CXA2134Q
US Audio Multiplexing Decoder
Description The CXA2134Q is an IC designed as a decoder for the Zenith TV Multi-channel System and also corresponds with I2C bus. Functions include stereo demodulation, SAP (Separate Audio Program) demodulation, dbx noise reduction and sound processor. Various kinds of filters are built in this IC. Adjustment, mode control and sound processor control are all executed through I2C bus. Features • Alignment-free VCO and filter • Audio multiplexing decoder dbx noise reduction decoder sound processor — Two external inputs — Quasi-surround — Bass control — Treble control — Volume control are all included in a single chip. Almost any soft of signal processing is possible through this IC. • Input level, separation adjustments and each mode control are possible through I2C bus. 48 pin QFP (Plastic)
Applications TV, VCR and other decoding systems for US audio multiplexing TV broadcasting Structure Bipolar silicon monolithic IC Absolute Maximum Ratings (Ta = 25°C) • Supply voltage VCC 11 • Operating temperature Topr –20 to +75 • Storage temperature Tstg –65 to +150 • Allowable power dissipation PD 0.6 Range of Operating Supply Voltage 9 ± 0.5
V °C °C W
V
∗ A license of the dbx-TV noise reduction system is required for the use of this device.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E99832-PS
Block Diagram
MAINOUT
PCINT1
PLINT
SUBOUT
PCINT2
MAININ
AUX1-L
34 33
10
11
12 21
9
8
AUX1-R
LFLT MATRIX FLT LPF VCA
VCO
1/4
1/2 TVSW 37 AUX2-L 36 AUX2-R
FEXT1
FEXT2
39 TVOUT-L 38 TVOUT-R
"STEREO" DeEm NRSW/FOMO/SAPC (+6dB) STIND LOGIC LPF WIDEBAND
COMPIN 13
VCA
LPF
VCC 19
EXT1/EXT2/M1 SURR M2
ATT/ATTSW
SURROUND
40 SURRTC 2 BASS-L
BASS
BASS
BPF
SAPVCO
LPF DeEm VE VCA
BASS
"SAP" SAPIND
HPF
RMSDET
SAPTC 18
TREBLE
TREB
TREB
VOL-L
"PONRES" 7 6 5 24 25 22 26 27 28 29 30 32 31 1 48 4 3
14
15
SCL
VGR
IREF
SDA
STIN
VE
DGND
SAPIN
VETC
VCAIN
VEOUT
VCATC
VEWGT
TOUT-L
SAPOUT
VOLIN-L
LSOUT-L
VCAWGT
LSOUT-R
VOL-R
SW
VOL-L
VOL-R
–2–
NOISE DET "NOISE" SPECTRAL LPF LPF AMP (+4dB) I2C BUS I/F
GND 17
45 BASS-R
47 TRE-L
NOISETC 23
41 TRE-R
44 RMSDET
TOUT-R 43 VOLIN-R
IREF
CXA2134Q
CXA2134Q
Pin Configuration (Top View)
VCAWGT
AUX2-R
AUX1-R
VCATC
VEOUT
VEWGT
AUX1-L
VCAIN
NC
36 35 34 AUX2-L 37 TVOUT-R 38 TVOUT-L 39 SURRTC 40 TRE-R 41 NC 42 VOLIN-R 43 TOUT-R 44 BASS-R 45 NC 46 TRE-L 47 VOLIN-L 48 1 2 3
33 32
31 30
29 28 27 26 25 24 SAPOUT 23 NOISETC 22 STIN 21 SUBOUT 20 NC 19 VCC 18 SAPTC 17 GND 16 NC 15 IREF 14 VGR 13 COMPIN
4
5
6
7
8
9
10
11 12
LSOUT-L
DGND
BASS-L
PCINT1
SDA
MAININ
LSOUT-R
MAINOUT
PCINT2
SCL
TOUT-L
–3–
PLINT
SAPIN
VETC
VE
CXA2134Q
Pin Description Pin No. Symbol Pin voltage Equivalent circuit
(Ta = 25°C, Vcc = 9V) Description
VCC
1
TOUT-L
4.0V
147 1 44 580 580
Treble output pin. (Left channel)
44
TOUT-R
4.0V
Treble output pin. (Right channel)
Vcc 1.2k 1.2k
2
BASS-L
4.0V
Bass filter pin. (Left channel)
5.4k 11k 147 2 11k 4V 45
45
BASS-R
4.0V
Bass filter pin. (Right channel)
VCC 3k
3
LSOUT-R
4.0V
580 3 4 580
LSOUT right channel output pin.
4
LSOUT-L
4.0V
LSOUT left channel output pin.
VCC 7.5k ↓ 35µ 2.1V ×2 4k ×5
5
SDA
—
7.5k
4.5k
3k
Serial data I/O pin. VIH > 3.0V VIL < 1.5V
5
–4–
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
VCC 7.5k ↓ 35µ 2.1V 4k
Description
6
SCL
—
10.5k
×4
3k
Serial clock input pin. VIH > 3.0V VIL < 1.5V
6
7
DGND
—
7
Digital block GND.
VCC 10k
VCC
8
MAININ
4.0V
147 8 53k 4V VCC 15k ×4
Input pin of (L + R) signal from MAINOUT (Pin 9).
9
MAINOUT
4.0V
147 9
(L + R) signal output pin.
↓ 200µ
1k
–5–
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
VCC 147 10
Description
10
PCINT1
4.0V
30k
22k
Stereo block PLL loop filter integrating pin.
VCC 147 11
11
PCINT2
4.0V
2k
10k
10k
×2 4k
VCC 20k 20k
147
12
PLINT
5.1V
20k 20k
12
Pilot cancel circuit loop filter integrating pin. (Connect a 1µF capacitor between this pin and GND.)
20k
10k
VCC 50k 147 13
13
COMPIN
4.0V
22k 3V 4k 4k 4k
20k 3k
Audio multiplexing signal input pin.
