0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LAN8187-JT

LAN8187-JT

  • 厂商:

    SMSC

  • 封装:

  • 描述:

    LAN8187-JT - ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM - S...

  • 数据手册
  • 价格&库存
LAN8187-JT 数据手册
LAN8187/LAN8187I ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM PRODUCT FEATURES Single-Chip Ethernet Physical Layer Transceiver (PHY) ESD Protection levels of ±8kV HBM without external protection devices ESD protection levels of IEC61000-4-2, ±8kV contact mode, and ±15kV for air discharge mode per independent test facility Comprehensive SMSC flexPWRTM Technology — Flexible Power Management Architecture Datasheet Vendor Specific register functions Low profile 64-pin TQFP lead-free RoHS compliant package (10 x 10 x 1.4mm) 4 LED status indicators Commercial Operating Temperature 0° C to 70° C Industrial Operating Temperature -40° C to 85° C version available (LAN8187I) Applications Set Top Boxes Network Printers and Servers LAN on Motherboard 10/100 PCMCIA/CardBus Applications Embedded Telecom Applications Video Record/Playback Systems Cable Modems/Routers DSL Modems/Routers Digital Video Recorders Personal Video Recorders IP and Video Phones Wireless Access Points Digital Televisions Digital Media Adaptors/Servers POS Terminals Automotive Networking Gaming Consoles Security Systems Access Control LVCMOS Variable I/O voltage range: +1.6V to +3.6V Integrated 3.3V to 1.8V regulator for optional single supply operation. — Regulator can be disabled if 1.8V system supply is available. Performs HP Auto-MDIX in accordance with IEEE 802.3ab specification Automatic Polarity Correction Latch-Up Performance Exceeds 150mA per EIA/JESD 78, Class II Energy Detect power-down mode Low Current consumption power down mode Low operating current consumption: — 39mA typical in 10BASE-T and — 79mA typical in 100BASE-TX mode Supports Auto-negotiation and Parallel Detection Supports the Media Independent Interface (MII) and Reduced Media Independent Interface (RMII) Compliant with IEEE 802.3-2005 standards — MII Pins tolerant to 3.6V IEEE 802.3-2005 compliant register functions Integrated DSP with Adaptive Equalizer Baseline Wander (BLW) Correction Order Number(S): LAN8187-JT for 64-pin, TQFP Lead-Free RoHS Compliant Package LAN8187I-JT for (Industrial Temp) 64-pin, TQFP Lead-Free RoHS Compliant Package SMSC LAN8187/LAN8187I DATASHEET Revision 1.0 (12-14-06) ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 80 Arkay Drive Hauppauge, NY 11788 (631) 435-6000 FAX (631) 273-3123 Copyright © 2006 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Revision 1.0 (12-14-06) 2 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table of Contents Chapter 1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Package Pin-out Diagram and Signal Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 4 Architecture Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 4.2 Top Level Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Base-TX Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 100M Transmit Data Across the MII/RMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 4B/5B Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Scrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4 NRZI and MLT3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5 100M Transmit Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.6 100M Phase Lock Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Base-TX Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 100M Receive Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Equalizer, Baseline Wander Correction and Clock and Data Recovery . . . . . . . . . . . . . 4.3.3 NRZI and MLT-3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.5 Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.6 5B/4B Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.7 Receive Data Valid Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.8 Receiver Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.9 100M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Base-T Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 10M Transmit Data Across the MII/RMII Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Manchester Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.3 10M Transmit Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Base-T Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 10M Receive Input and Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.2 Manchester Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.3 10M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.4 Jabber Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAC Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 RMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.3 MII vs. RMII Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.1 Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2 Re-starting Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3 Disabling Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.4 Half vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal +1.8V Regulator Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.1 Disable the Internal +1.8V Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.2 Enable the Internal +1.8V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (TX_ER/TXD4)/nINT Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 18 18 18 18 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 24 24 25 25 25 25 26 27 29 29 29 29 29 31 31 31 31 SMSC LAN8187/LAN8187I Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.11 4.12 4.13 PHY Address Strapping and LED Output Polarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variable Voltage I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.1 Boot Strapping Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.2 I/O Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PHY Management Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13.1 Serial Management Interface (SMI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 32 32 33 33 33 Chapter 5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1 5.2 5.3 SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMI Register Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Primary Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Alternate Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.3 Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.4 Link Integrity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.5 Power-Down modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.7 LED Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.8 Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.9 Configuration Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 41 49 49 49 50 50 51 51 51 51 52 52 53 53 5.4 Chapter 6 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1 6.2 Serial Management Interface (SMI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MII 10/100Base-TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 MII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 MII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RMII 10/100Base-TX/RX Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 RMII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 RMII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF_CLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 56 56 57 59 59 60 61 62 6.3 6.4 6.5 Chapter 7 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.1 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Maximum Guaranteed Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.4 DC Characteristics - Input and Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 63 64 64 66 Chapter 8 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.1 8.2 8.3 8.4 Magnetics Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 70 70 Chapter 9 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Revision 1.0 (12-14-06) 4 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet List of Figures Figure 1.1 Figure 1.2 Figure 2.1 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6 Figure 6.7 Figure 6.8 Figure 6.9 Figure 6.10 Figure 9.1 LAN8187/LAN8187I System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 LAN8187/LAN8187I Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Package Pinout (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 100Base-TX Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Receive Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Relationship Between Received Data and specific MII Signals . . . . . . . . . . . . . . . . . . . . . . . 22 Direct cable connection vs. Cross-over cable connection.. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PHY Address Strapping on LED’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MDIO Timing and Frame Structure - READ Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 MDIO Timing and Frame Structure - WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SMI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 100M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 100M MII Transmit Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10M MII Transmit Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 100M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 100M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Reset Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 64 Pin TQFP Package Outline, 10X10X1.4 Body, 12x12 mm Footprint . . . . . . . . . . . . . . . . 72 SMSC LAN8187/LAN8187I 5 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet List of Tables Table 2.1 LAN8187/LAN8187I 64-PIN TQFP Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.1 MII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.2 LED Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.3 Management Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.4 Boot Strap Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.5 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.6 10/100 Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.7 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.8 No Connect Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.9 Power Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.1 4B/5B Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.2 MII/RMII Signal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.3 Auto-MDIX Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.4 Boot Strapping Configuration Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.1 Control Register: Register 0 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.2 Status Register: Register 1 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.3 PHY ID 1 Register: Register 2 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.4 PHY ID 2 Register: Register 3 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended) . . . . . . . . . Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended). . . . . . . . . . . . . . . . . . . . . . . . . Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended) . . . . . . . Table 5.9 Register 8 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.10 Register 9 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.11 Register 10 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.12 Register 11 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.13 Register 12 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.14 Register 13 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.15 Register 14 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.16 Register 15 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.17 Silicon Revision Register 16: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.18 Mode Control/ Status Register 17: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.19 Special Modes Register 18: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.20 Reserved Register 19: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.21 Register 24: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.22 Register 25: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.23 Register 26: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.27 Interrupt Mask Register 30: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.29 SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.30 Register 0 - Basic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.31 Register 1 - Basic Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.32 Register 2 - PHY Identifier 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.33 Register 3 - PHY Identifier 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.34 Register 4 - Auto Negotiation Advertisement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.35 Register 5 - Auto Negotiation Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.36 Register 6 - Auto Negotiation Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.37 Register 16 - Silicon Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.38 Register 17 - Mode Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.39 Register 18 - Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMSC LAN8187/LAN8187I 6 11 12 14 14 14 15 16 16 17 17 19 27 30 32 35 35 35 35 35 36 36 36 36 36 37 37 37 37 37 37 38 38 38 38 38 39 39 39 39 39 39 40 41 42 42 43 43 43 44 45 45 45 46 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.40 Register 27 - Special Control/Status Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.41 Register 28 - Special Internal Testability Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.42 Register 29 - Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.43 Register 30 - Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.44 Register 31 - PHY Special Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.45 Interrupt Management Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.46 Alternative Interrupt System Management Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5.47 MODE[2:0] Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.1 SMI Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.2 100M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.3 100M MII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.4 10M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.5 10M MII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.6 100M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.7 100M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.9 10M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.10 REF_CLK Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.8 10M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6.11 Reset Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.1 Maximum Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.2 ESD and LATCH-UP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.4 Power Consumption Device Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.5 MII Bus Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.6 LAN Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.7 LED Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.8 Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.9 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.10 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.11 Internal Pull-Up / Pull-Down Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.12 100Base-TX Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7.13 10BASE-T Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 9.1 64 Pin TQFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 47 47 48 48 49 50 53 55 56 57 58 58 59 60 61 61 61 62 63 63 64 65 66 67 67 67 68 68 68 69 69 72 Revision 1.0 (12-14-06) 7 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 1 General Description The SMSC LAN8187/LAN8187I is a low-power, industrial temperature (LAN8187I), variable I/O voltage, analog interface IC with HP Auto-MDIX for high-performance embedded Ethernet applications. The LAN8187/LAN8187I can be configured to operate on a single 3.3V supply utilizing an integrated 3.3V to 1.8V linear regulator. An option is available to disable the linear regulator to optimize system designs that have a 1.8V power plane available. 