0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXA2542

CXA2542

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXA2542 - RF Signal Processing Servo Amplifier for CD Player - Sony Corporation

  • 详情介绍
  • 数据手册
  • 价格&库存
CXA2542 数据手册
CXA2542AQ RF Signal Processing Servo Amplifier for CD Player Description The CXA2542AQ is a bipolar IC developed for CD player RF signal processing and servo control. Features • Automatic focus bias adjustment circuit • Automatic tracking balance and gain adjustment circuits • RF level control circuit • Interruption countermeasure circuit • Anti-shock circuit • Defect detection and prevention circuits • RF I-V amplifier, RF amplifier • APC circuit • Focus and tracking error amplifier • Focus, tracking and sled servo control circuits • Focus OK circuit • Mirror detection circuit • Single power supply and dual power supplies Applications CD players Structure Bipolar silicon monolithic IC 48 pin QFP (Plastic) Absolute Maximum Ratings (Ta = 25°C) • Supply voltage VCC 12 V • Operating temperature Topr –20 to +75 °C • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1400 mW Recommended Operating Conditions Operating supply voltage VCC – VEE 3.0 to 3.6 V 4.5 to 5.5 V Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E97920-PS CXA2542AQ Block Diagram RF_M RFTC RF_O RF_I 36 35 34 33 VCC 32 31 30 29 28 27 CC1 LD CB 26 25 VCC VEE VCC PD1 IV AMP VEE VEE VEE RF SUMMING AMP PD2 37 PD2 IV AMP FOK PD CP CC2 PD1 VCC APC VEE 24 SENS2 F 38 F IV AMP VCC E 39 IFB1 LASER POWER CONTROL VCC VCC IIL ↓ TTL 23 SENS1 FE AMP IFB4 IFB2 E IV AMP BAL1 BAL2 BAL3 BAL4 IFB3 IFB5 IFB6 FO. BIAS WINDOW COMP. VEE 22 C. OUT INT VEE 40 VEE TOG1 TOG2 VEE LEVEL S VEE TOG3 TOG4 VCC MIRR 21 XRST VEE IIL ↓ TTL 20 TRK. GAIN WINDOW COMP. E-F BALANCE WINDOW COMP. FOH FOL TGH TGL BALH BALL ATSC TZC FZC DFCT TM1 TDFCT 45 TG1 VCC VCC VC 46 TM4 VEE VCC FZC 47 TM7 VCC FZC COMP. FEO 48 FOCUS PHASE COMPENSATION FS1 TM3 VEE TM5 VEE TM2 13 SL_P 14 SL_M TM6 VCC 15 SL_O TRACKING PHASE COMPENSATION DFCTO IFB1-6 BAL1-4 TOG1-4 FS1-4 TG1-2 TM1-7 PS1-4 ISET 16 ISET FOK TTL ↓ IIL TGFL LPCL MIRR XDFCT1 DFCT2 LPC CC1 19 XLT DATA TGFL TEO 41 LPFI 42 LDON ATSC 43 ATSC WINDOW COMP. TZC 44 TZC COMP. IIL DATA REGISTER INPUT SHIFT REGISTER ADDRESS DECODER SENS SELECTOR OUTPUT DECODER VCC 18 CLK 17 VCC FS2 DFCT FS4 TG2 FSET VEE 1 FEI 2 FDFCT 3 FGD 4 FLB 5 FE_O 6 FE_M 7 SRCH 8 TGU 9 TG2 10 FSET 11 TA_M 12 TA_O –2– CXA2542AQ Pin Description Pin No. Symbol I/O Equivalent circuit Description 1 FEI I 1 147 100k 147 Focus error input. 2 FDFCT I 2 3µ Connects the capacitor for defect time constant. 3 FGD I 3 147 68k Ground this pin through a capacitor for cutting the focus servo highfrequency gain. 4µ 130k 40k 330k 470k 4 FLB I 4 External time constant setting pin for boosting the focus servo lowfrequency. 5 FE_O O Focus drive output. 5 12 TA_O O 12 15 Tracking drive output. 15 SL_O O 250µ Sled drive output. 147 90k 6 FE_M I 6 50k 2µ Focus amplifier inverted input. 147 7 SRCH I 7 50k 20k 11µ External time constant setting pin for generating the focus search waveform. –3– CXA2542AQ Pin No. Symbol I/O Equivalent circuit Description 110k 8 TGU I 147 20k 8 423k 82k External time constant setting pin for switching the tracking high-frequency gain. 9 TG2 I 9 470k External time constant setting pin for switching the tracking high-frequency gain. 147k 10 FSET I 10 15k 15k Peak frequency setting pin for focus and tracking phase compensation amplifier. 100k 11 147 TA_M I 11 11µ Tracking amplifier inverted input. 13 SL_P I 147 13 2µ Sled amplifier non-inverted input. 147 14 SL_M I 14 22µ Sled amplifier inverted input. 16 ISET I 147 16 50µ Connect the external resistor to set the current which determines the Focus search, Track jump, and Sled kick levels. –4– CXA2542AQ Pin No. 17 Symbol I/O Equivalent circuit Description VCC I 17 VCC Positive power supply. 18 CLK I 147 18 20 1k 20µ Serial data transfer clock input from CPU. (no pull-up resistance) 20 DATA I Serial data input from CPU. (no pull-up resistance) 19 XLT I 147 19 21 2.5p 4k 20µ Latch input from CPU. (no pull-up resistance) 21 XRST I Reset input; resets at Low. (no pull-up resistance) 22 C. OUT O 22 23 24 20k 147 Track number count signal output. Outputs FZC, DFCT1, TZC, BALH, TGH, FOH, ATSC, and others according to the command from CPU. 100k 23 SENS1 O 24 SENS2 O Outputs DFCT2, MIRR, BALL, TGL, FOL, and others according to the command from the CPU. 20k 147 25 FOK O 25 40k Focus OK comparator output. 100k –5– CXA2542AQ Pin No. Symbol I/O Equivalent circuit Description 75k 147 26 43k 39k 26 CC2 I Input for the RF summing amplifier output with capacitance coupled. 147 28 CB I 28 7.6k 240k Connects the defect bottom hold capacitor. 29 100k 29 CP I 1.5k Connects the MIRR hold capacitor. MIRR comparator non-inverted input. 30 RF_I I Input for the RF summing amplifier output with capacitance coupled. 147 30 31 RF_O O RF summing amplifier output. Eyepattern check point. 147 31 147 32 10k 27 147 10k 32 RF_M I RF summing amplifier inverted input. The RF amplifier gain is determined by the resistance connected between this pin and RFO pin. RF summing amplifier output. Used for the defect capacitance coupling. 