24k
16k
–6–
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
Description
3k
147
14
VGR
1.3V
11k
9.7k
19.4k ×4
VCC 11k 11k
Band gap reference output pin. (Connect a 10µF capacitor between this pin and GND.)
14
2.06k
VCC 40k 40k 30k 30k 15k ×2 30k
VCC
15
IREF
1.3V
30p 1.8k 15 147 6.3k
Set the filter and VCO reference current. The reference current is adjusted with the BUS DATA based on the current which flows to this pin. (Connect a 62kΩ (±1%) resistor between this pin and GND.)
16k
17
GND
—
17
Analog block GND.
VCC 8k 10k 3k 1k VCC 4k ↓ 50µ 18
18
SAPTC
4.5V
Set the time constant for the SAP carrier detection circuit. (Connect a 4.7µF capacitor between this pin and GND.)
19
Vcc
—
19
Supply voltage pin.
–7–
CXA2134Q
Pin No.
Symbol
Pin voltage
2k
Equivalent circuit
Vcc 2k 10P 4k
Description
580
21
SUBOUT
4.0V
2k 2k
21 14.4k 580 147
(L – R) signal output pin.
2k
4k
1k
VCC
22
STIN
23k
4.0V
11.7k 147 22
23k
Input pin of (L – R) signal from SUBOUT (Pin 21).
147 25 18k 20k 4V
Vcc
25
SAPIN
4.0V
18k 4V
Input pin of (SAP) signal from SUPOUT (Pin 24).
8k
3.3k
10k 1k 2k 4k ×2 4V 3k Vcc 3k
23
NOISETC 3.0V
Set the time constant for the noise detection circuit. (Connect a 4.7µF capacitor between this pin and GND.)
200k 23
Vcc 5P
580
24
SAPOUT
4.0V
580
10k 24
SAP FM detector output pin.
147
24k ↓ 10µ
4k ↓ 50µ
–8–
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
VCC 7.5k
Description
26
VE
4.0V
147 26
Variable de-emphasis integrating pin. (Connect a 2700pF capacitor and a 3.3kΩ resistor in series between this pin and GND.)
Vcc
580
2.9V 4V 36k
27
VEWGT
4.0V
27 147 580
Weight the variable de-emphasis control effective value detection circuit. (Connect a 0.047µF capacitor and a 3kΩ resistor in series between this pin and GND.)
8k
30k ↓ 8µ
4k ↓ 50µ
Vcc
28
VETC
1.7V
×4
×4
28
4k ↓ 50µ
20k ↓ 7.5µ
Determine the restoration time constant of the variable de-emphasis control effective value detection circuit. (The specified restoration time constant can be obtained by connecting a 3.3µF capacitor between this pin and GND.)
Vcc 5P 580
29
VEOUT
4.0V
29 580 10k
Variable de-emphasis output pin. (Connect a 4.7µF non-polar capacitor between Pins 29 and 30.)
–9–
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
VCC
Description
47k 20k
47k
30
VCAIN
4.0V
VCC
30
VCA input pin. Input the variable de-emphasis output signal from Pin 29 via a coupling capacitor.
VCC
×4
31 ×4
31
VCATC
1.7V
↓ 50µ
4k
↓ 7.5µ
20k
Determine the restoration time constant of the VCA control effective value detection circuit. (The specified restoration time constant can be obtained by connecting a 10µF capacitor between this pin and GND.)
VCC 40k 40k 3p
580
32
VCAWGT
4.0V
32 2.9V 36k 580 147
Weight the VCA control effective value detection circuit. (Connect a 1µF capacitor and a 3.9kΩ resistor in series between this pin and GND.)
↓ 50µ
4k ↓ 8µ
30k
8k
33 34 36 37
AUX1-R AUX1-L AUX2-R AUX2-L
4.0V
10k
VCC
Right channel external input 1 pin. Left channel external input 1 pin. Right channel external input 2 pin. Left channel external input 2 pin.
4.0V 4.0V
147 33 27.5k 27.5k 34 36 37 4V
4.0V
– 10 –
CXA2134Q
Pin No.
Symbol
Pin voltage
Equivalent circuit
VCC 3k
Description
38
TVOUT-R 4.0V
580 580
TVOUT right channel output pin.
147 38 39
39
TVOUT-L
4.0V
TVOUT left channel output pin.
VCC 10k
40
SURRTC
580 40k
4.0V
40
20k
20k 24k 580
Set the center frequency of the Surround circuit phase shifter. The frequency is determined by the built-in resistor and the external capacitor. (Connect a 0.022µF capacitor between this pin and GND.)
Vcc
41
TRE-R
4.0V
5.7k
1.2k
1.2k
Treble filter pin. (Right channel)
5.7k 147 41 47
6k
47
TRE-L
4.0V
Treble filter pin. (Left channel)
VCC
43
VOLIN-R
4.0V
10k 147 43 48
Volume right channel input pin.
48
VOLIN-L
4.0V
66k 4V
Volume left channel input pin.