1.1 Architectural Overview The LAN8187/LAN8187I consists of an encoder/decoder, scrambler/descrambler, wave-shaping transmitter, output driver, twisted-pair receiver with adaptive equalizer and baseline wander (BLW) correction, and clock and data recovery functions. The LAN8187/LAN8187I can be configured to support either the Media Independent Interface (MII) or the Reduced Media Independent Interface (RMII). The LAN8187/LAN8187I is compliant with IEEE 802.3-2005 standards (MII Pins tolerant to 3.6V) and supports both IEEE 802.3-2005 -compliant and vendor-specific register functions. It contains a fullduplex 10-BASE-T/100BASE-TX transceiver and supports 10-Mbps (10BASE-T) operation on Category 3 and Category 5 unshielded twisted-pair cable, and 100-Mbps (100BASE-TX) operation on Category 5 unshielded twisted-pair cable. 10/100 Media Access Controller (MAC) or SOC System Bus MII /RMII SMSC LAN8187/ LAN8187I Magnetics Ethernet LEDS/GPIO 25 MHz (MII) or 50MHz (RMIII) Crystal or External Clock Figure 1.1 LAN8187/LAN8187I System Block Diagram Hubs and switches with multiple integrated MACs and external PHYs can have a large pin count due to the high number of pins needed for each MII interface. An increasing pin count causes increasing cost. The RMII interface is intended for use on Switch based ASICs or other embedded solutions requiring minimal pincount for ethernet connectivity. RMII requires only 6 pins for each MAC to PHY interface plus one common reference clock. The MII requires 16 pins for each MAC to PHY interface. The SMSC LAN8187/LAN8187I is capable of running in RMII mode. Please refer to the RMII consortium for more information on the RMII standard http://www.rmii-consort.com. The LAN8187/LAN8187I referenced throughout this document applies to both the commercial temperature and industrial temperature components. The LAN8187I refers to only the industrial temperature component. SMSC LAN8187/LAN8187I 8 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet MODE0 MODE1 MODE2 nRESET MII CLK_FREQ TXD[0..3] TX_EN TX_ER TX_CLK RXD[0..3] RX_DV RX_ER RX_CLK CRS COL/CRS_DV MDC MDIO MODE Control AutoNegotiation Management Control 10M Tx Logic 10M Transmitter HP Auto-MDIX TXP / TXN RXP / RXN Transmit Section 100M Tx Logic 100M Transmitter MDIX Control SMI CH_SELECT AMDIX_EN XTAL1 100M Rx Logic DSP System: Clock Data Recovery Equalizer Analog-toDigital PLL XTAL2 Revision 1.0 (12-14-06) RMII / MII Logic Interrupt Generator 100M PLL PHY Address Latches LED Circuitry nINT Receive Section 10M Rx Logic PHYAD[0..4] SPEED100 LINK ACTIVITY FDUPLEX GPO0 GPO1 GPO2 Squelch & Filters 10M PLL Central Bias GPO Circuitry Figure 1.2 LAN8187/LAN8187I Architectural Overview 9 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 2 Pin Configuration 2.1 Package Pin-out Diagram and Signal Table REG_EN EXRES1 AVDD3 AVDD2 AVDD1 AVSS4 AVSS2 AVSS3 VSS6 RXN RXP 64 TXN TXP GPO0/RMII GPO1/PHYAD4 GPO2 MODE0 MODE1 MODE2 VSS1 NC VSS7 VSS8 NC NC VDD33 VDD_CORE VSS2 SPEED100/PHYAD0 1 49 48 AVSS1 NC NC CRS COL/CRS_DV nINT/TX_ER/TXD4 TXD3 TXD2 VDDIO TXD1 LAN8187/LAN8187I TXD0 VSS5 TX_EN TX_CLK AMDIX_EN CH_SELECT RX_ER/RXD4 RX_CLK 16 33 RX_DV 17 NC NC nRST VSS4 RXD3/nINTSEL LINK/PHYAD1 XTAL2 FDUPLEX/PHYAD3 RXD2 ACTIVITY/PHYAD2 Figure 2.1 Package Pinout (Top View) SMSC LAN8187/LAN8187I CLKIN/XTAL1 10 RXD1 RXD0 MDIO VSS3 MDC 32 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 2.1 LAN8187/LAN8187I 64-PIN TQFP Pinout PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PIN NAME GPO0/RMII GPO1/PHYAD4 GPO2 MODE0 MODE1 MODE2 VSS1 NC VSS7 VSS8 NC NC VDD33 VDD_CORE VSS2 SPEED100/PHYAD0 LINK/PHYAD1 NC ACTIVITY/PHYAD2 FDUPLEX/PHYAD3 NC XTAL2 CLKIN/XTAL1 VSS3 nRST MDIO MDC VSS4 RXD3/nINTSEL RXD2 RXD1 RXD0 PIN NO. 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 PIN NAME RX_DV RX_CLK RX_ER/RXD4 CH_SELECT AMDIX_EN TX_CLK TX_EN VSS5 TXD0 TXD1 VDDIO TXD2 TXD3 nINT/TX_ER/TXD4 COL/CRS_DV CRS AVSS1 TXN TXP AVSS2 AVDD1 RXN RXP NC AVDD2 AVSS3 EXRES1 AVSS4 AVDD3 VSS6 REG_EN NC Revision 1.0 (12-14-06) 11 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 3 Pin Description This chapter describes the signals on each pin. When a lower case “n” is used at the beginning of the signal name, it indicates that the signal is active low. For example, nRST indicates that the reset signal is active low. 3.1 I/O Signals I O I/O Input. Digital LVCMOS levels. Output. Digital LVCMOS levels. Input or Output. Digital LVCMOS levels. Note: The digital signals are not 5V tolerant. They are variable voltage from +1.6V to +3.6V. AI AO Input. Analog levels. Output. Analog levels. Table 3.1 MII Signals SIGNAL NAME TXD0 TXD1 TXD2 TYPE I I I DESCRIPTION Transmit Data 0: Bit 0 of the 4 data bits that are accepted by the PHY for transmission. Transmit Data 1: Bit 1 of the 4 data bits that are accepted by the PHY for transmission. Transmit Data 2: Bit 2 of the 4 data bits that are accepted by the PHY for transmission Note: TXD3 I This signal should be grounded in RMII Mode. Transmit Data 3: Bit 3 of the 4 data bits that are accepted by the PHY for transmission. Note: This signal should be grounded in RMII Mode nINT/ TX_ER/ TXD4 I/O MII Transmit Error: When driven high, the 4B/5B encode process substitutes the Transmit Error code-group (/H/) for the encoded data word. This input is ignored in 10Base-T operation. MII Transmit Data 4: In Symbol Interface (5B Decoding) mode, this signal becomes the MII Transmit Data 4 line, the MSB of the 5-bit symbol code-group. Notes: This signal is not used in RMII Mode. This signal is mux’d with nINT See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on page 31 for additional information on configuration/strapping options. TX_EN I Transmit Enable: Indicates that valid data is presented on the TXD[3:0] signals, for transmission. In RMII Mode, only TXD[1:0] have valid data. Transmit Clock: 25MHz in 100Base-TX mode. 2.5MHz in 10Base-T mode. Note: This signal is not used in RMII Mode TX_CLK O SMSC LAN8187/LAN8187I 12 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 3.1 MII Signals (continued) SIGNAL NAME RXD0 RXD1 RXD2 TYPE O O O DESCRIPTION Receive Data 0: Bit 0 of the 4 data bits that are sent by the PHY in the receive path. Receive Data 1: Bit 1 of the 4 data bits that are sent by the PHY in the receive path. Receive Data 2: Bit 2 of the 4 data bits that sent by the PHY in the receive path. Note: RXD3/ nINTSEL O This signal is not used in RMII Mode. Receive Data 3: Bit 3 of the 4 data bits that sent by the PHY in the receive path. nINTSEL: On power-up or external reset, the mode of the nINT/TXER/TXD4 pin is selected. When floated or pulled to VDDIO, nINT is selected (default). When pulled low to VSS through a Pull-down resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32), TXER/TXD4 is selected. Notes: RXD3 is not used in RMII Mode If the nINT/TXER/TXD4 pin is configured for nINT mode, it needs a pull-up resistor to VDDIO. See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on page 31 for additional information on configuration/strapping options. RX_ER/ RXD4 I/O Receive Error: Asserted to indicate that an error was detected somewhere in the frame presently being transferred from the PHY. MII Receive Data 4: In Symbol Interface (5B Decoding) mode, this signal is the MII Receive Data 4 signal, the MSB of the received 5-bit symbol code-group. Notes: The RX_ER signal is optional in RMII Mode. RX_CLK O Receive Clock: 25MHz in 100Base-TX mode. 2.5MHz in 10Base-T mode. Notes: This signal is not used in RMII Mode COL/CRS_DV O MII Collision Detect: Asserted to indicate detection of collision condition. RMII CRS_DV (Carrier Sense/Receive Data Valid) Asserted to indicate when the receive medium is non-idle. When a 10BT packet is received, CRS_DV is asserted, but RXD[1:0] is held low until the SFD byte (10101011) is received. In 10BT, halfduplex mode, transmitted data is not looped back onto the receive data pins, per the RMII standard. Note: See Section 4.6.3, "MII vs. RMII Configuration," on page 26 for more details. Revision 1.0 (12-14-06) 13 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 3.2 LED Signals SIGNAL NAME CRS RX_DV TYPE O O DESCRIPTION Carrier Sense: Indicates detection of carrier. Receive Data Valid: Indicates that recovered and decoded data nibbles are being presented on RXD[3:0]. Note: SPEED100/ PHYAD0 I/O This signal is not used in RMII Mode. LED1 – SPEED100 indication. Active indicates that the selected speed is 100Mbps. Inactive indicates that the selected speed is 10Mbps. Note: This signal is mux’d with PHYAD0 LINK/ PHYAD1 I/O LED2 – LINK ON indication. Active indicates that the Link (100Base-TX or 10Base-T) is on. Note: This signal is mux’d with PHYAD1 ACTIVITY/ PHYAD2 I/O LED3 – ACTIVITY indication. Active indicates that there is Carrier sense (CRS) from the active PMD. Note: This signal is mux’d with PHYAD2 FDUPLEX/ PHYAD3 I/O LED4 – DUPLEX indication. Active indicates that the PHY is in full-duplex mode. Note: This signal is mux’d with PHYAD3 Table 3.3 Management Signals SIGNAL NAME MDIO MDC TYPE I/O I DESCRIPTION Management Data Input/OUTPUT: Serial management data input/output. Management Clock: Serial management clock. Table 3.4 Boot Strap Configuration Inputsa SIGNAL NAME GPO1/ PHYAD4 FDUPLEX/ PHYAD3 ACTIVITY/ PHYAD2 LINK/ PHYAD1 SPEED100/ PHYAD0 TYPE I/O I/O DESCRIPTION PHY Address Bit 4: set the default address of the PHY. This signal is mux’d with GPO1 PHY Address Bit 3: set the default address of the PHY. Note: I/O This signal is mux’d with FDUPLEX PHY Address Bit 2: set the default address of the PHY. Note: This signal is mux’d with ACTIVITY I/O PHY Address Bit 1: set the default address of the PHY. Note: This signal is mux’d with LINK I/O PHY Address Bit 0: set the default address of the PHY. Note: This signal is mux’d with SPEED100 SMSC LAN8187/LAN8187I 14 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 3.4 Boot Strap Configuration Inputsa SIGNAL NAME MODE2 TYPE I DESCRIPTION PHY Operating Mode Bit 2: set the default MODE of the PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 53, for the MODE options. PHY Operating Mode Bit 1: set the default MODE of the PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 53, for the MODE options. PHY Operating Mode Bit 0: set the default MODE of the PHY. See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 53, for the MODE options. Regulator Enable: Internal +1.8V regulator enable: VDDIO – Enables internal regulator. VSS– Disables internal regulator. HP Auto-MDIX Enable: This pin is used to manualy disable the HP Auto-MDIX function. This can be bypassed using the internal register 27 bit 15. Please see Table 4.3, “Auto-MDIX Control,” on page 30 for more information. (VDDIO or Floating) – Enables HP Auto-MDIX. VSS – Disables HP Auto-MDIX Channel Select: This pin is used in conjunction with the AMDIX_EN pin above to manualy select the channel to transmit and receive on. For more information please see Table 4.3, “Auto-MDIX Control,” on page 30 (VDDIO or Floating) – MDIX - TX pair receives RX pair transmits. 0V – MDI -TX pair transmits RX pair receives. GPO0/RMII I/O General Purpose Output 0 – General Purpose Output signal. Driven by bits in registers 27 and 31. RMII – MII/RMII mode selection is latched on the rising edge of the internal reset (nreset) based on the following strapping: Float the GPO0 pin for MII mode or pull-high with an external Pull-up resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to VDDIO to set the device in RMII mode. Note: See Section 4.6.3, "MII vs. RMII Configuration," on page 26 for more details. MODE1 I MODE0 I REG_EN I AMDIX_EN I CH_SELECT I a.On nRST transition high, the PHY latches the state of the configuration pins in this table. Table 3.5 General Signals SIGNAL NAME nINT TYPE I/O DESCRIPTION LAN Interrupt – Active Low output. Place a pull-up external resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to VCC 3.3V. Notes: This signal is mux’d with TX_ER/TXD4 See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on page 31 for additional details on Strapping options. nRST I External Reset – input of the system reset. This signal is active LOW. Revision 1.0 (12-14-06) 15 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 3.5 General Signals (continued) SIGNAL NAME CLKIN/XTAL1 TYPE I DESCRIPTION Clock Input – 25 Mhz or 50 MHz external clock or crystal input. In MII mode, this signal is the 25 MHz reference input clock In RMII mode, this signal is the 50 MHz reference input clock which is typically also driven to the RMII compliant Ethernet MAC clock input. Note: XTAL2 O See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on page 31 for additional details on Strapping options. Clock Output – 25 MHz crystal output. Note: See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on page 31 for additional details on Strapping options. Also, float this pin if using an external clock being driven through CLKIN/XTAL1 GPO2 GPO1 O O General Purpose Output 2 – General Purpose Output signal Driven by bits in registers 27 and 31. General Purpose Output 1 – General Purpose Output signal Driven by bits in registers 27 and 31. This signal is mux’d with PHYAD4. General Purpose Output 0 – General Purpose Output signal. Driven by bits in registers 27 and 31. RMII – MII/RMII mode selection is latched on the rising edge of nRST based on the following strapping: Float the GPO0 pin for MII mode or pull-high with an external resistor to VDDIO to set the device in RMII mode. See Table 4.4, “Boot Strapping Configuration Resistors,” on page 32 Note: See Section 4.6.3, "MII vs. RMII Configuration," on page 26 for more details. GPO0/RMII I/O Table 3.6 10/100 Line Interface SIGNAL NAME TXP TXN RXP RXN TYPE AO AO AI AI DESCRIPTION Transmit Data: 100Base-TX or 10Base-T