27 CC1 O 147 50µ 33 RFTC I 33 50µ 10µ External time constant setting pin during RF level control. –6– CXA2542AQ Pin No. Symbol I/O Equivalent circuit Description 10k 34 LD O 1k 34 APC amplifier output. 20µ 8µ 35 PD I 147 35 55k 10k APC amplifier input. 10k 0.2p 2k 8k 36 37 PD1 PD2 I I 147 36 37 100µ 8.65k RF I-V amplifier inverted input. Connect these pins to the photo diode A + C and B + D pins. 12p 260k 38 39 F E I I 147 38 39 10µ 500 F I-V and E I-V amplifier inverted input. Connect these pins to photo diodes F and E pins. 40 VEE — 40 VEE Negative power supply. –7– CXA2542AQ Pin No. Symbol I/O Equivalent circuit Description 41 TEO O 41 147 15k 32k 15k 6.6k 3k 150k 20k 150k Tracking error amplifier output. E-F signal is output. 100k 45 TDFCT I 45 147 3µ Connects the capacitor for defect time constant. 42 LPFI I 147 42 Comparator input for balance adjustment. (Input from TEO through LPF) 7µ 1k 100k 43 ATSC I 147 43 100k 10µ 10µ 1k Window comparator input for ATSC detection. 10µ 147 44 TZC I 44 75k Tracking zero-cross comparator input. –8– CXA2542AQ Pin No. Symbol I/O Equivalent circuit Description 46 VC O 50 46 120 120 15k (VCC + VEE)/2 DC voltage output. VC 147 54k 7µ 47 FZC I 47 6k 300k Focus zero-cross comparator input. 10µ 25p 147 48 FEO O 48 174k 300µ 10µ Focus error amplifier output. Connected internally to the window comparator input for bias adjustment. –9– CXA2542AQ Electrical Characteristics TEST T1 T2 T3 T4 RF amplifier T5 T6 T7 T8 T9 T10 T11 T12 T13 FE amplifier T14 T15 T16 T17 T18 T19 T20 Item Current consumption 1 Current consumption 2 Center amplifier output offset Offset Voltage gain 10, 13 SW conditions (ON switches) 19 (OFF) 19 (OFF) 19 (OFF) SD RST RST RST RST RST RST RST 39F 39F 39F 39F 39F 39F 3BF 3BE 3BD 3BB 3B7 3AF 39F 37 36 48 48 48 48 48 48 48 48 48 36 37 36 37 36 37 36 37 Input pin 17 40 — Measurement pin 17 40 46 31 31 31 31 48 48 48 (VCC = 1.5V, VEE = 1.5V, Topr = 25°C) Measurement conditions Min. 12.0 Typ. 18.5 Max. 25.0 Unit mA mA mV mV dB V V mV dB dB dB V V mV mV dB dB dB dB dB –25.0 –18.5 –12.0 –100 –70 1kHz I/O ratio V2 = 0.2VDC V2 = 0.2VDC 1FB6: ON 1kHz I/O ratio 1kHz I/O ratio 16.5 1.2 — –120 15.6 15.6 –3 V2 = 100mVDC V2 = 100mVDC IFB1, 2, 3, 4, 5, 6: OFF IFB1: ON, BIAS0: reference IFB2: ON, BIAS0: reference Output gain difference with T15 IFB3: ON, BIAS0: reference Output gain difference with V17 IFB4: ON, BIAS0: reference Output gain difference with V18 IFB5: ON, BIAS0: reference Output gain difference with V19 IFB6: ON, BIAS0: reference Output gain difference with V20 0 –13 19.5 1.4 –1.3 0 18.6 18.6 0 1.4 –1.3 718 100 70 22.5 — –1.0 120 21.6 21.6 3 — –1 1042 Max. output 10, 13 amplitude - High Max. output amplitude - Low Offset Voltage gain 1 10 Voltage gain 2 13 Voltage gain difference Max. output 13 voltage – High Max. output voltage – Low BIAS0 BIAS1 BIAS2 BIAS3 BIAS4 BIAS5 BIAS6 10 10, 13 1 — 560 –29.0 –22.7 –16.5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 – 10 – CXA2542AQ TEST Item FOH threshold value FOL threshold value Offset GAIN UP (F) GAIN UP (E) Voltage gain F0 Voltage gain F1 Voltage gain F2 Voltage gain F3 Voltage gain F4 Voltage gain E0 Voltage gain E1 Voltage gain E2 Voltage gain E3 Voltage gain E4 SW conditions (ON switches) SD Input pin Measurement pin 48 Measurement conditions IFB6: ON Pin 1 voltage when SENS1 (Pin 23) goes from High to Low IFB6: ON Min. Typ. Max. Unit FE amplifier T21 39F 5 20 35 mV T22 39F 34F 308 14 15 14 14 14 14 14 15 15 15 15 15 36F 308 36F 308 34F 34E 30F 34D 34B 347 34F 30F 00 30E 30D 30B 307 34F 308 34F 308 3C4 3C4 3C4 3C4 3C0 38 39 38 39 38 38 38 38 38 39 39 39 39 39 38 39 35 35 35 35 35 48 Pin 1 voltage when SENS2 (Pin 24) goes from High to Low –35 –20 –5 mV T23 T24 T25 T26 T27 T28 T29 TE amplifier T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 APC T40 T41 T42 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 34 34 34 34 34 TOG: OFF, BAL1, 2, 3: ON V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON V1 = 2 kHz, I/O ratio TOG: OFF, BAL1, 2, 3: ON V1 = 2kHz, TOG: OFF I/O ratio V1 = 2kHz, TOG1: ON Reference to F0 V1 = 2kHz, TOG2: ON Reference to F0 V1 = 2kHz, TOG3: ON Reference to F0 V1 = 2kHz, TOG4: ON Reference to F0 V1 = 2kHz, BAL: OFF I/O ratio V1 = 2kHz, BAL1: ON Reference to E0 V1 = 2kHz, BAL2: ON Reference to E0 V1 = 2kHz, BAL3: ON Reference to E0 V1 = 2kHz, BAL4: ON Reference to E0 V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON V1 = 1VDC, TOG: OFF, BAL1, 2, 3: ON I1 = 364µA I1 = 439µA I1 = 515µA 0.8mA sink I1 = 515µA, LD: OFF –25 7.2 7.2 1.2 –2.3 –3.9 –6.9 0 10.2 10.2 4.2 –1.8 –3.4 –6.4 25 13.2 13.2 7.2 –1.3 –2.9 –5.9 mV dB dB dB dB dB dB dB dB dB dB dB dB V V mV mV mV mV V –11.1 –10.6 –10.1 –1.6 0.16 0.58 1.43 2.96 0.5 — 1.4 0.46 0.88 1.73 3.26 0.7 –0.8 4.4 0.76 1.18 2.03 3.56 — –0.5 Max. output 1 voltage – High Max. output voltage – Low Output voltage 1 Output voltage 2 Output voltage 3 Output voltage 9 4 LD OFF 1 –900 –704 –500 –693 –293 163 –200 1.1 613 132 1.3 107 1063 500 — – 11 – CXA2542AQ TEST T43 RF level controll T44 T45 T46 T47 T48 T49 Focus servo T50 T51 T52 T53 T54 T55 T56 T57 