®
SP6828/6829 +3V Low Power Voltage Inverters
s 99.9% Voltage Conversion Efficiency s +1.15V to +4.2V Input Voltage Range s +1.15 VIN Guaranteed Start-up s Inverts Input Supply Voltage s 20µA Quiescent Current for the SP6828 s 40µA Quiescent Current for the SP6829 s 25mA Output Current s 12kHz Operating Frequency for the SP6828 s 35kHz Operating Frequency for the SP6829 s Ideal for +3.6V Lithium Ion Battery Applications s Reverse +3.6V Lithium Ion Battery Protection s 5-pin SOT23 Package DESCRIPTION The SP6828/6829 devices are CMOS Charge Pump Voltage Inverters that can be implemented in designs requiring a negative voltage from a +3V battery source. The SP6828/ 6829 devices are ideal for both battery-powered and board level voltage conversion applications with a typical operating current of 20µA for the SP6828 and 40µA for the SP6829. Both devices can output 25mA with a voltage drop of 500mV. These devices combine a low quiescent current with high efficiency (>95% over most of its load-current range), which is ideal for designs using +3.3V or +3.6V lithium ion batteries. Applications include cell phones, PDAs, medical instruments and other portable equipment. The SP6828/6829 devices are available in a space-saving 5-pin SOT23 Package.
VOUT 1 VIN 2 C1- 3 SP6828 SP6829
5 C1+
4 GND
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
1
ABSOLUTE MAXIMUM RATINGS
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. VIN...................................................................................................+4.5V VOUT.................................................................................................-4.5V V OUT Short Circuit to GND.................................................Indefinite IOUT...................................................................................................50mA Storage Temperature.....................................................-65˚C to +150˚C Power Dissipation (TAMB=+70°C).................................................571mW Lead Temperature (Soldering)....................................................300oC ESD Rating...............................................2kV Human Body Model
SPECIFICATIONS FOR THE SP6828/6829
VIN = +3.3V, C1=C2=10µF for the SP6828, C1=C2=3.3µF for the SP6829, and TAMB= -40°C to +85°C unless otherwise noted. Typical values are taken specifically at TAMB=+25°C. Test Circuit Figure 19 unless otherwise noted.
PARAMETER Supply Voltage Supply Current
MIN. 1.15 1.4
TYP. 0.86
MAX. 4.2
UNITS V
CONDITIONS RL=10kΩ, TAMB=+25° C, Note 1 RL=10kΩ, TAMB=-40° C to +85° C SP6828, TAMB=+25° C, RL = ∞ SP6828, TAMB=-40° C to +85° C, RL = ∞ SP6829, TAMB=+25° C, RL = ∞ SP6829, TAMB=-40° C to +85° C, RL = ∞ IOUT=5mA, TAMB=+25° C IOUT=5mA, TAMB=-40° C to +85° C SP6828, TAMB=+25° C SP6828, TAMB=-40° C to +85° C SP6829, TAMB=+25° C SP6829, TAMB=-40° C to +85° C RL = ∞ RL=10kΩ, NOTE 2 RL=10kΩ, NOTE 3 IOUT = 10mA, NOTE 3
20
40 60 80 120 50 65 15.6 18 45.5 53 µA
40
Output Resistance Oscillator Frequency 8.4 7 24.5 20 95
29 12 35 99.9 97 95 91
Ω
kHz
Voltage Conversion Efficiency Power Efficiency (Ideal) Power Efficiency (Actual)
% % %
NOTE 1: VOUT = -VIN +200mV NOTE 2: Power Efficiency (Ideal) = NOTE 3: Power Efficiency (Actual) =
VOUT x IOUT -VIN x (-VIN/RL) VOUT x IOUT VIN x IIN
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
2
ABSOLUTE MAXIMUM RATINGS
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. VIN....................................................................................................+6.0V VOUT.................................................................................................-6.0V V OUT Short Circuit to GND.................................................Indefinite IOUT...................................................................................................50mA Storage Temperature.....................................................-65˚C to +150˚C Power Dissipation (T AMB=+70 °C).........................................571mW Lead Temperature (Soldering)......................................................300 oC ESD Rating..................................................2kV Human Body Model
SPECIFICATIONS FOR THE SP6828-5
VIN = +5.0V, C1=C2=10µF and TAMB= -40°C to +85°C unless otherwise noted.Typical values are taken specifically at TAMB=+25°C. Test Circuit Figure 19 unless otherwise noted.
