0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XRT91L31IQTR-F

XRT91L31IQTR-F

  • 厂商:

    SIPEX(迈凌)

  • 封装:

    FQFP64

  • 描述:

    IC TXRX SONET/SDH 8BIT 64QFP

  • 数据手册
  • 价格&库存
XRT91L31IQTR-F 数据手册
XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER SEPTEMBER 2018 REV. 1.0.3 GENERAL DESCRIPTION synchronize the transmit section timing. The device can internally monitor Loss of Signal (LOS) condition and automatically mute received data upon LOS. An on-chip SONET/SDH frame byte and boundary detector and frame pulse generator offers the ability recover SONET/SDH framing and to byte align the receive serial data stream into the 8-bit parallel bus. The XRT91L31 is a fully integrated SONET/SDH transceiver for SONET/SDH 622.08 Mbps STS-12/ STM-4 or 155.52 Mbps STS-3/STM-1 applications. The transceiver includes an on-chip Clock Multiplier Unit (CMU), which uses a high frequency PhaseLocked Loop (PLL) to generate the high-speed transmit serial clock from a slower external clock reference. It also provides Clock and Data Recovery (CDR) function by synchronizing its on-chip Voltage Controlled Oscillator (VCO) to the incoming serial data stream. The internal CDR unit can be disabled and bypassed in lieu of an externally recovered received clock from the optical module. Either the internally recovered clock or the externally recovered clock can be used for loop timing applications. The chip provides serial-to-parallel and parallel-to-serial converters using an 8-bit wide LVTTL system interface in both receive and transmit directions. The transmit section includes an option to accept a parallel clock signal from the framer/mapper to APPLICATIONS  SONET/SDH-based Transmission Systems  Add/Drop Multiplexers  Cross Connect Equipment  ATM and Multi-Service Switches, Routers and Switch/Routers  DSLAMS  SONET/SDH Test Equipment  DWDM Termination Equipment FIGURE 1. BLOCK DIAGRAM OF XRT91L31 STS-12/STM-4 or STS-3/STM-1 TRANSCEIVER PISO (Parallel Input Serial Output) TXDI[7:0] 8 TXOP/N Re-Timer ENB MUX ENB TXPCLK_IO Div by 8 XOR REFCLKP/N TTLREFCLK CMU MUX SIPO (Serial Input Parallel Output) RXDO[7:0] ALOOP DLOOP MUX CDRAUXREFCLK RLOOPS CDR RXIP/N MUX 8 XRXCLKIP/N Div by 8 1 CDRDIS PIO_CTRL CDRREFSEL CMUFREQSEL LOSEXT DLOSDIS Clock Control OOF FRAMEPULSE ALOOP LOOPTIME Reset STS-12/STS-3 CAP2N CAP2P CAP1N CAP1P DLOOP Control Block Loop Filters RLOOPS RXPCLKO XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 FEATURES  Targeted for SONET STS-12/STS-3 and SDH STM-4/STM-1 Applications  Selectable full duplex operation between STS-12/STM-4 standard rate of 622.08 Mbps or STS-3/STM-1 155.52 Mbps  Single-chip fully integrated solution containing parallel-to-serial converter, clock multiplier unit (CMU), serialto-parallel converter, clock data recovery (CDR) functions, and a SONET/SDH frame and byte boundary detection circuit  Ability to disable and bypass onchip CDR for external based received reference clock recovery thru Differential LVPECL input pins XRXCLKIP/N  8-bit LVTTL parallel data bus paths running at 77.76 Mbps in STS-12/STM-4 or 19.44 Mbps in STS-3/STM-1 mode of operation  Uses Differential LVPECL or Single-Ended LVTTL CMU reference clock frequencies of either 19.44 MHz or 77.76 MHz for both STS-12/STM-1 or STS-3/STM-1 operations  Optional use of 77.76 MHz Single-Ended LVTTL input for independent CDR reference clock operation  Able to Detect and Recover SONET/SDH frame boundary and byte align received data on the parallel bus  Diagnostics features include LOS monitoring and automatic received data mute upon LOS  Provides Local, Remote and Split Loop-Back modes as well as Loop Timing mode  Optional flexibility to re-configure the transmit parallel bus clock output to a clock input and accept timing signal from the framer/mapper device to permit the framer/mapper device time domain to be synchronized with the transceiver transmit timing.  Meets Telcordia, ANSI and ITU-T G.783 and G.825 SDH jitter requirements including T1.105.03 - 2002 SONET Jitter Tolerance specification, Bellcore TR-NWT-000253 and GR-253-CORE, GR-253 ILR SONET Jitter specifications.  Complies with ANSI/TIA/EIA-644 and IEEE P1596.3 3.3V LVDS standard, 3.3V LVPECL, and JESD 8-B LVTTL and LVCMOS standard.  Operates at 3.3V with 3.3V I/O  Less than 660mW in STS-3/STM-1 mode or 800mW in STS-12/STM-4 mode Typical Power Dissipation  Package: 10 x 10 x 2.0 mm 64-pin QFP 2 XRT91L31 REV. 1.0.3 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 49 5049 5150 5251 5352 5453 5554 5655 5756 5857 5958 6059 6160 6261 6362 6463 64 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 XRT91L30 XRT91L31 32 3132 3031 2930 2829 2728 2627 2526 2425 2324 2223 2122 2021 1920 1819 1718 17 AGND FL_2 CDRAUXREFCLK STS1_2 VDD3.3 DJA_2/CS FRAMEPULSE MCLK_2 RXPCLKO GND GND RXDO7 RCLK_2 RXDO6 VDD RXDO5 RNEG_2 RXDO4 RPOS_2 RXDO3 GND RXDO2 DJA_0/SCLK GND DS3/E3_0 RXDO1 STS1_0 RXDO0 FL0 VDD3.3 AGND REFCLKN RESET RESET LOOPTM_NOJA LOOPTIME CMUFREQSEL CMUFREQSEL VDD_PECL VDD_PECL TXOP TXOP TXON TXON LOSDDIS DLOSDIS EXTRXCLKIP XRXCLKIP EXTRXCLKIN XRXCLKIN VDD_PECL VDD_PECL OOF OOF CDRDIS CDRDIS RXIP RXIP RXIN RXIN VDD3.3 VDD/CDR_BW REFCLKP REFCLKP AGND TXPCLK_IO FL1 TXDI7 STS1_1 TXDI6 MCLK_1 GND GND TXDI5 RCLK_1 TXDI4 RPOS_1 TXDI3 RNEG_1 TXDI2 VDD TXDI1 RNEG_0 TXDI0 RPOS_0 STS12/STS3 RCLK_0 CDRREFSEL GND VDD3.3 MCLK_0 DLOOP DJA_1/SDI RLOOPS AGND ALOOP 48 48 47 47 46 46 45 45 44 44 43 43 42 42 41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33 AVDD PIO_CTRL GND VDD3.3 RRCLK_1 GND RRPOS_1 GND RRNEG_1 AGND_RX RCLKES AVDD3.3_RX NC CAP2P VDD CAP2N DS3/E3_2 CAP1N SDO CAP1P FSS AVDD3.3_TX RRNEG_2 AGND_TX RRPOS_2 TTLREFCLK RRCLK_2 GND GND VDD3.3 AVDD LOSEXT FIGURE 2. 64 QFP PIN OUT OF THE XRT91L31 (TOP VIEW) TABLE 1: ORDERING INFORMATION(1) PART NUMBER OPERATING TEMPERATURE RANGE LEAD-FREE PACKAGE PACKAGING METHOD XRT91L31IQ-F -40°C to +85°C Yes(2) 64 Pin Lead QFP Tray NOTES: 1. Refer to www.exar.com/XRT91L31 for most up-to-date Ordering Information. 2. Visit www.exar.com for additional information on Environmental Rating. 3 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 GENERAL DESCRIPTION .................................................................................................1 APPLICATIONS ...........................................................................................................................................1 FIGURE 1. BLOCK DIAGRAM OF XRT91L31 ...................................................................................................................................... 1 FEATURES ......................................................................................................................................................2 FIGURE 2. 64 QFP PIN OUT OF THE XRT91L31 (TOP VIEW)............................................................................................................ 3 TABLE 1: ORDERING INFORMATION ................................................................................................................................................... 3 PIN DESCRIPTIONS ..........................................................................................................6 .....................................................................................................................................................................6 TABLE 2: HARDWARE CONTROL ....................................................................................................................................................... 6 TRANSMITTER SECTION ..................................................................................................................................9 RECEIVER SECTION ......................................................................................................................................11 POWER AND GROUND ..................................................................................................................................12 1.0 FUNCTIONAL DESCRIPTION .............................................................................................................14 1.1 STS-12/STM-4 AND STS-3/STM-1 MODE OF OPERATION ......................................................................... 