagrams
VCC
Y
0 or V CC
DI
RL = 500
S1
OUT
D
Z
GENERATOR
CL = 50pF
50
V CC
V CC / 2
DE
0
tZL, t ZL(SHDN)
tLZ
V CC OUT
V OM = (V OL + V CC ) / 2
V OL
0.25V
Figure 55: Driver Enable and Disable Times Test Circuit and Timing Diagram
A
V ID
B
R
RE
OUT
CL
15pF
A
+1V
B
-1V
t PHL
OUT
tPLH
1.5V
V OH
V OL
Figure 56: Receiver Propagation Delay Test Circuit and Timing Diagram
8/29/19
Rev 1.0.2
17
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
S1
S3
1.5V
Test Circuits and Timing Diagrams
B
-1.5V
VCC
1k
A
R
S2
RE
GENERATOR
CL = 15pF
50
Figure 57: Receiver Enable and Disable Times Test Circuit
S1 is closed, S2 is open, S3 = -1.5V
S1 is open S2 is closed S3 = 1.5V
3V
3V
1.5V
RE
1.5V
RE
tZH, t ZH(SHDN)
t ZL, t ZL(SHDN)
V OH
OUT
0V
V CC
V OH /2
OUT
V OL = V CC /2
V OL
S1 is closed, S2 is open, S3 = -1.5V
S1 is open S2 is closed S3 = 1.5V
3V
RE
3V
1.5V
RE
tHZ
0.25V
OUT
1.5V
t LZ
V OH
V CC
OUT
0V
0V
0.25V
V OL
Figure 58: Receiver Enable and Disable Timing Diagram
8/29/19
Rev 1.0.2
18
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Test Circuits and Timing Diagrams
Power-on or Power-off
Generator,
Receiver, or
Transceiver
A or Z
100
B or Y
C
Vtest
+65.0V
and
-65.0V
15μs duration
1% duty cycle
1. Test is performed to ensure survivability only. Normal operation during transient is not specified.
Figure 59: Transient Over Voltage Tolerance Test Circuit
8/29/19
Rev 1.0.2
19
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Function Tables
Function Tables
Table 9: SP3083E (Full Duplex)
Table 10: SP3083E (Full Duplex)
Transmitting
Receiving
Inputs
Outputs
Inputs
VA - VB
RO
X
≥ -40mV
1
X
≤ -200mV
0
0
X
Open,
Shorted
1
1
1
X
High-Z
1
0
X
Shutdown
RE
DE
DI
Y
Z
RE
DE
X
1
1
1
0
0
X
1
0
0
1
0
0
0
X
High-Z
1
0
X
Shitdown
Table 11: SP3084E (Full Duplex)
Table 12: SP3084E (Full Duplex)
Transmitting
Input
Output
Receiving
Outputs
Inputs
Output
VA - VB
RO
0
≥ -40mV
1
0
1
≤ -200mV
0
1
0
Open / shorted
1
DI
Y
Z
1
1
0
Open
Table 13: SP3082E, SP3085E, SP3088E (Half Duplex)
Table 14: SP3082E, SP3085E, SP3088E (Half Duplex)
Transmitting
Receiving
Inputs
Inputs
Outputs
Output
RE
DE
DI
A
B
RE
DE
VA - VB
RO
X
1
1
1
0
0
X
≥ -40mV
1
X
1
0
0
1
0
X
≤ -200mV
0
0
X
Open /
shorted
1
1
1
X
High-Z
1
0
X
Shutdown
0
0
X
High-Z
1
0
X
Shitdown
Note: Receiver inputs -200mV < VA - VB < -40mV should be considered indeterminate.