PARAMETER Supply Voltage Supply Current Output Resistance Oscillator Frequency Voltage Conversion Efficiency Power Efficiency (Ideal) Power Efficiency (Actual)
MIN. 1.25 1.5
TYP. 0.86 50 24
MAX. 5.5 115 50 65 20
UNITS V µA Ω kHz % % %
CONDITIONS RL=10kΩ, TAMB=+25° C, Note 1 RL=10kΩ, TAMB=-40° C to +85° C TAMB=-40° C to +85° C, RL = ∞ IOUT=5mA, TAMB=+25° C IOUT=5mA, TAMB=-40° C to +85° C TAMB=-40° C to +85° C RL = ∞ RL=10kΩ, NOTE 2 RL=10kΩ, NOTE 3 IOUT = 10mA, NOTE 3
6 95 99.9 98 91 94
NOTE 1: VOUT = -VIN +200mV NOTE 2: Power Efficiency (Ideal) = NOTE 3: Power Efficiency (Actual) =
VOUT x IOUT -VIN x (-VIN/RL) VOUT x IOUT VIN x IIN
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
3
PINOUT
PIN ASSIGNMENTS Pin 1— VOUT — Inverting charge pump output.
VOUT 1 VIN 2 C1- 3 SP6828 SP6829
5 C1+
Pin 2 — VIN — Input to the positive power supply. Pin 3 — C1- — Negative terminal to the charge pump capacitor. Pin 4 — GND — Ground reference. Pin 5 — C1+ — Positive terminal to the charge pump capacitor.
4 GND
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = +3.3V, C1 = C2 = C3 = 10µF for SP6828, C1 = C2 = C3 = 3.3µF for SP6829, and TAMB = 25oC unless otherwise noted. The SP6828/6829 devices use the circuit found in Figure 19 when obtaining the following typical performance characteristics (unless otherwise noted).
60 50
70 65 60 55 50 45 40 35 30 25 VIN = 3.3V VIN = 4.2V 0 20 40 60 80 100 Temperature (oC) VIN = 1.5V
ROUT (Ohm)
30 20 10 0 1.5 2.0
ROUT (Ohm)
40
2.5 3.0 VIN (V)
3.5
4.0
20 -60 -40 -20
Figure 1. Output Resistance vs. Supply Voltage
Figure 2. Output Resistance vs. Temperature
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
4
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = +3.3V, C1 = C2 = C3 = 10µF for SP6828, C1 = C2 = C3 = 3.3µF for SP6829, and TAMB = 25oC unless otherwise noted. The SP6828/6829 devices use the circuit found in Figure 19 when obtaining the following typical performance characteristics (unless otherwise noted).
16 15 14
Pump Frequency (kHz)
40
fOUT (kHz)
13 12 11 10 9 8 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VIN (V)
35
30
25 0 1 3 2 Supply Voltage (V) 4
Figure 3. Charge Pump Frequency vs. Supply Voltage for the SP6828
Figure 4. Charge Pump Frequency vs. Supply Voltage for the SP6829
15 14 13 VIN = 4.2V
41 39
VIN = 4.2V
Pump Frequency (kHz)
37 35 33 31 29 27 25 -50 50 0 Temperature ( C)
O
fPUMP (kHz)
VIN = 3.3V
VIN = 3.3V
12 11 VIN = 1.5V 10 9 8 -60 -40 -20 0 20 40 60 80 100 Temperature (oC)
VIN = 1.5V
100
Figure 5. Charge Pump Frequency vs. Temperature for the SP6828
SP6828DS/11
Figure 6. Charge Pump Frequency vs. Temperature for the SP6829
© Copyright 2000 Sipex Corporation
SP6828/6829 +3V Low Power Voltage Inverter
5
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = +3.3V, C1 = C2 = C3 = 10µF for SP6828, C1 = C2 = C3 = 3.3µF for SP6829, and TAMB = 25oC unless otherwise noted. The SP6828/6829 devices use the circuit found in Figure 19 when obtaining the following typical performance characteristics (unless otherwise noted).