14 1.2 CLOCK INPUT REFERENCE FOR CLOCK MULTIPLIER (SYNTHESIZER) UNIT ...................................... 14 TABLE 3: CMU REFERENCE FREQUENCY OPTIONS (DIFFERENTIAL OR SINGLE-ENDED) ................................................................... 14 1.3 DATA LATENCY ............................................................................................................................................. 14 TABLE 4: DATA INGRESS TO DATA EGRESS LATENCY ....................................................................................................................... 14 2.0 RECEIVE SECTION .............................................................................................................................15 2.1 RECEIVE SERIAL INPUT ............................................................................................................................... 15 FIGURE 3. RECEIVE SERIAL INPUT INTERFACE BLOCK ..................................................................................................................... 15 2.2 RECIEVE SERIAL DATA INPUT TIMING ...................................................................................................... 16 FIGURE 4. RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING DIAGRAM .......................................................................................... 16 TABLE 5: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-12/STM-4 OPERATION) ............................................................. 16 TABLE 6: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-3/STM-1 OPERATION) ............................................................... 16 ...................................................................................................................................................................16 2.3 RECEIVE CLOCK AND DATA RECOVERY .................................................................................................. 17 TABLE 7: CLOCK DATA RECOVERY UNIT REFERENCE CLOCK SETTINGS ............................................................................................ 17 TABLE 8: CDR AUXREFCLK REFERENCE FREQUENCY REQUIREMENT FOR CLOCK AND DATA RECOVERY ..................................... 17 2.3.1 INTERNAL CLOCK AND DATA RECOVERY BYPASS ............................................................................................ 17 FIGURE 5. INTERNAL CLOCK AND DATA RECOVERY BYPASS ............................................................................................................ 18 2.4 EXTERNAL RECEIVE LOOP FILTER CAPACITORS ................................................................................... 19 FIGURE 6. EXTERNAL LOOP FILTERS .............................................................................................................................................. 19 2.5 LOSS OF SIGNAL .......................................................................................................................................... 19 FIGURE 7. LOS DECLARATION CIRCUIT .......................................................................................................................................... 19 2.6 SONET FRAME BOUNDARY DETECTION AND BYTE ALIGNMENT RECOVERY .................................... 20 2.7 RECEIVE SERIAL INPUT TO PARALLEL OUTPUT (SIPO) ......................................................................... 20 FIGURE 8. SIMPLIFIED BLOCK DIAGRAM OF SIPO ........................................................................................................................... 20 2.8 RECEIVE PARALLEL OUTPUT INTERFACE ............................................................................................... 21 FIGURE 9. RECEIVE PARALLEL OUTPUT INTERFACE BLOCK ............................................................................................................. 21 2.9 DISABLE PARALLEL RECEIVE DATA OUTPUT UPON LOS ..................................................................... 21 2.10 RECEIVE PARALLEL DATA OUTPUT TIMING .......................................................................................... 22 FIGURE 10. RECEIVE PARALLEL OUTPUT TIMING ............................................................................................................................ 22 TABLE 9: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-12/STM-4 OPERATION) ......................................................................... 22 TABLE 10: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-3/STM-1 OPERATION) ......................................................................... 22 TABLE 11: PECL AND TTL RECEIVE OUTPUTS TIMING SPECIFICATION ............................................................................................ 23 3.0 TRANSMIT SECTION ..........................................................................................................................24 3.1 TRANSMIT PARALLEL INPUT INTERFACE ................................................................................................. 24 FIGURE 11. TRANSMIT PARALLEL INPUT INTERFACE BLOCK ............................................................................................................. 24 3.2 TRANSMIT PARALLEL DATA INPUT TIMING .............................................................................................. 25 FIGURE 12. TRANSMIT PARALLEL INPUT TIMING .............................................................................................................................. 25 TABLE 12: TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION)......................................................................... 25 ...................................................................................................................................................................25 TABLE 13: TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION)........................................................................... 25 ...................................................................................................................................................................25 3.3 ALTERNATE TRANSMIT PARALLEL BUS CLOCK INPUT OPTION .......................................................... 26 FIGURE 13. ALTERNATE TRANSMIT PARALLEL INPUT INTERFACE BLOCK (PARALLEL CLOCK INPUT OPTION) ...................................... 26 3.4 ALTERNATE TRANSMIT PARALLEL DATA INPUT TIMING ....................................................................... 26 FIGURE 14. ALTERNATE TRANSMIT PARALLEL INPUT TIMING ............................................................................................................ 26 TABLE 14: ALTERNATE TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION) ...................................................... 27 ...................................................................................................................................................................27 4 XRT91L31 REV. 1.0.3 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER TABLE 15: ALTERNATE TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION). ....................................................... 27 ................................................................................................................................................................... 27 3.5 TRANSMIT PARALLEL INPUT TO SERIAL OUTPUT (PISO) ...................................................................... 27 FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF PISO ......................................................................................................................... 27 3.6 CLOCK MULTIPLIER UNIT (CMU) AND RE-TIMER ..................................................................................... 28 TABLE 16: CLOCK MULTIPLIER UNIT REQUIREMENTS FOR REFERENCE CLOCK .................................................................................. 28 3.7 LOOP TIMING AND CLOCK CONTROL ....................................................................................................... 29 TABLE 17: LOOP TIMING AND CLOCK RECOVERY CONFIGURATIONS ................................................................................................. 