0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXA1992

CXA1992

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXA1992 - RF Signal Processing Servo Amplifier - Sony Corporation

  • 数据手册
  • 价格&库存
CXA1992 数据手册
CXA1992AR RF Signal Processing Servo Amplifier Description The CXA1992AR is a bipolar IC developed for CD player RF signal processing and servo control. Features • Automatic focus bias adjustment circuit • Automatic tracking balance and gain adjustment circuits • RF level control circuit • Interruption countermeasure circuit • Sled overrun prevention circuit • Anti-shock circuit • Defect detection and prevention circuits • RF 1-V amplifier, RF amplifier • APC circuit • Focus and tracking error amplifier • Focus, tracking and sled servo control circuits • Focus OK circuit • Mirror detection circuit • Single power supply and dual power supplies Applications CD players Structure Bipolar silicon monolithic IC 52 pin LQFP (Plastic) Absolute Maximum Ratings (Ta = 25°C) 12 V • Supply voltage VCC • Operating temperature Topr –20 to +75 °C • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 600 mW Recommended Operating Conditions Operating supply voltage VCC – VEE 3.0 to 5.5 V Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E96X16-PS CXA1992AR Block Diagram RF_M RFTC RF_O RF_I CC1 PD2 39 38 37 VEE 36 35 34 33 32 31 30 29 28 CC2 PD1 LD CB 27 PD2 IV AMP PD1 IV AMP RF SUMMING AMP FE_BIAS 40 VCC APC IIL ↓ VCC TTL FOK PD CP 26 SENS2 F 41 F IV AMP VEE LASER POWER CONTROL 25 SENS1 E 42 E IV AMP VCC FE AMP VCC 24 C. OUT VEE DFCT IFB2 IFB3 IFB1 IFB4 IFB5 EI 43 BAL1 BAL2 BAL3 BAL4 IFB6 23 VEE LEVEL S XRST VEE VEE TOG1 TOG2 TOG3 TOG4 VEE 44 TGFL VEE FO. BIAS WINDOW COMP. VCC TEO 45 TRK. GAIN WINDOW COMP. 22 DATA MIRR IIL ↓ TTL FOK TTL ↓ IIL 21 XLT LDON TGFL LPCL TEI 47 ATSC 48 ATSC WINDOW COMP. TZC COMP. TZC 49 DFCT TM1 TDFCT 50 TG1 VCC TRACKING PHASE COMPENSATION FOH FOL TGH TGL BALH BALL ATSC TZC FZC LPC IIL DATA REGISTER INPUT SHIFT REGISTER ADDRESS DECODER SENS SELECTOR OUTPUT DECODER VCC CC1 LPFI 46 MIRR DFCT1 E-F BALANCE WINDOW COMP. 20 CLK 19 LOCK 18 VCC DFCTO IFB1-6 BAL1-4 TOG1-4 FS1-4 TG1-2 TM1-7 PS1-4 ISET 17 ISET VCC TM4 VCC 16 TM6 SL_O VC 51 VCC VCC VEE FZC 52 FOCUS PHASE COMPENSATION FS1 TM3 VEE FS2 DFCT FZC COMP. FS4 Charge up TG2 TM5 VEE TM2 TM7 15 SL_M 14 SL_P FSET VEE 1 FEO 2 FEI 3 FDFCT 4 FGD 5 FLB 6 FE_O 7 FE_M 8 SRCH 9 TGU 10 TG2 11 FSET 12 TA_M 13 TA_O –2– CXA1992AR Pin Description Pin No. Symbol I/O Equivalent circuit Description 10µ 25p 147 1 174k 300µ 10µ 1 FEO O Focus error amplifier output. Connected internally to the window comparator input for bias adjustment. 2 FEI I 2 147 100k 147 Focus error input. 3 FDFCT I 3 3µ Capacitor connection pin for defect time constant. 4 FGD I 4 147 68k Ground this pin through a capacitor for cutting the focus servo highfrequency gain. 4µ 130k 40k 5 330k 470k 5 FLB I External time constant setting pin for boosting the focus servo lowfrequency. 6 FE_O O 6 Focus drive output. 13 TA_O O 13 16 Tracking drive output. 16 SL_O O 250µ Sled drive output. 147 90k 7 FE_M I 7 50k 2µ Focus amplifier inverted input. –3– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 147 8 SRCH I 8 50k 20k 11µ External time constant setting pin for generating focus search waveform. 110k 9 TGU I 147 20k 9 82k External time constant setting pin for switching tracking highfrequency gain. 10 TG2 I 10 470k External time constant setting pin for switching tracking high-frequency gain. 147k 11 FSET I 11 15k 15k Peak frequency setting pin for focus and tracking phase compensation amplifier. 100k 12 147 TA_M I 12 11µ Tracking amplifier inverted input. 14 SL_P I 147 14 2µ Sled amplifier non-inverted input. 15 SL_M I 147 15 22µ Sled amplifier inverted input. –4– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 17 ISET I 147 17 50µ Connect an external capacitance to set the current which determines the Focus search, Track jump, and Sled kick heights. 18 VCC I 18 VCC Positive power supply. The sled overrun prevention circuit operates when this pin is Low. (no pull-up resistance) Serial data transfer clock input from CPU. (no pull-up resistance) Serial data input from CPU. (no pull-up resistance) 19 LOCK I 19 147 1k 20µ 20 CLK I 20 22 22 DATA I 21 XLT I 147 21 23 2k 20µ Latch input from CPU. (no pull-up resistance) 23 XRST I 5p Reset input; resets at Low. (no pull-up resistance) 24 C. OUT O 24 20k 147 Track number count signal output. Outputs FZC, DFCT1, TZC, BALH, TGH, FOH, ATSC, and others according to the command from CPU. 100k 25 SENS1 O 25 26 26 SENS2 O Outputs DFCT2, MIRR, BALL, TGL, FOL, and others according to the command from the CPU. 20k 147 27 FOK O 27 40k Focus OK comparator output. 100k –5– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 28 CC2 I 147 30 147 29 Input for the defect bottom hold output with capacitance coupled. 29 CC1 O Defect bottom hold output. Connected internally to the interruption comparator input. 147 120k 28 11k 43k 30 CB I Connection pin for defect bottom hold capacitor. 31 100k 31 CP I 1.5k Connection pin for MIRR hold capacitor. MIRR comparator non-inverted input. 32 RF_I I Input for the RF summing amplifier output with capacitance coupled. 147 33 RF_O O 32 RF sunning amplifier output. Eyepattern check point. 147 33 147 34 10k 10k 34 RF_M I RF summing amplifier inverted input. The RF amplifier gain is determined by the resistance connected between this pin and RFO pin. 35 RFTC I 147 35 50µ 50µ External time constant setting pin during RF level control. 10µ –6– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 10k 1k 36 LD O 36 APC amplifier output. 20µ 8µ 147 37 10k 55k 37 PD I APC amplifier input. 10k 2k 8k 38 39 PD1 PD2 I I 147 38 39 100µ 11.6k RF I-V amplifier inverted input. Connect these pins to the photo diode A + C and B + D pins. 4k 147 40 FE_BIAS I 40 6µ Bias adjustment of focus error amplifier. Leave this pin open for automatic adjustment. 12p 260k 41 42 F E I I 147 41 42 10µ 500 F I-V and E I-V amplifier inverted input. Connect these pins to photo diodes F and E. –7– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 6.8k 110k 56k 27k 13k 43 EI — 147 43 260k 75k I-V amplifier E gain adjustment. (When not using automatic balance adjustment) 44 VEE — 44 VEE Negative power supply. 147 45 TEO O 45 7.5k 16k 7.5k 3.3k 1.5k 150k 10k 150k Tracking error amplifier output. E-F signal is output. 147 46 LPFI I 46 Comparator input for balance adjustment. (Input from TEO through LPF) 7µ 47 TEI I 47 147 100k Tracking error input. 147 50 TDFCT I 50 3µ Capacitor connection pin for defect time constant. –8– CXA1992AR Pin No. Symbol I/O Equivalent circuit Description 1k 147 100k 48 ATSC I 48 100k 10µ 10µ 1k Window comparator input for ATSC detection. 10µ 147 49 TZC I 49 75k Tracking zero-cross comparator input. 51 VC O 50 51 120 (VCC + VEE)/2 direct voltage output. 