T58 Tracking servo T59 T60 T61 T62 T63 T64 Item 50% limit 30% limit –50% limit –30% limit DC voltage gain FCS total gain Feed through 1 SW conditions (ON switches) 8 8 10, 13 10, 13 1 SD 3C7 3C5 3C7 3C5 08 — Input pin 35 30 35 30 35 36 37 35 36 37 1 — 1 47 1 1 — — 38 — 38 38 38 Measurement pin 34 34 34 34 5 — 5 47 5 5 5 5 12 — 12 12 12 12 12 Measurement conditions I1 = 273µA Output difference with LPC ON/OFF I1 = 333µA Output difference with LPC ON/OFF I1 = 742µA Output difference with LPC ON/OFF I1 = 667µA Output difference with LPC ON/OFF Min. 725 315 Typ. Max. Unit mV mV mV mV dB dB dB mV V V mV mV dB dB dB V V mV mV mV mV mV 1330 1935 915 1515 –1421 –816 –211 –1215 –615 17.4 20.9 39.5 — 150 1.3 –1.3 –15 24.4 41.5 –30 177 — –1 T9 + T47 I/O gain difference between SD = 00 and SD = 08 Pin 47 voltage when SENS1 (Pin 23) goes from Low to High 37.5 — 123 1 — 1 00 08 00 08 08 02 03 25 — 20 25 20 25 20 25 2C 28 10 10 20 FZC threshold 20 value Max. output 1 voltage – High Max. output voltage – Low Search voltage (–) Search voltage (+) DC voltage gain TRK total gain Feed through 1 Max. output voltage – High Max. output voltage – Low Jump output voltage (–) Jump output voltage (+) ATSC threshold 5, 17 value (–) ATSC threshold 5, 17 value (+) TZC threshold 18 value 1 V1 = 200mVDC V1 = –200mVDC –721 –581 –441 399 DC gain between TEO and TA_O T26 + T55 I/O gain difference between SD = 20 and SD = 25. 539 14.6 18.8 — 1.3 –1.3 679 17.8 20.8 –39 — –1 11.4 16.8 — 1 — V1 = –0.3VDC V1 = 0.3VDC –652 –512 –372 437 Input voltage when TG2 (Pin 9) goes from Vcc/2 to Vcc Input voltage when TG2 (Pin 9) goes from Vcc/2 to Vcc 577 –15 15 0 717 –7 25 20 43 43 44 43 43 44 –25 7 –20 Pin 44 voltage when SENS1 (Pin 23) is 0V – 12 – CXA2542AQ TEST T65 Tracking servo T66 T67 T68 FOK T69 T70 T71 Sled servo T72 T73 T74 T75 T76 MIRROR T77 T78 T79 T80 T81 T82 Item BAL COMP threshold value – High BAL COMP threshold value – Low GAIN COMP threshold value – High GAIN COMP threshold value – Low SW conditions (ON switches) 16 16 14 14 SD 300 300 308 34F 308 34F — 25 20 25 25 25 20 20 Input pin 42 42 38 38 30 13 13 13 13 — — 30 30 30 36 37 36 37 36 37 36 37 Measurement pin 42 42 41 41 25 15 15 15 15 15 15 24 24 24 23 23 23 23 Measurement conditions Pin 42 voltage when SENS1 (Pin 23) goes from High to Low Pin 42 voltage when SENS2 (Pin 24) goes from High to Low Pin 41 voltage when SENS1 (Pin 23) goes from High to Low Pin 41 voltage when SENS2 (Pin 24) goes from Low to High Min. 5 –35 168 127 Typ. 20 –20 193 145 Max. 35 –5 218 163 Unit mV mV mV mV mV dB dB V V mV mV kHz Vp-p Vp-p kHz kHz Vp-p Vp-p FOK threshold value 8 Voltage gain Feed through 6, 7 6 Pin 30 voltage when Pin 25 is 0V V1 = 100Hz, I/O ratio I/O gain difference between SD = 20 and SD = 25. –560 –510 –450 50 — 1 — — — 1.3 –1.3 — –34 — –1 Max. output voltage – High 6 Max. output voltage – Low Kick voltage 1 Kick voltage 2 Max. operating frequency 1 Min. input operating voltage 1 Max. input operating voltage 1 V1 = 400mVDC V1 = 400mVDC REV × 1 FWD × 1 Measures at SENS2 pin. Measures at SENS2 pin. Measures at SENS2 pin. Measures at SENS1 pin. Measures at SENS1 pin. Measures at SENS1 pin. Measures at SENS1 pin. 6 –750 –600 –450 450 30 — 1.8 — 2.5 — 1.6 600 — — — — — — — 750 — 0.3 — 1 — 0.5 — 8 8 8 10, 11, 12, 13 10, 11, 12, 13 10, 11, 12, 13 10, 11, 12, 13 20 20 20 10 10 10 10 Min. operating frequency 1 DEFECT Max. operating frequency 1 Min. input operating voltage 1 Max. input operating voltage 1 – 13 – Electrical Characteristics Measurement Circuit R6 240k VCC VEE GND GND GND GND R14 10k S8 R13 30k 31 30 29 28 25 27 26 C6 C7 0.01µ 0.01µ R19 10k C9 0.068µ VCC R5 240k S12 AC S10 36 DC R7 34k R4 34k R8 R10 330 1M C5 1µ S9 35 32 33 34 S11 I1 0µA VCC VEE I2 0.8mA V2 LD PD1 CC1 CC2 RFTC RF_M RF_O RF_I FOK S13 R22 10k VCC R21 10k 38 F R1 390k S15 R20 10k 39 E C2 33µ 40 VEE XRST 21 DATA 20 XLT 19 CLK 18 GND Vcc 17 ISET 16 SL_O 15 SL_M 14 SL_P 13 S7 C11 47µ C10 33µ R26 120k R23 60k R25 13k GND R24 5.1k 47 FZC GND 48 FEO GND 41 TEO S16 42 LPFI S17 43 ATSC S18 CLK VCC VEE XLT R26 100k DATA C. OUT 22 VCC XRST SENS1 23 VCC 37 PD2 SENS2 24 R2 390k S14 GND GND VEE GND GND FGD FEI FLB FE_M TGU FSET FDFCT SRCH TG2 TA_M R3 10k 1 2 3 S3 S1 S2 R9 47k GND 4 5 6 FE_O TA_O – 14 – 44 TZC C1 1000P GND 45 TDFCT S19 GND 46 VC S20 7 8 9 10 11 12 S5 R15 10k C4 R12 0.1µ 100k R11 13k R16 510k R17 100k C8 0.01µ VCC GND GND GND C3 1000P GND VCC GND GND PD CP CB GND S6 V1 R18 13k GND AC DC CXA2542AQ GND CXA2542AQ Application Circuit 1 (±2.5V power supply) 1µ Vcc 1k 3.3µ A C B D 37 PD2 F E VEE 38 F 39 E 40 VEE 41 TEO 100k 0.01µ 0.047µ 330k 0.022µ 0.1µ 46 VC 47 FZC 150k 42 LPFI 0.01µ 43 ATSC 47k 470p 44 TZC 45 TDFCT 36 VEE 500 100 Vcc 22 100µ LD 10µH PD VEE VEE 1M 1µ 30k 0.01µ 0.033µ 0.01µ 0.068µ MICRO COMPUTER DSP 35 34 33 32 31 30 29 28 27 26 25 PD RF_I PD1 CP RF_O RF_M RFTC SENS2 24 SENS1 23 C. OUT 22 XRST 21 DATA 20 XLT 19 CLK 18 Vcc 17 60k ISET 16 SL_O 15 SL_M 14 100k VEE DRIVER 0.015µ 8.2k 13 3.3µ 22µ 15k Vcc FDFCT 0.022µ 48 FEO SRCH FE_M FE_O 1 10k 10k 2200p 2 3 680k 0.1µ 4 5 0.1µ 6 7 8 4.7µ 9 TA_M 11 TGU FLB FEI FSET FGD 10 TA_O TG2 12 82k 100k 510k 0.015µ Vcc DRIVER 100k 