29 FIGURE 16. LOOP TIMING MODE USING INTERNAL CDR OR AN EXTERNAL RECOVERED CLOCK ....................................................... 30 3.8 TRANSMIT SERIAL OUTPUT CONTROL ..................................................................................................... 30 FIGURE 17. TRANSMIT SERIAL OUTPUT INTERFACE BLOCK .............................................................................................................. 30 4.0 DIAGNOSTIC FEATURES ................................................................................................................... 31 4.1 SERIAL REMOTE LOOPBACK ..................................................................................................................... 31 FIGURE 18. SERIAL REMOTE LOOPBACK ......................................................................................................................................... 31 4.2 DIGITAL LOCAL LOOPBACK ....................................................................................................................... 31 FIGURE 19. DIGITAL LOCAL LOOPBACK ........................................................................................................................................... 31 4.3 ANALOG LOCAL LOOPBACK ...................................................................................................................... 32 FIGURE 20. ANALOG LOCAL LOOPBACK .......................................................................................................................................... 32 4.4 SPLIT LOOPBACK ......................................................................................................................................... 32 FIGURE 21. SPLIT LOOPBACK ......................................................................................................................................................... 32 4.5 EYE DIAGRAM ............................................................................................................................................... 33 FIGURE 22. TRANSMIT ELECTRICAL OUTPUT EYE DIAGRAM............................................................................................................. 33 4.6 SONET JITTER REQUIREMENTS ................................................................................................................. 33 4.6.1 JITTER TOLERANCE: ................................................................................................................................................ 33 FIGURE 23. GR-253 JITTER TOLERANCE MASK .............................................................................................................................. 34 TABLE 18: XRT91L31 RECEIVER JITTER TOLERANCE PERFORMANCE ............................................................................................. 34 FIGURE 24. JITTER TOLERANCE FOR OC-12 WITH HIGH BANDWIDTH AND LOW BANDWIDTH SETTINGS ............................................ 35 FIGURE 25. JITTER TOLERANCE FOR OC-3 WITH HIGH BANDWIDTH AND LOW BANDWIDTH SETTINGS .............................................. 35 4.6.2 JITTER TRANSFER .................................................................................................................................................... 35 FIGURE 26. JITTER TRANSFER FOR OC-12 .................................................................................................................................... 36 FIGURE 27. JITTER TRANSFER FOR OC-3 ...................................................................................................................................... 36 4.6.3 JITTER GENERATION................................................................................................................................................ 36 TABLE 19: XRT91L31 OPTICAL JITTER GENERATION USING 223-1 PRBS PATTERN ........................................................................ 37 TABLE 20: XRT91L31 OPTICAL JITTER GENERATION USING 223-1 PRBS PATTERN USING ALTERNATE STANDARD FILTERS ............. 37 5.0 ELECTRICAL CHARACTERISTICS ................................................................................................... 37 ABSOLUTE MAXIMUM RATINGS .................................................................................................................. 37 ABSOLUTE MAXIMUM POWER AND INPUT/OUTPUT RATINGS ......................................................... 37 POWER AND CURRENT DC ELECTRICAL CHARACTERISTICS .................................................................... 38 ................................................................................................................................................................... 38 LVPECL AND LVTTL LOGIC SIGNAL DC ELECTRICAL CHARACTERISTICS...................................... 39 FIGURE 28. DIFFERENTIAL VOLTAGE SWING DEFINITIONS (INPUT OR OUTPUT) FOR CLOCK AND DATA ................................................. 40 ORDERING INFORMATION .................................................................................................................. 40 .......................................................................................................................................... 40 MECHANICAL DIMENSIONS .......................................................................................... 40 FIGURE 29. PACKAGE DIMENSIONS ................................................................................................................................................ 40 ................................................................................................................................................................... 41 TABLE 21: REVISION HISTORY TABLE ............................................................................................................................................. 41 5 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 PIN DESCRIPTIONS TABLE 2: HARDWARE CONTROL PIN DESCRIPTION NAME LEVEL TYPE PIN DESCRIPTION RESET LVTTL, LVCMOS I 1 Master Reset Input Active "High." When this pin is pulled "High" , the internal state machines are set to their default state. "Low" = Normal Operation "High" = Master Hardware Reset STS12/STS3 LVTTL, LVCMOS I 59 Data Rate Selection Selects SONET/SDH transmission and reception speed rate "Low" = STS-3/STM-1 155.52 Mbps "High" = STS-12/STM-4 622.08 Mbps CMUFREQSEL LVTTL, LVCMOS I 3 Clock Multiplier Unit Reference Frequency Select This pin is used to select the frequency of the REFCLKP/N or TTLREFCLK input to the CMU. "Low" = 77.76 MHz reference clock "High" = 19.44 MHz reference clock CMUFREQSEL STS12/ STS3 REFCLKP/N OR TTLREFCLK REFERENCE DATA RATE FREQUENCY 0 0 77.76 MHz STS-3/STM-1 155.52 Mbps 0 1 77.76 MHz STS-12/STM-4 622.08 Mbps 1 0 19.44 MHz STS-3/STM-1 155.52 Mbps 1 1 19.44 MHz STS-12/STM-4 622.08 Mbps NOTE: REFCLKP/N or TTLREFCLK input should be generated from an LVPECL/LVTTL crystal oscillator which has a frequency accuracy better than 20ppm in order for the transmitted data rate frequency to have the necessary accuracy required for SONET systems.. CDR_BW/VDD LVTTL, LVCMOS I 15 CDR Bandwidth Select This pin is used to select the CDR Bandwidth "Low" = Narrow BW, (Meets SONET jitter transfer requirement) "High" (VDD) = Wide Band Width. 