120 VC 10µ 147 51k 52 FZC I 52 75k 9k Focus zero-cross comparator input. –9– CXA1992AR Electrical Characteristics TEST T1 T2 T3 T4 RF amplifier T5 T6 T7 T8 T9 T10 T11 T12 T13 FE amplifier T14 T15 T16 T17 T18 T19 T20 Item Current consumption 1 Current consumption 2 SW conditions (ON switches) 51 51 SD RST RST RST RST 33S, 38, 39 RST RST RST 39F 39F 39F 39F 39F 39F 3BF 3BE 3BD 3BB 3B7 3AF 39F 39 38 1 1 1 1 1 1 1 1 1 38 39 38 39 38 39 38 39 Input pin 18 44 — Measurement pin 18 44 51 33 33 33 33 1 1 1 (VCC = 1.5V, VEE = 1.5V, Topr = 25°C) Measurement conditions Min. 18.4 Typ. 24.4 Max. 34.2 Unit mA mA mV mV dB V V mV dB dB dB V V mV mV dB dB dB dB dB –34.2 –24.4 –18.4 –100 –50 1kHz I/O ratio V2 = 0.2VDC V2 = 0.2VDC 1FB6: ON 1kHz I/O ratio 1kHz I/O ratio 25.1 1.2 — –120 27 27 –3 V2 = 100mVDC V2 = 100mVDC IFB1, 2, 3, 4, 5, 6: OFF IFB1: ON, BIAS0: reference IFB2: ON, BIAS0: reference Output gain difference with T15 IFB3: ON, BIAS0: reference Output gain difference with V17 IFB4: ON, BIAS0: reference Output gain difference with V18 IFB5: ON, BIAS0: reference Output gain difference with V19 IFB6: ON, BIAS0: reference Output gain difference with V20 Center amplifier 51, 51D output offset Offset Voltage gain 0 0 28.1 1.3 –0.6 0 30 30 0 1.3 –1.3 801 –25 6 6 6 6 6 100 50 31.1 — –0.3 120 33 33 3 — –1 1042 –18.8 7 7 7 7 7 Max. output 33D, 38 amplitude - High Max. output amplitude - Low Offset 33D, 39 1D Voltage gain 1 1S, 38 (PHD1) Voltage gain 2 1S, 39 (PHD2) Voltage gain difference 1S Max. output 1D, 39 voltage – High Max. output voltage – Low BIAS0 BIAS1 BIAS2 BIAS3 BIAS4 BIAS5 BIAS6 1D, 38 1D 1D 1D 1D 1D 1D 1D 1 — 560 –31.3 5 5 5 5 5 – 10 – CXA1992AR TEST Item SW conditions (ON switches) SD Input pin 40 Measurement pin 1 Measurement conditions IFB6: ON Pin 1 voltage when SENS1 (Pin 25) goes from High to Low IFB6: ON Min. Typ. Max. Unit T21 FE amplifier FOH threshold 1D, 25D, 40 39F 5 20 35 mV T22 FOL threshold 1D, 26D, 40 39F 34F 308 36F 308 36F 308 34F 34E 30F 34D 34B 347 34F 30F 00 30E 30D 30B 307 34F 308 34F 308 3C4 3C4 3C4 3C4 3C0 40 41 42 41 42 41 41 41 41 41 42 42 42 42 42 41 42 37 37 37 37 37 1 Pin 1 voltage when SENS2 (Pin 26) goes from High to Low –35 –20 –5 mV T23 T24 T25 T26 T27 T28 T29 TE amplifier T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 APC T40 T41 T42 Offset GAIN UP (F) GAIN UP (E) Voltage gain F0 Voltage gain F1 Voltage gain F2 Voltage gain F3 Voltage gain F4 Voltage gain E0 Voltage gain E1 Voltage gain E2 Voltage gain E3 Voltage gain E4 45D 41, 45S 42, 45S 41, 45S 41, 45S 41, 45S 41, 45S 41, 45S 42, 45S 42, 45S 42, 45S 42, 45S 42, 45S 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 36 36 36 36 36 TOG: OFF, BAL1, 2, 3: ON V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON V1 = 2kHz, TOG: OFF I/O ratio V1 = 2kHz, TOG1: ON Reference to F0 V1 = 2kHz, TOG2: ON Reference to F0 V1 = 2kHz, TOG3: ON Reference to F0 V1 = 2kHz, TOG4: ON Reference to F0 V1 = 2kHz, BAL: OFF I/O ratio V1 = 2kHz, BAL1: ON Reference to E0 V1 = 2kHz, BAL2: ON Reference to E0 V1 = 2kHz, BAL3: ON Reference to E0 V1 = 2kHz, BAL4: ON Reference to E0 V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON I37 = 364µA I37 = 439µA I37 = 515µA 0.8mA sink I37 = 515µA, LD: OFF –25 8.6 8.6 2.5 –2.6 –4.4 –7.7 0 11.6 11.6 5.5 –2.1 –3.9 –7.2 25 14.6 14.6 8.5 –1.6 –3.4 –6.7 mV dB dB dB dB dB dB dB dB dB dB dB dB V V mV mV mV mV V –12.2 –11.7 –11.2 –0.33 2.67 0.17 0.6 1.46 3.03 0.5 — 0.47 0.9 1.76 3.33 0.7 –0.8 5.67 0.77 1.2 2.06 3.63 — –0.5 Max. output 41, 45D voltage – High Max. output voltage – Low 42, 45D Output voltage 36D, 37 1 Output voltage 36D, 37 2 Output voltage 36D, 37 3 Output voltage 36, 36D 4 LD OFF 36, 36D, 37 –900 –694 –500 –900 –538 –100 –100 –200 1.1 367 130 1.3 800 500 — – 11 – CXA1992AR TEST T43 RF level controll T44 T45 T46 T47 T48 T49 Focus servo T50 T51 T52 T53 T54 T55 T56 T57 T58 Tracking servo T59 T60 T61 T62 T63 T64 Item 50% limit 17% limit –50% limit –17% limit Direct voltage gain FCS total gain Feed through 1 SW conditions (ON switches) 32, 36D, 37 32, 36D, 37 36D, 37, 38, 39 36D, 37, 38, 39 2, 6D SD 3C7 3C5 3C7 3C5 08 — Input pin 37 32 37 32 37 38 39 37 38 39 2 — 2 52 2 2 — — 47 — 47 47 47 Measurement pin 36 36 36 36 6 — 6 52 6 6 6 6 13 — 13 13 13 13 13 Measurement conditions I37 = 273µA Output difference with LPC ON/OFF I37 = 394µA Output difference with LPC ON/OFF I37 = 742µA Output difference with LPC ON/OFF I37 = 621µA Output difference with LPC ON/OFF Min. 300 230 Typ. Max. Unit mV mV mV mV dB dB dB mV V V mV mV dB dB dB V V mV mV mV mV mV 1020 1510 610 1050 –1510 –970 –300 –900 –580 17.8 20.8 51 — 221 1.3 –1.3 –80 23.8 53 –30 261 — –1 T9 + T47 Output gain difference between SD = 00 and SD = 08. Pin 52 voltage when SENS1 (Pin 25) goes from Low to High 49 — 181 1 — 2, 6S 00 08 00 08 08 02 03 25 — FZC threshold 26D, 52 Max. output 2, 6D, 6S voltage – High Max. output voltage – Low Search voltage (–) Search voltage (+) Direct voltage gain TRK total gain Feed through 1 13S, 47 2, 6D, 6S 6D 6D 13D, 47 V1 = 200mVDC V1 = –200mVDC –640 –500 –360 360 12.2 T26 + T55 Output gain difference between SD = 20 and SD = 25. 500 14.6 20.1 — 1.3 –1.3 640 17.6 22.1 –39 — –1 18.1 — 1 — 20 25 20 25 20 25 2C 28 10 10 20 Max. output 13D, 47 voltage – High Max. output voltage – Low Jump output voltage (–) Jump output voltage (+) ATSC threshold (–) ATSC threshold (+) TZC threshold 13D, 47 13D 13D 10, 10D, 48 10, 10D, 48 25D, 49, 49B V1 = –0.5VDC V1 = 0.5VDC –640 –500 –360 360 Input voltage when TG2 (Pin 10) goes from Vcc/2 to Vcc Input voltage when TG2 (Pin 10) goes from Vcc/2 to Vcc 500 –15 15 0 640 –7 25 20 48 48 49 48 48 49 –25 7 –20 Pin 49 voltage when SENS1 (Pin 25) is 0V – 12 – CXA1992AR TEST T65 Tracking servo T66 T67 T68 FOK T69 T70 T71 Sled servo T72 T73 T74 T75 T76 MIRROR T77 T78 T79 T80 T81 T82 Item SW conditions (ON switches) SD 300 300 308 34F 308 34F — 25 20 25 25 25 20 20 20 20 20 10 10 10 10 Input pin 46 46 41 41 32 14 14 14 14 — — 32 32 32 38 39 38 39 38 39 38 39 Measurement pin 46 46 45 45 32 16 16 16 16 16 16 26 26 26 25 25 25 25 Measurement conditions Pin 46 voltage when SENS1 (Pin 25) goes from High to Low Pin 46 voltage when SENS2 (Pin 26) goes from High to Low Pin 45 voltage when SENS1 (Pin 25) goes from High to Low Pin 45 voltage when SENS2 (Pin 26) goes from Low to High Min. 5 –35 350 260 Typ. 20 –20 400 300 Max. 35 –5 450 340 Unit mV mV mV mV mV dB dB V V mV mV kHz Vp-p Vp-p kHz kHz Vp-p Vp-p BAL COMP 25D, 46, threshold – High 46B BAL COMP 26D, 46, threshold – Low 46B GAIN COMP 25D, 41, threshold – High 45D GAIN COMP 26D, 41, threshold – Low 45D FOK threshold Voltage gain Feed through 27D, 32 14, 14B, 15, 16S 14, 14B, 16S Pin 32 voltage when Pin 27 is 0V V1 = 100Hz, I/O ratio Output gain difference between SD = 20 and SD = 25. –400 –367 –330 50 — 1 — — — 1.3 –1.3 — –34 — –1 Max. output 14, 14B, voltage – High 16D Max. output voltage – Low Kick voltage 1 Kick voltage 2 Max. operating frequency 1 Min. input