8/29/19
Rev 1.0.2
20
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Pin Information
Pin Information
Pin Configurations
RO
1
RE
2
DE
3
DI
4
8 PIN NSOIC
SP3082E
SP3085E
SP3088E
Half Duplex
8
Vcc
Vcc
1
7
B
RO
2
6
A
5
GND
DI
3
GND
4
8 PIN NSOIC
SP3084E
Full Duplex
8
A
7
B
6
Z
5
Y
NC
1
RO
2
RE
3
DE
4
DI
5
GND
6
GND
7
14 Vcc
14 PIN NSOIC
13 NC
12 A
SP3083E
11 B
10
Full Duplex
Z
9
Y
8
NC
Figure 60: Pin Configurations
Pin Descriptions
Table 15: Pin Descriptions
Pin Number
Full Duplex Devices
Half Duplex Devices
Pin Name
Pin Function
SP3083E
SP3084E
SP3082E, SP3085E, SP3088E
2
2
1
RO
Receiver Output. When RE is low and if (A-B) ≥ -40mV, RO is
High. If (A-B) ≤ -200mV, RO is low.
3
-
2
RE
Receiver Output Enable. When RE is low, RO is enabled.
When RE is high, RO is high impedance. Drive RE high and
DE low to enter shutdown mode. RE is a hot swap input.
4
-
3
DE
Driver Output Enable. When DE is high, outputs are enabled.
When DE is low, outputs are high impedance. Drive DE low
and RE high to enter shutdown mode. DE is a hot-swap input.
5
3
4
DI
Driver Input. With DE high, a low level on DI forces
noninverting output low and inverting output high. A high level
on DI forces noninverting output high and inverting output low.
6, 7
4
5
GND
Ground
9
5
-
Y
Noninverting Driver Output
10
6
-
Z
Inverting Driver Output
11
7
-
B
Inverting Receiver Input
-
-
7
B
Inverting Receiver Input and Inverting Driver Output
12
8
-
A
Noninverting Receiver Input
-
-
6
A
Noninverting Receiver Input and Noninverting Driver Output
14
1
8
VCC
Positive Supply VCC. Bypass to GND with a 0.1µF capacitor
1, 8, 13
-
-
NC
No connect, not internally connected.
1. On 14-pin packages connect both pins 6 and 7 to Ground.
8/29/19
Rev 1.0.2
21
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Detailed Description
Detailed Description
SP3082E - SP3088E are a family of advanced RS-485 /
RS-422 transceivers. Each contains one driver and one
receiver. These devices feature fail-safe circuitry that
guarantees a logic-high receiver output when the receiver
inputs are open or shorted, or when they are connected to
a terminated transmission line with all drivers disabled. The
SP3082E, SP3083E, SP3085E and SP3088E also feature
a hot-swap capability allowing live insertion without error
data transfer.
Hot-Swap Capability
The SP3082E features reduced slew-rate drivers that
minimize EMI and reduce reflections caused by improperly
terminated cables, allowing error-free data transmission up
to 115kbps. The SP3083E, SP3084E and SP3085E also
offer slew-rate limits allowing transmit speeds up to
500kbps. The SP3088E driver slew rate is not limited,
making transmit speeds up to 20Mbps possible.
If circuit boards are inserted into an energized backplane
(commonly called "live insertion’ or ’hot swap’), power may
be suddenly applied to all circuits. Without the hot-swap
capability, this situation could improperly enable the
transceiver’s driver or receiver, driving invalid data onto
shared busses and possibly causing driver contention or
device damage.
The SP3082E, SP3085E and SP3088E are half-duplex
transceivers, while the SP3083E and SP3084E are full
duplex transceivers.
The SP308x family contains a special power-on-reset
circuit that holds DE low and RE high for approximately 10
microseconds. After this initial power-up sequence, the hotswap circuit becomes transparent, allowing for normal,
unskewed enable and disable timings.
All devices operate from a single 5.0V supply. Drivers are
output short-circuit current limited. Thermal-shutdown
circuitry protects drivers against excessive power
dissipation. When activated, the thermal-shutdown circuitry
places the driver outputs into a high-impedance state.
Receiver Input Filtering
SP3082E-SP3085E receivers incorporate input filtering in
addition to input hysteresis. This filtering enhances noise
immunity with differential signals that have very slow rise
and fall times. Receiver propagation delay increases due
to this filtering.