0.1µ DRIVER 0.033µ Application Circuit 2 (Single +5V power supply) Vcc 1µ Vcc 1k 3.3µ A C B D 37 PD2 F E 38 F 39 E 40 VEE 41 TEO 100k 0.01µ 0.047µ 330k 0.022µ Vcc 10µ 10µ 47 FZC SL_M 14 150k 42 LPFI 0.01µ 43 ATSC 47k 470p 0.1µ 45 TDFCT 46 VC ISET 16 SL_O 15 100k DRIVER 0.015µ 8.2k 13 3.3µ 22µ 15k 44 TZC CLK 18 Vcc 17 60k Vcc XLT 19 36 35 34 33 32 31 30 29 28 27 26 25 500 100 1M 1µ 30k 0.01µ 0.033µ 0.01µ 0.068µ MICRO COMPUTER DSP 22 100µ LD 10µH PD RF_O RF_M RFTC RF_I PD1 CC1 CC2 TA_M 11 PD CP CB LD SENS2 24 SENS1 23 C. OUT 22 XRST 21 DATA 20 FDFCT 0.022µ 48 FEO SRCH FE_M FSET FE_O 1 10k 10k 2 3 0.1µ 680k 2200p 4 5 0.1µ 6 7 8 4.7µ 9 10 510k TA_O FGD TGU TG2 FLB FEI FOK 12 82k 100k 0.015µ 0.1µ 100k DRIVER 0.033µ Vcc DRIVER Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 15 – FOK CC1 CC2 CB LD SL_P SL_P CXA2542AQ Description of Functions RF Amplifier The photodiode currents input to the input pins (PD1 and PD2) are each I-V converted through a 58kΩ equivalent resistor by the PD I-V amplifiers. These signals are added by the RF summing amplifier, and the photodiode (A + B + C + D) current-voltage converted voltage is output to the RFO pin. An eye-pattern check can be performed at this pin. 1k 3.3µ 32 58k C PD1 iPD1→ B PD2 iPD2→ 37 PD2 IV AMP VC VB V2 36 PD1 IV AMP VC 58k 10k VA V1 10k 30k RF_M A 31 RF_O FOK DEFECT RF SUMMING AMP V3 D The low frequency component of the RFO output voltage is VRFO = – 30k (VA + VB – 2V3) + V3 10k = –3 {–58kΩ (iPD1 + iPD2) + V1 + V2 – 2V3} + V3, and the setting is V1 = V2 = V3, then VRFO = 174kΩ × (iPD1 + iPD2) + V3 – 16 – CXA2542AQ Focus Error Amplifier R3 58k RF V2 R5 32k R7 174k PD2 37 B+D VB PD2 IV AMP VC R2 58k 48 FE AMP RF V1 R4 32k 1 FEO R10 10k FEI R9 10k C1 2200p GND PD1 36 A+C VA PD1 IV AMP VC VCC R6 174k R1 16k 6 R8 100k FE_O 5 FE_M GND ×1 ×2 ×4 ×8 ×16 ×32 VC FOCUS PHASE COMPENSATION R11 100k DRIVER IFB3 IFB5 IFB2 ×32 25mV/STEP RESET : IFB1 to IFB6 ON VEE 20mV VIN VC VH IFB1 IFB4 IFB6 VIN > VH L VIN < VH H FOH VC 23 SENS1 SENS SELECTOR FOL VL VIN > VL H VIN < VL L –20mV VC 24 SENS2 The focus error amplifier calculates the difference between outputs VA and VB of the RF I-V amplifier, and outputs current-voltage converted voltage of the photodiode (A + C – B – D). The FEO output voltage: VFEO = = 174kΩ (VA – VB) 32kΩ 174kΩ {(–58kΩ × iPD1) – (–58kΩ × iPD2)} 32kΩ = 315.4kΩ (iPD2 – iPD1) The focus error amplifier has a built-in bias adjustment circuit to enable software-based automatic adjustment. The focus bias adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF. The 6-bit focus bias adjustment switches are controlled with commands. IFB1 to IFB6 are all ON after a reset. The voltage is varied by approximately 25mV per step. – 17 – CXA2542AQ • Focus error amplifier offset adjustment (when adjusting the IC offset) The offset adjustment is performed by comparing the FEO when the focus servo is OFF with the reference level. The FEO and reference level are compared by the window comparator, and the comparison results are output from SENS1 and SENS2. (ADDRESS D11001110D6) Adjust the offset so that SENS1 and SENS2 are both High. Set the reference level to the center ±20mV. 25mV < 40mV < 50mV Reference level width Variable voltage per step Variable voltage per 2 steps • Focus bias fine adjustment Fine adjustment is performed by turning the focus bias adjustment switches (IFB1 to IFB6) ON and OFF while monitoring a DSP jitter meter with the microcomputer. The 6-bit focus bias adjustment switches are controlled with commands. – 18 – CXA2542AQ Tracking Error Amplifier R23 100k C3 0.01µ R24 150k C4 0.01µ TEO 41 R2 260k C2 12p F 38 VF VC F I-V AMP R5 13k R3 26k VC R8 17k R4 6.8k R13 13k V R12 96k VC VE VC E I-V AMP TE AMP R16 NORMAL 96k R14 13k TGFL R9 17k GAIN UP GAIN UP TGFL NORMAL R18 15k GND GND 42 LPFI VIN > VH L VIN < VH H VH BALH 23 BALL – SENS1 20mV VC VIN VL + E 39 C1 12p TOG1 TOG2 TOG3 TOG4 R17 20k R19 32k R20 15k R21 6.6k R22 3k R1 260k VC VIN > VL H –20mV VIN < VL L SENS VIN > VH L SELECTOR VIN < VH H VH TGH 200mV SENS2 VIN TGL VL 24 VC CPU R6 75k R7 BAL1 110k R10 BAL2 56k R11 BAL3 27k R15 BAL4 13k VC 150mV RE VC VIN > VL H VIN < VL L 21 COMAND COMAND CONTROL CONTROL 20 19 18 XRST DATA XLT CLK VC The difference between E I-V amplifier output VE and F I-V amplifier output VF is taken and output from TEO. The tracking error amplifier has built-in balance and gain adjustment circuits to enable software-based automatic adjustment. The balance adjustment is performed by varying the combined resistance value of the T-configured feedback resistance at the E I-V amplifier. E I-V AMP feedback resistance = R1 + R4 + R1 × R4 RE F I-V AMP feedback resistance = R2 + R5 + R2 × R5 = 403kΩ R3 Vary the combined resistance value of the E I-V amplifier's feedback resistance by using the balance adjustment switches (BAL1 to BAL4). The gain adjustment is performed by resistance dividing the TE AMP output by the gain adjustment switches (TOG1 to TOG4). The balance and gain adjustment switches are controlled with commands. Set the cut-off frequency of the external LPF between 10Hz and 100Hz. – 19 – CXA2542AQ • Balance adjustment The balance adjustment