6 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 PIN DESCRIPTION NAME LEVEL TYPE PIN DESCRIPTION CDRREFSEL LVTTL, LVCMOS I 60 Clock and Data Recover Unit Reference Frequency Select Selects the Clock and Data Recovery Unit reference frequency based on the table below. "Low" = CDR uses CMU’s reference clock "High" = CDR reference clock from CDRAUXREFCLK CDRREFSEL STS12/ STS3 0 NOTE: CDRAUXREFCLK Frequency Data Rate CDR uses CMU’s reference clock (see CMUFREQSEL pin) 1 0 77.76 MHz STS-3/STM-1 155.52 Mbps 1 1 77.76 MHz STS-12/STM-4 622.08 Mbps CDRAUXREFCLK requires accuracy of 77.76 MHz   200 ppm. LOOPTIME LVTTL, LVCMOS I 2 Loop Timing Mode When the loop timing mode is activated the external reference clock to the input of the Retimer is replaced with the high-speed recovered receive clock from the CDR. "Low" = Disabled "High" = Loop timing Activated CDRDIS LVTTL, LVCMOS I 12 Clock and Data Recovery Unit Disable Active "High." Disables internal Clock and Data Recovery unit. Received serial data bypasses the integrated CDR block. RXINP/N is then sampled on the rising edge of externally recovered differential clock XRXCLKIP/N coming from the optical module. "Low" = Internal CDR unit is Enabled "High" = Internal CDR unit is Disabled and Bypassed 7 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 PIN DESCRIPTION NAME LEVEL TYPE PIN DESCRIPTION PIO_CTRL LVTTL, LVCMOS I 48 Transmit Parallel Clock Directional Control Transmit Parallel Clock Output Operation If this pin is asserted "High", TXPCLK_IO is a parallel bus clock output. Data on the TXDI[7:0] must be synchronously applied prior to the sampling by the PISO at the rising edge of TXPCLK_IO clock output driven by the XRT91L31. Alternate Transmit Parallel Clock Input Operation Asserting this control pin "Low" or if left unconnected, it configures TXPCLK_IO to serve as a parallel bus clock input rather than a parallel bus clock output and permits the XRT91L31 to accept the external clock input. Data on the TXDI[7:0] is then sampled at the rising edge of the TXPCLK_IO clock input driven by the framer/mapper device. "Low" = TXPCLK_IO is a Parallel Clock Input. "High" = TXPCLK_IO is a Parallel Clock Output. NOTE: Parallel Clock Input operation has the advantage of permitting the framer/mapper device timing to be synchronized with the transceiver transmitter timing. This pin is provided with an internal pull-down. RLOOPS LVTTL, LVCMOS I 63 Serial Remote Loopback The serial remote loopback mode interconnects the receive serial data input to the transmit serial data output. If serial remote loopback is enabled, the 8-bit parallel transmit data input is ignored while the 8-bit parallel receive data output is maintained. "Low" = Disabled "High" = Serial Remote Loopback Mode Enabled NOTE: DLOOP and RLOOPS can be enabled simultaneously to achieve a dual loopback diagnostic feature in normal operation. DLOOP LVTTL, LVCMOS I 62 Digital Local Loopback The digital local loopback mode interconnects the 8-bit parallel transmit data input and TxCLK to the 8-bit parallel receive data output and RxCLK respectively while maintaining the transmit serial data output. If digital local loopback is enabled, the receive serial data input is ignored. "Low" = Disabled "High" = Digital Local Loopback Mode Enabled NOTE: DLOOP and RLOOPS can be enabled simultaneously to achieve a dual loopback diagnostic feature in normal operation. ALOOP LVTTL, LVCMOS I 64 Analog Local Loopback This loopback feature serializes the 8-bit parallel transmit data input and presents the data to the transmit serial output and in addition it also internally routes the serialized data back to the Clock and Data Recovery block for serial to parallel conversion. The received serial data input is ignored. "Low" = Disabled "High" = Analog Local Loopback Mode Enabled 8 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 TRANSMITTER SECTION NAME LEVEL TYPE PIN DESCRIPTION TXDI0 TXDI1 TXDI2 TXDI3 TXDI4 TXDI5 TXDI6 TXDI7 LVTTL, LVCMOS I 58 57 56 55 54 53 51 50 Transmit Parallel Data Input Transmit Parallel Clock Output Operation The 77.76 Mbps (STS-12/STM-4) / 19.44 Mbps (STS-3/STM-1) 8-bit parallel transmit data should be applied to the transmit parallel bus and simultaneously referenced to the rising edge of the TXPCLK_IO clock output. The 8-bit parallel interface is multiplexed into the transmit serial output interface with the MSB first (TXDI[7:0]). Alternate Transmit Parallel Clock Input Operation When operating is this mode, TXPCLK_IO is no longer a parallel clock output reference but reverses direction and serves as the parallel transmit clock input reference for the PISO (Parallel Input to Serial Output) block. The 77.76 Mbps (STS-12/STM-4) / 19.44 Mbps (STS-3/STM-1) 8-bit parallel transmit data should be applied to the transmit parallel bus and simultaneously referenced to the rising edge of the TXPCLK_IO clock input. TXOP TXON LVPECL Diff O 5 6 Transmit Serial Data Output The transmit serial data stream is generated by multiplexing the 8-bit parallel transmit data input into a 622.08 Mbps STS-12/ STM-4 or 155.52 Mbps STS-3/STM-1 serial data stream. TXPCLK_IO LVTTL, LVCMOS I/O 49 Transmit Parallel Clock Input/Output (77.76/19.44 MHz) Transmit Parallel Clock Output Operation When the PIO_CTRL pin 48 is asserted "High," this pin will output a 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM1) clock output reference for the 8-bit parallel transmit data input TXDI[7:0]. This clock is used by the framer/mapper device to present the TXDI[7:0] data which the XRT91L31 will latch on the rising edge of this clock. This enables the framer/mapper device and the XRT91L31 transceiver to be in synchronization. Alternate Transmit Parallel Clock Input Operation When the PIO_CTRL pin 48 is asserted "Low," this pin will accept a 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/ STM-1) clock input reference for the 8-bit parallel transmit data input TXDI[7:0]. The XRT91L31 will latch data at TXDI[7:0] on the rising edge of this clock. This has the enormous advantage of enabling the framer/mapper device transmit timing to be synchronized with the transceiver transmit timing. 9 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 TRANSMITTER SECTION NAME LEVEL TYPE PIN DESCRIPTION REFCLKP REFCLKN LVPECL Diff I 16 17 Reference Clock Input (77.76 MHz or 19.44 MHz) This differential clock input reference is used for the transmit clock multiplier unit (CMU) and clock data recovery (CDR) to provide the necessary high speed clock reference for this device. It will accept either a 77.76 MHz or a 19.44 MHz Differential LVPECL clock source. Pin CMUFREQSEL determines the value used as the reference. See Pin CMUFREQSEL for more details. REFCLKP/N inputs are internally biased to 1.65V. NOTE: TTLREFCLK LVTTL, LVCMOS I 36 In the event that TTLREFCLK LVTTL input is used instead of these differential inputs for clock reference, the REFCLKP should be tied to ground through a 1K  resistor and REFCLKN should be left unconnected or connected to VCC through a 1K  resistor. Auxillary Reference Clock Input (77.76 MHz or 19.44 MHz) This LVTTL clock input reference is used for the transmit clock multiplier unit (CMU) and clock data recovery (CDR) to provide the necessary high speed clock reference for this device. It will accept either a 77.76 MHz or a 19.44 MHz LVTTL clock source. Pin CMUFREQSEL determines the value used as the reference. See Pin CMUFREQSEL for more details. NOTE: In the event that REFCLKP/N differential inputs is used instead of this LVTTL input for clock reference, the TTLREFCLK should be tied to ground. 10 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 RECEIVER SECTION PIN DESCRIPTION NAME LEVEL TYPE PIN DESCRIPTION RXDO0 RXDO1 RXDO2 RXDO3 RXDO4 RXDO5 RXDO6 RXDO7 LVTTL, LVCMOS O 19 20 22 23 24 25 26 27 Receive Parallel Data Output 77.76 Mbps (STS-12/STM-4) / 19.44 Mbps (STS-3/STM-1) 8-bit parallel receive data output is updated simultaneously on the falling edge of the RXPCLKO output. The 8-bit parallel interface is de-multiplexed from the receive serial data input MSB first (RXDO[7]). The XRT91L31 will output the data on the falling edge of RXPCLKO clock. RXIP RXIN Diff LVPECL I 13 14 Receive Serial Data Input The differential receive serial data stream of 622.08 Mbps STS-12/STM-1 or 155.52 Mbps STS-3/STM-1 is applied to these input pins. These pins have internal LVPECL commonmode biasing circuit. External 100  termination is required between RXIP/N pins. XRXCLKIP XRXCLKIN Diff LVPECL I 8 9 External Recovered Receive Clock Input The differential receive serial data stream of 622.08 Mbps STS-12/STM-1 or 155.52 Mbps STS-3/STM-1 is sampled on the rising edge of this externally recovered differential clock coming from the optical module. It is used when the internal CDR unit is disabled and bypassed by the CDRDIS pin. These pins have internal LVPECL common-mode biasing circuit. External 100  termination is required between XRXCLKIP/N pins. NOTE: In the event that XRXCLKIP/N differential input pins are unused, XRXCLKIP should be tied to VCC with a 1k Ohm pull-up and XRXCLKIN should be tied to Ground with a 1k Ohm pull-down. RXPCLKO LVTTL, LVCMOS O 29 Receive Parallel Clock Output (77.76 MHz or 