16 20 35 42 46
NC
—
– 11 –
Electrical Characteristics COMPIN input level (100% modulation level) (Ta = 25°C, VCC = 9V)
Measurement conditions Filter Min. 37 440 –1.2 –3.0 — — 38/39 21 20 log ('12k'/'1k') 15kLPF 15kLPF 20 log ('100%'/'0%') 20 log ('NRSW = 0'/ 'NRSW = 1') 0dB = 49mVrms
PILOT (fH) 0dB
Main (L + R) (Pre-Emphasis: OFF) = 245mVrms SUB (L – R) (dbx-TV: OFF) = 490mVrms Pilot = 49mVrms SAP Carrier = 147mVrms fH = 15.734kHz
Mode Typ. 47 490 0 –1.0 0.1 0.15 38/39 61 150 21 21 21 15kLPF 1kBPF fH BPF 0dB = 49mVrms ST 13
Change PILOT (fH) Level
No. — MONO MONO MONO MONO MONO MONO ST ST ST ST ST SAP ST 13 13 13
SUB (L-R) 1kHz, NR OFF ST-L (R), 1kHz, 100% mod., NR ON, SAP Carrier (5fH) No signal Mono 1kHz 100% mod. Pre-em. ON
Item 19 38/39 20 log ('5k'/'1k') 38/39 38/39 15kLPF 15kLPF 20 log ('100%'/'0%') 15kLPF 38/39
Signal Input pin
Input signal
Output pin
Max. 57 540 1.0 1.0 0.5 0.5
Unit mA mVrms dB dB % %
1 13 13 13 13 13 13 13 13 13 13
SUB (L-R), 1kHz, 200% mod., NR OFF SUB (L-R) 1kHz, 100% mod., NR OFF SUB (L-R) 12kHz, 30% mod., NR OFF SUB (L-R), 1kHz, 100% mod., NR OFF Mono 1kHz, Pre-em. ON Mono 1kHz 200% mod. Pre-em. ON Mono 1kHz 100% mod. Pre-em. ON Mono 12kHz 30% mod. 20 log Pre-em. ON ('12k'/'1k') Mono 5kHz 30% mod. Pre-em. ON
Current consumption
Icc
2
Main output level
Vmain
3
Main de-emphasis frequency response
FCdeem
4
Main LPF frequency response
FCmain
5
Main distortion
THDm
6
Main overload distortion
THDmmax
– 12 –
20 log (‘on level'/'off level')
7
Main S/N
SNmain
69 190 –3.0 — — 21 39 21 56 60 — –9.0 BUS RETURN 3.5 –0.5 0.1 0.2 64 70 –38 –6.0 6.0
— 230 1.0 1.0 2.0 — — –27 –3.0 8.5
dB mVrms dB % % dB dB dB dB dB
8
Sub output level
Vsub
9
Sub LPF frequency response
FCsub
10
Sub distortion
THDsub
11
Sub overload distortion
THDsmax
12
Sub S/N
SNsub
13
Crosstalk Stereo → SAP
CTst
14
Sub pilot leak
PCsub
15
Stereo ON level
THst
CXA2134Q
16
Stereo ON/OFF hysteresis
HYst
No. Mode Input signal Min. Max. 190 2.5 6.0 — — –9.0 2.0 23 38/39 38/39 38/39 15kLPF 38/39 38/39 23 23 15kLPF 23 440 — 1kBPF 20 log (M1 = "0"/M1 = "1") 38/39 — 440 3/4 440 1kBPF
Mono 1kHz 100% mod. Pre-em. ON
Item Unit mVrms dB % dB dB –6.5 4.0 35 35 35 35 490 –95 –95 490 490 3/4 1kBPF 3/4 — — 13 –75 –90 6.0 — — — — 540 –80 –80 540 540 –60 –80 dB dB dB dB dB dB mVrms dB dB mVrms mVrms Sine wave 1kHz, 490mVrms dB SAP SAP SAP SAP ST 0dB = 147mVrms 20 log (‘on level’/’off level’) 15kLPF 15kLPF BUS RETURN –12.0 13 1kBPF 39 SAP 1kHz 100% mod. 20 log ('NRSW = 1'/'NRSW = 0') NR ON, Pilot (fH) 60 13 SAP 1kHz, NR OFF 24 15kLPF 20 log ('100%'/'0%') 46 55 70 13 15kLPF 24 SAP 1kHz 100% mod. NR OFF — 2.5 13 24 SAP 10kHz, 30% mod. 20 log ('10k'/'1k') NR OFF –3.0 0 13 24 SAP 1kHz 100% mod. NR OFF 130 160
Symbol
Input pin Filter
Measurement conditions Output pin Typ.
17
SAP output level
Vsap
18
SAP LPF frequency response
FCsap
19
SAP distortion
THDsap
20
SAP S/N
SNsap
21
Cross talk SAP → Stereo
CTsap
22 SAP 13 Change SAP Carrier (5fH) Level ST-L 300Hz 30% mod. 20 log ('Lch'/'Rch') NR ON ST-R 300Hz 30% mod. 20 log NR ON ('Rch'/'Lch') ST-L 3kHz 30% mod. NR ON 20 log ('Lch'/'Rch') 20 log ('Rch'/'Lch') ST-R 3kHz 30% mod. NR ON Sine wave 1kHz, 490mVrms
Mono 1kHz 100% mod. 20 log (M1 = "0"/M1 = "1") Pre-em. ON
SAP ON level
THsap
23 ST ST ST ST EXT INT EXT INT EXT INT EXT 33/34 36/37 33/34 36/37 13 33/34 36/37 Sine wave 1kHz, 490mVrms
Mono 1kHz 100% mod. Pre-em. ON
SAP ON/OFF hysteresis 13 13 13 13 33/34 36/37 13
HYsap
24
ST separation 1 L → R
STLsep1
– 13 –
Sine wave 1kHz, 490mVrms
25
ST separation 1 R → L
STRsep1
26
ST separation 2 L → R
STLsep2
27
ST separation 2 R → L
STRsep2
28
TVOUT output level
Vtv
29
30
TVOUT mute amount
MUtv1
MUtv2
31
LSOUT output level
Vls
32
33
LSOUT cross talk EXT → INT
CTls
CXA2134Q
34
LSOUT cross talk INT → EXT
dB