is performed by passing the tracking error signal (TEO signal) through the external LPF, extracting the offset DC, and comparing it to the reference level. However, the TEO signal frequency distribution ranges form DC to 2kHz. Merely sending the signal through the LPF leaves lower frequency components, and the complete offset DC can not be extracted. To extract it, monitor the TEO signal frequency at all times, and perform adjustment only when a frequency that can lower a sufficient gain appears on the LPF. Use the C.OUT output to check this frequency. The offset DC and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001100D6) Adjust the balance so that the SENS1 and SENS2 pins are both High. VIN < VL < VH SENS1 pin BALH SENS2 pin BALL H L VL < VIN < VH H H VL < VH < VIN L H VH: High level threshold value VIN: Window comparator input signal VL: Low level threshold value • Gain adjustment Gain adjustment is performed by passing the TEO signal through the HPF and comparing the AC component to the reference level. The AC component is generated by taking the difference between TE and the offset DC input to Pin 42. The AC component and reference level are compared by the window comparator. The comparison signal is output from the SENS1 and SENS2 pins. (ADDRESS D11001101D6) The comparison signal is as follows. (1) (2) (3) VH VL VIN SENS1 pin TGH H H SENS2 pin TGL L The gain should be adjusted so that the SENS1 and SENS2 pins are as shown in status (2). When the TEO signal level is low and TGH (SENS1 pin) does not go Low, the gain should be raised with the TGFL command for adjustment. If the adjustment does not bring the result of Low, check the pulse duty of TGL (SENS2 pin). – 20 – CXA2542AQ APC & Laser Power Control VCC R1 22 C2 100µ LD 34 R6 1k VCC LDON L1 10µH 130mV PD 35 R8 10k R10 56k C1 1µ R2 500 LD PD R3 100 R4 10k R5 55k R11 10k VL R14 12.5k R12 56k VREF VEE GND VEE VEE MIRR RF_I 30 FOK R7 13k RF_O 31 R9 41k RF VEE VC 670mV LPC ON/OFF 50%/30% C3 0.01µ 0.684V for 4.5V or more 0.57V for 3.6V or less 33 R13 1M VEE VEE • APC When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. The APC circuit is used to maintain the optical power output at a constant level. The laser diode current is controlled according to the monitor photodiode output. • Laser power control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The RF_O and RF_I levels are compared and the larger of the two is smoothed by the RFTC's external CR. This signal is then compared with the reference level. The laser power is controlled by attaching an offset to VL according to the results of comparison with the reference level. The reference level is set to 0.57V for the power supply of 3.6V or less and to 0.684V for 4.5V or more. LPC ON/OFF and LD ON/OFF control is performed with commands. The laser power control limit can also be switched between ±50% and ±17% with commands. LPC OFF ON ON LPCL — ±50% ±30% VL variable range Approximately 1.27V Approximately 1.27V ± 625mV Approximately 1.27V ± 375mV – 21 – RFTC C4 1µ CXA2542AQ Center Voltage Generation Circuit (The figure below shows a single voltage application; Connect to GND for dual power supplies.) The maximum current is approximately ±3mA. The output impedance is approximately 50Ω. VCC VCC 30k VC 50 46 VC 30k VEE Connected internally to the VEE pin. GND – 22 – CXA2542AQ Focus Servo 6k 0.022µ 47 FEO 48 10k 1 10k 2200p 2 0.1µ FDFCT FGD 3 680k 40k 0.1µ ISET 16 50k FS2 FLB 4 0.1µ FSET 10 510k 0.015µ 4.7µ 7 SRCH FS1 Charge up 60k 11µ 22µ 50k FE_M 6 100k FEI 100k DFCT FS3 FS4 68k Focus 100k phase Compensation FE_O 5 FE 300k FZC 54k FZC SENS SELECTOR 23 SENS1 FOCUS COIL The above figure shows a block diagram of the focus servo. Ordinarily the FE signal is input to the focus phase compensation circuit through a 68kΩ resistance; however, when DFCT is detected, the FE signal is switched to pass through a low-pass filter formed by the internal 100kΩ resistance and the capacitance connected to Pin 2. When this DFCT prevention circuit is not used, leave Pin 2 open. The defect switch operation can be enabled and disabled with command. The capacitor connected between Pin 4 and GND is a time constant to boost the low frequency in the normal playback state. The peak frequency of the focus phase compensation is approximately 1.2kHz when a resistance of 510kΩ is connected to Pin 10. The focus search level is approximately ±1.1Vp-p when using the constants indicated in the above figure. This level is inversely proportional to the resistance connected between Pin 16 and VEE. However, changing this resistance also changes the level of the track jump and sled kick as well. The FZC comparator inverted input is set to 10% of Vcc and VC (Pin 46); (Vcc – VC) × 10%. ∗ 510kΩ resistance is recommended for Pin 10. – 23 – CXA2542AQ Tracking and Sled Servo TE + 41 TEO – TGH GAIN TGL WINDOW COMPARATOR BALH BALANCE WINDOW COMPARATOR BALL SENS SELECTOR 24 SENS2 23 SENS1 100k 150k BUFFER AMP 42 0.01µ 0.01µ LPFI TE DFCT TM1 680k 680k TG1 SL_O 15 SLED MOTOR M 0.015µ 3.3µ 22µ 15k 100k TDFCT 45 100k 66p 14 TM6 22µA SL_M 0.1µ TM5 ATSC 1k 1k ATSC 43 TM2 22µA 13 SL_P 0.047µ 47k 