differential transmit outputs to magnetics. Transmit Data: 100Base-TX or 10Base-T differential transmit outputs to magnetics. Receive Data: 100Base-TX or 10Base-T differential receive inputs from magnetics. Receive Data: 100Base-TX or 10Base-T differential receive inputs from magnetics. Table 3.7 Analog References SIGNAL NAME TYPE DESCRIPTION SMSC LAN8187/LAN8187I 16 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 3.7 Analog References EXRES1 AI Connects to reference resistor of value 12.4K-Ohm, 1% connected as described in the Analog Layout Guidelines. Table 3.8 No Connect Signals SIGNAL NAME NC TYPE No Connect DESCRIPTION Table 3.9 Power Signals SIGNAL NAME AVDD[1-3] AVSS[1-4] VDD_CORE TYPE POWER POWER POWER +3.3V Analog Power Analog Ground +1.8V (Core voltage) - 1.8V regulator output for digital circuitry on chip. Place a 0.1uF capacitor near this pin and connect the capacitor from this pin to ground. In parallel, place a 4.7uF +/20% low ESR capacitor near this pin and connect the capacitor from this pin to ground. X5R or X7R ceramic capacitors are recommended since they exhibit an ESR lower than 0.1ohm at frequencies greater than 10kHz. +3.3V Digital Power +1.6V to +3.6V Variable I/O Pad Power Digital Ground (GND) DESCRIPTION VDD33 VDDIO VSS[1-8] POWER POWER POWER Revision 1.0 (12-14-06) 17 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 4 Architecture Details 4.1 Top Level Functional Architecture Functionally, the PHY can be divided into the following sections: 100Base-TX transmit and receive 10Base-T transmit and receive MII or RMII interface to the controller Auto-negotiation to automatically determine the best speed and duplex possible Management Control to read status registers and write control registers T X _C LK (fo r M II o n ly) 100M PLL MAC E x t R e f_ C L K (fo r R M II o n ly) M II 2 5 M h z b y 4 b its or R M II 5 0 M h z b y 2 b its M II 25M H z b y 4 b its 4 B /5 B E n co d e r 25M H z by 5 b its S cra m b le r a n d P IS O 1 2 5 M b p s S e ria l NRZI C o n ve rte r NRZI M L T -3 C o n ve rte r M L T -3 Tx D rive r M L T -3 M a g n e tic s M L T -3 R J4 5 M L T -3 C A T -5 Figure 4.1 100Base-TX Data Path 4.2 100Base-TX Transmit The data path of the 100Base-TX is shown in Figure 4.1. Each major block is explained below. 4.2.1 100M Transmit Data Across the MII/RMII For MII, the MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate valid data. The data is latched by the PHY’s MII block on the rising edge of TX_CLK. The data is in the form of 4-bit wide 25MHz data. The MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate valid data. The data is latched by the PHY’s MII block on the rising edge of REF_CLK. The data is in the form of 2-bit wide 50MHz data. 4.2.2 4B/5B Encoding The transmit data passes from the MII block to the 4B/5B encoder. This block encodes the data from 4-bit nibbles to 5-bit symbols (known as “code-groups”) according to Table 4.1. Each 4-bit data-nibble is mapped to 16 of the 32 possible code-groups. The remaining 16 code-groups are either used for control information or are not valid. The first 16 code-groups are referred to by the hexadecimal values of their corresponding data nibbles, 0 through F. The remaining code-groups are given letter designations with slashes on either side. For example, an IDLE code-group is /I/, a transmit error code-group is /H/, etc. SMSC LAN8187/LAN8187I 18 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet The encoding process may be bypassed by clearing bit 6 of register 31. When the encoding is bypassed the 5th transmit data bit is equivalent to TX_ER. Note that encoding can be bypassed only when the MAC interface is configured to operate in MII mode. Table 4.1 4B/5B Code Table CODE GROUP 11110 01001 10100 10101 01010 01011 01110 01111 10010 10011 10110 10111 11010 11011 11100 11101 11111 11000 10001 01101 RECEIVER INTERPRETATION 0 1 2 3 4 5 6 7 8 9 A B C D E F IDLE First nibble of SSD, translated to “0101” following IDLE, else RX_ER Second nibble of SSD, translated to “0101” following J, else RX_ER First nibble of ESD, causes de-assertion of CRS if followed by /R/, else assertion of RX_ER Second nibble of ESD, causes deassertion of CRS if following /T/, else assertion of RX_ER Transmit Error Symbol INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 DATA 0 1 2 3 4 5 6 7 8 9 A B C D E F TRANSMITTER INTERPRETATION 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 DATA SYM 0 1 2 3 4 5 6 7 8 9 A B C D E F I J K T Sent after /T/R until TX_EN Sent for rising TX_EN Sent for rising TX_EN Sent for falling TX_EN 00111 R Sent for falling TX_EN 00100 00110 11001 00000 00001 H V V V V Sent for rising TX_ER INVALID INVALID INVALID INVALID Revision 1.0 (12-14-06) 19 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 4.1 4B/5B Code Table (continued) CODE GROUP 00010 00011 00101 01000 01100 10000 RECEIVER INTERPRETATION INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID, RX_ER if during RX_DV INVALID INVALID INVALID INVALID INVALID INVALID TRANSMITTER INTERPRETATION SYM V V V V V V 4.2.3 Scrambling Repeated data patterns (especially the IDLE code-group) can have power spectral densities with large narrow-band peaks. Scrambling the data helps eliminate these peaks and spread the signal power more uniformly over the entire channel bandwidth. This uniform spectral density is required by FCC regulations to prevent excessive EMI from being radiated by the physical wiring. The seed for the scrambler is generated from the PHY address, PHYAD[4:0], ensuring that in multiplePHY applications, such as repeaters or switches, each PHY will have its own scrambler sequence. The scrambler also performs the Parallel In Serial Out conversion (PISO) of the data. 4.2.4 NRZI and MLT3 Encoding The scrambler block passes the 5-bit wide parallel data to the NRZI converter where it becomes a serial 125MHz NRZI data stream. The NRZI is encoded to MLT-3. MLT3 is a tri-level code where a change in the logic level represents a code bit “1” and the logic output remaining at the same level represents a code bit “0”. 4.2.5 100M Transmit Driver The MLT3 data is then passed to the analog transmitter, which drives the differential MLT-3 signal, on outputs TXP and TXN, to the twisted pair media across a 1:1 ratio isolation transformer. The 10BaseT and 100Base-TX signals pass through the same transformer so that common “magnetics” can be used for both. The transmitter drives into the 100Ω impedance of the CAT-5 cable. Cable termination and impedance matching require external components. 4.2.6 100M Phase Lock Loop (PLL) The 100M PLL locks onto reference clock and generates the 125MHz clock used to drive the 125 MHz logic and the 100Base-Tx Transmitter. SMSC LAN8187/LAN8187I 20 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet RX_CLK (for MII only) 100M PLL MAC Ext Ref_CLK (for RMII only) MII 25Mhz by 4 bits or RMII 50Mhz by 2 bits 25MHz by 4 bits 125 Mbps Serial MII/RMII 4B/5B Decoder 25MHz by 5 bits Descrambler and SIPO NRZI Converter NRZI MLT-3 Converter MLT-3 DSP: Timing recovery, Equalizer and BLW Correction A/D Converter MLT-3 Magnetics MLT-3 RJ45 MLT-3 CAT-5 6 bit Data Figure 4.2 Receive Data Path 4.3 100Base-TX Receive The receive data path is shown in Figure 4.2. Detailed descriptions are given below. 4.3.1 100M Receive Input The MLT-3 from the cable is fed into the PHY (on inputs RXP and RXN) via a 1:1 ratio transformer. The ADC samples the incoming differential signal at a rate of 125M samples per second. Using a 64level quanitizer it generates 6 digital bits to represent each sample. The DSP adjusts the gain of the ADC according to the observed signal levels such that the full dynamic range of the ADC can be used. 4.3.2 Equalizer, Baseline Wander Correction and Clock and Data Recovery The 6 bits from the ADC are fed into the DSP block. The equalizer in the DSP section compensates for phase and amplitude distortion caused by the physical channel consisting of magnetics, connectors, and CAT- 5 cable. The equalizer can restore the signal for any good-quality CAT-5 cable between 1m and 150m. If the DC content of the signal is such that the low-frequency components fall below the low frequency pole of the isolation transformer, then the droop characteristics of the transformer will become significant and Baseline Wander (BLW) on the received signal will result. To prevent corruption of the received data, the PHY corrects for BLW and can receive the ANSI X3.263-1995 FDDI TP-PMD defined “killer packet” with no bit errors. The 100M PLL generates multiple phases of the 125MHz clock. A multiplexer, controlled by the timing unit of the DSP, selects the optimum phase for sampling the data. This is used as the received recovered clock. This clock is used to extract the serial data from the received signal. 4.3.3 NRZI and MLT-3 Decoding The DSP generates the MLT-3 recovered levels that are fed to the MLT-3 converter. The MLT-3 is then converted to an NRZI data stream. Revision 1.0 (12-14-06) 21 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.3.4 Descrambling The descrambler performs an inverse function to the scrambler in the transmitter and also performs the Serial In Parallel Out (SIPO) conversion of the data. During reception of IDLE (/I/) symbols. the descrambler synchronizes its descrambler key to the incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to descramble incoming data. Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of 1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference. If no IDLEsymbols are detected within this time-period, receive operation is aborted and the descrambler re-starts the synchronization process. The descrambler can be bypassed by setting bit 0 of register 31. 4.3.5 Alignment The de-scrambled signal is then aligned into 5-bit code-groups by recognizing the /J/K/ Start-of-Stream Delimiter (SSD) pair at the start of a packet. Once the code-word alignment is determined, it is stored and utilized until the next start of frame. 4.3.6 5B/4B Decoding The 5-bit code-groups are translated into 4-bit data nibbles according to the 4B/5B table. The translated data is presented on the RXD[3:0] signal lines. The SSD, /J/K/, is translated to “0101 0101” as the first 2 nibbles of the MAC preamble. Reception of the SSD causes the PHY to assert the RX_DV signal, indicating that valid data is available on the RXD bus. Successive valid code-groups are translated to data nibbles. Reception of either the End of Stream Delimiter (ESD) consisting of the /T/R/ symbols, or at least two /I/ symbols causes the PHY to de-assert carrier sense and RX_DV. These symbols are not translated into data. The decoding process may be bypassed by clearing bit 6 of register 31. When the decoding is bypassed the 5th receive data bit is driven out on RX_ER/RXD4. Decoding may be bypassed only when the MAC interface is in MII mode. 4.3.7 Receive Data Valid Signal The Receive Data Valid signal (RX_DV) indicates that recovered and decoded nibbles are being presented on the RXD[3:0] outputs synchronous to RX_CLK. RX_DV becomes active after the /J/K/ delimiter has been recognized and RXD is aligned to nibble boundaries. It remains active until either the /T/R/ delimiter is recognized or link test indicates failure or SIGDET becomes false. RX_DV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media Independent Interface (MII). CLEAR-TEXT RX_CLK RX_DV RXD J K 5 5 5 D data data data data T R Idle 5 5 5 5 5 D data data data data Figure 4.3 Relationship Between Received Data and specific MII Signals SMSC LAN8187/LAN8187I 22 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.3.8 Receiver Errors During a frame, unexpected code-groups are considered receive errors. Expected code groups are the DATA set (0 through F), and the /T/R/ (ESD) symbol pair. When a receive error occurs, the RX_ER signal is asserted and arbitrary data is driven onto the RXD[3:0] lines. Should an error be detected during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ER is asserted true and the value ‘1110’ is driven onto the RXD[3:0] lines. Note that the Valid Data signal is not yet asserted when the bad SSD error occurs. 4.3.9 100M Receive Data Across the MII/RMII Interface In MII mode, the 4-bit data nibbles are sent to the MII block. These data nibbles are clocked to the controller at a rate of 25MHz. The controller samples the data on the rising edge of RX_CLK. To ensure that the setup and hold requirements are met, the nibbles are clocked out of the PHY on the falling edge of RX_CLK. RX_CLK is the 25MHz output clock for the MII bus. It is recovered from the received data to clock the RXD bus. If there is no received signal, it is derived from the system reference clock (CLKIN). When tracking the received data, RX_CLK has a maximum jitter of 0.8ns (provided that the jitter of the input clock, CLKIN, is below 100ps). In RMII mode, the 2-bit data nibbles are sent to the RMII block. These data nibbles are clocked to the controller at a rate of 50MHz. The controller samples the data on the rising edge of CLKIN/XTAL1 (REF_CLK). To ensure that the setup and hold requirements are met, the nibbles are clocked out of the PHY on the falling edge of CLKIN/XTAL1 (REF_CLK). 4.4 10Base-T Transmit Data to be transmitted comes from the MAC layer controller. The 10Base-T transmitter receives 4-bit nibbles from the MII at a rate of 2.5MHz and converts them to a 10Mbps serial data stream. The data stream is then Manchester-encoded and sent to the analog transmitter, which drives a signal onto the twisted pair via the external magnetics. The 10M transmitter uses the following blocks: MII (digital) TX 10M (digital) 10M Transmitter (analog) 10M PLL (analog) 4.4.1 10M Transmit Data Across the MII/RMII Interface The MAC controller drives the transmit data onto the TXD BUS. For MII, when the controller has driven TX_EN high to indicate valid data, the data is latched by the MII block on the rising edge of TX_CLK. The data is in the form of 4-bit wide 2.5MHz data. In order to comply with legacy 10Base-T MAC/Controllers, in Half-duplex mode the PHY loops back the transmitted data, on the receive path. This does not confuse the MAC/Controller since the COL signal is not asserted during this time. The PHY also supports the SQE (Heartbeat) signal. See Section 5.4.2, "Collision Detect," on page 51, for more details. For RMII, TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0] are accepted for transmission by the LAN8187/LAN8187I. TXD[1:0] shall be “00” to indicate idle when TX_EN is deasserted. Values of TXD[1:0] other than “00” when TX_EN is deasserted are reserved for out-of-band signalling (to be defined). Values other than “00” on TXD[1:0] while TX_EN is deasserted shall be ignored by the LAN8187/LAN8187I.TXD[1:0] shall provide valid data for each REF_CLK period while TX_EN is asserted. Revision 1.0 (12-14-06) 23 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.4.2 Manchester Encoding The 4-bit wide data is sent to the TX10M block. The nibbles are converted to a 10Mbps serial NRZI data stream. The 10M PLL locks onto the external clock or internal oscillator and produces a 20MHz clock. This is used to Manchester encode the NRZ data stream. When no data is being transmitted (TX_EN is low), the TX10M block outputs Normal Link Pulses (NLPs) to maintain communications with the remote link partner. 