operating voltage 1 Max. input operating voltage 1 V1 = 400mVDC V1 = 400mVDC REV × 1 FWD × 1 Measures at SENS2 pin. Measures at SENS2 pin. Measures at SENS2 pin. Measures at SENS1 pin. Measures at SENS1 pin. Measures at SENS1 pin. Measures at SENS1 pin. 14, 14B, 16D 16D 16D 26S, 32 26S, 32 26S, 32 25S, 38, 39 25S, 38, 39 25S, 38, 39 25S, 38, 39 –750 –600 –450 450 30 — 1.8 — 2.5 — 1.8 600 — — — — — — — 750 — 0.3 — 1 — 0.5 — Min. operating frequency 1 DEFECT Max. operating frequency 1 Min. input operating voltage 1 Max. input operating voltage 1 – 13 – Electrical Characteristics Measurement Circuit STORAGE2 GND DC OUTPUT GND VCC GND I37 0mA R24 10k GND GND S33D S33S R15 1M C5 0.1µ S36 S36D R17 22k R48 10k GND S26S S26D SENS2 26 S25S S25D SENS1 25 S24S S24D C. OUT 24 R38 10k R45 10k R39 10k R46 10k R51 100 R40 10k R52 100 R47 10k R53 100 GND 33 30 29 CC1 CC2 FOK CB 28 27 RF_O RF_I CP 32 31 35 34 RF_M RFTC S27D S32 S27S STORAGE1 C6 3300p C7 1000p C9 3300p R54 100 S28 R11 10k S38 S37 R12 R14 330 10k R31 100k R35 10k I36 0mA R18 10k GND R21 100 VEE V2 R9 10k AC S39 DC 39 PD2 PD1 PD LD 38 36 37 I40 0mA S40 40 FE_BIAS R6 390k S41 41 F R5 390k S42 42 E R4 13k XRST 23 S43 43 EI XRST C2 33µ DATA 22 DATA 44 VEE A44 XLT 21 R2 100 S45 XLT S45S S45D CLK 20 45 TEO FE_O FLB FGD FDFCT FEI FEO FE_M SRCH TGU TG2 FSET TA_M TA_O – 14 – LOCK 19 S19 VCC 18 S17 ISET 17 R37 120k SL_O 16 R36 60k SL_M 15 S16 SL_P 14 S14 S14B C10 33µ R43 120k S16D S16S R42 R41 13k 10k 1 2 3 7 4 8 5 6 9 10 11 12 13 S1S S2 S3 S4 C4 1000P R13 47k R23 200k S6S S8D S6D S13D R16 13k A3 S5 R20 100k S7 S9 R28 510k S10 S10D R27 10k R30 100k S13S R33 200k C8 0.01µ S12 C3 1000P R34 13k R10 100 R19 100 R22 10k R25 10k R26 10k R29 10k R32 100 R1 10k S46 CLK S46B 46 LPFI A46 S47 D_GND 47 TEI S48 A18 R50 10k R49 100 48 ATSC S49 S49B 49 TZC A49 A50 S50 C1 1000P 50 TDFCT S51 R44 5.1k C11 47µ S15 R3 10k I51 0mA S51I 51 VC S51D S52 52 FZC A14 V1 S1D AC DC R8 10k CXA1992AR GND R7 10k CXA1992AR Application Circuit 1 (±2.5V power supply) Vcc 1k A C VEE B D 39 38 37 36 35 34 33 32 500 100 3.3µ Vcc 1µ 22 100µ LD 10µH PD VEE VEE MICRO COMPUTER DSP 27 1M 1µ 22k 0.01µ 0.033µ 0.033µ 31 0.01µ 30 29 28 RF_M RF_O PD CP CC1 RFTC RF_I 40 F E FOK SENS2 PD1 LD CC2 PD2 CB FE_BIAS 26 41 F 42 E 43 EI SENS1 25 C. OUT 24 XRST 23 DATA 22 XLT 21 CLK 20 LOCK 19 Vcc 18 60k ISET 17 Vcc VEE VEE 44 VEE 45 TEO 100k 0.01µ 0.047µ 330k 150k 46 LPFI 0.01µ 47 TEI 47k 48 ATSC 470p 49 TZC 0.1µ 51 VC SL_M 15 FZC FDFCT 0.015µ 8.2k 3.3µ SRCH TA_M FE_O FE_M FSET TA_O FGD TGU FEO TG2 FEI FLB 52 0.022µ SL_P 14 1 2 10k 10k 2200p 4.7µ 100k 0.033µ 510k Vcc 100k 0.015µ DRIVER 0.1µ 0.1µ DRIVER Application Circuit 2 (Single +5V power supply) Vcc 1k A C 3.3µ Vcc 1µ 22 100µ LD 10µH PD 1M B D 39 500 1µ 100 82k 4 3 680k 5 6 0.1µ 7 8 9 10 11 12 13 22µ 15k 100k 0.022µ 50 TDFCT SL_O 16 DRIVER 0.033µ 22k 0.01µ 0.033µ 38 37 36 35 34 33 32 31 0.01µ MICRO COMPUTER DSP 27 30 29 28 RF_M RF_O PD CP CC1 RFTC RF_I 40 F E FOK SENS2 PD1 LD CC2 PD2 CB FE_BIAS 26 41 F 42 E 43 EI 44 VEE 45 TEO SENS1 25 C. OUT 24 XRST 23 DATA 22 XLT 21 CLK 20 LOCK 19 Vcc 18 60k ISET 17 Vcc 100k 0.01µ 0.047µ 330k 0.022µ VCC 150k 46 LPFI 0.01µ 47 TEI 47k 48 ATSC 470p 49 TZC 0.1µ 10µ 50 TDFCT 51 VC SL_M 15 100k 82k SL_O 16 DRIVER 0.015µ 8.2k SRCH TA_M FE_O FSET FGD TGU FEO TG2 FEI FLB 10µ FE_M TA_O 52 FZC FDFCT SL_P 14 3.3µ 22µ 15k 0.022µ 1 10k 10k 2 2200p 4 3 680k 5 6 7 8 9 4.7µ 10 11 12 13 100k 0.033µ 510k Vcc 0.015µ DRIVER 0.1µ 0.1µ 0.1µ 100k DRIVER Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 15 – CXA1992AR Description of Functions RF Amplifier The photo diode currents input to the input pins (PD1 and PD2) are each I-V converted through a 58kΩ equivalent resistor by the PD I-V amplifiers. These signals are added by the RF summing amplifier, and the photo diode (A + B + C + D) current-voltage converted voltage is output to the RFO pin. An eye-pattern check can be performed at this pin. 1k 3.3µ 34 58k C PD1 iPD1→ B PD2 iPD2→ 39 PD2 IV AMP VC VB 10k 38 PD1 IV AMP VC 58k VC D VA 10k 22k RF_M A 33 RF_O RF SUMMING AMP The low frequency component of the RFO output voltage is VRFO = 2.2 × (VA + VB) = 127.6kΩ × (iPD1 + iPD2). – 16 – CXA1992AR Focus Error Amplifier R3 58k R5 32k R7 174k VB PD2 39 B+D 1 PD2 IV AMP VC R2 58k R4 32k FE AMP 2 FEO R10 10k FEI R9 10k C1 2200p GND PD1 38 A+C VA PD1 IV AMP VC VCC R6 174k R1 4k 7 R8 100k 6 FE_O FE_M GND ×1 ×2 EF_BIAS 40 ×4 ×8 ×16 ×32 VC FOCUS PHASE COMPENSATION R11 100k DRIVER IFB3 IFB5 IFB2 IFB1 IFB4 IFB6 VIN > VH L VIN < VH H 25mV/STEP RESET : IFB1 to IFB6 ON VEE 20mV VIN VC FOL VL VIN > VL H VIN < VL L –20mV VC VH FOH VC 25 SENS1 SENS SELECTOR 26 SENS2 The focus error amplifier calculates the difference between output VA and VB of the RF I-V amplifier, and output current-voltage converted voltage of the photo diode (A + C – B – D). The FEO output voltage: VFEO = = 174kΩ (VA – VB) 32kΩ 174kΩ {(–58kΩ × iPD1) – (–58kΩ × iPD2)} 32kΩ = 315.4kΩ (iPD2 – iPD1) The focus error amplifier has a built-in bias adjustment circuit to enable software-based automatic adjustment. The focus bias adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF. The 6-bit focus bias adjustment switches are controlled with commands. IFB1 to IFB6 are all ON after a reset. The voltage is varied by approximately 25mV per step. – 17 – CXA1992AR • Focus error amplifier offset adjustment (when adjusting the IC offset) The offset adjustment is performed by comparing the FEO when the focus servo is OFF with the reference level. The FEO and reference level are compared by the window comparator, and the comparison results are output from SENS1 and SENS2. (ADDRESS D11001110D6) Adjust the offset so that SENS1 and SENS2 are both High. Set the reference level to the center ±20mV. 25mV < 40mV < 50mV Reference level width Variable voltage per step Variable voltage per 2 steps • Focus bias fine adjustment Fine adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF while monitoring a DSP jitter meter with the microcomputer. The 6-bit focus bias adjustment switches are controlled with commands. • When performing conventional focus bias adjustment Fix the focus bias adjustment switches to the desired settings. (for example, IFB6 ON) In this condition, adjust the focus bias by turning a volume connected to FE_BIAS (Pin 40). [Example circuit] VCC Volume 47k 3.9k 40 FE_BIAS VEE – 18 – CXA1992AR Tracking Error Amplifier R23 100k C3 0.01µ R24 150k C4 0.01µ TEO 45 R2 260k C2 12p F 41 VF VC F I-V AMP R5 13k R3 26k VC R8 17k R4 6.8k R13 13k V R12 96k VC VE VC E I-V AMP TE AMP R16 NORMAL 96k R14 13k TGFL R9 17k GAIN UP GAIN UP TGFL NORMAL R18 7.5k GND GND 46 LPFI VIN > VH L VIN < VH H VH BALH 25 BALL – SENS1 20mV VC VIN VL + R22 1.5k VC E 42 C1 12p TOG1 TOG2 TOG3 TOG4 R17 10k R19 16k R20 7.5k R21 3.3k R1 260k VIN > VL H –20mV VIN < VL L SENS VIN > VH L SELECTOR VIN < VH H VH TGH 400mV SENS2 VIN TGL VL 26 VC CPU R6 75k R7 BAL1 110k