40 35 30 IOUT (mA) 25 20 1 5 1 0 5 0 0 30 20 10 Capacitance (µF) 40 VIN = 2V; VOUT = -1.5V VIN = 4.2V; VOUT = -3.2V VIN = 3.3V; VOUT = -2.5V
40 35 Output Current (mA) 30 25 20 1 5 1 0 5 0 0 30 20 10 Capacitance (µF) 40 VIN = 2V; VOUT = -1.5V VIN = 3.3V; VOUT = -2.5V VIN = 4.2V; VOUT = -3.2V
Figure 7. Output Current vs. Capacitance for the SP6828
Figure 8. Output Current vs. Capacitance for the SP6829
600
VIN = 4.2V; VOUT = -3.2V
300
Ripple (mV)
400 300 200 100 0 0
VIN = 2V; VOUT = -1.5V VIN = 3.3V; VOUT = -2.5V
Output Ripple (mVp-p)
500
250 200 150 100 50
VIN = 4.2V; VOUT = -3.2V
VIN = 3.3V; VOUT = -2.5V VIN = 2V; VOUT = -1.5V
20 30 10 Capacitance (µF)
40
0 0 20 30 10 Capacitance (µF) 40
Figure 9. Output Voltage Ripple vs. Capacitance for the SP6828
SP6828DS/11
Figure 10. Output Voltage Ripple vs. Capacitance for the SP6829
© Copyright 2000 Sipex Corporation
SP6828/6829 +3V Low Power Voltage Inverter
6
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = +3.3V, C1 = C2 = C3 = 10µF for SP6828, C1 = C2 = C3 = 3.3µF for SP6829, and TAMB = 25oC unless otherwise noted. The SP6828/6829 devices use the circuit found in Figure 19 when obtaining the following typical performance characteristics (unless otherwise noted).
40 35 30
0.0 -0.5 -1.0 -1.5 VIN = 2V VIN = 3.3V -2.5 -3.0 VIN = 4.2V -3.5 -4.0 -4.5 0 10 20 30 40 IOUT (mA) 50 60
IIN (µA)
25 20 15 10 5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VIN (V)
VOUT (V)
Voltage Efficiency (%)
0 5 10 20 15 IOUT (mA) 25 30
-2.0
Figure 11. SP6828 Supply Current vs. Supply Voltage
Figure 12. Output Voltage vs. Output Current
100
100
Power Efficiency (%)
90
90
80
80
70
70
0
5
10
20 15 IOUT (mA)
25
30
Figure 13. Power Efficiency vs. Output Current
Figure 14. Voltage Efficiency vs. Output Current
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
7
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = +3.3V, C1 = C2 = C3 = 10µF for SP6828, C1 = C2 = C3 = 3.3µF for SP6829, and TAMB = 25oC unless otherwise noted. The SP6828/6829 devices use the circuit found in Figure 19 when obtaining the following typical performance characteristics (unless otherwise noted).