Advanced Fail Safe
Ordinary RS-485 differential receivers will be in an
indeterminate state whenever A - B is less than ±200mV.
This situation can occur whenever the data bus is not being
actively driven. The Advanced Failsafe feature of the
SP308xE family guarantees a logic-high receiver output if
the receiver’s differential inputs are shorted, open-circuit or
if they are shunted by a termination resistor.
The receiver thresholds of the SP308xE family are very
precise and offset by at least a 40mV noise margin from
ground. This results in a logic-high receiver output at zero
volts input differential while maintaining compliance with
the EIA / TIA-485 standard of ±200mV.
8/29/19
When a microprocessor or other logic device undergoes its
power-up sequence, its logic-outputs are typically at high
impedance. In this state they are unable to drive the DE
and signals to a defined logic level. During this period,
noise, parasitic coupling or leakage from other devices
could cause standard CMOS enable inputs to drift to an
incorrect logic level.
±15kV ESD Protection
ESD-protection structures are incorporated on all pins to
protect against electrostatic discharges encountered during
handling and assembly. The driver output and receiver
inputs of the SP308xE family have extra protection against
static electricity. MaxLinear's uses state of the art structures
to protect these pins against ESD of ±15kV without
damage. The ESD structures withstand high ESD in all
states: normal operation, shutdown and powered down.
After an ESD event, the SP3082E - SP3088E keep working
without latchup or damage.
ESD protection can be tested in various ways. The
transmitter outputs and receiver inputs of the SP3082E SP3088E are characterized for protection to the following
limits:
■
■
±15kV using the Human Body Model
■
±15kV Air-gap
Rev 1.0.2
±8kV using the Contact Discharge method specified in
IEC 61000-4-2
22
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Detailed Description
ESD Test Conditions
Low Power Shutdown Mode
ESD performance depends on a variety of conditions.
Contact MaxLinear for a reliability report that documents
test setup, methodology and results.
Low-power shutdown mode is initiated by bringing both RE
high and DE low simultaneously. While in shutdown,
devices typically draw only 50nA of supply current. DE and
RE may be tied together and driven by a single control
signal. Devices are guaranteed not to enter shutdown if RE
is high and DE is low for less than 50ns. If the inputs are in
this state for at least 600ns, the parts are shutdown.
IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and
performance of finished equipment. However, it does not
specifically refer to integrated circuits. The SP308xE family
helps you design equipment to meet IEC 61000-4-2,
without sacrificing board space and cost for external ESDprotection components.
The major difference between tests done using the Human
Body Model and IEC 61000-4-2 is higher peak current in
IEC 61000-4-2, as series resistance is lower in the
IEC 61000-4-2 model. Hence, the ESD withstand voltage
measured to IEC 61000-4-2 is generally lower than that
measured using the Human Body Model. The air-gap test
involves approaching the device with a charged probe. The
contact-discharge method connects the probe to the device
before the probe is energized.
Machine Model
The machine model for ESD tests all pins using a 200pF
storage capacitor and zero discharge resistance. The
objective is to emulate the stress caused when I/O pins are
contacted by handling equipment during test and
assembly.
256 Transceivers on the Bus
The standard RS-485 receiver input impedance is 12kΩ
(1 unit load). A standard driver can drive up to 32 unit
loads. The SP308xE family of transceivers has only a 1/8unit load receiver input impedance (96kΩ), thereby
allowing eight times as many,up to 256, transceivers to be
connected in parallel on a communication line. Any
combination of these devices and other RS-485
transceivers up to a total of 32 unit loads may be connected
to the line.
Enable times tZH and tZL apply when the part was not in a
low-power shutdown state. Enable times tZH(SHDN) and
tZL(SHDN) apply when the parts are shut down. It drivers and
receivers take longer to become enabled from low-power
shutdown mode tZH(SHDN) and tZL(SHDN) than from driver /
receiver-disable mode (tZH, tZL).