R10 BAL2 56k R11 BAL3 27k R15 BAL4 13k VC 300mV RE VC VIN > VL H VIN < VL L 23 COMAND COMAND CONTROL CONTROL 22 21 20 XRST DATA XLT CLK VC 43 EI The difference between E I-V amplifier output VE and F I-V amplifier output VF is taken and output from TEO. The tracking error amplifier has built-in balance and gain adjustment circuits to enable software-based automatic adjustment. The balance adjustment is performed by varying the combined resistance value of the T-configured feedback resistance at the E I-V amplifier. E I-V AMP feedback resistance = R1 + R4 + R1 × R4 RE F I-V AMP feedback resistance = R2 + R5 + R2 × R5 = 403kΩ R3 Vary the combined resistance value of the E I-V amplifier's feedback resistance by using the balance adjustment switches (BAL1 to BAL4). The gain adjustment is performed by resistance dividing the TE AMP output by the gain adjustment switches (TOG1 to TOG4). The balance and gain adjustment switches are controlled with commands. Set the cut-off frequency of the external LPF between 10Hz to 100Hz. – 19 – CXA1992AR • Balance adjustment The balance adjustment is performed by passing the tracking error signal (TEO signal) through the external LPF, extracting the offset DC, and comparing it to the reference level. However, the TEO signal frequency distribution ranges form DC to 2kHz. Merely sending the signal through the LPF leaves lower frequency components, and the complete offset DC can not be extracted. To extract it, monitor the TEO signal frequency at all times, and perform adjustment only when a frequency that can lower a sufficient gain appears on the LPF. Use the C.OUT output to check this frequency. The offset DC and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001100D6) Adjust the balance so that the SENS1 and SENS2 pins are both High. VIN < VL < VH SENS1 pin BALH SENS2 pin BALL H L VL < VIN < VH H H VL < VH < VIN L H VH: High level threshold value VIN: Window comparator input signal VL: Low level threshold value • Gain adjustment Gain adjustment is performed by passing the TEO signal through the HPF and comparing the AC component to the reference level. The AC component is generated by taking the difference between TE and the offset DC input to Pin 46. The AC component and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001101D6) The comparison signal is as follows. (1) (2) (3) VH VL VIN SENS1 pin TGH SENS2 pin TGL H H L The gain should be adjusted so that the SENS1 and SENS2 pins are as shown in status (2). When the TEO signal level is low and TGH (SENS1 pin) does not go Low, the gain should be raised with the TGFL command for adjustment. If the adjustment does not bring the result of Low, check the pulse duty of TGL (SENS2 pin). – 20 – CXA1992AR APC & Laser Power Control VCC R1 22 C2 100µ LD 36 R6 1k VCC LDON L1 10µH 130mV PD 37 R8 10k R10 56k C1 1µ R2 500 LD PD R3 100 R4 10k R5 55k R11 10k VL R14 12.5k R12 56k VREF VEE GND VEE VEE LPC ON/OFF 50%/17% RF_I 32 1.1Vpp C3 0.01µ RF_O 33 R7 1.47V 39.5k R9 23.5k VC 670mV VC RF 35 R13 1M VEE VEE • APC When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. The APC circuit is used to maintain the optical power output at a constant level. The laser diode current is controlled according to the monitor photo diode output. • Laser power control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The RF_O and RF_I levels are compared and the larger of the two is smoothed by the RFTC's external CR. This signal is then compared with the reference level. The laser power is controlled by attaching an offset to VL according to the results of comparison with the reference level. Set the reference level to 670mV. (center voltage reference) LPC ON/OFF and LD ON/OFF control is performed with commands. The laser power control limit can also be switched between ±50% and ±17% with commands. LPC OFF ON ON LPCL — ±50% ±17% VL variable range Approximately 1.27V Approximately 1.27V ± 625mV Approximately 1.27V ± 208mV – 21 – RFTC C4 1µ CXA1992AR Center Voltage Generation Circuit (The figure below shows a single voltage application; Connect to GND for dual power supplies.) Maximum current is approximately ±3mA. Output impedance is approximately 50Ω. VCC VCC 30k VC 50 51 VC 30k VEE Connected internally to the VEE pin. GND – 22 – CXA1992AR Focus Servo 9k 0.022µ 52 FEO 1 10k 2 10k 2200p 3 0.1µ FDFCT FGD 4 680k 40k 0.1µ ISET 17 50k FS2 FLB 5 0.1µ FSET 11 510k 0.015µ 4.7µ 8 SRCH FS1 Charge up 60k 11µ 22µ 50k FE_M 7 100k FEI 100k DFCT FS3 FS4 68k Focus 100k phase Compensation FE_O 6 FE 75k FZC 51k FZC SENS SELECTOR 25 SENS1 FOCUS COIL The above figure shows a block diagram of the focus servo. Ordinarily the FE signal is input to the focus phase compensation circuit through a 68kΩ resistance; however, when DFCT is detected, the FE signal is switched to pass through a low-pass filter formed by the internal 100kΩ resistance and the capacitance connected to Pin 3. When this DFCT prevention circuit is not used, leave Pin 3 open. The defect switch operation can be enabled and disabled with command. The capacitor connected between Pin 5 and GND is a time constant to boost the low frequency in the normal playback state. The peak frequency of the focus phase compensation is approximately 1.2kHz when a resistance of 510kΩ is connected to Pin 11. The focus search height is approximately ±1.1Vp-p when using the constants indicated in the above figure. This height is inversely proportional to the resistance connected between Pin 17 and VEE. However, changing this resistance also changes the height of the track jump and sled kick as well. The FZC comparator inverted input is set to 15% of Vcc and VC (Pin 51); (Vcc – VC) × 15%. ∗ 510kΩ resistance is recommended for Pin 11. – 23 – CXA1992AR Tracking and Sled Servo TE + 45 TEO – TGH GAIN TGL WINDOW COMPARATOR BALH BALANCE WINDOW COMPARATOR BALL SENS SELECTOR 26 SENS2 25 SENS1 100k 150k BUFFER AMP 46 47k SLED ON/OFF CONTROL 19 LOCK SLED MOTOR 0.01µ 0.01µ LPFI SL_O 16 TEI 47 100k TDFCT 50 100k 680k 66p TM6 22µA DFCT TM1 680k TG1 SL_M 15 M 0.015µ 3.3µ 22µ 15k 0.1µ TM5 ATSC 1k 1k ATSC 48 TM2 22µA 14 SL_P 0.047µ 47k 330k 470p 0.022µ 49 TZC TZC 9 TGU TG2 TG2 470k 100k TM4 11µA TM3 11µA 90k 82k TA_M 12 100k 20k 0.033µ 10 Tracking Phase Compensation 10k TA_O TM7 13 FSET 11 510k 0.015µ The above figure shows a block diagram of the tracking and sled servo. The capacitor connected between Pins 9 and 10 is a time constant to cut the high-frequency gain when TG2 is OFF. The peak frequency of the tracking phase compensation is approximately 1.2kHz when a 510kΩ resistance is connected to Pin 11. In the CXA1992AR, TG1 and TG2 are inter-linked switches. To jump tracks in FWD and REV directions, turn TM3 or TM4 ON. During this time, the peak voltage applied to the tracking coil is determined by the TM3 or TM4 current and the feedback resistance from Pin 12. To be more specific, Track jump peak voltage = TM3 (or TM4) current × feedback resistance value The FWD and REV sled kick is performed by turning TM5 or TM6 ON. During this time, the peak voltage applied to the sled motor is determined by the TM5 or TM6 current and the feedback resistance from Pin 15; Sled kick peak voltage = TM5 (or TM6) current × feedback resistance The values of the current for each switch are determined by the resistance connected between Pin 17 and VEE. When this resistance is 60kΩ : TM3 (or TM4) = ±11µA, and TM5 (or TM6) = ±22µA. As is the case with the FE signal, the TE signal is switched to pass through a low-pass filter formed by the internal resistance (100kΩ) and the capacitance connected to Pin 50. – 24 – 120k 8.2k TRACKING COIL CXA1992AR The ISET pin is used to connect external resistance. This external resistance sets the current which determines the focus search, track jump, and sled kick heights. • Focus search current I1 = I1 I2 VBG × R 1 2 (VBG: approximately 1.27V) I2 = 2I1 FS1 • Track jump current (TM3 and TM4 current) I= VBG × R 1 2 • Sled kick current (TM5 and TM6 current, when D1 = D0 = 0 during 1X$ commands) I= VBG R Use external resistance of between 30kΩ to 240kΩ. Using external resistance outside this range may cause oscillation. – 25 – CXA1992AR Focus OK Circuit RF VCC RF_O C5 0.01µ RF_I 33 ×1 20k 54k 27 FOK 92k 0.63V 32 15k VG FOCUS OK AMP FOCUS OK COMPARATOR The focus OK circuit creates the timing window okaying the focus servo from the focus search state. The HPF output is obtained at Pin 32 from Pin 33 (RF signal), and the LPF output (opposite phase) of the focus OK amplifier output is also obtained. The focus OK output is inverted when VRFI – VRFO ≈ –0.37V. Note that, C5 determines the time constant of the HPF for the mirror circuit and the LPF of the focus OK amplifier. Ordinarily, with a C5 equal to 0.01µF selected, the fc is equal to 1kHz, and block error rate degradation brought about by RF envelope defects caused by scratched discs can be prevented. Defect Circuit After the RFI signal is reverted, two time constants, long and short, are held at bottom. The short time constant bottom hold responds to 0.1ms or greater disc mirror defects, and the long time constant bottom hold holds the pre-defect mirror level. By differentiating and level-shifting these constants with capacitor coupling and comparing both signals, the mirror defect detection signal is generated. 0.033µ CC1 29 CC2 28 FLIP FLOP RF_O 33 a ×2 DFCT2 26 SENS2 b c e SENS SELECTOR 25 SENS1 DEFECT AMP d DFCT1 DEFECT SW 30 0.01µ DEFECT BOTTOM HOLD DEFECT COMPARATOR CB a RFO b DEFECT AMP BOTTOM HOLD (1) solid line CC1 H DFCT1 L c d BOTTOM HOLD (2) dotted line CC2 e – 26 – CXA1992AR Mirror Circuit The mirror circuit performs peak and bottom hold after the RFI signal has been amplified. The peak and bottom holds are both held through the use of a time constant. For the peak hold, a time constant can follow a 30kHz traverse, and, for the bottom hold, one can follow the rotation cycle envelope fluctuation. RF_O 33 RF MIRROR HOLD AMP 0.033µ PEAK & BOTTOM HOLD H ×1 32 RF_I 31 CP J MIRR SENS SELECTOR MIRROR COMPARATOR 26 SENS2 K × 1.4 G MIRROR AMP I RF_O 0V G (RF_I) 0V H (PEAK HOLD) 0V I (BOTTOM HOLD) J K (MIRROR HOLD) 0V MIRR H L The DC playback envelope signal J is obtained by amplifying the difference between the peak and bottom hold signals H and I. Signal J has a large time constant of 2/3 its peak value, and the mirror output is obtained by comparing it to the peak hold signal K. Accordingly, when on the disc track, the mirror output is Low; when between tracks (mirrored portion), it is High; and when a defect is detected, it is High. The mirror hold time constant must be sufficiently large compared with the traverse signal. In the CXA1992AR, this mirror output is used only during braking operations, and no external output pin is attached. Accordingly, when connecting DSP with MIRR input pin, input the C.OUT output to the MIRR input of the DSP. – 27 – CXA1992AR SENS Selector FZC DFCT1 TZC BALH 25 SENS1 TGH FOH ATSC HIGH-Z DFCT2 MIRR BALL 26 SENS2 TGL FOL What is output to the SENS1 and SENS2 pins varies according to the address input to the DATA pin. DATA (Pin 22) 8-bit transfer ADDRESS D7 0 0 0 0 1 D6 0 0 0 1 1 D5 0 0 1 0 1 D4 0 1 0 0 1 D3 X X X X X DATA D2 X X X X X D1 X X X X X D0 X X X X X FZC DFCT1 TZC H (HIGH-Z) H (HIGH-Z) DFCT2 MIRR H (HIGH-Z) SENS1 SENS2 DATA (Pin 22) 12-bit transfer ADDRESS D11 D10 0 0 0 0 0 0 0 0 D9 1 1 1 1 D8 1 1 1 1 D7 0 0 1 1 D6 0 1 0 1 D5 X X X X D4 X X X X DATA D3 X X X X D2 X X X X D1 X X X X D0 X X X X BALH TGH FOH ATSC BALL TGL FOL H (HIGH-Z) SENS1 SENS2 Notes) • 12-bit transfer should be performed during $3XX commands. When 8 bits are transferred, SENS1 and SENS2 are switched according to the D3 and D2 data. • SENS1 and SENS2 are switched without latching. – 28 – CXA1992AR Commands The input data to operate this IC is configured as 8-bit/12-bit data; however, below, this input data is represented by 2-digit hexadecimal numerals in the form $XX, where X is a hexadecimal numeral between 0 and F/$XXX for 12-bit. Commands for the CXA1992AR can be broadly divided into four groups ranging in value from $0X, $1X, $2X, $3XX. 1. $0X (FZC at SENS1 pin (Pin 25), H (Hi-Z) at SENS2 pin (Pin 26)) These commands are related to focus servo control. The bit configuration is as shown below. D7 0 D6 0 D5 0 D4 0 D3 FS4 D2 — D1 FS2 D0 FS1 Four focus related switches exist: FS1, FS2, FS4 and DFCT. $00 $02 When FS1 = 0, Pin 8 is charged to (22µA – 11µA) × 50kΩ = 0.55V. If, in addition, FS2 = 0, this voltage is no longer transferred, and the output at Pin 6 becomes 0V. From the state described above, the only FS2 becomes 1. When this occurs, a negative signal is output to Pin 6. This voltage level is obtained by equation 1 below. (22µA – 11µA) × 50kΩ × resistance between Pins 6 and 7 .... Equation 1 50kΩ $03 The SRCH DOWN speed can be increased by the charge up circuit. From the state described above, FS1 becomes 1, and a current source of +22µA is split off. Then, a CR charge/discharge circuit is formed, and the voltage at Pin 8 decreases with the time as shown in Fig. 1 below. 