330k 470p 0.022µ 44 TZC TZC 8 TGU TG2 TG2 470k 100k TM4 11µA TM3 11µA 90k 82k TA_M 11 100k 20k 0.033µ 9 Tracking Phase Compensation 10k TA_O TM7 12 FSET 10 510k 0.015µ The above figure shows a block diagram of the tracking and sled servo. The capacitor connected between Pins 8 and 9 is a time constant to cut the high-frequency gain when TG2 is OFF. The peak frequency of the tracking phase compensation is approximately 1.2kHz when a 510kΩ resistance is connected to Pin 10. In the CXA2542AQ, TG1 and TG2 are inter-linked switches. To jump tracks in FWD and REV directions, turn TM3 or TM4 ON. During this time, the peak voltage applied to the tracking coil is determined by the TM3 or TM4 current and the feedback resistance from Pin 11. To be more specific, Track jump peak voltage = TM3 (or TM4) current × feedback resistance value The FWD and REV sled kick is performed by turning TM5 or TM6 ON. During this time, the peak voltage applied to the sled motor is determined by the TM5 or TM6 current and the feedback resistance from Pin 14; Sled kick peak voltage = TM5 (or TM6) current × feedback resistance The values of the current for each switch are determined by the resistance connected between Pin 16 and VEE. When this resistance is 60kΩ : TM3 (or TM4) = ±11µA, and TM5 (or TM6) = ±22µA. As is the case with the FE signal, the TE signal is switched to pass through a low-pass filter formed by the internal resistance (100kΩ) and the capacitance connected to Pin 45. – 24 – 120k 8.2k TRACKING COIL CXA2542AQ The ISET pin is used to connect external resistance. This external resistance sets the current which determines the focus search, track jump, and sled kick levels. • Focus search current I1 = I1 I2 VBG × R 1 2 (VBG: approximately 1.27V) I2 = 2I1 FS1 • Track jump current (TM3 and TM4 current) I= VBG × R 1 2 • Sled kick current (TM5 and TM6 current, when D1 = D0 = 0 during 1X$ commands) I= VBG R Use external resistance of between 30kΩ and 240kΩ. Using external resistance outside this range may cause oscillation. – 25 – CXA2542AQ Focus OK Circuit RF_O C5 0.01µ RF_I 31 RF DEFECT VCC 20k ×1 44k 25 FOK 56k 0.63V 30 LPC MIRR 15k VG FOCUS OK AMP FOCUS OK COMPARATOR The focus OK circuit creates the timing window okaying the focus servo from the focus search state. The HPF output is obtained at Pin 30 from Pin 31 (RF signal), and the LPF output (opposite phase) of the focus OK amplifier output is also obtained. The focus OK output is inverted when VRFI – VRFO ≈ –0.51V. Note that, C5 determines the time constant of the HPF for the mirror circuit and the LPF of the focus OK amplifier. Ordinarily, with a C5 equal to 0.01µF selected, the fc is equal to 1kHz, and block error rate degradation brought about by RF envelope defects caused by scratched discs can be prevented. Defect circuit After differentiated with the capacitance coupling and then inverted, the RF_O signal is bottom held by means of the long and short time constants. The short time-constant bottom hold responds to a disc mirror defect in excess of 0.1ms. The long time-constant bottom hold keeps the mirror level prior to the defect and shifts the level. The long and short time-constant signals are compared to generate the mirror defect detection signal. Be sure to disable DFCT ($34X) during focus search because the focus drive waveform is muted. 0.068µ CC1 27 FOK a RF ×2 CC2 26 FLIP FLOP b c DFCT2 24 SENS2 SENS SELECTOR 43k DEFECT AMP d DFCT1 DEFECT SW 30 CB 0.01µ –0.5V DEFECT BOTTOM HOLD DEFECT COMPARATOR f INTERRUPTION COMPARATOR e 23 SENS1 a RFO b DEFECT AMP c BOTTOM HOLD (1) solid line H SENS1 L H INT L d BOTTOM HOLD (2) broken line e f – 26 – CXA2542AQ Mirror Circuit The mirror circuit performs peak and bottom hold after the RFI signal has been inverting amplified. For the peak hold, a time constant can follow a 30kHz traverse, and, for the bottom hold, one can follow the rotation cycle envelope fluctuation. FOK RF_O 31 C5 0.01µ 30 RF_I DEFECT RF FOK LPC × 1.4 1V 51k MIRROR HOLD AMP 1.5k PEAK & BOTTOM HOLD H ×1 0.033µ 29 CP 22k J MIRR SENS SELECTOR MIRROR COMPARATOR G MIRROR AMP I K 24 SENS2 RF_O 0V G (RF_I) 0V H (PEAK HOLD) 0V I (BOTTOM HOLD) J K (MIRROR HOLD) 0V MIRR H L The DC restored-envelope signal J is obtained by amplifying the difference between the peak and bottom hold signals H and I. Signal J has a large time constant of 2/3 its peak value, and the mirror output is obtained by comparing it to the peak hold signal K. If the value of C5 is made smaller, the low frequency component of the RF signal is cut off and the amplification of the signal G gets small. Then, that of the signal J gets also small and the signal K level becomes low, resulting in the short mirror output pulse width. Accordingly, when on the disc track, the mirror output is Low; when between tracks (mirrored portion), it is High; and when a defect is detected, it is High. The mirror hold time constant must be sufficiently large compared with the traverse signal. – 27 – CXA2542AQ SENS Selector FZC DFCT1 TZC BALH 23 SENS1 TGH FOH ATSC HIGH-Z DFCT2 MIRR BALL 24 SENS2 TGL FOL What is output to the SENS1 and SENS2 pins varies according to the address