No. EXT 33/34 36/37 1kBPF 3/4 — –90 –80 — No signal Mute (M2 = "0")/ DC difference when there is no signal 3/4 –25 0 25 15kLPF 15kLPF 15kLPF BASS = "3F" BASS = "0" TREBLE = "3F" TREBLE = "0" VOL-L = "0", VOL-R = "0" 1kBPF 3/4 3/4 3/4 3/4 4 4 3/4 3/4 — 9 –13 9 –13 — 1.5 4.5 3/4 67 77 0.03 11 –11 11 –11 –90 3.0 6.0 3/4 — 0.01 0.5 — 0.5 13 –9 13 –9 –80 4.8 7.5 Sine wave 1kHz, 490mVrms 20 log (M2 = "0"/M2 = "1") dB
Item Input pin
Symbol
Mode
Input signal Filter
Measurement conditions Min. Typ. Max. Unit
Output pin
35
LSOUT mute amount
MUls
36
LSOUT DC offset
OSls
INT EXT EXT EXT EXT EXT EXT EXT EXT EXT EXT 34/37 34/37 Sine wave 10kHz, 490mVrms EXT Sine wave 330Hz, 490mVrms 33/34 36/37 Sine wave 1kHz, 490mVrms 33/34 36/37 Sine wave 10kHz, 490mVrms 33/34 36/37 Sine wave 10kHz, 490mVrms 33/34 36/37 Sine wave 100Hz, 490mVrms 33/34 36/37 Sine wave 100Hz, 490mVrms 33/34 36/37 Sine wave 1kHz, 2Vrms 33/34 36/37 Sine wave 1kHz, 490mVrms
mV
37
LSOUT distortion
THDls
33/34 36/37
Sine wave 1kHz, 490mVrms
% dB % dB dB dB dB dB dB dB
38
LSOUT S/N
SNls
39
LSOUT overload distortion
THDlsmax
40
Bass maximum value
TBmax
41
Bass minimum value
TBmin
42
Treble maximum value
TTmax
– 14 –
43
Treble minimum value
TTmin
44
Volume minimum value
VOLmin
45
SURROUND frequency response 1
Sr1
46
SURROUND frequency response 2
Sr2
CXA2134Q
CXA2134Q
Electrical Characteristics Measurement Circuit
S6 S5 S4 S3 S2 S1 SIGNAL GENERATOR V1 AC C24 4.7µ 36 35 SIGNAL GENERATOR V2 AC C23 4.7µ 34 SIGNAL SIGNAL GENE- GENERATOR RATOR
BUF FILTER 15kHz LPF fH BPF 1kHz BPF MEASURES
TANTALUM
V3 AC C22 4.7µ 33
V4 AC
TANTALUM
R8 3.9k C21 1µ 32 31
C20 10µ 30
C19 4.7µ 29
C18 3.3µ
R7 3k
R6 3.3k
C17 C16 0.047µ 2700p 27 26 25 C15 4.7µ 24
28
AUX1-L
VCATC
VETC
VCAWGT
VEOUT
NC
AUX2-R
AUX1-R
VEWGT
VCAIN
VE
C25 4.7µ C26 4.7µ C27 4.7µ C28 0.022µ C29 4700p
37
AUX2-L 38 TVOUT-R
SAPOUT NOISETC 23 C14 4.7µ
39
SAPIN
TVOUT-L
STIN 22
40 SURRTC
SUBOUT 21
C13 4.7µ
41 TRE-R
NC 20
42
NC
VCC 19 C12 100µ VCC V5 9V GND
43 VOLIN-R C30 4.7µ
SAPTC 18 C11 4.7µ
44
TOUT-R
GND 17
GND 45 BASS-R NC 16 R5 62k ± 1% METAL
C31 0.1µ
46 NC
IREF 15
LSOUT-R
LSOUT-L
MAINOUT
C32 4700p
47
TRE-L VOLIN-L
VGR 14
TOUT-L
BASS-L
PCINT1
MAININ
PCINT2
COMPIN
C10 10µ 13 C9 4.7µ
DGND
PLINT
48
SIGNAL GENERATOR V6 AC GND
SDA
1 C1 4.7µ C2 0.1µ
2 C3 4.7µ
3
4 C4 4.7µ R1 220
5 R2 220
6
SCL
7
8 C5 4.7µ
9
10 C6 5600P
11
12 R3 1MEG
C8 1µ
I2C BUS DATA DGND
R4 C7 100k 0.012µ
– 15 –
CXA2134Q
Adjustment Method The resister data is set to the standard value. 1. ATT adjustment 1) Input a 100Hz, 245mVrms sine wave signal to COMPIN and monitor the TVOUT-L output level. Then, adjust the “ATT” data for ATT adjustment so that the TVOUT-L output goes to the standard value (490mVrms). 2) Adjustment range: ±20% Adjustment bits: 4 bits 2.Separation adjustment 1) Input ST-L signal (modulation factor 30%, frequency 300Hz NR-ON) to COMPIN. At this time, adjust the “WIDEBAND” adjustment data to reduce TVOUT-R output to the minimum. 2) Next, set the frequency only of the input signal to 3kHz and adjust the “SPECTRAL” adjustment data to reduce TVOUT-R output to the minimum. 3) The adjustments in 1 and 2 above are performed to optimize the separation. 4) “WIDEBAND” “SPECTRAL” Adjustment range: ±30% Adjustment range: ±15% Adjustment bits: 6 bits Adjustment bits: 6 bits Note) Adjust this IC through tuner and IF when this IC is mounted on the set.
– 16 –
CXA2134Q
Register Specifications Slave address Slave receiver 84H (1000 0100) Register table Sub address MSB LSB BIT7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ M2 ∗ EXT1 EXT2 SURR BIT6 BIT5 TEST-DA BIT4 TEST1 SPECTRAL WIDEBAND NRSW ATTSW BASS TREBLE VOL-L VOL-R ∗: Don't care FOMO ∗ SAPC FEXT1 M1 FEXT2 ∗∗∗∗0000 ∗∗∗∗0001 ∗∗∗∗0010 ∗∗∗∗0011 ∗∗∗∗0100 ∗∗∗∗0101 ∗∗∗∗0110 ∗∗∗∗0111 ∗∗∗∗1000 Data BIT3 BIT2 ATT BIT1 BIT0 Slave transmitter 85H (1000 0101)
Status registers STA1 BIT7 STA2 BIT6 STA3 BIT5 SAP STA4 BIT4 NOISE STA5 BIT3 — STA6 BIT2 — STA7 BIT1 — STA8 BIT0 —
POWER STEREO ON RESET
Note) The microcomputer reads both SAP and NOISE status and judges SAP discrimination.