4.4.3 10M Transmit Drivers The Manchester encoded data is sent to the analog transmitter where it is shaped and filtered before being driven out as a differential signal across the TXP and TXN outputs. 4.5 10Base-T Receive The 10Base-T receiver gets the Manchester- encoded analog signal from the cable via the magnetics. It recovers the receive clock from the signal and uses this clock to recover the NRZI data stream. This 10M serial data is converted to 4-bit data nibbles which are passed to the controller across the MII at a rate of 2.5MHz. This 10M receiver uses the following blocks: Filter and SQUELCH (analog) 10M PLL (analog) RX 10M (digital) MII (digital) 4.5.1 10M Receive Input and Squelch The Manchester signal from the cable is fed into the PHY (on inputs RXP and RXN) via 1:1 ratio magnetics. It is first filtered to reduce any out-of-band noise. It then passes through a SQUELCH circuit. The SQUELCH is a set of amplitude and timing comparators that normally reject differential voltage levels below 300mV and detect and recognize differential voltages above 585mV. 4.5.2 Manchester Decoding The output of the SQUELCH goes to the RX10M block where it is validated as Manchester encoded data. The polarity of the signal is also checked. If the polarity is reversed (local RXP is connected to RXN of the remote partner and vice versa), then this is identified and corrected. The reversed condition is indicated by the flag “XPOL“, bit 4 in register 27. The 10M PLL is locked onto the received Manchester signal and from this, generates the received 20MHz clock. Using this clock, the Manchester encoded data is extracted and converted to a 10MHz NRZI data stream. It is then converted from serial to 4-bit wide parallel data. The RX10M block also detects valid 10Base-T IDLE signals - Normal Link Pulses (NLPs) - to maintain the link. 4.5.3 10M Receive Data Across the MII/RMII Interface For MII, the 4 bit data nibbles are sent to the MII block. In MII mode, these data nibbles are valid on the rising edge of the 2.5 MHz RX_CLK. For RMII, the 2bit data nibbles are sent to the RMII block. In RMII mode, these data nibbles are valid on the rising edge of the RMII REF_CLK. SMSC LAN8187/LAN8187I 24 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.5.4 Jabber Detection Jabber is a condition in which a station transmits for a period of time longer than the maximum permissible packet length, usually due to a fault condition, that results in holding the TX_EN input for a long period. Special logic is used to detect the jabber state and abort the transmission to the line, within 45ms. Once TX_EN is deasserted, the logic resets the jabber condition. As shown in Table 5.31, bit 1.1 indicates that a jabber condition was detected. 4.6 MAC Interface The MII/RMII block is responsible for the communication with the controller. Special sets of hand-shake signals are used to indicate that valid received/transmitted data is present on the 4 bit receive/transmit bus. The device must be configured in MII or RMII mode. This is done by specific pin strapping configurations. See section Section 4.6.3, "MII vs. RMII Configuration," on page 26 for information on pin strapping and how the pins are mapped differently. 4.6.1 MII The MII includes 16 interface signals: transmit data - TXD[3:0] transmit strobe - TX_EN transmit clock - TX_CLK transmit error - TX_ER/TXD4 receive data - RXD[3:0] receive strobe - RX_DV receive clock - RX_CLK receive error - RX_ER/RXD4 collision indication - COL carrier sense - CRS In MII mode, on the transmit path, the PHY drives the transmit clock, TX_CLK, to the controller. The controller synchronizes the transmit data to the rising edge of TX_CLK. The controller drives TX_EN high to indicate valid transmit data. The controller drives TX_ER high when a transmit error is detected. On the receive path, the PHY drives both the receive data, RXD[3:0], and the RX_CLK signal. The controller clocks in the receive data on the rising edge of RX_CLK when the PHY drives RX_DV high. The PHY drives RX_ER high when a receive error is detected. 4.6.2 RMII The SMSC LAN8187/LAN8187I supports the low pin count Reduced Media Independent Interface (RMII) intended for use between Ethernet PHYs and Switch ASICs. Under IEEE 802.3, an MII comprised of 16 pins for data and control is defined. In devices incorporating many MACs or PHY interfaces such as switches, the number of pins can add significant cost as the port counts increase. The management interface (MDIO/MDC) is identical to MII. The RMII interface has the following characteristics: It is capable of supporting 10Mb/s and 100Mb/s data rates A single clock reference is sourced from the MAC to PHY (or from an external source) It provides independent 2 bit wide (di-bit) transmit and receive data paths Revision 1.0 (12-14-06) 25 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet It uses LVCMOS signal levels, compatible with common digital CMOS ASIC processes The RMII includes 6 interface signals with one of the signals being optional: transmit data - TXD[1:0] transmit strobe - TX_EN receive data - RXD[1:0] receive error - RX_ER (Optional) carrier sense - CRS_DV Reference Clock - CLKIN/XTAL1 (RMII references usually define this signal as REF_CLK) 4.6.2.1 Reference Clock The Reference Clock - CLKIN, is a continuous clock that provides the timing reference for CRS_DV, RXD[1:0], TX_EN, TXD[1:0], and RX_ER. The Reference Clock is sourced by the MAC or an external source. Switch implementations may choose to provide REF_CLK as an input or an output depending on whether they provide a REF_CLK output or rely on an external clock distribution device. The “Reference Clock” frequency must be 50 MHz +/- 50 ppm with a duty cycle between 35% and 65% inclusive. The SMSC LAN8187/LAN8187I uses the “Reference Clock” as the network clock such that no buffering is required on the transmit data path. The SMSC LAN8187/LAN8187I will recover the clock from the incoming data stream, the receiver will account for differences between the local REF_CLK and the recovered clock through use of sufficient elasticity buffering. The elasticity buffer does not affect the Inter-Packet Gap (IPG) for received IPGs of 36 bits or greater. To tolerate the clock variations specified here for Ethernet MTUs, the elasticity buffer shall tolerate a minimum of +/-10 bits. 4.6.2.2 CRS_DV - Carrier Sense/Receive Data Valid The CRS_DV is asserted by the LAN8187/LAN8187I when the receive medium is non-idle. CRS_DV is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode. That is, in 10BASE-T mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous zeroes in 10 bits are detected, carrier is said to be detected. Loss of carrier shall result in the deassertion of CRS_DV synchronous to the cycle of REF_CLK which presents the first di-bit of a nibble onto RXD[1:0] (i.e. CRS_DV is deasserted only on nibble boundaries). If the LAN8187/LAN8187I has additional bits to be presented on RXD[1:0] following the initial deassertion of CRS_DV, then the LAN8187/LAN8187I shall assert CRS_DV on cycles of REF_CLK which present the second di-bit of each nibble and de-assert CRS_DV on cycles of REF_CLK which present the first di-bit of a nibble. The result is: Starting on nibble boundaries CRS_DV toggles at 25 MHz in 100Mb/s mode and 2.5 MHz in 10Mb/s mode when CRS ends before RX_DV (i.e. the FIFO still has bits to transfer when the carrier event ends.) Therefore, the MAC can accurately recover RX_DV and CRS. During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity. The data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchronous relative to REF_CLK, the data on RXD[1:0] shall be “00” until proper receive signal decoding takes place. 4.6.3 MII vs. RMII Configuration The LAN8187/LAN8187I must be configured to support the MII or RMII bus for connectivity to the MAC. This configuration is done through the GPO0/RMII pin. MII or RMII mode selection is latched on the rising edge of the internal reset (nreset) based on the strapping of the GPO0/RMII pin. To select MII mode, float the GPO0/RMII pin. To select RMII mode, pull-high with an external resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to VDD33. SMSC LAN8187/LAN8187I 26 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Most of the MII and RMII pins are multiplexed. Table 4.2, "MII/RMII Signal Mapping", shown below, describes the relationship of the related device pins to what pins are used in MII and RMII mode. Table 4.2 MII/RMII Signal Mapping SIGNAL NAME TXD0 TXD1 TX_EN RX_ER/ RXD4 COL/CRS_DV RXD0 RXD1 TXD2 TXD3 TX_ER/ TXD4 CRS RX_DV RXD2 RXD3 TX_CLK RX_CLK CLKIN/XTAL1 Note 4.1 Note 4.2 MII MODE TXD0 TXD1 TX_EN RX_ER/ RXD4/ COL RXD0 RXD1 TXD2 TXD3 TX_ER/ TXD4 CRS RX_DV RXD2 RXD3 TX_CLK RX_CLK CLKIN/XTAL1 REF_CLK RMII MODE TXD0 TXD1 TX_EN RX_ER Note 4.2 CRS_DV RXD0 RXD1 Note 4.1 Note 4.1 In RMII mode, this pin needs to tied to VSS. The RX_ER signal is optional on the RMII bus. This signal is required by the PHY, but it is optional for the MAC. The MAC can choose to ignore or not use this signal. 4.7 Auto-negotiation The purpose of the Auto-negotiation function is to automatically configure the PHY to the optimum link parameters based on the capabilities of its link partner. Auto-negotiation is a mechanism for exchanging configuration information between two link-partners and automatically selecting the highest performance mode of operation supported by both sides. Auto-negotiation is fully defined in clause 28 of the IEEE 802.3 specification. Once auto-negotiation has completed, information about the resolved link can be passed back to the controller via the Serial Management Interface (SMI). The results of the negotiation process are reflected in the Speed Indication bits in register 31, as well as the Link Partner Ability Register (Register 5). The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC controller. Revision 1.0 (12-14-06) 27 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet The advertised capabilities of the PHY are stored in register 4 of the SMI registers. The default advertised by the PHY is determined by user-defined on-chip signal options. The following blocks are activated during an Auto-negotiation session: Auto-negotiation (digital) 100M ADC (analog) 100M PLL (analog) 100M equalizer/BLW/clock recovery (DSP) 10M SQUELCH (analog) 10M PLL (analog) 10M Transmitter (analog) When enabled, auto-negotiation is started by the occurrence of one of the following events: Hardware reset Software reset Power-down reset Link status down Setting register 0, bit 9 high (auto-negotiation restart) On detection of one of these events, the PHY begins auto-negotiation by transmitting bursts of Fast Link Pulses (FLP). These are bursts of link pulses from the 10M transmitter. They are shaped as Normal Link Pulses and can pass uncorrupted down CAT-3 or CAT-5 cable. A Fast Link Pulse Burst consists of up to 33 pulses. The 17 odd-numbered pulses, which are always present, frame the FLP burst. The 16 even-numbered pulses, which may be present or absent, contain the data word being transmitted. Presence of a data pulse represents a “1”, while absence represents a “0”. The data transmitted by an FLP burst is known as a “Link Code Word.” These are defined fully in IEEE 802.3 clause 28. In summary, the PHY advertises 802.3 compliance in its selector field (the first 5 bits of the Link Code Word). It advertises its technology ability according to the bits set in register 4 of the SMI registers. There are 4 possible matches of the technology abilities. In the order of priority these are: 100M Full Duplex (Highest priority) 100M Half Duplex 10M Full Duplex 10M Half Duplex If the full capabilities of the PHY are advertised (100M, Full Duplex), and if the link partner is capable of 10M and 100M, then auto-negotiation selects 100M as the highest performance mode. If the link partner is capable of Half and Full duplex modes, then auto-negotiation selects Full Duplex as the highest performance operation. Once a capability match has been determined, the link code words are repeated with the acknowledge bit set. Any difference in the main content of the link code words at this time will cause auto-negotiation to re-start. Auto-negotiation will also re-start if not all of the required FLP bursts are received. The capabilities advertised during auto-negotiation by the PHY are initially determined by the logic levels latched on the MODE[2:0] bus after reset completes. This bus can also be used to disable autonegotiation on power-up. Writing register 4 bits [8:5] allows software control of the capabilities advertised by the PHY. Writing register 4 does not automatically re-start auto-negotiation. Register 0, bit 9 must be set before the new abilities will be advertised. Auto-negotiation can also be disabled via software by clearing register 0, bit 12. The LAN8187/LAN8187I does not support “Next Page” capability. SMSC LAN8187/LAN8187I 28 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 4.7.1 Parallel Detection If the LAN8187/LAN8187I is connected to a device lacking the ability to auto-negotiate (i.e. no FLPs are detected), it is able to determine the speed of the link based on either 100M MLT-3 symbols or 10M Normal Link Pulses. In this case the link is presumed to be Half Duplex per the IEEE standard. This ability is known as “Parallel Detection.” This feature ensures interoperability with legacy link partners. If a link is formed via parallel detection, then bit 0 in register 6 is cleared to indicate that the Link Partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, bit 4 of register 6 is set. Register 5 is used to store the Link Partner Ability information, which is coded in the received FLPs. If the Link Partner is not auto-negotiation capable, then register 5 is updated after completion of parallel detection to reflect the speed capability of the Link Partner. 4.7.2 Re-starting Auto-negotiation Auto-negotiation can be re-started at any time by setting register 0, bit 9. Auto-negotiation will also restart if the link is broken at any time. A broken link is caused by signal loss. This may occur because of a cable break, or because of an interruption in the signal transmitted by the Link Partner. Autonegotiation resumes in an attempt to determine the new link configuration. If the management entity re-starts Auto-negotiation by writing to bit 9 of the control register, the LAN8187/LAN8187I will respond by stopping all transmission/receiving operations. Once the break_link_timer is done, in the Auto-negotiation state-machine (approximately 1200ms) the autonegotiation will re-start. The Link Partner will have also dropped the link due to lack of a received signal, so it too will resume auto-negotiation. 