19.44 MHz) 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM-1) clock output reference for the 8-bit parallel receive data output RXDO[7:0]. The parallel received data output bus will be updated on the falling edge of this clock. CDRAUXREFCLK LVTTL, LVCMOS I 32 Clock and Data Recovery Auxillary Reference Clock 77.76 MHz ± 200 ppm auxillary reference clock for the CDR. NOTE: In the event that CDRAUXREFCLK LVTTL input pin is unused, CDRAUXREFCLK should be tied to ground. OOF LVTTL, LVCMOS I 11 Out of Frame Input Indicator This level sensitive input pin is used to initiate frame detection and byte alignment recovery when OOF is declared by the downstream device. When this pin is held High, FRAMEPULSE will pulse for a single RXPCLKO period upon the detection of every third frame alignment A2 byte in the incoming SONET/SDH Frame. "Low" = Normal Operation "High" = OOF Indication initiating frame detection and byte boundary recovery and activating FRAMEPULSE 11 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 PIN DESCRIPTION NAME LEVEL TYPE PIN DESCRIPTION FRAMEPULSE LVTTL, LVCMOS O 30 Sonet Frame Alignment Pulse This pin will generate a single pulse for an RXPCLKO clock period upon the detection of the third frame alignment A2 byte whenever the OOF input pin is held High. The parallel received data output bus will then be byte aligned to this newly recovered SONET/SDH frame. CAP1P CAP2P Analog - 39 42 CDR Non-polarized External Filter Capacitor C1 = 0.47F ± 10% tolerance (Isolate from noise and place close to pin) CAP1N CAP2N Analog - 40 41 CDR Non-polarized External Filter Capacitor C2 = 0.47F ± 10% tolerance (Isolate from noise and place close to pin) DLOSDIS LVTTL, LVCMOS I 7 LOS (Los of Signal) Detect Disable Disables internal LOS monitoring and automatic muting of RXDO[7:0] upon LOS detection. LOS is declared when a string of 128 consecutive zeros occur on the line. LOS condition is cleared when the 16 or more pulse transitions is detected for 128 bit period sliding window (see Figure 7.) "Low" = Monitor and Mute received data upon LOS declaration "High" = Disable internal LOS monitoring LOSEXT SE-LVPECL I 33 LOS or Signal Detect Input from Optical Module Active "Low." When active, this pin can force the received data output bus RXDO[7:0] to a logic state of ’0’ per Figure 7. "Low" = Forced LOS "High" = Normal Operation POWER AND GROUND PIN DESCRIPTION NAME TYPE PIN DESCRIPTION VDD3.3 PWR 18, 31, 34, 47, 61 3.3V CMOS Power Supply VDD3.3 should be isolated from the Analog VDD power supplies. Use a ferrite bead along with an internal power plane separation. The VDD3.3 power supply pins should have bypass capacitors to the nearest ground. AVDD3.3_TX PWR 38 Analog 3.3V Transmitter Power Supply AVDD3.3_TX should be isolated from the digital power supplies. For best results, use a ferrite bead along with an internal power plane separation. The AVDD3.3_TX power supply pins should have bypass capacitors to the nearest ground. AVDD3.3_RX PWR 43 Analog 3.3V Receiver Power Supply AVDD3.3_RX should be isolated from the digital power supplies. For best results, use a ferrite bead along with an internal power plane separation. The AVDD3.3_RX power supply pins should have bypass capacitors to the nearest ground. 12 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3 PIN DESCRIPTION NAME TYPE PIN DESCRIPTION VDD_PECL PWR 4, 10 3.3V Input/Output LVPECL Bus Power Supply These pins require a 3.3V potential voltage for properly biasing the Differential LVPECL input and output pins. AGND_TX PWR 37 Transmitter Analog Ground for 3.3V Analog Power Supplies It is recommended that all ground pins of this device be tied together. AGND_RX PWR 44 Receiver Analog Ground for 3.3V Analog Power Supplies It is recommended that all ground pins of this device be tied together. GND GND 21, 28, 35, 45, 46, 52 Power Supply and Thermal Ground It is recommended that all ground pins of this device be tied together. 13 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 1.0 FUNCTIONAL DESCRIPTION The XRT91L31 transceiver is designed to operate with a SONET Framer/ASIC device and provide a highspeed serial interface to optical networks. The transceiver converts 8-bit parallel data running at 77.76 Mbps (STS-12/STM-4) or 19.44 Mbps (STS-3/STM-1) to a serial Differential LVPECL bit stream at 622.08 Mbps or 155.52 Mbps and vice-versa. It implements a clock multiplier unit (CMU), SONET/SDH serialization/deserialization (SerDes), receive clock and data recovery (CDR) unit and a SONET/SDH frame and byte boundary detection circuit. The transceiver is divided into Transmit and Receive sections and is used to provide the front end component of SONET equipment, which includes primarily serial transmit and receive functions. 1.1 STS-12/STM-4 and STS-3/STM-1 Mode of Operation Functionality of the transceiver can be configured by using the appropriate signal level on the STS-12/STS-3 pin. STS-3/STM-1 mode is selected by pulling STS-12/STS-3 "Low" as described in the Hardware Pin Descriptions. However, if STS-12/STM-4 mode is desired, it is selected by pulling STS-12/STS-3 "High." Therefore, the following sections describe the functionality rather than how each function is controlled. Hence, the Hardware Pin and Register Bit Descriptions focus on device configuration. 1.2 Clock Input Reference for Clock Multiplier (Synthesizer) Unit The XRT91L31 can accept both a 19.44 MHz or a 77.76 MHz Differential LVPECL clock input at REFCLKP/N or a Single-Ended LVTTL clock at TTLREFCLK as its internal timing reference for generating higher speed clocks. The REFCLKP/N or TTLREFCLK input should be generated from an LVPECL/LVTTL crystal oscillator which has a frequency accuracy better than 20ppm in order for the transmitted data rate frequency to have the necessary accuracy required for SONET systems. The reference clock can be provided with one of two frequencies chosen by CMUFREQSEL. The reference frequency options for the XRT91L31 are listed in Table 1. TABLE 3: CMU REFERENCE FREQUENCY OPTIONS (DIFFERENTIAL OR SINGLE-ENDED) 1.3 REFCLKP/N OR TTLREFCLK CMUFREQSEL STS12/STS3 0 0 77.76 MHz STS-3/STM-1 155.52 Mbps 0 1 77.76 MHz STS-12/STM-4 622.08 Mbps 1 0 19.44 MHz STS-3/STM-1 155.52 Mbps 1 1 19.44 MHz STS-12/STM-4 622.08 Mbps REFERENCE FREQUENCY DATA RATE Data Latency Due to different operating modes and data logic paths through the device, there is an associated latency from data ingress to data egress. Table 4 specifies the data latency for a typical path. TABLE 4: DATA INGRESS TO DATA EGRESS LATENCY Mode Of Operation Data Path Clock Reference Range Of Clock Cycles Thru-mode MSB at RXIP/N to data on RXDO[7:0] Recoved RXIP/N Clock 25 to 35 Serial Remote Loopback MSB at RXIP/N to MSB at TXOP/N Recoved RXIP/N Clock 2 to 4 14 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 2.0 RECEIVE SECTION The receive section of XRT91L31 include the inputs RXIP/N, followed by the clock and data recovery unit (CDR) and receive serial-to-parallel converter. The receiver accepts the high speed Non-Return to Zero (NRZ) serial data at 622.08 Mbps or 155.52 Mbps through the input interfaces RXIP/N. The clock and data recovery unit recovers the high-speed receive clock from the incoming scrambled NRZ data stream. The recovered serial data is converted into an 8-bit-wide, 77.76 Mbps or 19.44 Mbps parallel data and presented to the RXDO[7:0] parallel interface. This parallel interface is designed for Single-Ended LVTTL operation. A divideby-8 version of the high-speed recovered clock RXPCLKOP/N, is used to synchronize the transfer of the 8-bit RXDO[7:0] data with the receive portion of the framer/mapper device. Upon initialization or loss of signal or loss of lock, the external reference clock signal of 19.44 MHz or 77.76 MHz is used to start-up the clock recovery phase-locked loop for proper operation. In certain applications, the CDR block on the XRT91L31 can be disabled and bypassed by enabling the CDRDIS pin to permit the flexibility of using an externally recovered receive clock thru the XRXCLKIP/N pins. 2.1 Receive Serial Input The receive serial inputs are applied to RXIP/N and originate from an AC coupled environement (i.e. ACcoupled SFP). A simplified block diagram is shown in Figure 3. Since this dievice has