102 100 98 96
VEFF (%)
120 100 80 VEFF (%) 60 40 20 0 0 1 2 3 VIN (V) 4
94 92 90 88 86 84 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VIN (V)
Figure 15. Voltage Efficiency vs. Supply Voltage with a 10kΩ load
Figure 16. Voltage efficiency vs. Supply Voltage without a Load
102 100 98 96
VIN = 3.3V VOUT = -3.2V IL = 5mA VIN = 3.3V VOUT = -3.2V IL = 5mA
VEFF (%)
94 92 90 88 86 84 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VIN (V)
Figure 17. Output Noise and Ripple for the SP6828
Figure 18. Output Noise and Ripple for the SP6829
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
8
VOUT 1 VIN RL C2 C15 2 SP6828 SP6829 3 4
C1+
GND
+
C3
C1
Figure 19. SP6828/6829 in its Typical Operating Circuit as a Negative Voltage Converter; this Circuit Was Used to Obtain the Typical Performance Characteristics Found in Figures 1 Through 18 (unless otherwise noted)
VOUT VIN C2 RL C1-
1
5
C1+
2 SP6828 SP6829 3 4
GND
C3 C1
Figure 20. SP6828/6829 Connected as a Voltage Inverter with the load from VOUT to VIN
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
9
DESCRIPTION The SP6828/6829 devices are CMOS Charge Pump Voltage Converters that can be used to invert a +1.15V to +4.2V input voltage. These devices are ideal for designs involving batterypowered and/or board level voltage conversion applications. The typical operating frequency of the SP6828 is 12kHz. The typical operating frequency of the SP6829 is 35kHz. The SP6828 has a typical operating current of 20µA and the SP6829 operates at 40µA. Both devices can output 25mA with a voltage drop of 500mV. The devices are ideal for designs using +3.3V or +3.6V lithium ion batteries such as cell phones, PDAs, medical instruments, and other portable equipment. The SP6828/6829 devices combine a high efficiency with a low quiescent current. THEORY OF OPERATION The SP6828/6829 devices should theoretically produce an inverted input voltage. In real world applications, there are small voltage drops at the output that reduce efficiency. The circuit of an ideal voltage inverter can be found in Figure 21. The voltage inverters require two external capacitors to store the charge. A description of the two phases follows: Phase 1 In the first phase of the clock cycle, switches S2 and S4 are opened and S1 and S3 closed. This connects the flying capacitor, C1, from VIN to ground. C1 charges up to the input voltage applied at VIN. Phase 2 In the second phase of the clock cycle, switches S2 and S4 are closed and S1 and S3 are opened. This connects the flying capacitor, C1, in parallel with the output capacitor, C2. The charge stored in C1 is now transferred to C2. Simultaneously, the negative side of C2 is connected to VOUT and the positive side is connected to ground. With the voltage across C2 smaller than the voltage across C1, the charge flows from C1 to C2 until the voltage at the VOUT equals -VIN.
VOUT = -VIN VIN S1 C1 S3 S2 C2 VOUT
S4
Figure 21. Circuit for an Ideal Voltage Inverter
Charge-Pump Output The output of the SP6828/6829 devices is not regulated and therefore is dependent on the output resistance and the amount of load current. As the load current increases, losses may slightly increase at the output and the voltage may become slightly more positive. The loss at the negative output, VLOSS, equals the current draw, IOUT, from VOUT times the negative converter's source resistance, RS: VLOSS = IOUT x RS. The actual inverted output voltage at VOUT will equal the inverted voltage difference of VIN and VLOSS: VOUT = -(VIN - VLOSS). Efficiency Theoretically, the total power loss of a switched capacitor voltage converter can be summed up as follows: ∑PLOSS = PINT + PCAP + PCONV, where PLOSS is the total power loss, PINT is the total internal loss in the IC including any losses in the MOSFET switches, PCAP is the resistive loss of
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
10
the charge pump capacitors, and PCONV is the total conversion loss during charge transfer between the flying and output capacitors. These are the three theoretical factors that may effect the power efficiency of the SP6828/6829 devices in designs. Internal losses come from the power dissipated in the IC's internal circuitry. Losses in the charge pump capacitors will be induced by the capacitors' ESR. The effects of the ESR losses and the output resistance can be found in the following equation: IOUT2 x ROUT = PCAP + PCONV and ROUT ≈ 4 x (2 x RSWITCHES + ESRC1) + 1 ESRC2 + fOSC x C1 , where IOUT is the output current, ROUT is the circuit's output resistance, RSWITCHES is the internal resistance of the MOSFET switches, ESRC1 and ESRC2 are the ESR of their respective capacitors, and fOSC is the oscillator frequency. This term with fOSC is derived from an ideal switchedcapacitor circuit as seen in Figure 22. Conversion losses will happen during the charge transfer between the flying capacitor, C1, and the output capacitor, C2, when there is a voltage difference between them. PCONV can be determined by the following equation: PCONV = fOSC x [ 1/2 x C1 x (VIN2 - VOUT2) +