4.7.3 Disabling Auto-negotiation Auto-negotiation can be disabled by setting register 0, bit 12 to zero. The device will then force its speed of operation to reflect the information in register 0, bit 13 (speed) and register 0, bit 8 (duplex). The speed and duplex bits in register 0 should be ignored when auto-negotiation is enabled. 4.7.4 Half vs. Full Duplex Half Duplex operation relies on the CSMA/CD (Carrier Sense Multiple Access / Collision Detect) protocol to handle network traffic and collisions. In this mode, the carrier sense signal, CRS, responds to both transmit and receive activity. In this mode, If data is received while the PHY is transmitting, a collision results. In Full Duplex mode, the PHY is able to transmit and receive data simultaneously. In this mode, CRS responds only to receive activity. The CSMA/CD protocol does not apply and collision detection is disabled. 4.8 HP Auto-MDIX HP Auto-MDIX facilitates the use of CAT-3 (10 Base-T) or CAT-5 (100 Base-T) media UTP interconnect cable without consideration of interface wiring scheme. If a user plugs in either a direct connect LAN cable, or a cross-over patch cable, as shown in Figure 4.4 on page 31, the SMSC LAN8187/LAN8187I Auto-MDIX PHY is capable of configuring the TXP/TXN and RXP/RXN pins for correct transceiver operation. The internal logic of the device detects the TX and RX pins of the connecting device. Since the RX and TX line pairs are interchangeable, special PCB design considerations are needed to accommodate the symmetrical magnetics and termination of an Auto-MDIX design. The Auto-MDIX function can be disabled through an internal register 27, or the external control pins AMDIX_EN. When disabled the TX and RX pins can be configured with the Channel Select (CH_SELECT) pin as desired. The table below shows how the control pins and the register are used to configure the Auto-MDIX function. Revision 1.0 (12-14-06) 29 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 4.3 Auto-MDIX Control Register 27 bits 15 14 13 External Pins AMDIXEN CH_SELECT Status TX and RX output Pins Auto-MDIX 0 X X 1 X Normal MDI 0 X X 0 0 Crossed MDIX 0 X X 0 1 Auto-MDIX 1 1 X X X Normal MDI 1 0 0 X X Crossed MDIX 1 0 1 X X Note: X = either 1 or 0. SMSC LAN8187/LAN8187I 30 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Note: X = Dont Care. Figure 4.4 Direct cable connection vs. Cross-over cable connection. 4.9 Internal +1.8V Regulator Disable Part of the LAN8187/LAN8187I SMSC flexPWRTM technology is the ability to disable the internal +1.8v regulator. This further increases the power savings as a more efficient external switching regulator can provide the necessary +1.8v to the internal PHY circuitry. 4.9.1 Disable the Internal +1.8V Regulator To disable the +1.8v internal regulator, a pulldown strapping resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) is attached from REG_EN to VDDIO. When both VDDIO and VDDA are within specification, the PHY will sample the REG_EN pin to determine if the internal regulator should turn on. If the pin is grounded to VSS, then the internal regulator is off, and the system needs to supply +1.8v +/- 10% to the VDD_CORE pin. A 4.7uF low ESR and 0.1uF capacitor must be added to VDD_CORE and placed close to the PHY. This capacitance provides decoupling of the external power supply noise and ensures stability of the internal regulator. 4.9.2 Enable the Internal +1.8V Regulator To enable the internal regulator, a pull-up resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to VDDIO needs to be added to the REG_EN pin. A 4.7uF low ESR and 0.1uF capacitor must be added to VDD_CORE and placed close to the PHY. This capacitance provides decoupling of the external power supply noise and ensures stability of the internal regulator. 4.10 (TX_ER/TXD4)/nINT Strapping The TX_ER, TXD4 and nINT functions share a common pin. There are two functional modes for this pin, the TX_ER/TXD4 mode and nINT (interrupt) mode. The RXD3 pin is used to select one of these two functional modes. The RXD3 pin is latched on the rising edge of the internal reset (nreset) to select the mode. The system designer must float the RXD3 pin for nINT mode or pull-low with an external resistor (see Revision 1.0 (12-14-06) 31 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to VSS to set the device in TX_ER/TXD4 mode. The default setting is high (nINT mode). 4.11 PHY Address Strapping and LED Output Polarity Selection The PHY ADDRESS bits are latched on the rising edge of the internal reset (nreset). The 5-bit address word[0:4] is input on the LED1, LED2, LED3, LED4, GPO1 output pins. The default setting is all high 5'b1_1111. The address lines are strapped as defined in the diagram below. The LED outputs will automatically change polarity based on the presence of an external pull-down resistor. If the LED pin is pulled high (by an internal 100K pull-up resistor) to select a logical high PHY address, then the LED output will be active low. If the LED pin is pulled low (by an external pull-down resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to select a logical low PHY address, the LED output will then be an active high output. To set the PHY address on the LED pins without LEDs or on the GPO1 or CRS pin, float the pin to set the address high or pull-down the pin with an external resistor (see Table 4.4, “Boot Strapping Configuration Resistors,” on page 32) to GND to set the address low. See the figure below: Phy Address = 1 LED output = active low VDD Phy Address = 0 LED output = active high LED1-LED4 ~10K ohms ~270 ohms ~270 ohms LED1-LED4 Figure 4.5 PHY Address Strapping on LED’s 4.12 Variable Voltage I/O The Digital I/O pins on the LAN8187/LAN8187I are variable voltage to take advantage of low power savings from shrinking technologies. These pins can operate from a low I/O voltage of +1.6V up to +3.6V. Due to this low voltage feature addition, the system designer needs to take consideration as for two aspects of their design. Boot strapping configuration and I/O voltage stability. 4.12.1 Boot Strapping Configuration. Due to a lower I/O voltage, a lower strapping resistor needs to be used to ensure the strapped configuration is latched into the PHY device at power-on reset. Table 4.4 Boot Strapping Configuration Resistors I/O voltage 3.0 to 3.6 2.0 to 3.0 Pull-up/Pull-down Resistor 10k ohm resistor 7.5k ohm resistor SMSC LAN8187/LAN8187I 32 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 4.4 Boot Strapping Configuration Resistors I/O voltage 1.6 to 2.0 Pull-up/Pull-down Resistor 5k ohm resistor 4.12.2 I/O Voltage Stability The I/O voltage the System Designer applies on VDDIO needs to maintain its value with a tolerance of +/- 10%. Varying the voltage up or down, after the PHY has completed power-on reset can cause errors in the PHY operation. 4.13 PHY Management Control The Management Control module includes 3 blocks: Serial Management Interface (SMI) Management Registers Set Interrupt 4.13.1 Serial Management Interface (SMI) The Serial Management Interface is used to control the LAN8187/LAN8187I and obtain its status. This interface supports registers 0 through 6 as required by Clause 22 of the 802.3 standard, as well as “vendor-specific” registers 16 to 31 allowed by the specification. Non-supported registers (7 to 15) will be read as hexadecimal “FFFF”. At the system level there are 2 signals, MDIO and MDC where MDIO is bi-directional open-drain and MDC is the clock. A special feature (enabled by register 17 bit 3) forces the PHY to disregard the PHY-Address in the SMI packet causing the PHY to respond to any address. This feature is useful in multi-PHY applications and in production testing, where the same register can be written in all the PHYs using a single write transaction. The MDC signal is an aperiodic clock provided by the station management controller (SMC). The MDIO signal receives serial data (commands) from the controller SMC, and sends serial data (status) to the SMC. The minimum time between edges of the MDC is 160 ns. There is no maximum time between edges. The minimum cycle time (time between two consecutive rising or two consecutive falling edges) is 400 ns. These modest timing requirements allow this interface to be easily driven by the I/O port of a microcontroller. The data on the MDIO line is latched on the rising edge of the MDC. The frame structure and timing of the data is shown in Figure 4.6 and Figure 4.7. The timing relationships of the MDIO signals are further described in Section 6.1, "Serial Management Interface (SMI) Timing," on page 55. Revision 1.0 (12-14-06) 33 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Read Cycle MDC MDI0 32 1's Preamble 0 1 1 0 A4 A3 A2 A1 A0 R4 R3 R2 R1 R0 Register Address Turn Around D15 D14 ... ... Data D1 D0 Start of Frame OP Code PHY Address Data To Phy Data From Phy Figure 4.6 MDIO Timing and Frame Structure - READ Cycle Write Cycle MDC MDIO 32 1's Preamble 0 1 0 1 A4 A3 A2 A1 A0 R4 R3 R2 R1 R0 Register Address Turn Around D15 D14 ... ... Data D1 D0 Start of Frame OP Code PHY Address Data To Phy Figure 4.7 MDIO Timing and Frame Structure - WRITE Cycle SMSC LAN8187/LAN8187I 34 Revision 1.0 (12-14-06) DATASHEET Chapter 5 Registers Table 5.1 Control Register: Register 0 (Basic) 15 Reset 14 Loopback 13 Speed Select 12 A/N Enable 11 Power Down 10 Isolate 9 Restart A/N 8 Duplex Mode 7 Collision Test 6 5 4 3 2 1 0 Revision 1.0 (12-14-06) 35 DATASHEET SMSC LAN8187/LAN8187I Datasheet ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Reserved Table 5.2 Status Register: Register 1 (Basic) 15 100BaseT4 14 100Base-TX Full Duplex 13 100Base-TX Half Duplex 12 10Base-T Full Duplex 11 10Base-T Half Duplex 10 9 8 7 6 5 A/N Complete 4 Remote Fault 3 A/N Ability 2 Link Status 1 Jabber Detect 0 Extended Capability Reserved Table 5.3 PHY ID 1 Register: Register 2 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PHY ID Number (Bits 3-18 of the Organizationally Unique Identifier - OUI) Table 5.4 PHY ID 2 Register: Register 3 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PHY ID Number (Bits 19-24 of the Organizationally Unique Identifier - OUI) Manufacturer Model Number Manufacturer Revision Number Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended) 15 Next Page 14 Reserved 13 Remote Fault 12 Reserved 11 10 9 100Base-T4 8 100Base-TX Full Duplex 7 100BaseTX 6 10Base-T Full Duplex 5 10Base-T 4 3 2 1 0 Pause Operation IEEE 802.3 Selector Field Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended) 15 Next Page 14 Acknowledge 13 Remote Fault 12 11 10 Pause 9 100BaseT4 8 100Base-TX Full Duplex 7 100BaseTX 6 10Base-T Full Duplex 5 10Base-T 4 3 2 1 0 Reserved IEEE 802.3 Selector Field Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended) 15 14 13 12 11 10 Reserved 9 8 7 6 5 4 Parallel Detect Fault 3 Link Partner Next Page Able 2 Next Page Able 1 Page Received 0 Link Partner A/N Able Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Note: Next Page capability is not supported. Table 5.9 Register 8 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved SMSC LAN8187/LAN8187I Table 5.10 Register 9 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved 36 DATASHEET Revision 1.0 (12-14-06) Revision 1.0 (12-14-06) 37 DATASHEET SMSC LAN8187/LAN8187I Datasheet ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Table 5.11 Register 10 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.12 Register 11 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.13 Register 12 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.14 Register 13 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.15 Register 14 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.16 Register 15 (Extended) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IEEE Reserved Table 5.17 Silicon Revision Register 16: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Silicon Revision Reserved Table 5.18 Mode Control/ Status Register 17: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RSVD EDPWRDOWN RSVD LOWSQEN MDPREBP FARLOOPBACK RSVD ALTINT RSVD PHYADBP Force Good Link Status ENERGYON Reserved RSVD = Reserved 38 DATASHEET SMSC LAN8187/LAN8187I Table 5.19 Special Modes Register 18: Vendor-Specific 15 Reserved 14 MIIMODE 13 12 11 Reserved 10 9 8 7 6 MODE 5 4 3 2 PHYAD 1 0 Table 5.20 Reserved Register 19: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Table 5.21 Register 24: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Revision 1.0 (12-14-06) Revision 1.0 (12-14-06) 39 DATASHEET SMSC LAN8187/LAN8187I Datasheet ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Table 5.22 Register 25: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Table 5.23 Register 26: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific 15 AMDIXCTRL 14 Reserved 13 CH_SELECT 12 Reserved 11 SQEOFF 10 9 8 7 6 5 4 XPOL 3 2 1 0 Reserved Reserved Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific 15 14 13 12 Reserved 11 10 9 8 7 INT7 6 INT6 5 INT5 4 INT4 3 INT3 2 INT2 1 INT1 0 Reserved Table 5.27 Interrupt Mask Register 30: Vendor-Specific 15 14 13 12 Reserved 11 10 9 8 7 6 5 4 Mask Bits 3 2 1 0 Reserved Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific 15 14 13 12 Autodone 11 10 9 GPO2 8 GPO1 7 GPO0 6 Enable 4B5B 5 Reserved 4 3 2 1 Reserved 0 Scramble Disable Reserved Reserved Speed Indication SMSC LAN8187/LAN8187I 40 DATASHEET Revision 1.0 (12-14-06) ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 5.1 SMI Register Mapping The following registers are supported (register numbers are in decimal): Table 5.29 SMI Register Mapping REGISTER # 0 1 2 3 4 5 6 16 17 18 20 21 22 23 27 28 29 30 31 DESCRIPTION Basic Control Register Basic Status Register PHY Identifier 1 PHY Identifier 2 Auto-Negotiation Advertisement Register Auto-Negotiation Link Partner Ability Register Auto-Negotiation Expansion Register Silicon Revision Register Mode Control/Status Register Special Modes Reserved Reserved Reserved Reserved Control / Status Indication Register Reserved Interrupt Source Register Interrupt Mask Register PHY Special Control/Status Register Group Basic Basic Extended Extended Extended Extended Extended Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific Vendor-specific 5.2 SMI Register Format The mode key is as follows: RW = Read/write, SC = Self clearing, WO = Write only, RO = Read only, LH = Latch high, clear on read of register, LL = Latch low, clear on read of register, NASR = Not Affected by Software Reset X = Either a 1 or 0. SMSC LAN8187/LAN8187I 41 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.30 Register 0 - Basic Control ADDRESS 0.15 NAME Reset DESCRIPTION 1 = software reset. Bit is self-clearing. For best results, when setting this bit do not set other bits in this register. 