internal pull up/pull down biasing resitors, a 100  line-to-line termination is the only resistor needed and must be installed as close to the RXI pins as possible. See Applications note for further clarifications. FIGURE 3. RECEIVE SERIAL INPUT INTERFACE BLOCK Install terminators close to RXIP and RXIN pins RXIP RXIN SFP, Optical Module 100 Ohm Optical Fiber XRT91L31 STS- 12/ STM-4 or STS-3/ STM-1 Transceiver VCC Internally AC coupled 1k Tie unused differential input pins to VCC and GND through 1KOhm resistors as shown . XRXCLKIP XRXCLKIN 1k 15 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 2.2 1.0.3 Recieve Serial Data Input Timing The received High-Speed Serial Differential Data Input must adhere to the set-up and hold time timing specifications below. FIGURE 4. RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING DIAGRAM tRXCLK XRXCLKIP XRXCLKIN tRX_HD tRX_SU RXIP RXIN TABLE 5: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-12/STM-4 OPERATION) SYMBOL PARAMETER MIN TYP MAX tRXCLK Receive external recovered clock period tRX_SU Serial data setup time with respect to XRXCLKIP/N 400 ps tRX_HD Serial data hold time with respect to XRXCLKIP/N 100 ps 1.608 UNITS ns TABLE 6: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-3/STM-1 OPERATION) SYMBOL PARAMETER tRXCLK Receive external recovered clock period tRX_SU Serial data setup time with respect to XRXCLKIP/N 1.5 ns tRX_HD Serial data hold time with respect to XRXCLKIP/N 1.5 ns 16 MIN TYP 6.43 MAX UNITS ns XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 2.3 Receive Clock and Data Recovery The clock and data recovery (CDR) unit accepts the high speed NRZ serial data from the Differential LVPECL receiver and generates a clock that is the same frequency as the incoming data. The clock recovery can either utilize the transmitter’s CMU reference clock from either REFCLKP/N or TTLREFCLK (+/- 20ppm) or it can use independent clock source CDRAUXREFCLK (+/- 200ppm) to train and monitor its clock recovery PLL. Initially upon startup, the PLL locks to the local reference clock. Once this is achieved, the PLL then attempts to lock onto the incoming receive data stream. Whenever the recovered clock frequency deviates from the local reference clock frequency by more than approximately ±500 ppm, the clock recovery PLL will switch and lock back onto the local reference clock. Whenever a Loss of Lock or a Loss of Signal event occurs, the CDR will continue to supply a receive clock (based on the local reference) to the framer/mapper device. When the LOSEXT is asserted by the optical module or when LOS is detected, the receive parallel data output will be forced to a logic zero state for the entire duration that a LOS condition is detected. This acts as a receive data mute upon LOS function to prevent random noise from being misinterpreted as valid incoming data. When the LOSEXT becomes inactive and the recovered clock is determined to be within ±500 ppm accuracy with respect to the local reference source and LOS is no longer declared, the clock recovery PLL will switch and lock back onto the incoming receive data stream. Table 7 shows Clock and Data Recovery reference clock settings. Table 8 specifies the Clock and Data Recovery Unit performance characteristics. TABLE 7: CLOCK DATA RECOVERY UNIT REFERENCE CLOCK SETTINGS CMUFREQSEL CDRREFSEL STS12/ STS3 REFCLKP/N1OR TTLREFCLK1 FREQUENCY (MHZ) CDRAUXREFCLK2 FREQUENCY (MHZ) CDR OUTPUT FREQUENCY (MHZ) 0 0 0 77.76 MHz not used 155.52 0 0 1 77.76 MHz not used 622.08 1 0 0 19.44 MHz not used 155.52 1 0 1 19.44 MHz not used 622.08 X 1 0 not referenced by CDR 77.76 MHz 155.52 X 1 1 not referenced by CDR 77.76 MHz 622.08 1Requires frequency accuracy better than +/- 20 ppm in order for the transmitted data rate frequency to have the necessary accuracy required for SONET systems. 2 CDRAUXREFCLK requires accuracy of 77.76 MHz +/- 200 ppm. TABLE 8: CDR AUXREFCLK REFERENCE FREQUENCY REQUIREMENT FOR CLOCK AND DATA RECOVERY NAME PARAMETER MIN REFDUTY Reference clock duty cycle REFTOL Reference clock frequency tolerance 2.3.1 TYP MAX UNITS 40 60 % -200 +200 ppm Internal Clock and Data Recovery Bypass Optionally, the internal CDR unit can be disabled and bypassed in lieu of an externally recovered clock. Asserting the CDRDIS "High" disables the internal Clock and Data Recovery unit and the received serial data bypasses the integrated CDR block. RXINP/N is then sampled on the rising edge of the externally recovered 17 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 differential clock XRXCLKIP/N coming from the optical module or an external clock recovery unit. Figure 5 shows the possible internal paths of the recovered clock and data. FIGURE 5. INTERNAL CLOCK AND DATA RECOVERY BYPASS MUX XRXCLKIP CLOCK XRXCLKIN CLK CDRDIS CDR Parallel Data 8 SIPO DATA RXIP MUX Div by 8 CLOCK Data 18 RXIN XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 2.4 External Receive Loop Filter Capacitors These external loop filter 0.47F non-polarized capacitors provide the necessary components to achieve the required receiver jitter performance. They must be well isolated to prohibit noise entering the CDR block and should be placed as close to the pins as much as possible. Figure 6 shows the pin connections and external loop filter components. These two non-polarized capacitors should be of +/- 10% tolerance. FIGURE 6. EXTERNAL LOOP FILTERS 0.47uF 0.47uF non-polarized non-polarized pin 39 pin 42 CAP1P 2.5 pin 40 CAP2P CAP1N pin 41 CAP2N Loss Of Signal XRT91L31 supports internal Loss of Signal detection (LOS) and external LOS detection. The internal Loss of Signal Detector monitors the incoming data stream and if the incoming data stream has no transition continuously for more than 128 bit periods, Loss of Signal is declared. This LOS detection will be removed when the circuit detects 16 transitions in a 128 bit period sliding window. Pulling the corresponding DLOSDIS signal to a high level will disable the internal LOS detection circuit. The external LOS function is supported by the LOSEXT input. The Single-Ended LVPECL input usually comes from the optical module through an output usually called “SD” or “FLAG” which indicates the lack or presence of optical power. Depending on the manufacturer of these devices, the polarity of this signal can be either active "Low" or active "High". LOSEXT is an active "Low" signal requiring a low level to assert or invoke a forced LOS. The external LOSEXT input pin and internal LOS detector are gated to control detection and declaration of Loss of Signal (see Figure 7.) Whenever LOS is internally detected or an external LOS is asserted thru the LOSEXT pin, and none of the local loopback loops is enabled, the XRT91L31 will automatically force the receive parallel data output to a logic state "0" for the entire duration that a LOS condition is declared. This acts as a receive data mute upon LOS function to prevent random noise from being misinterpreted as valid incoming data. When the local loopbacks DLOOP or ALOOP is enabled, then LOS conditions will not mute the RX parallel output. FIGURE 7. LOS DECLARATION CIRCUIT ‘0’ = No LOS detection: Do not mute Tx serial data output ‘1’ = LOS_detection: Mute Tx serial data output DLOS (internal signal) RLOOPS DLOSDIS LOSEXT RLPS_D_MUTE (Internal Signal) (Internal Signal) ALOOP DLOOP ‘0’ = No LOS detection: Do not mute receive parallel data bus ‘1’ = LOS_detection: Mute receive parallel data bus During RLOOPS operation, the 91L31 mutes the RLOOPS data going to Tx output upon detection of DLOS while DLOSDIS is not enabled. During RLOOPS operation, the 91L31 also mutes the RLOOPS data going to 19 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 Tx output while the LOSEXT input is set to a “LOW” state. Note that the DLOSDIS control pin has no impact on the CDR muting function due to LOSEXT. DLOSDIS only applies to muting as a result of DLOS detection. Also, note that serial muting function (RLPS_D_MUTE) only impacts RLOOPS data going to Tx output. 