0V Fig. 1. Voltage at Pin 8 when FS1 goes from 0 → 1 This time constant is obtained with the 50kΩ resistance and an external capacitor. By alternating the commands between $02 and $03, the focus search voltage can be constructed. (Fig. 2) 0V $ 00 02 03 02 03 02 00 Fig. 2. Constructing the search voltage by alternating between $02 and $03. (Voltage at Pin 6) – 29 – CXA1992AR 1-1. FS4 This switch is provided between the focus error input and the focus phase compensation, and is in charge of turning the focus servo ON and OFF. $00 → $08 Focus off Focus on 1-2. Procedure of focus activation For description, suppose that the polarity is as described below. a) The lens is searching the disc from far to near; b) The output voltage (Pin 6) is changing from negative to positive; and c) The focus S-curve is varying as shown below. A t Fig. 3. S-curve The focus servo is activated at the operating point indicated by A in Fig. 3. Ordinarily, focus searching and the turning the focus servo switch ON are performed during the focus S-curve transits the point A indicated in Fig. 3. To prevent misoperation, this signal is ANDed with the focus OK signal. In this IC, FZC (Focus Zero Cross) signal is output from the SENS1 pin (Pin 25) as the point A transit signal. In addition, focus OK is output as a signal indicating that the signal is in focus (can be in focus in this case). Following the line of the above description, focusing can be well obtained by observing the following timing chart. (20ms) (200ms) $02 ($00) $03 $08 Drive voltage Focus error ∗ The broken lines in the figure indicate the voltage assuming the signal is not in focus. SENS1 (FZC) The instant when the signal is brought into focus. Focus OK Fig. 4. Focus ON timing chart – 30 – CXA1992AR Note that the time from the High to Low transition of FZC to the time command $08 is asserted must be minimized. To do this, the software sequence shown in B is better than the sequence shown in A. FZC ↓ ? YES Transfer $08 NO F. OK ? YES Transfer $08 F. OK ? NO YES FZC ↓ ? YES NO NO Latch Latch (A) (B) Fig. 5. Poor and good software command sequences 2. $1X (DFCT1 at SENS1 pin (Pin 25), DFCT2 at SENS2 pin (Pin 26)) These commands deal with switching TG1/TG2, brake circuit ON/OFF, and the sled kick output. The bit configuration is as follows: D7 0 D6 0 D5 0 D4 1 D3 D2 D1 D0 D1 (PS1) 0 0 1 1 D0 (PS0) 0 1 0 1 TG1, TG2 Break circuit ON/OFF ON/OFF Sled kick height TG1, TG2, TM7 The purpose of TG1 and TG2 is to switch the tracking servo gain Up/Normal. TG1 and TG2 are interlinked switches. The brake circuit (TM7) is to prevent the frequently occurred phenomena where the merely 10-track jump has been performed actually though a 100-track jump was intended to be done due to the extremely degraded actuator settling caused by the servo motor exceeding the linear range after a 100 or 10-track jump. For the prevention method, when the actuator travels radially; that is, when it traverses from the inner track to the outer track of the disc and vice versa, the brake circuit utilizes the fact that the phase relationship between the RF envelope and the tracking error is 180° out-of-phase to cut the unneeded portion of the tracking error and apply braking. – 31 – Relative value ±1 ±2 ±3 ±4 Sled kick height CXA1992AR [∗A] RF_I 32 [∗D] TZC 49 Waveform Shaping Envelope Detection [∗B] Waveform Shaping [∗E] Edge Detection (Latch) CXA1992 (MIRR) [∗C] [∗F] [∗G] DQ CK D2 TM7 Low: open High: make [∗H] BRK Fig. 6. TM7 movement during braking operation From inner to outer track [∗A] [∗B] [∗C] [∗D] [∗E] [∗F] [∗G] [∗H] From outer to inner track ("MIRR") ("TZC") 0V Braking is applied from here. Fig. 7. Internal waveform 3. $2X (TZC at SENS1 pin (Pin 25), MIRR at SENS2 pin (Pin 26)) These commands deal with turning the tracking servo and sled servo ON/OFF, and creating the jump pulse and fast forward pulse during access operations. D7 0 D6 0 D5 1 D4 0 D3 D2 D1 D0 Tracking control 00 off 01 Servo ON 10 F-JUMP 11 R-JUMP ↓ TM1, TM3, TM4, Sled control 00 off 01 Servo ON 10 F-FAST FORWARD 11 R-FAST FORWARD ↓ TM2, TM5, TM6 – 32 – CXA1992AR 4. $3XX These commands mainly control the balance and gain control circuit switches used during automatic tracking adjustment and the bias circuit switch used during automatic focus bias adjustment. In the initial resetting state, BAL1 to BAL4 switches and TOG1 to TOG4 switches are ON. Also, the IFB1 to 6 switches are ON. • Balance adjustment The balance adjustment switches BAL1 to BAL4 can be controlled by setting D6 = 0 and D7 = 0. The switches are set using D0 to D3. At this time, SENS1 outputs BALH and SENS2 outputs BALL. Data is set by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 0 and D7 = 0. Sending a latch pulse with D6, D7 ≈ 0 does not change the balance switch settings. START BAL1 to BAL4 Switch Control C.OUT is the frequency high enough ? YES SENS1/2 Balance OK ? NO Adjustment Completed Balance adjustment • Gain adjustment The gain adjustment switches TOG1 to TOG4 can be controlled by setting D6 = 1 and D7 = 0. These switches are set using D0 to D3. At this time, SENS1 outputs TGH and SENS2 outputs TGL. In a fashion similar to the method used with the balance adjustment, set the data by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 1 and D7 = 0. START TOG1 to TOG4 Switch control SENS1/2 GAIN OK ? NO YES Adjustment Completed Gain adjustment – 33 – CXA1992AR • Focus bias adjustment The focus bias adjustment switches IFB1 to 6 can be controlled by setting D6 = 0 and D7 = 1. The switches are set using D0 to D5. At this time, SENS1 outputs FOH and SENS2 outputs FOL. Data is set by specifying switch conditions D0 to D5 and sending a latch pulse with D6 = 0 and D7 = 1. START IFB1 to 6 Switch Control SENS1/2 BIAS OK ? YES Adjustment Completed NO Focus bias adjustment method • TGFL The tracking gain can be switched by setting D5 with D6 = 1 and D7 = 0. The tracking gain is GAIN UP with D5 = 1 and NORMAL GAIN with D5 = 0. The TEO signal level can be made higher by approximately 6dB for GAIN UP. When the TEO signal level is low and TGH (SENS1 pin) does not go Low during tracking adjustment, the gain should be raised with the TGFL command for adjustment. • LPC The laser power control circuit can be turned ON and OFF by setting D0 with D6 = 1 and D7 = 1. The circuit is ON with D0 = 1 and OFF with D0 = 0. • LPCL The laser power control limit can be switched between ±17% and ±50% by setting D1 with D6 = 1 and D7 = 1. The control limit is ±17% with D1 = 0 and ±50% with D1 = 1. • LDON The laser diode can be turned ON and OFF by setting D2 with D6 = 1 and D7 = 1. The laser diode is ON with D2 = 1 and OFF with D2 = 0. – 34 – CXA1992AR • ATSC The anti-shock function can be controlled by setting D3 with D6 = 1 and D7 = 1. This function is disabled with D3 = 1 and enabled with D3 = 0. At this time, SENS1 outputs ATSC. Even if ATSC is disabled, ATSC is output to SENS1. When an anti-shock signal is generated during the enable status, TG1 and TG2 switch to GAIN UP mode. (In the Block Diagram, TG1 is set to the side and TG2 is OFF. Even if TG1 and TG2 are NORMAL mode, they switch to GAIN UP mode in conjunction with ATSC.) When the anti-shock function is not used, Pin 48 (ATSC) should be connected to VC. • RDFCT2 DFCT2 can be reset by setting D4 with D6 = 1 and D7 = 1. DFCT2 is reset with D4 = 1. After a reset, High is held when DFCT1 rises. During $1X commands, DFCT2 is output from SENS2. DFCT2 operates even if DFCT is disabled. Whether or not DFCT rises at the proper timing for the microcomputer can also be confirmed. • INT The interruption (scratched disc) countermeasure