1
where POUT = VOUT x IOUT and PIN = VIN x IIN where POUT is the power output, VOUT is the output voltage, IOUT is the output current, PIN is the power from the supply driving the SP6828/ 6829 devices, VIN is the supply input voltage, and IIN is the supply input current. Ideal Efficiency The ideal efficiency is not the true power efficiency because it is not calculated relative to the input power which includes the input current losses in the charge pump. The ideal efficiency can be determined with the following equation:
Efficiency (IDEAL) = POUT x 100% , POUT (IDEAL)
where
POUT (IDEAL) = -VIN x -VIN RL ,
and POUT is the measured power output. Both efficiencies are provided to designers for comparison.
f V+ VOUT RL
/2 x C2 x (VRIPPLE2 - 2 x VOUT x VRIPPLE) ].
C1
C2
Actual Efficiency To determine the actual efficiency of the SP6828/ 6829 device operation, a designer can use the following equation:
Requivalent
P Efficiency (ACTUAL) = OUT x 100% , PIN
V+
VOUT RL
Requivalent =
1 f x C1
C2
Figure 22. Equivalent Circuit for an Ideal Switched Capacitor
SP6828DS/11 SP6828/6829 +3V Low Power Voltage Inverter © Copyright 2000 Sipex Corporation
11
APPLICATION INFORMATION For the following applications, C1 = C2 = 10µF for the SP6828 and C1 = C2 = 3.3µF for the SP6829. Capacitor Selection Low ESR capacitors are needed to obtain low output resistance. Refer to Table 1 for some suggested low ESR capacitors. The output resistance of the SP6828/6829 devices is a function of the ESR of C1 and C2. This output resistance can be determined by the equation previously provided in the Efficiency section: ROUT ≈ 4 x (2 x RSWITCHES + ESRC1) + 1 ESRC2 + fOSC x C1 , where ROUT is the circuit output resistance, RSWITCHES is the internal resistance of the MOSFET switches, ESRC1 and ESRC2 are the ESR of their respective capacitors, and fOSC is the oscillator frequency. This term with fOSC is derived from an ideal switched-capacitor circuit as seen in Figure 21. Minimizing the ESR of C1 and C2 will minimize the total output resistance and will improve the efficiency. Flying Capacitor Decreasing flying capacitor, C1, values will increase the output resistance of the SP6828/ 6829 devices while increasing C1 will reduce the output resistance. There is a point where increasing C1 will have a negligible effect on the output resistance due to the the domination of the output resistance by the internal MOSFET switch resistance and the total capacitor ESR. Output Capacitor Increasing output capacitor, C2, values will decrease the output ripple voltage. Reducing the ESR of C2 will reduce both output ripple voltage and output resistance. If higher output ripple can be tolerated in designs, smaller capacitance values for C2 should be used with light loads. The following equation can be used to calculate the peak-to-peak ripple voltage:
VRIPPLE = 2 x IOUT x ESRC2 +
SP6828DS/11
Input Bypass Capacitor The bypass capacitor at the input pin will reduce AC impedance and the impact of any of the SP6828/6829 devices' switching noise. It is recommended that for heavy loads a bypass capacitor approximately equal to the flying capacitor, C1, be used. For light loads, the value of the bypass capacitor can be reduced. When loading the SP6828/6829 devices from IN to OUT, the input current remains constant (disregarding any spikes due to internal switching). Implementing a 0.1 µF bypass capacitor should be sufficient. When loading the SP6828/6829 devices from OUT to GND, the current from the supply will flow into the input for half of the cycle and will be zero for the other half of the cycle. Designers should implement a large bypass capacitor (C3 = C1) if the supply has a high AC impedance. Negative Voltage Converter The typical operating circuit for the SP6828/ 6829 devices is a negative voltage converter. Refer to Figure 19. This circuit is used to obtain the Typical Performance Characteristics found in Figures 1 to 18 (unless otherwise noted). Voltage Inverter with the Load from VOUT to VIN A designer can find the most common application for the SP6828/6829 devices in Figure 20 as a voltage inverter. The only external components needed are 3 capacitors: the flying capacitor, C1, the output capacitor, C2, and the bypass capacitor, C3 (if necessary). Driving Excessive Loads The output should never be pulled above ground. A designer should implement a Schottky diode (1N5817) from OUT to GND when driving heavy loads where a higher supply is sourcing current into OUT. Refer to Figure 23 for this circuit connection.