– 17 –
CXA2134Q
Description of Registers Control registers Register ATT SPECTRAL WIDEBAND TEST-DA TEST1 VOL-L VOL-R BASS TREBLE SURR NRSW FOMO EXT1 EXT2 FEXT1 FEXT2 M1 M2 ATTSW SAPC Number Classification∗1 of bits 4 6 6 1 1 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 A A A T T U U U U U U U U U U U U U S S Standard setting 9 1F 1F 0 0 3F 3F 1F 1F 0 0 0 0 0 0 0 1 1 0 0 Input level adjustment Adjustment of stereo separation (3kHz) Adjustment of stereo separation (300Hz) DAC test mode Test mode Left channel volume control Right channel volume control Bass control Treble control Quasi-surround function ON/OFF Selection of the output signal (Stereo mode, SAP mode) Forced MONO. (Left channel only is MONO during SAP output.) Selection of TV mode or external input mode Selection of external input 1 mode or external input 2 mode (EXT1 = 1) External input 1 forced MONO External input 2 forced MONO Selection of TVOUT mute function ON/OFF Selection of LSOUT mute function ON/OFF Main VCA ON/OFF Selection of SAP mode or L + R mode according to the presence of SAP broadcasting Contents
∗1 Classification U: User control A: Adjustment S: Proper to set T: Test
Status registers Register PONRES STEREO SAP NOISE Number of bits 1 1 1 1 POWER ON RESET detection; Stereo discrimination of the COMPIN input signal; SAP discrimination of the COMPIN input signal; Noise level discrimination of the SAP input signal; Contents 1: RESET 1: Stereo 1: SAP 1: Noise
– 18 –
CXA2134Q
Description of Control Registers ATT (4): Perform input level adjustment. 0 = Level Min. F = Level Max.
SPECTRAL (6): Perform high frequency (fs = 3kHz) separation adjustment. 0 = Level Max. 3F = Level Min. WIDEBAND (6): Perform low frequency (fs = 300Hz) separation adjustment. 0 = Level Min. 3F = Level Max. TEST-DA (1): Set DAC output test mode. 0 = Normal mode 1 = DAC output test mode In addition, the following outputs are present at Pin 39. TVOUT-L (Pin 39): DA control DC level TEST1 (1): Monitor SAPBPF and NRBPF outputs. 0 = Normal mode 1 = SAPBPF, NRBPF outputs In addition, the following outputs are present at Pins 39 and 38. TVOUT-L (Pin 39): SAP BPF OUT TVOUT-R (Pin 38): NR BPF OUT LSOUT-L output signal level control 0 = Volume Min. 3F= Volume Max. –1.25 dB/STEP LSOUT-R output signal level control 0 = Volume Min. 3F= Volume Max. –1.25 dB/STEP LSOUT output bass control 0 = Bass Min. 1F = Bass Center 3F = Bass Max.
VOL-L (6):
VOL-R (6):
BASS (6):
TREBLE (6): LSOUT output treble control 0 = Treble Min. 1F = Treble Center 3F = Treble Max. – 19 –
CXA2134Q
SURR (1):
Surround function selection 0 = Surround OFF 1 = Surround ON Select stereo mode or SAP mode 0 = Stereo mode 1 = SAP mode Select forced MONO mode 0 = Normal mode 1 = Forced MONO mode Select TV mode or external input mode for TVOUT output. 0 = TV mode 1 = External input mode Select external input [1] mode or external input [2] mode for TVOUT output. (EXT1 = 1) 0 = External input [1] mode 1 = External input [2] mode Turn external input [1] to forced MONO. 0 = Normal mode 1 = External input [1] is forced MONO. Input the same signal to both AUX1-L and AUX1-R. Turn external input [2] to forced MONO 0 = Normal mode 1 = External input [2] is forced MONO Input the same signal to both AUX2-L and AUX2-R. Mute the TVOUT-L and TVOUT-R output. 0 = Mute ON 1 = Mute OFF Mute the LSOUT-L and LSOUT-R output. 0 = Mute ON 1 = Mute OFF Select BYPASS SW of MVCA 0 = Normal mode 1 = MVCA is passed Select the SAP signal output mode When there is no SAP signal, the conditions for selecting SAP output are selected by SAPC. 0 = L + R output is selected 1 = SAP output is selected – 20 –
NRSW (1):
FOMO (1):
EXT1 (1):
EXT2 (1):
FEXT1 (1):
FEXT2 (1):
M1 (1):
M2 (1):
ATTSW (1)
SAPC (1):
CXA2134Q
Description of Mode Control SAPC = 0 “Select dbx input and TV decoder output” Conditions: FOMO = 0 NRSW = 0 (MONO or ST output) • During ST input: left channel: L, right channel: R • During other input: left channel: L + R, right channel: L + R NRSW = 1 (SAP output) • When there is “SAP” during SAP discrimination – left channel: SAP, right channel: SAP • When there is “No SAP”, output is the same as when NRSW = 0. SAPC = 1 “Select dbx input and TV decoder output” Conditions: FOMO = 0 NRSW = 0 (MONO or ST output) As on the left
NRSW
NRSW = 1 (SAP output) • Regardless of the presence of SAP discrimination, dbx input: “SAP” left channel: SAP, right channel: SAP However, when there is no SAP, SAPOUT output is soft muted (–7dB)
“Forced MONO” FOMO FOMO = 1 • During SAP output: left channel: L + R, right channel: SAP • During ST or MONO output: left channel: L + R, right channel: L + R Change the selection conditions for “MONO or ST output” and “SAP output”. SAPC = 0: Switch to SAP output when there is SAP discrimination. Do not switch to SAP output when there is no SAP discrimination. SAPC = 1: Switch to SAP output regardless of whether there is SAP discrimination.