2.6 SONET Frame Boundary Detection and Byte Alignment Recovery A Frame and Byte Boundary Detection circuit searches the incoming data channel for three consecutive A1 (0xF6 Hex) bytes followed by three consecutive A2 (0x28 Hex) bytes. The detector operates under the control of the OOF (Out of Frame) signals provided from the SONET Framer. Detection is enabled when OOF is held "High" and remains active until OOF goes "Low." When framing pattern detection is enabled, the framing pattern is used to locate byte and frame boundaries in the incoming receive data stream. The receive serial-toparallel converter block uses the located byte boundary to assemble the incoming data stream into bytes for output on the parallel data output bus RXDO[7:0]. The frame boundary is reported on the frame pulse (FRAMEPULSE) output at the onset of detecting the third A2 byte pattern when any serial 48-bit pattern matching the framing pattern is detected on the incoming data stream. While in the pattern search and detection state and so long is OOF is active, the frame pulse (FRAMEPULSE) output is activated for one byte clock cycle (RXPCLKO = 12.86 ns pulse duration for STS-12/STM-4 or 51.44 ns pulse duration for STS-3/ STM-1) anytime a 48-bit pattern matching the framing pattern is detected on the incoming data stream. Once the SONET Framer Overhead Circuitry has verified that frame and byte synchronization are correct, the OOF input pin should be de-asserted by the SONET Framer to disable the XRT91L31 frame search process from trying to synchronize repeatedly and to de-activate FRAMEPULSE. When the XRT91L31’s framing pattern detection is disabled upon the de-assertion of OOF input pin from the SONET Framer, the byte boundary will lock to the detected location and will remain locked to that location found when detection was previously enabled. 2.7 Receive Serial Input to Parallel Output (SIPO) During STS-12/STM-4 operation, the SIPO is used to convert the 622.08 Mbps serial data input to 77.76 Mbps parallel data output which can interface to a SONET Framer/ASIC. If the XRT91L31 is operating in STS-3/ STM-1, the SIPO will convert the 155.52 Mbps serial data input to 19.44 Mbps parallel data output. The SIPO bit de-interleaves the serial data input into an 8-bit parallel output to RXDO[7:0]. A simplified block diagram is shown in Figure 8. XRT91L31 clocks data out on RXDO[7:0] at the falling edge of RXPCLKO. FIGURE 8. SIMPLIFIED BLOCK DIAGRAM OF SIPO 8-bit Parallel LVTTL Output Data b03 b02 b01 b00 RXDOn bn3 bn2 bn1 bn0 RXDOn+ bn+3 bn+2 bn+1 bn+0 RXDO7 b73 b72 b71 b70 RXPCLKO 622.08 Mbps STS-12/STM-4 or 155.52 Mbps STS-3/STM-1 serial data rate SIPO RXDO0 b73 b63 b53 b43 b33 b23 b13 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM-1) 20 b70 b60 b50 b40 b30 b20 b10 b00 RXIP/N XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 2.8 Receive Parallel Output Interface The 8-bit Single-Ended LVTTL running at 77.76 Mbps (STS-12/STM-4) or 19.44 Mbps (STS-3/STM-1) parallel data output of the receive path is used to interface to a SONET Framer/ASIC synchronized to the recovered clock. A simplified block diagram is shown in Figure 9. FIGURE 9. RECEIVE PARALLEL OUTPUT INTERFACE BLOCK RXDO[7:0] 8 RXPCLKO XRT91L31 STS-12/STM-4 or STS-3/STM-1 Transceiver SONET Framer/ASIC 2.9 Disable Parallel Receive Data Output Upon LOS The parallel receiver outputs are automatically pulled "Low" or forced to a logic state of "0" during a LOS condition (DLOOP or ALOOP not activated) to prevent data chattering unless LOS detection is disabled by asserting DLOSDIS and keeping LOSEXT input pin "high." In addition, the user can also assert LOSEXT input pin from the optical module to force an LOS and mute the parallel receiver outputs as well when DLOSDIS is not enabled (LOW), see Figure 7). 21 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 2.10 1.0.3 Receive Parallel Data Output Timing The receive parallel data output from the STS-12/STM-4 or STS-3/STM-1 receiver will adhere to the setup and hold times shown in Figure 10 ,Table 9, and Table 10. Table 11 shows the PECL and TTL output timing specifications. FIGURE 10. RECEIVE PARALLEL OUTPUT TIMING tRXCLK RXIP RXIN tRXPCLKO RXPCLKO A1 RXDO[7:0] A2 A2 A2 A2 tRXDO_VALID FRAMEPULSE tPULSE_WID TABLE 9: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-12/STM-4 OPERATION) SYMBOL PARAMETER MIN TYP MAX tRXCLK Receive high-speed serial clock period 1.608 ns tRXPCLKO Receive parallel data output byte clock period 12.86 ns tRXDO_VALID Time the data is valid on RXDO[7:0] and FRAMEPULSE before and after the rising edge of RXPCLKO tPULSE_WID Pulse width of frame detection pulse on FRAMEPULSE 4 UNITS ns 12.86 ns TABLE 10: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-3/STM-1 OPERATION) SYMBOL PARAMETER tRXCLK Receive high-speed serial clock period 6.43 ns tRXPCLKO Receive parallel data output byte clock period 51.44 ns tRXDO_VALID Time the data is valid on RXDO[7:0] and FRAMEPULSE before and after the rising edge of RXPCLKO tPULSE_WID Pulse width of frame detection pulse on FRAMEPULSE 22 MIN TYP 22 MAX UNITS ns 51.44 ns XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 TABLE 11: PECL AND TTL RECEIVE OUTPUTS TIMING SPECIFICATION SYMBOL PARAMETER tR_PECL PECL output rise time (20% to 80%) 350 ps tF_PECL PECL output fall time (80% to 20%) 350 ps tR_TTL TTL output rise time (10% to 90%) 2 ns tF_TTL TTL output fall time (90% to 10%) 1.5 ns 23 MIN TYP MAX UNITS XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 3.0 TRANSMIT SECTION The transmit section of the XRT91L31 accepts 8-bit parallel data and converts it to serial Differential LVPECL data output intented to interface to an optical module. It consists of an 8-bit parallel Single-Ended LVTTL interface, Parallel-to-Serial Converter, a clock multiplier unit (CMU), a Low Voltage Positive-referenced EmitterCoupled Logic (LVPECL) differential line driver, and Loop Timing modes. The LVPECL serial data output rate is 622.08 Mbps for STS-12/STM-4 applications and 155.52 Mbps for STS-3/STM-1 applications. The high frequency serial clock is synthesized by a PLL, which uses a low frequency clock as its input reference. In order to synchronize the data transfer process, the synthesized 622.08 MHz for STS-12/STM-4 or 155.52 MHz STS-3/STM-1 serial clock output is divided by eight and the 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/ STM-1) clock respectively is presented to the framer/mapper device to be used as its timing source. 3.1 Transmit Parallel Input Interface The parallel data from an framer/mapper device is presented to the XRT91L31 through an 8-bit Single-Ended LVTTL parallel bus interface TXDI[7:0]. To directly interface to the XRT91L31, the SONET Framer/ASIC must be synchronized to the same timing source TXPCLK_IO in presenting data on the parallel bus interface. The data must meet setup and hold times with respect to TXPCLK_IO. This clock output source is used to synchronize the SONET Framer/ASIC to the XRT91L31. The framer/mapper device should use TXPCLK_IO as its timing source so that parallel data is phase aligned with the serial transmit data. The data is latched into a parallel input register on the rising edge of TXPCLK_IO. TXPCLK_IO is derived from a divide-by-8 of the high speed synthesized clock resulting in a 77.76/ 19.44 MHz Single-Ended LVTTL clock output source to be used by the framer/mapper device for parallel bus synchronization. A simplified block diagram of the transmit parallel bus clock output system interface is shown in Figure 11. FIGURE 11. TRANSMIT PARALLEL INPUT INTERFACE BLOCK TXDI[7:0] XRT91L31 STS-12/STM-4 or STS-3/STM-1 Transceiver 8 TXPCLK_IO SONET Framer/ASIC VDD+ CMUREFSEL PIO_CTRL REFCLKN REFCLKP TTLREFCLK 24 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 3.2 Transmit Parallel Data Input Timing When applying parallel data input to the transmitter, the setup and hold times should be followed as shown in Figure 12, Table 12 and Table 13. FIGURE 12. TRANSMIT PARALLEL INPUT TIMING Transmit Parallel Clock driven by XRT91L31 Device Transmit Parallel Clock Output tTXPCLK_IO TXPCLK_IO tTXDI_HD tTXDI_SU TXDI[7:0] TABLE 12: TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION) SYMBOL PARAMETER MIN TYP MAX tTXPCLK_IO Transmit Clock Output period tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 2.0 ns tTXDI_HD Transmit data hold time with respect to TXPCLK_IO 1.0 ns 12.86 UNITS ns TABLE 13: TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION). SYMBOL PARAMETER tTXPCLK_IO Transmit