circuit can be set to operating status by setting D5 with D6 = 1 and D7 = 1. This circuit is enabled when D5 = 1 and disabled when D5 = 0. Even if DFCT1 does not rise, this circuit is effective for scratched discs which cause MIRR to rise. When MIRR rises, the DFCT switch is routed through the low-pass filter. The interruption countermeasure circuit is forcibly turned OFF regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC or LOCK) Even if DFCT is disabled, the interruption countermeasure circuit operates when INT is enabled. Parallel direct interface • LOCK (Sled overrun prevention circuit) This circuit operates when LOCK is low. When LOCK is low, the sled is OFF, and TG1 and TG2 are UP (TRACKING GAIN UP). LOCK SLED TM2 SW: SLED ON side TM2 SW: side SLED OFF TRACKING GAIN NORMAL TG1 SW: TG2 ON UP TG1 SW: TG2 OFF side side When LOCK is not used, Pin 19 (LOCK) should be pulled up to VCC with the resistor of approximately 47kΩ. – 35 – CXA1992AR CPU Serial Interface Timing Chart DATA D0 tWCK CLK 1/fck tD tWL tCD D1 D2 tWCK D3 tSU D4 th D5 D6 D7 D0 XLT (VCC = 3.0V) Item Clock frequency Clock pulse width Setup time Hold time Delay time Latch pulse width Data transfer interval Low level input voltage High level input voltage Symbol fck fwck 500 500 500 500 1000 1000 0.0 (VCC – VEE) × 0.9 (VCC – VEE) × 0.1 VCC Min. Typ. Max. 1 Unit MHz ns ns ns ns ns ns V V tsu th tD tWL tCD VIL VIH – 36 – System Control DATA (Pin 22) 8-bit transfer DATA SENS1 D1 D0 SENS2 D3 D2 Item ADDRESS D7 D6 D5 D4 FOCUS CONTROL — FZC H (HIGH-Z) TG1, TG2 BRAKE 1 = ENABLE 0 = DISABLE SLED MODE ∗2 TZC DFCT1 DFCT2 SLED KICK + 2 SLED KICK + 1 1 = GAIN UP 0 = NORMAL TRACKING MODE ∗1 0 0 0 0 FS4 Focus 1 = ON 0 = OFF FS2 SRCH ON 1 = ON 0 = OFF FS2 SRCH UP 1 = UP 0 = DOWN TRACKING CONTROL 0 0 0 1 TRACKING SLED MODE 0 0 1 0 MIRR – 37 – D1 OFF ON FWD MOVE REV MOVE 1 1 1 0 0 1 0 0 D0 ∗1 TRACKING MODE ∗2 SLED MODE D3 D2 OFF 0 0 ON 0 1 FWD JUMP 1 0 REV JUMP 1 1 CXA1992AR DATA (Pin 22) 12-bit transfer DATA SENS1 D2 BAL3 1 = OFF 0 = ON TOG3 1 = OFF 0 = ON IFB3 1 = OFF 0 = ON LDON LPCL 1 = ±50% 0 = ±17% 1 = OFF 0 = ON IFB2 IFB1 1 = OFF 0 = ON LPC 1 = ON 0 = OFF ATSC H (HIGH-Z) FOH FOL 1 = OFF 0 = ON 1 = OFF 0 = ON TOG2 TOG1 TGH TGL 1 = OFF 0 = ON 1 = OFF 0 = ON BALH BAL2 BAL1 BALL D1 D0 SENS2 D5 DFCT BAL4 — 1 = OFF 0 = ON TOG4 — 1 = OFF 0 = ON IFB4 1 = OFF 0 = ON ATSC 0 1 = DISABLE 0 = ENABLE TGFL 1 1 = GAIN UP 0 = NORMAL IFB6 IFB5 1 = OFF 0 = ON RDFCT2 0 1 = OFF 0 = ON INT 1 1 = ENABLE 1 = RESET 1 = DISABLE 1 = ON 0 = DISABLE 0 = NORMAL 0 = ENABLE 0 = OFF D4 D3 Item ADDRESS D11 D10 D9 D8 D7 D6 E-F BALANCE 0 0 1 1 0 TRACKING GAIN 0 0 1 1 0 FOCUS BIAS 0 0 1 1 1 – 38 – Others 0 0 1 1 1 Notes) • When ATSC is enabled, even if TG1 and TG2 are NORMAL mode, TG1 and TG2 switch to GAIN UP mode in conjunction with ATSC and LOCK. • INT is forcibly disabled regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC or LOCK) When reset • SENS1 = FZC • SENS2 = High (Hi-Z) • RDFCT2 = 1 (Reset) • IFB1 to IFB6 = 0 (switch ON) • TOG1 to TOG4 = 0 (switch ON) • BAL1 to BAL4 = 1 (switch ON) • Other data is "0". CXA1992AR CXA1992AR Serial Data Truth Table Serial Data FOCUS CONTROL 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 $00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0A $0B $0C $0D $0E $0F HEX FS4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Functions FS2 FS1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • FS1 1: OFF 0: ON • FS2 1: ON 0: OFF • FS4 In the Block Diagram: 1:SW side 0:SW side BRAK SLD KICK TRACKING CONTROL 0001 0000 0001 0001 0001 0010 0001 0011 0001 0100 0001 0101 0001 0110 0001 0111 0001 1000 0001 1001 0001 1010 0001 1011 0001 1100 0001 1101 0001 1110 0001 1111 $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $1B $1C $1D $1E $1F TG1 Fig. 6 KICK KICK TG2 D2 +2 +1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • TG1 In the Block Diagram: 1:SW side 0:SW side • TG2 1: OFF 0: ON • BRAKE When D2 in Fig. 6 is: 1: 1 0: 0 • Sled kick height D1 0 0 1 1 D0 0 1 0 1 Relative value ±1 ±2 ±3 ±4 – 39 – CXA1992AR Serial Data TRACKING/SLED MODE 0010 0000 0010 0001 0010 0010 0010 0011 0010 0100 0010 0101 0010 0110 0010 0111 0010 1000 0010 1001 0010 1010 0010 1011 0010 1100 0010 1101 0010 1110 0010 1111 HEX Function TM6 TM5 TM4 TM3 TM2 TM1 $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $2B $2C $2D $2E $2F 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Notes) • TM1/TM2 In the Block Diagram: 1:SW side 0:SW side • TM3/TM4/TM5/TM6 1: ON 0: OFF – 40 – CXA1992AR Serial Data $3XX 0011 0000 0000 0011 0000 0001 0011 0000 0010 0011 0000 0011 0011 0000 0100 0011 0000 0101 0011 0000 0110 0011 0000 0111 0011 0000 1000 0011 0000 1001 0011 0000 1010 0011 0000 1011 0011 0000 1100 0011 0000 1101 0011 0000 1110 0011 0000 1111 0011 0001 0000 0011 0001 0001 0011 0001 0010 0011 0001 0011 0011 0001 0100 0011 0001 0101 0011 0001 0110 0011 0001 0111 0011 0001 1000 0011 0001 1001 0011 0001 1010 0011 0001 1011 0011 0001 1100 0011 0001 1101 0011 0001 1110 0011 0001 1111 0011 0010 0000 0011 0010 0001 0011 0010 0010 0011 0010 0011 0011 0010 0100 0011 0010 0101 0011 0010 0110 0011 0010 0111 0011 0010 1000 0011 0010 1001 0011 0010 1010 0011 0010 1011 0011 0010 1100 0011 0010 1101 0011 0010 1110 0011 0010 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E D D D D D D D D D D D D D D D D $300 $301 $302 $303 $304 $305 $306 $307 $308 $309 $30A $30B $30C $30D $30E $30F $310 $311 $312 $313 $314 $315 $316 $317 $318 $319 $31A $31B $31C $31D $31E $31F $320 $321 $322 $323 $324 $325 $326 $327 $328 $329 $32A $32B $32C $32D $32E $32F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— – 41 – CXA1992AR Serial Data $3XX 0011 0011 0000 0011 0011 0001 0011 0011 0010 0011 0011 0011 0011 0011 0100 0011 0011 0101 0011 0011 0110 0011 0011 0111 0011 0011 1000 0011 0011 1001 0011 0011 1010 0011 0011 1011 0011 0011 1100 0011 0011 1101 0011 0011 1110 0011 0011 1111 0011 0100 0000 0011 0100 0001 0011 0100 0010 0011 0100 0011 0011 0100 0100 0011 0100 0101 0011 0100 0110 0011 0100 0111 0011 0100 1000 0011 0100 1001 0011 0100 1010 0011 0100 1011 0011 0100 1100 0011 0100 1101 0011 0100 1110 0011 0100 1111 0011 0101 0000 0011 0101 0001 0011 0101 0010 0011 0101 0011 0011 0101 0100 0011 0101 0101 0011 0101 0110 0011 0101 0111 0011 0101 1000 0011 0101 1001 0011 0101 1010 0011 0101 1011 0011 0101 1100 0011 0101 1101 0011 0101 1110 0011 0101 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — D D D D D D D D D D D D D D D D — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $330 $331 $332 $333 $334 $335 $336 $337 $338 $339 $33A $33B $33C $33D $33E $33F $340 $341 $342 $343 $344 $345 $346 $347 $348 $349 $34A $34B $34C $34D $34E $34F $350 $351 $352 $353 $354 $355 $356 $357 $358 $359 $35A $35B $35C $35D $35E $35F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— – 42 – CXA1992AR Serial Data $3XX 0011 0110 0000 0011 0110 0001 0011 0110 0010 