SAPC
– 21 –
CXA2134Q
Decoder Output and Mode Control Table 1 (SAPC = 1) Input signal mode ST 0 0 MONO ∗1 0 0 0 0 1 1 1 STEREO ∗1 1 1 1 1 1 0 0 MONO & SAP 0 0 0 0 1 1 STEREO & SAP 1 1 1 1 Mode detection SAP 0 0 0 ∗ ∗ ∗ 0 0 1 1 0 0 ∗ ∗ 1 1 1 1 1 1 1 1 1 1 1 1 NOISE 0 0 0 1 1 1 ∗ ∗ 1 1 0 0 1 1 ∗ ∗ 0 0 1 1 ∗ ∗ 0 0 1 1 Mode control NRSW 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 FOMO ∗ 0 1 ∗ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 SAPC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 dbx input MUTE SAP SAP MUTE (SAP) (SAP) L–R MUTE L–R MUTE SAP SAP (SAP) (SAP) MUTE MUTE SAP SAP (SAP) (SAP) L–R MUTE SAP SAP (SAP) (SAP) Output Lch L+R SAP L+R L+R (SAP) L+R L L+R L L+R SAP L+R (SAP) L+R L+R L+R SAP L+R (SAP) L+R L L+R SAP L+R (SAP) L+R Rch L+R SAP SAP L+R (SAP) (SAP) R L+R R L+R SAP SAP (SAP) (SAP) L+R L+R SAP SAP (SAP) (SAP) R L+R SAP SAP (SAP) (SAP)
Note (SAP) : The SAPOUT output signal is soft muted (approximately –7dB). The signal is soft muted when NOISE = 1. ∗ : Don’t care. ∗1 SAP or NOISE discrimination may be made during MONO or STEREO input when the noise is input in the weak electric field. Then microcomputer reads "NOISE" status from IC and decides whether SAP is output. "NOISE" status rises earlier than "SAP" status when the amount of noise is increased to COMPIN. – 22 –
CXA2134Q
Decoder Output and Mode Control Table 2 (SAPC = 0) Input signal mode ST 0 0 MONO ∗1 0 0 0 1 1 1 STEREO ∗1 1 1 1 1 1 0 0 0 MONO & SAP 0 0 0 0 0 1 1 1 STEREO & SAP 1 1 1 1 1 Mode detection SAP 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NOISE ∗ 1 1 1 1 ∗ ∗ ∗ ∗ 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ∗ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Mode control NRSW FOMO ∗ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 SAPC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 dbx input MUTE MUTE MUTE (SAP) (SAP) L–R MUTE L–R MUTE L–R MUTE (SAP) (SAP) MUTE MUTE SAP SAP MUTE MUTE (SAP) (SAP) L–R MUTE SAP SAP L–R MUTE (SAP) (SAP) Output Lch L+R L+R L+R (SAP) L+R L L+R L L+R L L+R (SAP) L+R L+R L+R SAP L+R L+R L+R (SAP) L+R L L+R SAP L+R L L+R (SAP) L+R Rch L+R L+R L+R (SAP) (SAP) R L+R R L+R R L+R (SAP) (SAP) L+R L+R SAP SAP L+R L+R (SAP) (SAP) R L+R SAP SAP R L+R (SAP) (SAP)
Note (SAP) : The SAPOUT output signal is soft muted (approximately –7dB). The signal is soft muted when NOISE = 1. ∗ : Don’t care. ∗1 SAP or NOISE discrimination may be made during MONO or STEREO input when the noise is input in the weak electric field. Then microcomputer reads "NOISE" status from IC and decides whether SAP is output. "NOISE" status rises earlier than "SAP" status when the amount of noise is increased to COMPIN. – 23 –
CXA2134Q
Mode Control Table 3 M1 1 2 3 4 5 6 0 1 1 1 1 1 EXT1 – 0 1 1 1 1 EXT2 – – 0 0 1 1 FEXT1 – – 0 1 – – FEXT2 – – – – 0 1 TVOUT-L MUTE TV (L) AUX1-L AUX1-L AUX2-L AUX2-L TVOUT-R MUTE TV (R) AUX1-R AUX1-L AUX2-R AUX2-L
TV (L) / TV (R) are selected in MATRIX TV (L): MONO, ST-L, SAP TV (R): MONO, ST-R, SAP
– 24 –
CXA2134Q
Description of Operation The US audio multiplexing system possesses the base-band spectrum shown in Fig. 1.