1 = loopback mode, 0 = normal operation 1 = 100Mbps, 0 = 10Mbps. Ignored if Auto Negotiation is enabled (0.12 = 1). 1 = enable auto-negotiate process (overrides 0.13 and 0.8) 0 = disable auto-negotiate process 1 = General power down mode, 0 = normal operation 1 = electrical isolation of PHY from MII 0 = normal operation 1 = restart auto-negotiate process 0 = normal operation. Bit is self-clearing. 1 = Full duplex, 0 = Half duplex. Ignored if Auto Negotiation is enabled (0.12 = 1). 1 = enable COL test, 0 = disable COL test MODE RW/ SC RW RW DEFAULT 0 0.14 0.13 Loopback Speed Select 0 Set by MODE[2:0] bus Set by MODE[2:0] bus 0 Set by MODE[2:0] bus 0 Set by MODE[2:0] bus 0 0 0.12 AutoNegotiation Enable Power Down Isolate RW 0.11 0.10 RW RW 0.9 0.8 Restart AutoNegotiate Duplex Mode RW/ SC RW 0.7 0.6:0 Collision Test Reserved RW RO Table 5.31 Register 1 - Basic Status ADDRESS 1.15 1.14 1.13 1.12 1.11 1.10:6 1.5 1.4 NAME 100Base-T4 100Base-TX Full Duplex 100Base-TX Half Duplex 10Base-T Full Duplex 10Base-T Half Duplex Reserved Auto-Negotiate Complete Remote Fault 1 = auto-negotiate process completed 0 = auto-negotiate process not completed 1 = remote fault condition detected 0 = no remote fault 42 DESCRIPTION 1 = T4 able, 0 = no T4 ability 1 = TX with full duplex, 0 = no TX full duplex ability 1 = TX with half duplex, 0 = no TX half duplex ability 1 = 10Mbps with full duplex 0 = no 10Mbps with full duplex ability 1 = 10Mbps with half duplex 0 = no 10Mbps with half duplex ability MODE RO RO RO RO RO DEFAULT 0 1 1 1 1 RO RO/ LH 0 0 Revision 1.0 (12-14-06) SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.31 Register 1 - Basic Status (continued) ADDRESS 1.3 1.2 1.1 1.0 NAME Auto-Negotiate Ability Link Status Jabber Detect Extended Capabilities DESCRIPTION 1 = able to perform auto-negotiation function 0 = unable to perform auto-negotiation function 1 = link is up, 0 = link is down 1 = jabber condition detected 0 = no jabber condition detected 1 = supports extended capabilities registers 0 = does not support extended capabilities registers MODE RO RO/ LL RO/ LH RO DEFAULT 1 0 0 1 Table 5.32 Register 2 - PHY Identifier 1 ADDRESS 2.15:0 NAME PHY ID Number DESCRIPTION Assigned to the 3rd through 18th bits of the Organizationally Unique Identifier (OUI), respectively. OUI=00800Fh MODE RW DEFAULT 0007h Table 5.33 Register 3 - PHY Identifier 2 ADDRESS 3.15:10 3.9:4 3.3:0 NAME PHY ID Number Model Number Revision Number DESCRIPTION Assigned to the 19th through 24th bits of the OUI. Six-bit manufacturer’s model number. Four-bit manufacturer’s revision number. MODE RW RW RW DEFAULT C0h 0Ch 3h Table 5.34 Register 4 - Auto Negotiation Advertisement ADDRESS 4.15 NAME Next Page DESCRIPTION 1 = next page capable, 0 = no next page ability This Phy does not support next page ability. MODE RO DEFAULT 0 4.14 4.13 4.12 4.11:10 Reserved Remote Fault Reserved Pause Operation 00 = No PAUSE 01 = Asymmetric PAUSE toward link partner 10 = Symmetric PAUSE 11 = Both Symmetric PAUSE and Asymmetric PAUSE toward local device 1 = T4 able, 0 = no T4 ability This Phy does not support 100Base-T4. 1 = remote fault detected, 0 = no remote fault RO RW 0 0 R/W 00 4.9 100Base-T4 RO 0 SMSC LAN8187/LAN8187I 43 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.34 Register 4 - Auto Negotiation Advertisement (continued) ADDRESS 4.8 NAME 100Base-TX Full Duplex 100Base-TX 10Base-T Full Duplex 10Base-T DESCRIPTION 1 = TX with full duplex, 0 = no TX full duplex ability 1 = TX able, 0 = no TX ability 1 = 10Mbps with full duplex 0 = no 10Mbps with full duplex ability 1 = 10Mbps able, 0 = no 10Mbps ability [00001] = IEEE 802.3 MODE RW DEFAULT Set by MODE[2:0] bus 1 Set by MODE[2:0] bus Set by MODE[2:0] bus 00001 4.7 4.6 RW RW 4.5 RW 4.4:0 Selector Field RW Table 5.35 Register 5 - Auto Negotiation Link Partner Ability ADDRESS 5.15 NAME Next Page DESCRIPTION 1 = “Next Page” capable, 0 = no “Next Page” ability This Phy does not support next page ability. 1 = link code word received from partner 0 = link code word not yet received 1 = remote fault detected, 0 = no remote fault MODE RO DEFAULT 0 5.14 5.13 5.12:11 5.10 5.9 Acknowledge Remote Fault Reserved Pause Operation 100Base-T4 RO RO RO 0 0 0 0 0 1 = Pause Operation is supported by remote MAC, 0 = Pause Operation is not supported by remote MAC 1 = T4 able, 0 = no T4 ability. This Phy does not support T4 ability. 1 = TX with full duplex, 0 = no TX full duplex ability 1 = TX able, 0 = no TX ability 1 = 10Mbps with full duplex 0 = no 10Mbps with full duplex ability 1 = 10Mbps able, 0 = no 10Mbps ability [00001] = IEEE 802.3 RO RO 5.8 5.7 5.6 5.5 5.4:0 100Base-TX Full Duplex 100Base-TX 10Base-T Full Duplex 10Base-T Selector Field RO RO RO RO RO 0 0 0 0 00001 Revision 1.0 (12-14-06) 44 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.36 Register 6 - Auto Negotiation Expansion ADDRESS 6.15:5 6.4 6.3 6.2 6.1 6.0 NAME Reserved Parallel Detection Fault Link Partner Next Page Able Next Page Able Page Received Link Partner AutoNegotiation Able 1 = fault detected by parallel detection logic 0 = no fault detected by parallel detection logic 1 = link partner has next page ability 0 = link partner does not have next page ability 1 = local device has next page ability 0 = local device does not have next page ability 1 = new page received 0 = new page not yet received 1 = link partner has auto-negotiation ability 0 = link partner does not have auto-negotiation ability DESCRIPTION MODE RO RO/ LH RO RO RO/ LH RO DEFAULT 0 0 0 0 0 0 Table 5.37 Register 16 - Silicon Revision ADDRESS 16.15:10 16.9:6 16.5:0 NAME Reserved Silicon Revision Reserved Four-bit silicon revision identifier. DESCRIPTION MODE RO RO RO DEFAULT 0 0001 0 Table 5.38 Register 17 - Mode Control/Status ADDRESS 17.15:14 17.13 NAME Reserved EDPWRDOWN DESCRIPTION Write as 0; ignore on read. Enable the Energy Detect Power-Down mode: 0 = Energy Detect Power-Down is disabled 1 = Energy Detect Power-Down is enabled Write as 0, ignore on read The Low_Squelch signal is equal to LOWSQEN AND EDPWRDOWN. Low_Squelch = 1 implies a lower threshold (more sensitive). Low_Squelch = 0 implies a higher threshold (less sensitive). Management Data Preamble Bypass: 0 – detect SMI packets with Preamble 1 – detect SMI packets without preamble Force the module to the FAR Loop Back mode, i.e. all the received packets are sent back simultaneously (in 100Base-TX only). This bit is only active in RMII mode. In this mode the user needs to supply a 50MHz clock to the PHY. This mode works even if MII Isolate (0.10) is set. Write as 0, ignore on read. 45 MODE RW RW DEFAULT 0 0 17.12 17.11 Reserved LOWSQEN RW RW 0 0 17.10 MDPREBP RW 0 17.9 FARLOOPBACK RW 0 17.8:7 Reserved RW 00 SMSC LAN8187/LAN8187I Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.38 Register 17 - Mode Control/Status (continued) ADDRESS 17.6 NAME ALTINT DESCRIPTION Alternat Interrupt Mode. 0 = Primary interrupt system enabled (Default). 1 = Alternate interrupt system enabled. See Section 5.3, "Interrupt Management," on page 49. Write as 0, ignore on read. 1 = PHY disregards PHY address in SMI access write. 0 = normal operation; 1 = force 100TX- link active; Note: 17.1 ENERGYON This bit should be set only during lab testing RO 1 MODE RW DEFAULT 0 17.5:4 17.3 17.2 Reserved PHYADBP Force Good Link Status RW RW RW 00 0 0 ENERGYON – indicates whether energy is detected on the line (see Section 5.4.5.2, "Energy Detect Power-Down," on page 51); it goes to “0” if no valid energy is detected within 256ms. Reset to “1” by hardware reset, unaffected by SW reset. Write as 0, ignore on read. 17.0 Reserved RW 0 Table 5.39 Register 18 - Special Modes ADDRESS 18.15:14 NAME MIIMODE DESCRIPTION MII Mode: set the mode of the MII: 0 – MII interface. 1 – RMII interface Write as 0, ignore on read. PHY Mode of operation. Refer to Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 53 for more details. MODE RW, NASR RW, NASR RW, NASR 000000 XXX EVB8700 default 111 PHYAD EVB8700 default 11111 DEFAULT 18.13:8 18.7:5 Reserved MODE 18.4:0 PHYAD PHY Address. The PHY Address is used for the SMI address and for the initialization of the Cipher (Scrambler) key. Refer to Section 5.4.9.1, "Physical Address Bus PHYAD[4:0]," on page 53 for more details. RW, NASR Table 5.40 Register 27 - Special Control/Status Indications ADDRESS 27.15 NAME AMDIXIOCTRL DESCRIPTION Enables the external AMDIX and CH_SELECT pins 0 - External pins AMDIX_EN and CH_SELECT control the AMDIX. 1 - Internal bits 27.14 and 27.13 control the AMDIX. Note: Please see Table 4.3, “Auto-MDIX Control,” on page 30 MODE RW DEFAULT 0 Revision 1.0 (12-14-06) 46 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.40 Register 27 - Special Control/Status Indications (continued) ADDRESS 27.14 NAME AMDIX_ENABLE DESCRIPTION HP Auto-MDIX control 0 - Auto-MDIX disabled (use 27.13 to control channel) 1 - Auto-MDIX enable Note: 27.13 CH_SELECT This bit can only be used if 27.15 is a 1. RW 0 MODE RW DEFAULT 0 Manual Channel Select 0 - MDI -TX transmits RX receives 1 - MDIX -TX receives RX transmits Note: This bit can only be used if 27.15 is a 1 and 27.14 is a 0. 27.12 27:11 Reserved SQEOFF Write as 0. Ignore on read. Disable the SQE (Signal Quality Error) test (Heartbeat): 0 - SQE test is enabled. 1 - SQE test is disabled. Write as 0. Ignore on read. Polarity state of the 10Base-T: 0 - Normal polarity 1 - Reversed polarity Reserved RW RW, NASR 0 0 27.10:5 27.4 Reserved XPOL RW RO 000000 0 27.3:0 Reserved RO XXXXb Table 5.41 Register 28 - Special Internal Testability Controls ADDRESS 28.15:0 NAME Reserved DESCRIPTION Do not write to this register. Ignore on read. MODE RW DEFAULT N/A Table 5.42 Register 29 - Interrupt Source Flags ADDRESS 29.15:8 29.7 29.6 29.5 29.4 29.3 29.2 NAME Reserved INT7 INT6 INT5 INT4 INT3 INT2 Ignore on read. 1 = ENERGYON generated 0 = not source of interrupt 1 = Auto-Negotiation complete 0 = not source of interrupt 1 = Remote Fault Detected 0 = not source of interrupt 1 = Link Down (link status negated) 0 = not source of interrupt 1 = Auto-Negotiation LP Acknowledge 0 = not source of interrupt 1 = Parallel Detection Fault 0 = not source of interrupt DESCRIPTION MODE RO/ LH RO/ LH RO/ LH RO/ LH RO/ LH RO/ LH RO/ LH DEFAULT 0 X X X X X X SMSC LAN8187/LAN8187I 47 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.42 Register 29 - Interrupt Source Flags (continued) ADDRESS 29.1 29.0 NAME INT1 Reserved DESCRIPTION 1 = Auto-Negotiation Page Received 0 = not source of interrupt Ignore on read. MODE RO/ LH RO/ LH DEFAULT X 0 Table 5.43 Register 30 - Interrupt Mask ADDRESS 30.15:8 30.7:0 NAME Reserved Mask Bits DESCRIPTION Write as 0; ignore on read. 1 = interrupt source is enabled 0 = interrupt source is masked MODE RO RW DEFAULT 0 0 Table 5.44 Register 31 - PHY Special Control/Status ADDRESS 31.15 31.14 31.13 31.12 NAME Reserved Reserved Reserved Autodone Must be set to 0 Auto-negotiation done indication: 0 = Auto-negotiation is not done or disabled (or not active) 1 = Auto-negotiation is done Write as 0, ignore on Read. Reserved General Purpose Output connected to signals GPO[2:0] 0 = Bypass encoder/decoder. 1 = enable 4B5B encoding/decoding. MAC Interface must be configured in MII mode. Write as 0, ignore on Read. HCDSPEED value: [001]=10Mbps Half-duplex [101]=10Mbps Full-duplex [010]=100Base-TX Half-duplex [110]=100Base-TX Full-duplex Write as 0; ignore on Read 0 = enable data scrambling 1 = disable data scrambling, RW RO 0 0 DESCRIPTION Do not write to this register. Ignore on read. MODE RW DEFAULT 0 31.11 31.10 31.9:7 31.6 Reserved Reserved GPO[2:0] Enable 4B5B RW RW RW RW X 0 0 1 31.5 31.4:2 Reserved Speed Indication RW RO 0 000 31.1 31.0 Reserved Scramble Disable RW RW 0 0 Revision 1.0 (12-14-06) 48 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 5.3 Interrupt Management The Management interface supports an interrupt capability that is not a part of the IEEE 802.3 specification. It generates an active low asynchronous interrupt signal on the nINT output whenever certain events are detected as setup by the Interrupt Mask Register 30. The Interrupt system on the SMSC LAN8187/8187I has two modes, a Primary Interrupt mode and an Alternative Interrupt mode. Both systems will assert the nINT pin low when the corresponding mask bit is set, the difference is how they de-assert the output interrupt signal nINT. The Primary interrupt mode is the default interrupt mode after a power-up or hard reset, the Alternative interrupt mode would need to be setup again after a power-up or hard reset. 5.3.1 Primary Interrupt System The Primary Interrupt system is the default interrupt mode, (Bit 17.6 = ‘0’). The Primary Interrupt System is always selected after power-up or hard reset. To set an interrupt, set the corresponding mask bit in the interrupt Mask register 30 (see Table 5.45). Then when the event to assert nINT is true, the nINT output will be asserted. When the corresponding Event to De-Assert nINT is true, then the nINT will be de-asserted. Table 5.45 Interrupt Management Table. Mask 30.7 30.6 30.5 29.7 29.6 29.5 Interrupt Source Flag ENERGYON Auto-Negotiation complete Remote Fault Detected 17.1 1.5 1.4 Interrupt Source ENERGYON Auto-Negotiate Complete Remote Fault Event to Assert nINT Rising 17.1a Rising 1.5 Rising 1.4 Event to De-Assert nINT Falling 17.1 or Reading register 29 Falling 1.5 or Reading register 29 Falling 1.4, or Reading register 1 or Reading register 29 Reading register 1 or Reading register 29 Falling 5.14 or Read register 29 Falling 6.4 or Reading register 6, or Reading register 29 or Re-AutoNegotaite or Link down Falling of 6.1 or Reading register 6, or Reading register 29 Re-AutoNegotatie, or Link Down. 30.4 30.3 30.2 29.4 29.3 29.2 Link Down Auto-Negotiation LP Achnowledge Parallel Detection Fault 1.2 5.14 6.4 Link Status Acknowledge Parallel Detection Fault Falling 1.2 Rising 5.14 Rising 6.4 30.1 29.1 Auto-Negotiation Page Received 6.1 Page Received Rising 6.1 a. If the mask bit is enabled and nINT has been de-asserted while ENERGYON is still high, nINT will assert for 256 ms, approximately one second after ENERGYON goes low when the Cable is unplugged. To prevent an unexpected assertion of nINT, the ENERGYON interrupt mask should always be cleared as part of the ENERGYON interrupt service routine. Note: The ENERGYON bit 17.1 is defaulted to a ‘1’ at the start of the signal acquisition process, therefore the Interrupt source flag 29.7 will also read as a ‘1’ at power-up. If no signal is present, then both 17.1 and 29.7 wil clear within a few milliseconds. 