Clock Output period tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 2.0 ns tTXDI_HD Transmit data hold time with respect to TXPCLK_IO 1.0 ns 25 MIN TYP 51.44 MAX UNITS ns XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 3.3 1.0.3 Alternate Transmit Parallel Bus Clock Input Option To decouple transmit parallel clock domains of the framer/mapper device and the XRT91L31 transceiver and to eliminate difficult timing issues between them, the transmit parallel clock TXPCLK_IO can also be optionally configured as a clock input. Rather than provide a transmit parallel clock output reference to the framer/mapper device, the XRT91L31 can instead accept a reference transmit parallel clock input signal from the framer/ mapper device to sample the transmit parallel bus. When PIO_CTRL pin 48 is asserted "Low," TXPCLK_IO switches into a clock input and the XRT91L31 will now sample data on the transmit parallel bus TXDI[7:0] based on TXPCLK_IO clock input reference coming from the framer/mapper device. The use of the alternate transmit parallel bus clock input option permits the system to tolerate an arbitrary amount of phase mismatch and jitter between framer/mapper transmit parallel clock timing and transceiver transmit timing. Figure 13 provides a detailed overview of the alternate transmit parallel bus clock input system interface. FIGURE 13. ALTERNATE TRANSMIT PARALLEL INPUT INTERFACE BLOCK (PARALLEL CLOCK INPUT OPTION) TXDI[7:0] 8 TXPCLK_IO XRT91L31 STS-12/STM-4 or STS-3/STM-1 Transceiver (Parallel Clock Input Option) SONET Framer/ASIC CMUREFSEL PIO_CTRL REFCLKN REFCLKP TTLREFCLK 3.4 Alternate Transmit Parallel Data Input Timing When applying parallel data input to the transmitter in the alternate transmit parallel bus clock input mode of operation, the setup and hold times should be followed as shown in Figure 14 and Table 14, Table 15. FIGURE 14. ALTERNATE TRANSMIT PARALLEL INPUT TIMING Transmit Parallel Clock driven by Framer/Mapper Device Alternate Transmit Parallel Clock Input Option tTXPCLK_IO TXPCLK_IO tTXDI_HD tTXDI_SU TXDI[7:0] 26 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 TABLE 14: ALTERNATE TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION) SYMBOL PARAMETER MIN TYP MAX tTXPCLK_IO Transmit Clock Input period tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 2.0 ns tTXDI_HD Transmit data hold time with respect to TXPCLK_IO 1.0 ns 12.86 UNITS ns TABLE 15: ALTERNATE TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION). 3.5 SYMBOL PARAMETER MIN TYP tTXPCLK_IO Transmit Clock Input period tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 2.0 ns tTXDI_HD Transmit data hold time with respect to TXPCLK_IO 1.0 ns 51.44 MAX UNITS ns Transmit Parallel Input to Serial Output (PISO) The PISO is used to convert 77.76 Mbps or 19.44 Mbps parallel data input to 622.08 Mbps STS-12/STM-1 or 155.52 Mbps STS-3/STM-1 serial data output respectively, which can interface to an optical module. The PISO bit interleaves parallel data input into a serial bit stream taking the first bit from TXDI7, then the first bit from TXDI6, and so on as shown in Figure 15. FIGURE 15. SIMPLIFIED BLOCK DIAGRAM OF PISO 8-bit Parallel LVTTL Input Data TXDI0 b07 b06 b05 b04 b03 b02 b01 b00 TXDIn bn7 bn6 bn5 bn4 bn3 bn2 bn1 bn0 TXDIn+ bn+7 bn+6 bn+5 bn+4 bn+3 bn+2 bn+1 bn+0 TXDI7 b77 b76 b75 b74 b73 b72 b71 b70 TXPCLK_IO PISO time (0) 622.08 Mbps STS-12/STM-4 or 155.52 Mbps STS-3/STM-1 serial data rate b70 b60 b50 b40 b30 b20 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM-1) 27 b77 b67 b57 b47 b37 b27 b17 b07 TXOP/N XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 3.6 1.0.3 Clock Multiplier Unit (CMU) and Re-Timer The clock synthesizer uses a 77.76 MHz or a 19.44 MHz reference clock to generate the 622.08 MHz (for STS12/STM-4) or 155.52 MHz (for STS-3/STM-1) SONET/SDH transmit serial data rate frequency. Differential LVPECL input REFCLKP/N accepts a clock reference of 77.76 MHz or 19.44 MHz to synthesize a high speed 622.08 MHz clock for STS-12/STM-4 or 155.52 MHz clock for STS-3/STM-1 applications. Optionally, if a Differential LVPECL clock source is not available, TTLREFCLK can accept an LVTTL clock signal. The clock synthesizer uses a PLL to lock-on to the differential input REFCLKP/N or Single-Ended input TTLREFCLK reference clock. The REFCLKP/N input should be generated from an LVPECL crystal oscillator which has a frequency accuracy better than 20ppm in order for the transmitted data rate frequency to have the necessary accuracy required for SONET systems. If the TTLREFCLK reference clock is used, the TTLREFCLK reference input should be tied to a LVTTL crystal oscillator with 20ppm accuracy. The two reference clocks are XNOR’ed and the choice between the LVPECL and LVTTL clocks are controlled tying either REFCLKP or TTLREFCLK to ground. Table 3 shows the CMU reference clock frequency settings. Table 16 specifies the Clock Multiplier Unit requirements for reference clock. TABLE 16: CLOCK MULTIPLIER UNIT REQUIREMENTS FOR REFERENCE CLOCK NAME PARAMETER MIN REFDUTY Reference clock duty cycle 40 REFJIT MAX UNITS 60 % Reference clock jitter (rms) with 19.44 MHz reference1 5 ps REFJIT Reference clock jitter (rms) with 77.76 MHz reference1 13 ps REFTOL Reference clock frequency tolerance2 +20 ppm -20 TYP Jitter specification is defined using a 12kHz to 1.3/5MHz LP-HP single-pole filter. 1 These reference clock jitter limits are required for the outputs to meet SONET system level jitter requirements (2000V Storage Temperature ...............................-65°C to 150°C ABSOLUTE MAXIMUM POWER AND INPUT/OUTPUT RATINGS SYMBOL TYPE VDD3.3 PARAMETER MIN. TYP. MAX. UNITS CMOS Digital Power Supply -0.5 6.0 V PECL I/O Power Supply -0.5 6.0 V 3.3V Analog I/O and Power Supply -0.5 6.0 V LVPECL DC logic signal input voltage -0.5 VDDLVPECL +0.5 V LVTTL DC logic signal input voltage -0.5 5.5 V VDDLVPECL AVDD_IO 37 XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 ABSOLUTE MAXIMUM POWER AND INPUT/OUTPUT RATINGS SYMBOL TYPE LVTTL PARAMETER MIN. TYP. MAX. UNITS DC logic signal output voltage -0.5 VDD3.3 +0.5 V LVPECL Input current -100 100 mA LVTTL Input current -100 100 mA NOTE: Stresses listed under Absolute Maximum Power and I/O ratings may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods will severely affect device reliability. POWER AND CURRENT DC ELECTRICAL CHARACTERISTICS Test Conditions: VDD = 3.3V + 5% unless otherwise specified SYMBOL TYPE PARAMETER MIN. TYP. MAX. UNITS VDD3.3 Power Supply Voltage 3.135 3.3 3.465 V AVDD3.3 Transmit Power Supply Voltage (AVDD3.3_TX) 3.135 3.3 3.465 V AVDD3.3 Receiver Power Supply Voltage (AVDD3.3_RX) 3.135 3.3 3.465 V VDD LVPECL PECL I/O Power Supply Voltage 3.135 3.3 3.465 V IDD-OC3 Total Power Supply Current 160 200 240 mA IDD-OC12 Total Power Supply Current 180 242 270 mA PDD-OC3 Total Power Consumption 502 660 831 mW PDD-OC12 Total Power Consumption 564 800 986 mW 38 CONDITIONS XRT91L31 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER 1.0.3 LVPECL AND LVTTL LOGIC SIGNAL DC ELECTRICAL CHARACTERISTICS ELECTRICAL CHARACTERISTICS Test Conditions: VDD = 3.3V + 5% unless otherwise specified SYMBOL TYPE VOH LVPECL Output High Voltage VOL LVPECL Output Low Voltage 0.7 VOCOMM LVPECL Output Common Mode Voltage 1.1 VDDLVPECL 1.3 V VODIFF LVPECL Peak-to-peak Output Differential Voltage (see Figure 28) 600 1300 mV 187  pull down and 100 line-to-line termination. (see Figure 17) VIH LVPECL Input High Voltage VDDLVPECL 0.9 VDDLVPECL 0.3 V For Single-Ended VIL LVPECL Input Low Voltage 0 VDDLVPECL 1.72 V For Single-Ended VIDIFF LVPECL Peak-to-peak Input PECL Differential Voltage (see Figure 28) 400 1600 mV 100  line-toline termination. (see Figure 3) VICOMM LVPECL Input PECL Common Mode Voltage VDDLVPECL 1.0 -VIDIFF/2 V Internal common mode biasing. VOH LVTTL/ LVCMOS Output High Voltage 2.4 VDD3.3 V IOH = -1.0mA VOL LVTTL/ LVCMOS Output Low Voltage 0 0.4 V IOL = 1.0mA VIH LVTTL/ LVCMOS Input High Voltage 2.0 VDD3.3 V VIL LVTTL/ LVCMOS Input Low Voltage 0 0.8 V IIH LVTTL/ LVCMOS Input High Current 500 A LVTTL/ LVCMOS Input Low Current IIL PARAMETER MIN 1.5 - VIDIFF/2 TYP MAX UNITS VDDLVPECL 0.9 V CONDITIONS V 1.7 50 2.0V
XRT91L31IQTR-F 价格&库存

很抱歉,暂时无法提供与“XRT91L31IQTR-F”相匹配的价格&库存,您可以联系我们找货

免费人工找货