PEAK DEV kHz 50 AM-DSB-SC 50
25
25
L-R dbx-TV NR
PILOT
15 SAP dbx-TV NR FM 10kHz 50 – 10kHz 2fH 3fH 4fH 5fH TELEMETRY FM 3kHz 3 6fH 6.5fH f
L+R 5 50 – 15kHz fH
fH = 15.734kHz
Fig. 1. Base-band spectrum
2fHL0° fHL90° fHL0° I2C BUS DECODER MODE CONTROL (MAIN OUT) (MAIN IN)
PLL (VCO 8fH) STEREO LPF MVCA
PILOT DET
(COMPIN)
MAIN LPF DE.EM PILOT CANCEL SUB LPF L-R (DSB) DET
13
9
L+R WIDEBAND SUBVCA 4.7µ
8
(SUBOUT) (ST IN)
MATRIX (Lch) NR SW to TVSW
21
L–R 4.7µ
22 A B
SAP BPF
SAP(FM) DET INJ. LOCK
SAP LPF
(SAP OUT)
dbx-TV BLOCK
(Rch)
24
(SAP IN) NOISE DET BUS DECODER 4.7µ I2C
25
MODE CONTROL
SAP DET
I2C BUS DECODER MODE CONTROL
Fig. 2. Overall block diagram (See Fig. 3 for the dbx-TV block)
(ST IN) FIXED VARIABLE DEEMPHASIS DEEMPHASIS
22
(SAP IN)
NR SW
A
(VE OUT) (VCA IN)
B
VCA to MATRIX
29
4.7µ HPF LPF LPF RMS DET RMS DET
30
25
Fig 3. dbx-TV block – 25 –
CXA2134Q
(AUX2-L) (AUX2-R)
4.7µ
37
36
(TVOUT-L) (TVOUT-R) (TOUT-L) BASS SURROUND VOL-R (TOUT-R) 44 TREBLE
1
48 (VOLIN-L)
(LSOUT-L) VOL-L
(AUX1-L)
39
TVSW
38
4
34 33
(AUX1-R)
3
(LSOUT-R)
(Lch)
(Rch)
43 (VOLIN-R)
4.7µ
from MATRIX
Fig. 4. Sound processor block (1) L + R (MAIN) After the audio multiplexing signal input from COMPIN (Pin 13) passes through MVCA, the SAP signal and telemetry signal are suppressed by STEREO LPF. Next, the pilot signals are canceled. Finally, the L – R signal and SAP signal are removed by MAIN LPF, and the frequency response is flattened (deemphasized) and input to the matrix. (2) L – R (SUB) The L – R signal follows the same course as L + R before the pilot signal is canceled. L – R has no carrier signal, as it is a suppressed-carrier double-sideband amplitude modulated signal (DSB-AM modulated). For this reason, the pilot signal is used to regenerate the carrier signal (quasi-sine wave) to be used for the demodulation of the L – R signal. In the last stage, the residual high frequency components are removed by SUB LPF and the L – R signal is input to the dbx-TV block via the NRSW circuit after passing through SUBVCA. (3) SAP SAP is an FM signal using 5fH as a carrier as shown in the Fig. 1. First, the SAP signal only is extracted using SAP BPF. Then, this is subjected to FM detection. Finally, residual high frequency components are removed and frequency response flattened using SAP LPF, and the SAP signal is input to the dbx-TV block via the NRSW circuit. When there is no SAP signal, the Pin 24 output is soft muted. (4) Mode discrimination Stereo discrimination is performed by detecting the pilot signal amplitude. SAP discrimination is performed by detecting the 5fH carrier amplitude. NOISE discrimination is performed by detecting the noise near 25kHz after FM detection of SAP signal.
– 26 –
CXA2134Q
(5) dbx-TV block Either the L – R signal or SAP signal input respectively from ST IN (Pin 22) or SAP IN (Pin 25) is selected by the mode control and input to the dbx-TV block. The input signal then passes through the fixed de-emphasis circuit and is applied to the variable deemphasis circuit. The signal output from the variable de-emphasis circuit passes through an external capacitor and is applied to VCA (voltage control amplifier). Finally, the VCA output is converted from a current to a voltage using an operational amplifier and then input to the matrix. The variable de-emphasis circuit transmittance and VCA gain are respectively controlled by Each of effective value detection circuits. Each of the effective value detection circuits passes the input signal through a predetermined filter for weighting before the effective value of the weighted signal is detected to provide the control signal. (6) Matrix, TVSW The signals (L + R, L – R, SAP) input to “MATRIX” become the outputs for the ST-L, ST-R, MONO and SAP signals according to the BUS data and whether there is ST / SAP discrimination. “TVSW” switches the “MATRIX” output signal, external input signal (input to AUX1-L, R), external input signal (input to AUX2-L, R) and external forced MONO. (7) Sound processor block The sound processor block contains "SURROUND" (quasi-surround function), “BASS/TREBLE” tone control functions, and “VOLUME”. • Surround At "SURROUND", the L and R differential components are phase-shifted and these components are added to the left and right channels. When surround is OFF (SURR = 0) Inputs are output as is. Lout = Lin Rout = Rin
{
When surround is ON (SURR = 1)
{
Lout = Lin –
1 – jωRC 1 + jωRC 1 – jωRC 1 + jωRC
(Lin – Rin)
Rout = Rin +
(Lin – Rin)
{ R = 24kΩ (On-chip) attached to Pin 40) C = 0.022µF (Externally
(Lin, Lout) and Rin, (Rout) indicate the left- and right- channel I/O of the surround circuit. (8) Others “MVCA” is a VCA which adjusts the input signal level to the standard level of this IC. “Bias” supplies the reference voltage and reference current to the other blocks. The current flowing to the resistor connecting IREF (Pin 15) with GND become the reference current. – 27 –