input to the DATA pin. DATA (Pin 20) 8-bit transfer ADDRESS D7 0 0 0 0 1 D6 0 0 0 1 1 D5 0 0 1 0 1 D4 0 1 0 0 1 D3 X X X X X DATA D2 X X X X X D1 X X X X X D0 X X X X X FZC DFCT1 TZC H (HIGH-Z) H (HIGH-Z) DFCT2 MIRR H (HIGH-Z) SENS1 SENS2 DATA (Pin 20) 12-bit transfer ADDRESS D11 D10 0 0 0 0 0 0 0 0 D9 1 1 1 1 D8 1 1 1 1 D7 0 0 1 1 D6 0 1 0 1 D5 X X X X D4 X X X X DATA D3 X X X X D2 X X X X D1 X X X X D0 X X X X BALH TGH FOH ATSC BALL TGL FOL H (HIGH-Z) SENS1 SENS2 Notes) • 12-bit transfer should be performed during $3XX commands. When 8 bits are transferred, SENS1 and SENS2 are switched according to the D3 and D2 data. • SENS1 and SENS2 are switched without latching. – 28 – CXA2542AQ Commands The input data to operate this IC is configured as 8-bit/12-bit data; however, below, this input data is represented by 2-digit hexadecimal numerals in the form $XX, where X is a hexadecimal numeral between 0 and F/$XXX for 12-bit. Commands for the CXA2542AQ can be broadly divided into four groups ranging in value from $0X, $1X, $2X, $3XX. 1. $0X (FZC at SENS1 pin (Pin 23), H (Hi-Z) at SENS2 pin (Pin 24)) These commands are related to the focus servo control. The bit configuration is as shown below. D7 0 D6 0 D5 0 D4 0 D3 FS4 D2 — D1 FS2 D0 FS1 Four focus related switches exist: FS1, FS2, FS4 and DFCT. $00 $02 When FS1 = 0, Pin 7 is charged to (22µA – 11µA) × 50kΩ = 0.55V. If, in addition, FS2 = 0, this voltage is no longer transferred, and the output at Pin 5 becomes 0V. From the state described above, the only FS2 becomes 1. When this occurs, a negative signal is output to Pin 5. This voltage level is obtained by equation 1 below. (22µA – 11µA) × 50kΩ × resistance between Pins 5 and 6 .... Equation 1 50kΩ $03 The SRCH DOWN speed can be increased by the charge up circuit. From the state described above, FS1 becomes 1, and a current source of +22µA is split off. Then, a CR charge/discharge circuit is formed, and the voltage at Pin 7 decreases with the time as shown in Fig. 1 below. 0V Fig. 1. Voltage at Pin 7 when FS1 goes from 0 → 1 This time constant is obtained with the 50kΩ resistance and an external capacitor. By alternating the commands between $02 and $03, the focus search voltage can be constructed. (Fig. 2) 0V $ 00 02 03 02 03 02 00 Fig. 2. Constructing the search voltage by alternating between $02 and $03. (Voltage at Pin 5) – 29 – CXA2542AQ 1-1. FS4 This switch is provided between the focus error input and the focus phase compensation, and is in charge of turning the focus servo ON and OFF. $00 → $08 Focus off Focus on 1-2. Procedure of focus activation For description, suppose that the polarity is as described below. a) The lens is searching the disc from far to near; b) The output voltage (Pin 5) is changing from negative to positive; and c) The focus S-curve is varying as shown below. A t Fig. 3. S-curve The focus servo is activated at the operating point indicated by A in Fig. 3. Ordinarily, focus searching and turning the focus servo switch ON are performed while the focus S-curve transits the point A indicated in Fig. 3. To prevent misoperation, this signal is ANDed with the focus OK signal. In this IC, the FZC (Focus Zero Cross) signal is output from the SENS1 pin (Pin 23) as the point A transit signal. In addition, focus OK is output as a signal indicating that the signal is in focus (can be in focus in this case). Following the line of the above description, focusing can be well obtained by observing the following timing chart. (20ms) (200ms) $02 ($00) $03 $08 Drive voltage Focus error ∗ The broken lines in the figure indicate the voltage assuming the signal not in focus. SENS1 (FZC) The instant when the signal is brought into focus. Focus OK Fig. 4. Focus ON timing chart – 30 – CXA2542AQ Note that the time from the High to Low transition of FZC to the time command $08 is asserted must be minimized. To do this, the software sequence shown in B is better than the sequence shown in A. FZC ↓ ? NO YES Transfer $08 F. OK? NO YES Transfer $08 F. OK? NO YES FZC ↓ ? NO YES Latch Latch (A) (B) Fig. 5. Poor and good software command sequences 2. $1X (DFCT1 at SENS1 pin (Pin 23), DFCT2 at SENS2 pin (Pin 24)) These commands deal with switching TG1/TG2, brake circuit ON/OFF, and the sled kick output. The bit configuration is as follows: D7 0 D6 0 D5 0 D4 1 D3 D2 D1 D0 D1 (PS1) 0 0 1 1 D0 (PS0) 0 1 0 1 TG1, TG2 Brake circuit ON/OFF ON/OFF Sled kick level TG1, TG2, TM7 The purpose of TG1 and TG2 is to switch the tracking servo gain Up/Normal. TG1 and TG2 are interlinked switches. The brake circuit (TM7) is to prevent the frequently occurred phenomena where the merely 10-track jump has been performed actually though a 100-track jump was intended to be done due to the extremely degraded actuator settling caused by the servo motor exceeding the linear range after a 100 or 10-track jump. For the prevention method, when the actuator travels radially; that is, when it traverses from the inner track to the outer track of the disc and vice versa, the brake circuit utilizes the fact that the phase relationship between the RF envelope and the tracking error is 180° out-of-phase to