Driver Output Protection
Two mechanisms prevent excessive output current and
power dissipation caused by faults or by bus contention.
First, a driver current limit on the output stage provides
immediate protection against short circuits over the whole
common-mode voltage range. Second, a thermalshutdown circuit forces the driver outputs into a highimpedance state if junction temperature becomes
excessive.
Line Length, EMI and Reflections
SP3082E - SP3085E feature controlled slew-rate drivers
that minimize EMI and reduce reflections caused by
improperly terminated cables.
SP3082E driver rise and fall times are limited to no faster
than 667ns, allowing error-free data transmission up to
115kbps. The SP3083E, SP3084E and SP3085E offer
somewhat higher driver output slew-rate limits, allowing
transmit speeds up to 500kbps.
The RS-485 / RS422 standard covers line lengths up to
4,000ft. Maximum achievable line length is a function of
signal attenuation and noise. Use of slew-controlled drivers
such as the SP3082E - SP3085E may help to reduce
crosstalk interference and permit communication over
longer transmission lines.
Termination prevents reflections by eliminating the
impedance mismatches on a transmission line. Line
termination is typically used if rise and fall times are shorter
than the round-trip signal propagation time. Slew-limited
drivers may reduce or eliminate the need for cable
termination in many applications.
8/29/19
Rev 1.0.2
23
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Detailed Description
Typical Applications
Figure 61: Half-Duplex Network
Figure 62: Bi-Directional Full-Duplex Network
Repeater
(optional)
Figure 63: Point to Multi-Point Repeater
8/29/19
Rev 1.0.2
24
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Mechanical Dimensions
Mechanical Dimensions
NSOIC8
Front View
Side View
Drawing No:
Revision:
POD-00000108
A
Figure 64: Mechanical Dimension, NSOIC8
8/29/19
Rev 1.0.2
25
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Mechanical Dimensions
Mechanical Dimensions
NSOIC14
Top View
Front View
Side View
Drawing No:
POD-00000109
Revision:
A
Figure 65: Mechanical Dimensions, NSOIC14
8/29/19
Rev 1.0.2
26
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Ordering Information
Ordering Information
Table 16: Ordering Information(1)
Ordering Part Number
Operating Temperature Range
Package
Packaging Method
Lead-Free(2)
SP3082EEN-L
-40°C to 85°C
NSOIC8
Tube
Yes
SP3082EEN-L/TR
-40°C to 85°C
NSOIC8
Reel
Yes
SP3083EEN-L/TR
-40°C to 85°C
NSOIC14
Reel
Yes
SP3084EEN-L/TR
-40°C to 85°C
NSOIC8
Reel
Yes
SP3085EEN-L
-40°C to 85°C
NSOIC8
Tube
Yes
SP3085EEN-L/TR
-40°C to 85°C
NSOIC8
Reel
Yes
SP3088EEN-L
-40°C to 85°C
NSOIC8
Tube
Yes
SP3088EEN-L/TR
-40°C to 85°C
NSOIC8
Reel
Yes
1. Refer to www.maxlinear.com/SP3082E, www.maxlinear.com/SP3083E, www.maxlinear.com/SP3084E, www.maxlinear.com/SP3085E, and
www.maxlinear.com/SP3088E for most up-to-date Ordering Information.
2. Visit www.maxlinear.com for additional information on Environmental Rating.
8/29/19
Rev 1.0.2
27
SP3082E/ SP3083E/ SP3084E/ SP3085E/ SP3088E Data Sheet
Disclaimer
MaxLinear, Inc.
5966 La Place Court, Suite 100
Carlsbad, CA 92008
760.692.0711 p.
760.444.8598 f.
www.maxlinear.com
The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by
MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.
Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be
expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c)
potential liability of MaxLinear, Inc. is adequately protected under the circumstances.
MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except
as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents,
trademarks, copyrights, or other intellectual property.
MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products
sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear’s subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and
product names appearing herein are the property of their respective owners.
© 2007 - 2019 MaxLinear, Inc. All rights reserved.