CXA2134Q
Application Circuit
AUX2 input
AUX1 input
3.9k 4.7µ 4.7µ 4.7µ 4.7µ 1µ 36 35 34 33 32 31
10µ TANTALUM
3.3µ TANTALUM 4.7µ
3k
3.3k
0.047µ 2700p
30
29
28
27
26
25
VCAWGT
NC
AUX2-R
AUX1-R
VEWGT
VCAIN
AUX1-L
VCATC
37
VEOUT
SAPIN
VETC
VE
4.7µ 24
AUX2-L 38 TVOUT-R TVOUT output 4.7µ 39 TVOUT-L 4.7µ 40 SURRTC 0.022µ 41 TRE-R 4700p 42 NC
SAPOUT NOISETC 23 4.7µ STIN 22 4.7µ SUBOUT 21
NC 20
100µ +9V
VCC 19
43 VOLIN-R 4.7µ 44 TOUT-R
SAPTC 18 4.7µ GND 17 GND
45 0.1µ
BASS-R
NC 16 62k ± 1% METAL
46 NC
IREF 15
47 TRE-L
VGR 14
MAINOUT
4700p 48
LSOUT-R
LSOUT-L
VOLIN-L
10µ
TOUT-L
BASS-L
PCINT1
MAININ
PCINT2
COMPIN
DGND
SCL
PLINT
13 4.7µ
SDA
Composite baseband signal input
1
2
3
4
5
6
7
8 4.7µ
9
10
11
12
1MEG 5600P 100k 0.012µ 1µ
4.7µ
0.1µ
4.7µ
4.7µ
220
220
DGND LS output µ-com
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 28 –
CXA2134Q
I2C Bus Block Items (SDA, SCL) No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 High level input voltage Low level input voltage High level input current Low level input current Low level output voltage SDA (Pin 5) during 3mA inflow Maximum inflow current Input capacitance Maximum clock frequency Minimum waiting time for data change Minimum waiting time for start of data transfer Low level clock pulse width High level clock pulse width Minimum waiting time for start preparation Minimum data hold time Minimum data preparation time Rise time Fall time Minimum waiting time for stop preparation Item Symbol VIH VIL IIH IIL VOL IOL CI fSCL tBUF tHD: STA tLOW tHIGH tSU: STA tHD: DAT tSU: DAT tR tF tSU: STO Min. 3.0 0 — — 0 3 — 0 4.7 4.0 4.7 4.0 4.7 0 250 — — 4.7 Typ. — — — — — — — — — — — — — — — — — — Max. 5.0 1.5 10 10 0.4 — 10 100 — — — — — — — 1 300 — ns µs ns µs µs V µA V mA pF kHz Unit
I2C bus load conditions: Pull-up resistor 4kΩ (Connect to +5V) Load capacitor 200pF (Connect to GND)
I2C Bus Control Signal
SDA tBUF SCL P S tHD: STA tLOW tHD: DAT tHIGH tSU: DAT Sr tSU: STA tSU: STO P tR tF tHD: STA
– 29 –
CXA2134Q
I2C Bus Signal There are two I2C bus signals, SDA (Serial DATA) and SCL (Serial CLOCK) signals. SDA is a bidirectional signal. • Accordingly there are 3 values outputs, H, L and Hi-Z.
H
L
Hi-Z
L
• I2C transfer begins with Start Condition and ends with Stop Condition.
Start Condition S Stop Condition P
SDA
SCL
– 30 –
CXA2134Q
• I2C data Write (Write from I2C controller to the IC)
Low during Write MSB Hi-Z SDA MSB LSB Hi-Z
SCL S
1
2
3 Address
4
5
6
7
8
9 ACK
1 Sub Address
8
9 ACK
MSB
LSB Hi-Z Hi-Z
1
8
9
1
8
9
DATA (n)
ACK
DATA (n + 1)
ACK
DATA (n + 2)
Hi-Z
Hi-Z
8 DATA
9 ACK
1 DATA
8
9 P ACK
∗ Data can be transferred in 8-bit units to be set as required. Sub address is incremented automatically.
• I2C data Read (Read from the IC to I2C controller)
High during Read Hi-Z SDA
SCL S
1
6
7
8
9
1
7
8
9 P
Address
ACK
DATA
ACK
• Read timing
MSB IC output SDA LSB
SCL
9
1
2
3
4
5
6
7
8
9
Read timing
ACK
DATA
ACK
∗ Data Read is performed during SCL rise.
– 31 –
CXA2134Q
Input level vs. Distortion characteristics 1 (MONO)
Input signal: MONO (Pre-emphasis on), 1kHz 0dB = 100% modulation level VCC = 9V, 30kHz using LPF Measurement point: TVOUT-L/R
Input level vs. Distortion characteristics 2 (Stereo)
Input signal: Stereo L = –R (dbx-TVNR ON), 1kHz 0dB = 100% modulation level VCC = 9V, 30kHz using LPF, ST mode Measurement point: TVOUT-L/R
1.0
10
THD – Distortion [%]
THD – Distortion [%]
0.1 1.0 Standard level (100%) –10 0 Input level [dB] –10 0 Input level [dB] 10 Standard level (100%) 10
Input level vs. Distortion characteristics 3 (SAP)
Input signal: SAP (dbx-TVNR ON) 1kHz, 0dB = 100% modulation level VCC = 9V, 30kHz using LPF, SAP mode Measurement point: TVOUT-L/R
10
THD – Distortion [%]
1.0
Standard level (100%) –10 0 Input level [dB] 10
– 32 –
CXA2134Q
Stereo LPF frequency response
10
5
Gain [dB]
0
–5
–10
0
20
40
60
80
100
Frequency [kHz]
Main LPF and Sub LPF frequency response
30
Gain (FC main and FC sub) [dB]
20 10 0 –10 –20 –30 –40 –50 1 2 5 7 10 20 50 70 100 Frequency [kHz]
SAP frequency response and group delay
100 20 5fH 10 Gain 90 80
Gain [dB]
60 0 50 40 –10 Group delay –20 20 40 3.8fH 60 80 6.2fH 100 30 20 10 0 120
Frequency [kHz]
– 33 –
Group delay [µs]
70
CXA2134Q
Volume characteristics
0
–20
LSOUT output level [dB]
–40
–60
–80 AUX1, 2 1kHz, 490mVrms Output: LSOUT –100 0 F 1F 2F 3F Control data VOL-L, VOL-R Input:
– 34 –
CXA2134Q
Package Outline
Unit: mm
48PIN QFP (PLASTIC)
15.3 ± 0.4 + 0.4 12.0 – 0.1 + 0.1 0.15 – 0.05 0.15 36 25
37
24
48
13
+ 0.2 0.1 – 0.1
1 + 0.15 0.3 – 0.1
12
0.8
0.24
M
+ 0.35 2.2 – 0.15
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-48P-L04 QFP048-P-1212 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER / PALLADIUM PLATING 42/COPPER ALLOY 0.7g
NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 35 –
0.9 ± 0.2
13.5