0011 0110 0011 0011 0110 0100 0011 0110 0101 0011 0110 0110 0011 0110 0111 0011 0110 1000 0011 0110 1001 0011 0110 1010 0011 0110 1011 0011 0110 1100 0011 0110 1101 0011 0110 1110 0011 0110 1111 0011 0111 0000 0011 0111 0001 0011 0111 0010 0011 0111 0011 0011 0111 0100 0011 0111 0101 0011 0111 0110 0011 0111 0111 0011 0111 1000 0011 0111 1001 0011 0111 1010 0011 0111 1011 0011 0111 1100 0011 0111 1101 0011 0111 1110 0011 0111 1111 0011 1000 0000 0011 1000 0001 0011 1000 0010 0011 1000 0011 0011 1000 0100 0011 1000 0101 0011 1000 0110 0011 1000 0111 0011 1000 1000 0011 1000 1001 0011 1000 1010 0011 1000 1011 0011 1000 1100 0011 1000 1101 0011 1000 1110 0011 1000 1111 HEX BAL SW TOG SW 43214321 TGFL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $360 $361 $362 $363 $364 $365 $366 $367 $368 $369 $36A $36B $36C $36D $36E $36F $370 $371 $372 $373 $374 $375 $376 $377 $378 $379 $37A $37B $37C $37D $37E $37F $380 $381 $382 $383 $384 $385 $386 $387 $388 $389 $38A $38B $38C $38D $38E $38F ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 43 – CXA1992AR Serial Data $3XX 0011 1001 0000 0011 1001 0001 0011 1001 0010 0011 1001 0011 0011 1001 0100 0011 1001 0101 0011 1001 0110 0011 1001 0111 0011 1001 1000 0011 1001 1001 0011 1001 1010 0011 1001 1011 0011 1001 1100 0011 1001 1101 0011 1001 1110 0011 1001 1111 0011 1010 0000 0011 1010 0001 0011 1010 0010 0011 1010 0011 0011 1010 0100 0011 1010 0101 0011 1010 0110 0011 1010 0111 0011 1010 1000 0011 1010 1001 0011 1010 1010 0011 1010 1011 0011 1010 1100 0011 1010 1101 0011 1010 1110 0011 1010 1111 0011 1011 0000 0011 1011 0001 0011 1011 0010 0011 1011 0011 0011 1011 0100 0011 1011 0101 0011 1011 0110 0011 1011 0111 0011 1011 1000 0011 1011 1001 0011 1011 1010 0011 1011 1011 0011 1011 1100 0011 1011 1101 0011 1011 1110 0011 1011 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $390 $391 $392 $393 $394 $395 $396 $397 $398 $399 $39A $39B $39C $39D $39E $39F $3A0 $3A1 $3A2 $3A3 $3A4 $3A5 $3A6 $3A7 $3A8 $3A9 $3AA $3AB $3AC $3AD $3AE $3AF $3B0 $3B1 $3B2 $3B3 $3B4 $3B5 $3B6 $3B7 $3B8 $3B9 $3BA $3BB $3BC $3BD $3BE $3BF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 44 – CXA1992AR Serial Data $3XX 0011 1100 0000 0011 1100 0001 0011 1100 0010 0011 1100 0011 0011 1100 0100 0011 1100 0101 0011 1100 0110 0011 1100 0111 0011 1100 1000 0011 1100 1001 0011 1100 1010 0011 1100 1011 0011 1100 1100 0011 1100 1101 0011 1100 1110 0011 1100 1111 0011 1101 0000 0011 1101 0001 0011 1101 0010 0011 1101 0011 0011 1101 0100 0011 1101 0101 0011 1101 0110 0011 1101 0111 0011 1101 1000 0011 1101 1001 0011 1101 1010 0011 1101 1011 0011 1101 1100 0011 1101 1101 0011 1101 1110 0011 1101 1111 0011 1110 0000 0011 1110 0001 0011 1110 0010 0011 1110 0011 0011 1110 0100 0011 1110 0101 0011 1110 0110 0011 1110 0111 0011 1110 1000 0011 1110 1001 0011 1110 1010 0011 1110 1011 0011 1110 1100 0011 1110 1101 0011 1110 1110 0011 1110 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RDF ATSC LDON LPCL LPC DFCT CT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E E E E E E E D D D D D D D D E E E E E E E E D D D D D D D D E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $3C0 $3C1 $3C2 $3C3 $3C4 $3C5 $3C6 $3C7 $3C8 $3C9 $3CA $3CB $3CC $3CD $3CE $3CF $3D0 $3D1 $3D2 $3D3 $3D4 $3D5 $3D6 $3D7 $3D8 $3D9 $3DA $3DB $3DC $3DD $3DE $3DF $3E0 $3E1 $3E2 $3E3 $3E4 $3E5 $3E6 $3E7 $3E8 $3E9 $3EA $3EB $3EC $3ED $3EE $3EF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 45 – CXA1992AR Serial Data $3XX 0011 1111 0000 0011 1111 0001 0011 1111 0010 0011 1111 0011 0011 1111 0100 0011 1111 0101 0011 1111 0110 0011 1111 0111 0011 1111 1000 0011 1111 1001 0011 1111 1010 0011 1111 1011 0011 1111 1100 0011 1111 1101 0011 1111 1110 0011 1111 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RDF ATSC LDON LPCL LPC DFCT CT2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — $3F0 $3F1 $3F2 $3F3 $3F4 $3F5 $3F6 $3F7 $3F8 $3F9 $3FA $3FB $3FC $3FD $3FE $3FF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — Notes) • 0 means OFF and 1 means ON for TOG SW and BAL SW. These are not equal to the setting values of each bit for serial data. • "—" in the Truth Table indicates that the status does not change. • TGFL In the Block Diagram: 1:SW side 0:SW side • ATSC E: enable/D: disable • DFCT E: enable/D: disable – 46 – CXA1992AR Initial State (resetting state) Item FOCUS CONTROL TRACKING CONTROL TRACKING SLED MODE ADDRESS DATA HEX $00 $10 $20 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Item E-F BALANCE TRACKING GAIN FOCUS BIAS Others ADDRESS DATA D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HEX $300 $340 $380 $3D0 The above data means the following operation modes. FOCUS CONTROL TRACKING CONTROL TRACKING SLED MODE E-F BALANCE TRACKING GAIN FOCUS BIAS Others : FOCUS OFF, FOCUS SEARCH OFF, FOCUS SEACH DOWN : TG1-TG2 NORMAL, BRAKE DISABLE, SLED KICK relative height value ±1 : TRACKING OFF, SLED OFF : BAL1 to BAL4 = 0 (switch ON). DFCT ENABLE : TOG1 to TOG4 = 0 (switch ON), TGFL NORMAL : IFB1 to IFB6 = 0 (switch ON) : INT DISABLE, DFCT2 RESET, ATSC ENABLE, LDON OFF, LPCL ±17%, LPC OFF – 47 – CXA1992AR Notes on Operation 1. Focus OK circuit 1) Refer to the "Description of Operation" for the time constant setting of the focus OK amplifier LPF and the mirror amplifier HPF. 2) The equivalent circuit for the output pin (FOK) is shown in the diagram below. VCC 20k FOK 40k 27 RL 100k VCC VEE VEE The FOK and comparator output are as follows: Output voltage High : VFOKH ≈ near Vcc Output voltage Low : VFOKL ≈ Vsat (NPN) + VEE 2. Sled amplifier The sled amplifier may oscillate when used by the buffer amplifier. Use with a gain of approximately 20dB. 3. Focus/Tracking internal phase compensation and reference design material Item FCS 1.2kHz gain 1.2kHz phase 1.2kHz gain TRK 1.2kHz phase 2.7kHz gain 2.7kHz phase 08 08 25 25 25 → 13 25 → 13 13 CTGU = 0.1µF SD Measurement pin 6 Conditions CFLB = 0.1µF CFGD = 0.1µF Typ. 21.5 63 13 –125 26.5 –130 Unit dB deg dB deg dB deg 4. Laser Poser Control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The laser life is shortened by increasing the laser power when the less light is reflected from the disc. It is recommended that the typical laser power value is set lower to maintain the laser life. Take care of the laser maximum ratings when using the laser power control circuit. – 48 – CXA1992AR Package Outline Unit: mm 52PIN LQFP(PLASTIC) 12.0 ± 0.2 ∗ 10.0 ± 0.1 39 40 27 26 B + 0.1 1.5 0 0.1 A 52 1 + 0.08 0.32 – 0.07 13 0.65 0.13 M 14 0.25 0.6 ± 0.15 0.1 ± 0.1 (11.0) + 0.08 0.32 – 0.07 (0.3) 0° to 10° DETAIL A NOTE: “∗” Dimensions do not include mold protrusion. (0.5) DETAIL B PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE LQFP-52P-L01 LQFP052-P-1010 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN PALLADIUM PLATING COPPER ALLOY 0.3g – 49 – (0.125) + 0.04 0.145 – 0.025
CXA1992 价格&库存

很抱歉,暂时无法提供与“CXA1992”相匹配的价格&库存,您可以联系我们找货

免费人工找货