IOUT fOSC x C2 .
SP6828/6829 +3V Low Power Voltage Inverter © Copyright 2000 Sipex Corporation
12
GND
4
SP6828 SP6829
1
OUT
1N5817
Figure 23. Protection for Heavy Loads
C3
+VIN
D1 = D2 = 1N4148 D1 IN 2 D2
VOUT1
C4
C1+ GND C1 C1-
5 4
SP6828 SP6829
3
1
OUT
VOUT2
C2
VOUT1 = (2 x VIN) - VFD1 - VFD2 VOUT2 = -VIN where VOUT1 = positive doubled output voltage, VIN = input voltage, VFD1 = forward bias voltage across D1, VFD2 = forward bias voltage across D2, and VOUT2 = inverted output voltage.
Figure 24. SP6828/6829 Device Connected in a Doubler/Inverter Combination Circuit
SP6828DS/11 SP6828/6829 +3V Low Power Voltage Inverter © Copyright 2000 Sipex Corporation
13
+VIN
ON IN 2 C1+ GND C1 C1-
OFF Shutdown Logic
5 4
SP6828 SP6829
CIN 0.1µF
3
1
OUT
VOUT
C2
Figure 25. SP6828/6829 Device with Shutdown Control
Combining a Doubler and Inverter Circuit A designer can connect a SP6828/6829 device in a combination doubler/inverter circuit as seen in Figure 24. The doubler uses capacitors C3 and C4 while the inverter uses C1 and C2. Loading either output decreases both output voltages to GND because both the doubler and the inverter circuits use the charge pump. Designers should not allow the total current output from the doubler and the inverter to exceed 40mA. Implementing Shutdown If shutdown control of the SP6828/6829 devices is necessary, the circuit found in Figure 25 can be implemented. The 0.1µF capacitor at IN absorbs transient input currents. The output resistance of the devices can be determined by the following equation: ROUT = 20 + 2 x RBUFFER , where ROUT is the output resistance and RBUFFER is the output resistance of the buffer driving IN. RBUFFER can be reduced by connecting multiple buffers in parallel at IN. The polarity of the SHUTDOWN signal can be changed by using a noninverting buffer to drive IN.
Connecting in Parallel A designer can parallel a number of SP6828/ 6829 devices to reduce the output resistance for specific designs. All devices will need their own flying capacitor, C1, but a single output capacitor will serve all of the devices connected in parallel by increasing the capacitance of C2 by a factor of n where n equals the total number of devices connected. This connection can be found in Figure 26. Cascading Devices A designer can cascade SP6828/6829 devices to produce a larger inverted voltage output. Refer to Figure 27 for this circuit connection. With two cascaded devices, the unloaded output voltage is decreased by the output resistance of the first device multiplied by the quiescent current of the second device connected. The total output resistance is greatly increased when more than two devices are cascaded. Layout and Grounding Designers should make an effort to minimize noise by paying special attention to the circuit layout with the SP6828/6829 devices. External components should be connected in close proximity to the device and a ground plane should be implemented. This will keep electrical traces short minimizing parasitic inductance and capacitance.