5.3.2 Alternate Interrupt System The Alternative method is enabled by writing a ‘1’ to 17.6 (ALTINT). SMSC LAN8187/LAN8187I 49 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet To set an interrupt, set the corresponding bit of the in the Mask Register 30, (see Table 5.46). To Clear an interrupt, either clear the corresponding bit in the Mask Register (30), this will de-assert the nINT output, or Clear the Interrupt Source, and write a ‘1’ to the corresponding Interrupt Source Flag. Writing a ‘1’ to the Interrupt Source Flag will cause the state machine to check the Interrupt Source to determine if the Interrupt Source Flag should clear or stay as a ‘1’. If the Condition to DeAssert is true, then the Interrupt Source Flag is cleared, and the nINT is also de-asserted. If the Condition to De-Assert is false, then the Interrupt Source Flag remains set, and the nINT remains asserted. Table 5.46 Alternative Interrupt System Management Table. Mask 30.7 30.6 30.5 30.4 30.3 30.2 30.1 29.7 29.6 29.5 29.4 29.3 29.2 29.1 Interrupt Source Flag ENERGYON Auto-Negotiation complete Remote Fault Detected Link Down Auto-Negotiation LP Achnowledge Parallel Detection Fault Auto-Negotiation Page Received 17.1 1.5 1.4 1.2 5.14 6.4 6.1 Interrupt Source ENERGYON Auto-Negotiate Complete Remote Fault Link Status Acknowledge Parallel Detection Fault Page Received Event to Assert nINT Rising 17.1 Rising 1.5 Rising 1.4 Falling 1.2 Rising 5.14 Rising 6.4 Rising 6.1 Condition to De-Assert. 17.1 low 1.5 low 1.4 low 1.2 high 5.14 low 6.4 low 6.1 low Bit to Clear nINT 29.7 29.6 29.5 29.4 29.3 29.2 29.1 Note: The ENERGYON bit 17.1 is defaulted to a ‘1’ at the start of the signal acquisition process, therefore the Interrupt source flag 29.7 will also read as a ‘1’ at power-up. If no signal is present, then both 17.1 and 29.7 wil clear within a few milliseconds. 5.3.2.1 Example Alternative Interrupts system For example 30.7 is set to ‘1’ to enable the ENERGYON interrupt. After a cable is plugged in, ENERGYON (17.1) goes active and nINT will be asserted low. To de-assert the nINT interrupt output, either. 1. Clear the ENERGYON bit (17.1), by removing the cable, then writing a ‘1’ to register 29.7. Or 2. Clear the Mask bit 30.1 5.4 5.4.1 Miscellaneous Functions Carrier Sense The carrier sense is output on CRS. CRS is a signal defined by the MII specification in the IEEE 802.3u standard. The PHY asserts CRS based only on receive activity whenever the PHY is either in repeater mode or full-duplex mode. Otherwise the PHY asserts CRS based on either transmit or receive activity. The carrier sense logic uses the encoded, unscrambled data to determine carrier activity status. It activates carrier sense with the detection of 2 non-contiguous zeros within any 10 bit span. Carrier sense terminates if a span of 10 consecutive ones is detected before a /J/K/ Start-of Stream Delimiter pair. If an SSD pair is detected, carrier sense is asserted until either /T/R/ End–of-Stream Delimiter pair or a pair of IDLE symbols is detected. Carrier is negated after the /T/ symbol or the first IDLE. If /T/ is not followed by /R/, then carrier is maintained. Carrier is treated similarly for IDLE followed by some non-IDLE symbol. Revision 1.0 (12-14-06) 50 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 5.4.2 Collision Detect A collision is the occurrence of simultaneous transmit and receive operations. The COL output is asserted to indicate that a collision has been detected. COL remains active for the duration of the collision. COL is changed asynchronously to both RX_CLK and TX_CLK. The COL output becomes inactive during full duplex mode. COL may be tested by setting register 0, bit 7 high. This enables the collision test. COL will be asserted within 512 bit times of TX_EN rising and will be de-asserted within 4 bit times of TX_EN falling. In 10M mode, COL pulses for approximately 10 bit times (1us), 2us after each transmitted packet (deassertion of TX_EN). This is the Signal Quality Error (SQE) signal and indicates that the transmission was successful. The user can disable this pulse by setting bit 11 in register 27. 5.4.3 Isolate Mode The PHY data paths may be electrically isolated from the MII by setting register 0, bit 10 to a logic one. In isolation mode, the PHY does not respond to the TXD, TX_EN and TX_ER inputs. The PHY still responds to management transactions. Isolation provides a means for multiple PHYs to be connected to the same MII without contention occurring. The PHY is not isolated on power-up (bit 0:10 = 0). 5.4.4 Link Integrity Test The LAN8187/LAN8187I performs the link integrity test as outlined in the IEEE 802.3u (Clause 24-15) Link Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the reportable link status bit in Serial Management Register 1, and is driven to the LINK LED. The DSP indicates a valid MLT-3 waveform present on the RXP and RXN signals as defined by the ANSI X3.263 TP-PMD standard, to the Link Monitor state-machine, using internal signal called DATA_VALID. When DATA_VALID is asserted the control logic moves into a Link-Ready state, and waits for an enable from the Auto Negotiation block. When received, the Link-Up state is entered, and the Transmit and Receive logic blocks become active. Should Auto Negotiation be disabled, the link integrity logic moves immediately to the Link-Up state, when the DATA_VALID is asserted. Note that to allow the line to stabilize, the link integrity logic will wait a minimum of 330 μsec from the time DATA_VALID is asserted until the Link-Ready state is entered. Should the DATA_VALID input be negated at any time, this logic will immediately negate the Link signal and enter the Link-Down state. When the 10/100 digital block is in 10Base-T mode, the link status is from the 10Base-T receiver logic. 5.4.5 Power-Down modes There are 2 power-down modes for the Phy: 5.4.5.1 General Power-Down This power-down is controlled by register 0, bit 11. In this mode the entire PHY, except the management interface, is powered-down and stays in that condition as long as bit 0.11 is HIGH. When bit 0.11 is cleared, the PHY powers up and is automatically reset. 5.4.5.2 Energy Detect Power-Down This power-down mode is activated by setting bit 17.13 to 1. In this mode when no energy is present on the line the PHY is powered down, except for the management interface, the SQUELCH circuit and the ENERGYON logic. The ENERGYON logic is used to detect the presence of valid energy from 100Base-TX, 10Base-T, or Auto-negotiation signals In this mode, when the ENERGYON signal is low, the PHY is powered-down, and nothing is transmitted. When energy is received - link pulses or packets - the ENERGYON signal goes high, and SMSC LAN8187/LAN8187I 51 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet the PHY powers-up. It automatically resets itself into the state it had prior to power-down, and asserts the nINT interrupt if the ENERGYON interrupt is enabled. The first and possibly the second packet to activate ENERGYON may be lost. When 17.13 is low, energy detect power-down is disabled. 5.4.6 Reset The PHY has 3 reset sources: Hardware reset (HWRST): connected to the nRST input, and to the internal POR signal. If the nRST input is driven by an external source, it should be held LOW for at least 100 us to ensure that the Phy is properly reset. The Phy has an internal Power-On-Reset (POR) signal which is asserted for 21ms following a VDD33 (+3.3V) and VDDCORE (+1.8V) power-up. This internal POR is internally “OR”-ed with the nRST input. During a Hardware reset, either external or POR, an external clock must be supplied to the CLKIN signal. Software (SW) reset: Activated by writing register 0, bit 15 high. This signal is self- clearing. After the register-write, internal logic extends the reset by 256µs to allow PLL-stabilization before releasing the logic from reset. The IEEE 802.3u standard, clause 22 (22.2.4.1.1) states that the reset process should be completed within 0.5s from the setting of this bit. Power-Down reset: Automatically activated when the PHY comes out of power-down mode. The internal power-down reset is extended by 256µs after exiting the power-down mode to allow the PLLs to stabilize before the logic is released from reset. These 3 reset sources are combined together in the digital block to create the internal “general reset”, SYSRST, which is an asynchronous reset and is active HIGH. This SYSRST directly drives the PCS, DSP and MII blocks. It is also input to the Central Bias block in order to generate a short reset for the PLLs. The SMI mechanism and registers are reset only by the Hardware and Software resets. During PowerDown, the SMI registers are not reset. Note that some SMI register bits are not cleared by Software reset – these are marked “NASR” in the register tables. For the first 16us after coming out of reset, the MII will run at 2.5 MHz. After that it will switch to 25 MHz if auto-negotiation is enabled. 5.4.7 LED Description The PHY provides four LED signals. These provide a convenient means to determine the mode of operation of the Phy. All LED signals are either active high or active low. The four LED signals can be either active-high or active-low. Polarity depends upon the Phy address latched in on reset. The LAN8187/LAN8187I senses each Phy address bit and changes the polarity of the LED signal accordingly. If the address bit is set as level “1”, the LED polarity will be set to an activelow. If the address bit is set as level “0”, the LED polarity will be set to an active-high. The ACTIVITY LED output is driven active when CRS is active (high). When CRS becomes inactive, the Activity LED output is extended by 128ms. The LINK LED output is driven active whenever the PHY detects a valid link. The use of the 10Mbps or 100Mbps link test status is determined by the condition of the internally determined speed selection. The SPEED100 LED output is driven active when the operating speed is 100Mbit/s or during Autonegotiation. This LED will go inactive when the operating speed is 10Mbit/s or during line isolation (register 31 bit 5). Revision 1.0 (12-14-06) 52 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet The Full-Duplex LED output is driven active low when the link is operating in Full-Duplex mode. 5.4.8 Loopback Operation The 10/100 digital has two independent loop-back modes: Internal loopback and far loopback. 5.4.8.1 Internal Loopback The internal loopback mode is enabled by setting bit register 0 bit 14 to logic one. In this mode, the scrambled transmit data (output of the scrambler) is looped into the receive logic (input of the descrambler). The COL signal will be inactive in this mode, unless collision test (bit 0.7) is active. In this mode, during transmission (TX_EN is HIGH), nothing is transmitted to the line and the transmitters are powered down. 5.4.9 Configuration Signals The PHY has 11 configuration signals whose inputs should be driven continuously, either by external logic or external pull-up/pull-down resistors. 5.4.9.1 Physical Address Bus - PHYAD[4:0] The PHYAD[4:0] signals are driven high or low to give each PHY a unique address. This address is latched into an internal register at end of hardware reset. In a multi-PHY application (such as a repeater), the controller is able to manage each PHY via the unique address. Each PHY checks each management data frame for a matching address in the relevant bits. When a match is recognized, the PHY responds to that particular frame. The PHY address is also used to seed the scrambler. In a multiPHY application, this ensures that the scramblers are out of synchronization and disperses the electromagnetic radiation across the frequency spectrum. 5.4.9.2 Mode Bus – MODE[2:0] The MODE[2:0] bus controls the configuration of the 10/100 digital block. Table 5.47 MODE[2:0] Bus DEFAULT REGISTER BIT VALUES MODE[2:0] MODE DEFINITIONS REGISTER 0 [13,12,10,8] REGISTER 4 [8,7,6,5] N/A N/A N/A 000 001 010 10Base-T Half Duplex. Auto-negotiation disabled. 10Base-T Full Duplex. Auto-negotiation disabled. 100Base-TX Half Duplex. Auto-negotiation disabled. CRS is active during Transmit & Receive. 100Base-TX Full Duplex. Auto-negotiation disabled. CRS is active during Receive. 100Base-TX Half Duplex is advertised. Autonegotiation enabled. CRS is active during Transmit & Receive. Repeater mode. Auto-negotiation enabled. 100Base-TX Half Duplex is advertised. CRS is active during Receive. Power Down mode. In this mode the PHY wake-up in Power-Down mode. 53 0000 0001 1000 011 100 1001 1100 N/A 0100 101 1100 0100 110 N/A N/A SMSC LAN8187/LAN8187I Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 5.47 MODE[2:0] Bus (continued) DEFAULT REGISTER BIT VALUES MODE[2:0] MODE DEFINITIONS REGISTER 0 [13,12,10,8] 111 All capable. Auto-negotiation enabled. X10X REGISTER 4 [8,7,6,5] 1111 Revision 1.0 (12-14-06) 54 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 6 AC Electrical Characteristics The timing diagrams and limits in this section define the requirements placed on the external signals of the Phy. 6.1 Serial Management Interface (SMI) Timing The Serial Management Interface is used for status and control as described in Section 4.13. MDC T1.1 T1.2 MDIO (Read from PHY) Valid Data T1.3 MDIO (Write to PHY) Valid Data T1.4 Figure 6.1 SMI Timing Diagram Table 6.1 SMI Timing Values PARAMETER T1.1 T1.2 T1.3 T1.4 DESCRIPTION MDC minimum cycle time MDC to MDIO (Write) delay MDIO (Read) to MDC setup MDIO (Read) to MDC hold MIN 400 0 10 10 300 TYP MAX UNITS ns ns ns ns NOTES SMSC LAN8187/LAN8187I 55 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 6.2 6.2.1 6.2.1.1 MII 10/100Base-TX/RX Timings MII 100Base-T TX/RX Timings 100M MII Receive Timing RX_CLK RXD[3:0] RX_DV RX_ER Valid Data T2.1 T2.2 Figure 6.2 100M MII Receive Timing Diagram Table 6.2 100M MII Receive Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T2.1 T2.2 Receive signals setup to RX_CLK rising Receive signals hold from RX_CLK rising RX_CLK frequency RX_CLK Duty-Cycle 10 10 25 40 ns ns MHz % Revision 1.0 (12-14-06) 56 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 6.2.1.2 100M MII Transmit Timing TX_CLK TXD[3:0] TX_EN TX_ER Valid Data T3.1 T3.2 Figure 6.3 100M MII Transmit Timing Diagram Table 6.3 100M MII Transmit Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T3.1 T3.2 Transmit signals setup to TX_CLK rising Transmit signals hold after TX_CLK rising TX_CLK frequency TX_CLK Duty-Cycle 12 0 25 40 ns ns MHz % 6.2.2 6.2.2.1 MII 10Base-T TX/RX Timings 10M MII Receive Timing RX_CLK RXD[3:0] RX_DV RX_ER Valid Data T4.1 T4.2 Figure 6.4 10M MII Receive Timing Diagram SMSC LAN8187/LAN8187I 57 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 6.4 10M MII Receive Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T4.1 T4.2 Receive signals setup to RX_CLK rising Receive signals hold from RX_CLK rising RX_CLK frequency RX_CLK Duty-Cycle Receive signals setup to RX_CLK rising 10 10 25 40 10 ns ns MHz % ns 6.2.2.2 10M MII Transmit Timing TX_CLK TXD[3:0] TX_EN Valid Data T5.1 T5.2 Figure 6.5 10M MII Transmit Timing Diagrams Table 6.5 10M MII Transmit Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T5.1 T5.2 Transmit signals setup to TX_CLK rising Transmit signals hold after TX_CLK rising TX_CLK frequency TX_CLK Duty-Cycle 12 0 2.5 50 ns ns MHz % Revision 1.0 (12-14-06) 58 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 6.3 6.3.1 6.3.1.1 RMII 10/100Base-TX/RX Timings RMII 100Base-T TX/RX Timings 100M RMII Receive Timing REF_CLK RXD[1:0] CRS_DV Valid Data T6.1 T6.2 Figure 6.6 100M RMII Receive Timing Diagram Table 6.6 100M RMII Receive Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T6.1 T6.2 Rising edge of REF_CLK to receive signals output valid Rising edge of REF_CLK to receive signals output not valid REF_CLK frequency 4 2 50 ns ns MHz SMSC LAN8187/LAN8187I 59 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 6.3.1.2 100M RMII Transmit Timing REF_CLK TXD[1:0] TX_EN Valid Data T8.1 T8.2 Figure 6.7 100M RMII Transmit Timing Diagram Table 6.7 100M RMII Transmit Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T8.1 T8.2 Transmit signals setup to rising edge of REF_CLK Transmit signals hold after rising edge of REF_CLK REF_CLK frequency 4 2 50 ns ns MHz 6.3.2 6.3.2.1 RMII 10Base-T TX/RX Timings 10M RMII Receive Timing REF_CLK RXD[1:0] CRS_DV Valid Data T9.1 T9.2 Figure 6.8 10M RMII Receive Timing Diagram Revision 1.0 (12-14-06) 60 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 6.8 10M RMII Receive Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T9.1 T9.2 Rising edge of REF_CLK to receive signals output valid Rising edge of REF_CLK to receive signals output not valid REF_CLK frequency 4 2 50 ns ns MHz 6.3.2.2 10M RMII Transmit Timing REF_CLK TXD[1:0] TX_EN Valid Data T10.1 T10.2 Figure 6.9 10M RMII Transmit Timing Diagram Table 6.9 10M RMII Transmit Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T10.1 T10.2 Transmit signals setup to REF_CLK rising Transmit signals hold after REF_CLK rising 4 2 ns ns 6.4 REF_CLK Timing Table 6.10 REF_CLK Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES REF_CLK frequency REF_CLK Frequency Drift REF_CLK Duty Cycle REF_CLK Jitter 40 50 +/- 50 60 150 MHz ppm % psec p-p – not RMS SMSC LAN8187/LAN8187I 61 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 6.5 Reset Timing T6.1 nRST T6.2 Configuration signals T6.4 Output drive T6.3 Figure 6.10 Reset Timing Diagram Table 6.11 Reset Timing Values PARAMETER DESCRIPTION MIN TYP MAX UNITS NOTES T6.1 T6.2 T6.3 T6.4 Reset Pulse Width Configuration input setup to nRST rising Configuration input hold after nRST rising Output Drive after nRST rising 100 200 400 20 800 us ns ns ns 20 clock cycles for 25 MHz clock or 40 clock cycles for 50MHz clock Revision 1.0 (12-14-06) 62 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 7 DC Electrical Characteristics 7.1 7.1.1 DC Characteristics Maximum Guaranteed Ratings Stresses beyond those listed in Table 7.1may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 7.1 Maximum Conditions. Parameter VDD33,VDDIO Digital IO VSS Operating Temperature Operating Temperature Storage Temperature Conditions MIN TYP MA X UNIT S Comment Power pins to all other pins. To VSS ground -0.5 -0.5 +3.6 +3.6 V V Table 7.5, “MII Bus Interface Signals,” on page 66 VSS to all other pins LAN8187-JT -0.5 0 +4.0 +70 V C Commercial temperature parts. Industrial temperature parts. LAN8187I-JT -40 +85 C -55 +15 0 C Table 7.2 ESD and LATCH-UP Performance Parameter ESD PERFORMANCE All Pins All Pins All Pins MA X UNIT S Conditions MIN TYP Comments Human Body Model IED61000-4-2 Contact Discharge IEC61000-4-2 Air-gap Discharge +/-8 +/-8 +/15 kV kV kV LATCH-UP PERFORMANCE All Pins EIA/JESD 78, Class II 100 mA 7.1.1.1 Human Body Model (HBM) Performance HBM testing verifies the ability to withstand the ESD strikes like those that occur during handling and manufacturing. The device must work normally after the stress has ended, meaning no latch-up on any pins. All pins on the LAN8187 provide +/- 8kV HBM protection. SMSC LAN8187/LAN8187I 63 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 7.1.1.2 IEC61000-4-2 Performance The IEC61000-4-2 ESD specification is an international standard that addresses system-level immunity to ESD strikes while the end equipment is operational. In contrast, the HBM ESD tests are performed at the device level with the device powered down. In addition to defining the ESD tests, IEC 61000-4-2 also categorizes the impact to equipment operation when the strike occurs (ESD Result Classification). The LAN8187 maintains an ESD Result Classification 1 or 2 when subjected to an IEC 61000-4-2 (level 4) ESD strike. Both air discharge and contact discharge test techniques for applying stress conditions are defined by the IEC61000-4-2 ESD document. AIR DISCHARGE To perform this test, a charged electrode is moved close to the system being tested until a spark is generated. All pins of the LAN8187 can safely dissipate +/- 15kV air discharges per the IEC61000-42 specification without additional board level protection. This test is difficult to reproduce because the discharge is influenced by such factors as humidity, the speed of approach of the electrode, and construction of the test equipment. CONTACT DISCHARGE The uncharged electrode first contacts the pin to prepare this test, and then the probe tip is energized. This yields more repeatable results, and is the preferred test method. All pins of the LAN8187 can safely dissipate +/- 8kV contact discharges per the IEC61000-4-2 specification without the need for additional board level protection. 7.1.2 Operating Conditions Table 7.3 Recommended Operating Conditions Parameter VDD33 INPUT VOLTAGE ON DIGITAL PINS VOLTAGE ON ANALOG I/O PINS (RXP, RXN) Conditions MIN TYP MA X UNIT S Comment VDD33 to VSS 3.0 0.0 3.3 3.6 VDD IO +3.6 V 70 +85 V V 0.0 V TA LAN8187-JT AMBIENT TEMPERATURE 0 -40 C C For Commercial Temperature For Industrial Temperature TA LAN8187IAEZG 7.1.3 7.1.3.1 Power Consumption Power Consumption Device Only Power measurements taken over the operating conditions specified. See Section 5.4.5 for a description of the power down modes Revision 1.0 (12-14-06) 64 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet . Table 7.4 Power Consumption Device Only 3.3V POWER PIN(MA) 1.8V POWER PINS(MA) VDDIO POWER PIN TOTAL CURRENT (MA) TOTAL POWER (MW) POWER PIN GROUP Max 100BASE-T /W TRAFFIC 35.6 33.3 31.3 15.6 15.3 14.9 10.5 9.9 9.8 0.21 0.124 0.038 41.3 37.4 33.4 22.3 20.8 19.1 3.3 2.7 2.3 2.92 2.6 2.1 4.7 4.1 1.3 1.1 0.9 0.1 0.5 0.4 0.3 0.39 0.345 0.3 81.6 74.8 66 39 37 34.1 13.85 13.0 12.4 3.52 3.07 2.44 269.28 246.84 165.75a 128.7 122.1 83.88b 45.7 42.9 37.02c 11.62 10.131 4.4454d Typical Min Max 10BASE-T /W TRAFFIC Typical Min Max ENERGY DETECT POWER DOWN Typical Min Max GENERAL POWER DOWN Typical Min a. b. c. d. This is calculated with full SMSC FlexPWR features activated: VDDIO = 1.8V amd internal regulator disabled. This is calculated with full SMSC FlexPWR features activated: VDDIO = 1.8V and internal regulator disabled. This is calculated with full SMSC FlexPWR features activated: VDDIO = 1.8V and internal regulator disabled. This is calculated with full SMSC FlexPWR features activated: VDDIO = 1.8V and internal regulator disabled. Note 7.1 Current measurements do not include power applied to the magnetics or the optional external LEDs. Current measurements taken with VDDIO = +3.3V, unless otherwise indicated. SMSC LAN8187/LAN8187I 65 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet 7.1.4 DC Characteristics - Input and Output Buffers Table 7.5 MII Bus Interface Signals NAME VIH VIL IOH IOL VOL VOH TXD0 TXD1 TXD2 TXD3 TX_EN TX_CLK RXD0 RXD1 RXD2 RXD3 RX_ER/RXD4 RX_DV RX_CLK CRS COL MDC MDIO nINT/TX_ER/TXD4 VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V +0.5 V +0.5 V +0.5 V +0.5 V +0.5 V -8 mA -8 mA -8 mA -8 mA -8 mA -8 mA -8 mA -8 mA -8 mA -8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +8 mA +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V +0.5 V +0.5 V +0.5 V -8 mA -8 mA +8 mA +8 mA +0.4 V +0.4 V VDDIO – +0.4 V 3.6V Revision 1.0 (12-14-06) 66 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 7.6 LAN Interface Signals NAME VIH VIL IOH IOL VOL VOH TXP TXN RXP RXN See Table 7.12, “100Base-TX Transceiver Characteristics,” on page 69 and Table 7.13, “10BASE-T Transceiver Characteristics,” on page 69. Table 7.7 LED Signals NAME VIH VIL IOH IOL VOL VOH SPEED100 LINK ACTIVITY FDUPLEX VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V +0.5 V +0.5 V +0.5 V +0.5 V -12 mA -12 mA -12 mA -12 mA +12 mA +12 mA +12 mA +12 mA +0.4 V +0.4 V +0.4 V +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V Table 7.8 Configuration Inputs NAME VIH VIL IOH IOL VOL VOH PHYAD0 PHYAD1 PHYAD2 PHYAD3 PHYAD4 MODE0 MODE1 MODE2 REG_EN MII VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V +0.5 V +0.5 V +0.5 V +0.5 V -12 mA -12 mA -12 mA -12 mA -8 mA +12 mA +12 mA +12 mA +12 mA +8 mA +0.4 V +0.4 V +0.4 V +0.4 V +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V 3.7 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V VDDIO – +0.4 V +0.5 V +0.5 V +0.5 V +0.5 V -8 mA +8 mA +0.4 V VDDIO – +0.4 V SMSC LAN8187/LAN8187I 67 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 7.9 General Signals NAME VIH VIL IOH IOL VOL VOH GPO0 GPO1 GPO2 nRST CLKIN/XTAL1 Note 7.2 XTAL2 NC Note 7.2 -8 mA -8 mA -8 mA VDDIO – +0.4 V +1.40 V +0.5 V +0.5 V - +8 mA +8 mA +8 mA +0.4 V +0.4 V +0.4 V VDDIO – +0.4 V 3.7 V VDDIO – +0.4 V These levels apply when a 0-3.3V Clock is driven into CLKIN/XTAL1 and XTAL2 is floating. The maximum input voltage on XTAL1 is VDDIO + 0.4V. Table 7.10 Analog References NAME BUFFER TYPE VIH VIL IOH IOL VOL VOH EXRES1 NC AI AI/O Table 7.11 Internal Pull-Up / Pull-Down Configurations NAME PULL-UP OR PULL-DOWN SPEED100/PHYAD0 LINK/PHYAD1 ACTIVITY/PHYAD2 FDUPLEX//PHYAD3 GPO1/PHYAD4 MODE0 MODE1 MODE2 nINT/TX_ER/TXD4 nRST RXD3/nINTSEL MDIO MDC GPO0/RMII TXEN COL Revision 1.0 (12-14-06) 68 Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-up Pull-down Pull-down Pull-down Pull-down Pull-down SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Table 7.12 100Base-TX Transceiver Characteristics PARAMETER SYMBOL MIN TYP MAX UNITS NOTES Peak Differential Output Voltage High Peak Differential Output Voltage Low Signal Amplitude Symmetry Signal Rise & Fall Time Rise & Fall Time Symmetry Duty Cycle Distortion Overshoot & Undershoot Jitter Note 7.3 Note 7.4 Note 7.5 VPPH VPPL VSS TRF TRFS DCD VOS 950 -950 98 3.0 35 - 50 - 1050 -1050 102 5.0 0.5 65 5 1.4 mVpk mVpk % nS nS % % nS Note 7.3 Note 7.3 Note 7.3 Note 7.3 Note 7.3 Note 7.4 Note 7.5 Measured at the line side of the transformer, line replaced by 100Ω (+/- 1%) resistor. Offset from 16 nS pulse width at 50% of pulse peak Measured differentially. Table 7.13 10BASE-T Transceiver Characteristics PARAMETER SYMBOL MIN TYP MAX UNITS NOTES Transmitter Peak Differential Output Voltage Receiver Differential Squelch Threshold Note 7.6 VOUT VDS 2.2 300 2.5 420 2.8 585 V mV Note 7.6 Min/max voltages guaranteed as measured with 100Ω resistive load. SMSC LAN8187/LAN8187I 69 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 8 Application Notes 8.1 Magnetics Selection For a list of magnetics selected to operate with the SMSC LAN8187, please refer to the Application note “AN 8-13 Suggested Magnetics”. http://www.smsc.com/main/appnotes.html#Ethernet%20Products 8.2 Application Notes Application examples are given in pdf format on the SMSC LAN8187 web site. The link to the web site is shown below. http://www.smsc.com/main/catalog/lan8187.html Please check the web site periodically for the latest updates. 8.3 Reference Designs The LAN8187 Reference designs are available on the SMSC LAN8187 web site link below. http://www.smsc.com/main/catalog/lan8187.html The reference designs are available in four variations: a. MII with +3.3V IO b. RMII with +3.3V IO c. MII with +1.8V IO d. RMII with +1.8V IO. 8.4 Evaluation board The EVB-LAN8187 is a a PHY Evaluation Board (EVB) that interfaces a MAC controller to the SMSC LAN8187 Ethernet PHY through an MII connector, and out to an RJ-45 Ethernet Jack through industrial temperature magnetics for 10/100 connectivity. Schematics(*.pdf and *.dsn), BOM (bill of materials), user guide, gerber files and Layout board file are all available on the EVB web site link below. http://www.smsc.com/main/catalog/evblan8187.html The EVB-LAN8187 is designed to plug into a user's test system using a 40 pin Media Independent Interface (MII) connector. The MII connector is an AMP 40 pin Right Angle through hole MII connector, PN AMP- 174218-2. The mating connector is PN AMP 174217-2. FEATURES: Industrial temperature PHY and Magnetics 8 pin SOIC for user configurable Magnetics On board LED indicators for Speed 100 Full Duplex RJ-45 Connector LEDs for Link and Activity Interfaces Through 40-pin Connector as Defined in the MII Specification Powered by 5.0V from the 40-Pin MII Connector SMSC LAN8187/LAN8187I 70 Revision 1.0 (12-14-06) DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Standard RJ45 Connector with LED indicators for Link and Activity Includes Probe Points on All MII Data and Control Signals for Troubleshooting Includes 25MHz Crystal for Internal PHY Reference; RX_CLK is Supplied to the 40-Pin Connector Supports user configuration options including PHY address selection Integrated 3.3V Regulator APPLICATIONS The EVB8187 Evaluation board simplifies the process of testing and evaluating an Ethernet Connection in your application. The LAN8187 device is installed on the EVB board and all associated circuitry is included, along with all configuration options. The Benefits of adding an external MII interface are: Easier system and software development Verify MAC to PHY interface Support testing of FPGA implementations of MAC Assist interoperability test of various networks Verify MII compliance Verify performance of HP AutoMDIX feature Verify Variable IO compliance Revision 1.0 (12-14-06) 71 SMSC LAN8187/LAN8187I DATASHEET ±15kV ESD Protected MII/RMII Fast-Ethernet PHY with HP Auto-MDIX and SMSC flexPWRTM Datasheet Chapter 9 Package Outline Figure 9.1 64 Pin TQFP Package Outline, 10X10X1.4 Body, 12x12 mm Footprint Table 9.1 64 Pin TQFP Package Parameters MIN NOMINAL MAX REMARKS A A1 A2 D D1 E E1 H L L1 e ~ 0.05 1.35 11.80 9.80 11.80 9.80 0.09 0.45 ~ 0o 0.17 0.08 0.08 ~ θ W R R2 ccc ~ ~ ~ ~ ~ ~ ~ ~ 0.60 1.00 0.50 Basic ~ 0.22 ~ ~ ~ 1.60 0.15 1.45 12.20 10.20 12.20 10.20 0.20 0.75 ~ 7o 0.27 ~ 0.20 0.08 Overall Package Height Standoff Body Thickness X Span X body Size Y Span Y body Size Lead Frame Thickness Lead Foot Length Lead Length Lead Pitch Lead Foot Angle Lead Width Lead Shoulder Radius Lead Foot Radius Coplanarity Notes: 1. Controlling Unit: millimeter. 2. Tolerance on the true position of the leads is ± 0.04 mm maximum. 3. Package body dimensions D1 and E1 do not include the mold protrusion. Maximum mold protrusion is 0.25 mm per side. 4. Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane. 5. Details of pin 1 identifier are optional but must be located within the zone indicated. SMSC LAN8187/LAN8187I 72 Revision 1.0 (12-14-06) DATASHEET
LAN8187-JT 价格&库存

很抱歉,暂时无法提供与“LAN8187-JT”相匹配的价格&库存,您可以联系我们找货

免费人工找货