© Copyright 2000 Sipex Corporation
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
14
+VIN
IN 2 C1+ 2 C1+
IN 2 C1+
IN
RL
5 4
C1
GND
SP6828 SP6829 “1”
1 OUT
5 4
C1
GND
SP6828 SP6829 “2”
1 OUT
5 4
C1
GND
SP6828 SP6829 “n”
1 OUT
C1-
3
C1-
3
C1-
3
VOUT
VOUT = -VIN R RTOT = OUT n
where VOUT = output voltage, VIN = input voltage, RTOT = total resistance of the devices connected in parallel, ROUT = the output resistance of a single device, and n = the total number of devices connected in parallel.
C2 x n
Figure 26. SP6828/6829 Devices Connected in Parallel to Reduce Total Output Resistance
+VIN
IN 2 C1+ 2 C1+ GND IN 2 C1+ GND IN
5 4
C1
GND
SP6828 SP6829 “1”
5 OUT
5 4
C1
SP6828 SP6829 “2”
1 OUT
3 4
C1
SP6828 SP6829 “n”
1 OUT
C1-
3
C1-
3
C1-
5
VOUT
C2 VOUT = -n x VIN where VOUT = output voltage, VIN = input voltage, and n = the total number of devices connected.
C2
C2
Figure 27. SP6828/6829 Devices Cascaded to Increase Output Voltage
SIPEX PART NUMBER SP6828 SP6828 SP6828 SP6828 SP6829 SP6829 SP6829
MANUFACTURER AVX SPRAGUE KEMET SANYO-OSCON KEMET SPRAGUE SANYO-OSCON
PART NUMBER TPSC106*025 593D106X035 T494C106*020 94SC106X0016C T494B335*020 595D335X0035 94SC335X0016A
CAPACITANCE / VOLTAGE 10µF / 25V 10µF / 35V 10µF / 20V 10µF / 16V 3.3µF / 20V 3.3µF / 35V 3.3µF / 16V
MAX ESR @ 100kHz 0.5Ω 0.3Ω 0.5Ω 0.15Ω 1.5Ω 2.0Ω 0.35Ω
PACKAGE SM Case C SM Case D SM Case C Radial Case C SM Case B SM Case C Radial Case A
Table 1. Suggested Low ESR Tantalum Capacitors
SP6828DS/11 SP6828/6829 +3V Low Power Voltage Inverter © Copyright 2000 Sipex Corporation
15
PACKAGE: SOT23-5
b C L e
E
e1 D C L A A2
A
C L a 0.20
DATUM 'A'
C A1
A .10
E1
L
2
SYMBOL A A1 A2 b C D E E1 L e e1 a
MIN 0.90 0.00 0.90 0.25 0.09 2.80 2.60 1.50 0.35 0.95ref 1.90ref 0
O
MAX 1.45 0.15 1.30 0.50 0.20 3.10 3.00 1.75 0.55
10
O
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
16
ORDERING INFORMATION
Model Temperature Range Package Type SP6828EK . ............................................ -40˚C to +85˚C ............................................... SOT23-5 SP6828-5EK ........................................... -40˚C to +85˚C ............................................... SOT23-5 SP6828EK/TR ......................................... -40˚C to +85˚C ............................................... SOT23-5 SP6828-5EK/TR ..................................... -40˚C to +85˚C ............................................... SOT23-5 SP6829EK . ............................................ -40˚C to +85˚C ............................................... SOT23-5 SP6829EK/TR ......................................... -40˚C to +85˚C ............................................... SOT23-5
Please consult the factory for pricing and availability on a Tape-On-Reel option.
Corporation
SIGNAL PROCESSING EXCELLENCE
Sipex Corporation Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.
SP6828DS/11
SP6828/6829 +3V Low Power Voltage Inverter
© Copyright 2000 Sipex Corporation
17