cut the unneeded portion of the tracking error and apply braking. – 31 – Relative value ±1 ±2 ±3 ±4 Sled kick level CXA2542AQ [∗A] RF_I 30 [∗D] TZC 44 Waveform Shaping Envelope Detection [∗B] Waveform Shaping [∗E] Edge Detection (MIRR) [∗C] [∗F] (Latch) [∗G] D2 TM7 Low: open High: make [∗H] DQ CK BRK CXA2542AQ Fig. 6. TM7 movement during braking operation From inner to outer track [∗A] [∗B] [∗C] [∗D] [∗E] [∗F] [∗G] [∗H] From outer to inner track ("MIRR") ("TZC") 0V Braking is applied from here. Fig. 7. Internal waveform 3. $2X (TZC at SENS1 pin (Pin 23), MIRR at SENS2 pin (Pin 24)) These commands deal with turning the tracking servo and sled servo ON/OFF, and creating the jump pulse and fast forward pulse during access operations. D7 0 D6 0 D5 1 D4 0 D3 D2 D1 D0 Tracking control 00 off 01 Servo ON 10 F-JUMP 11 R-JUMP ↓ TM1, TM3, TM4, Sled control 00 off 01 Servo ON 10 F-FAST FORWARD 11 R-FAST FORWARD ↓ TM2, TM5, TM6 – 32 – CXA2542AQ 4. $3XX These commands mainly control the balance and gain control circuit switches used during automatic tracking adjustment and the bias circuit switch used during automatic focus bias adjustment. In the initial resetting state, BAL1 to BAL4 switches and TOG1 to TOG4 switches are ON. Also, the IFB1 to IFB6 switches are ON. • Balance adjustment The balance adjustment switches BAL1 to BAL4 can be controlled by setting D6 = 0 and D7 = 0. The switches are set using D0 to D3. At this time, SENS1 outputs BALH and SENS2 outputs BALL. Data is set by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 0 and D7 = 0. Sending a latch pulse with D6, D7 ≠ 0 does not change the balance switch settings. START BAL1 to BAL4 Switch Control C.OUT is the frequency high enough ? YES SENS1/2 Balance OK ? NO Adjustment Completed Balance adjustment • Gain adjustment The gain adjustment switches TOG1 to TOG4 can be controlled by setting D6 = 1 and D7 = 0. These switches are set using D0 to D3. At this time, SENS1 outputs TGH and SENS2 outputs TGL. In a fashion similar to the method used with the balance adjustment, set the data by specifying switch conditions D0 to D3 and sending a latch pulse with D6 = 1 and D7 = 0. START TOG1 to TOG4 Switch control SENS1/2 GAIN OK ? NO YES Adjustment Completed Gain adjustment – 33 – CXA2542AQ • Focus bias adjustment The focus bias adjustment switches IFB1 to IFB6 can be controlled by setting D6 = 0 and D7 = 1. The switches are set using D0 to D5. At this time, SENS1 outputs FOH and SENS2 outputs FOL. Data is set by specifying switch conditions D0 to D5 and sending a latch pulse with D6 = 0 and D7 = 1. START IFB1 to IFB6 Switch Control SENS1/2 BIAS OK ? YES Adjustment Completed NO Focus bias adjustment method • TGFL The tracking gain can be switched by setting D5 with D6 = 1 and D7 = 0. The tracking gain is GAIN UP with D5 = 1 and NORMAL GAIN with D5 = 0. The TEO signal level can be made higher by approximately 6dB for GAIN UP. When the TEO signal level is low and TGH (SENS1 pin) does not go Low during tracking adjustment, the gain should be raised with the TGFL command for adjustment. • LPC The laser power control circuit can be turned ON and OFF by setting D0 with D6 = 1 and D7 = 1. The circuit is ON with D0 = 1 and OFF with D0 = 0. • LPCL The laser power control limit can be switched between ±30% and ±50% by setting D1 with D6 = 1 and D7 = 1. The control limit is ±30% with D1 = 0 and ±50% with D1 = 1. • LDON The laser diode can be turned ON and OFF by setting D2 with D6 = 1 and D7 = 1. The laser diode is ON with D2 = 1 and OFF with D2 = 0. – 34 – CXA2542AQ • ATSC The anti-shock function can be controlled by setting D3 with D6 = 1 and D7 = 1. This function is disabled with D3 = 1 and enabled with D3 = 0. At this time, SENS1 outputs ATSC. Even if ATSC is disabled, ATSC is output to SENS1. When an anti-shock signal is generated during the enable status, TG1 and TG2 switch to GAIN UP mode. (In the Block Diagram, TG1 is set to the side and TG2 is OFF. Even if TG1 and TG2 are in NORMAL mode, they switch to GAIN UP mode in conjunction with ATSC.) When the anti-shock function is not used, Pin 43 (ATSC) should be connected to VC. • RDFCT2 DFCT2 can be reset by setting D4 with D6 = 1 and D7 = 1. DFCT2 is reset with D4 = 1. After a reset, High is held when DFCT1 rises. During $1X commands, DFCT2 is output from SENS2. DFCT2 operates even if DFCT is disabled. Whether or not DFCT rises at the proper timing for the microcomputer can also be confirmed. • INT The interruption (scratched disc) countermeasure circuit can be set to the operating status by setting D5 with D6 = 1 and D7 = 1. This circuit is enabled when D5 = 1 and disabled when D5 = 0. Even if DFCT1 does not rise, this circuit is effective for scratched discs which cause MIRR to rise. When MIRR rises, the DFCT switch is routed through the low-pass filter. The interruption countermeasure circuit is forcibly turned OFF regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC) Even if DFCT is disabled, the interruption countermeasure circuit operates when INT is enabled. – 35 – CXA2542AQ CPU Serial Interface Timing Chart DATA D0 tWCK CLK 1/fck tD tWL tCD D1 D2 tWCK D3 tSU D4 th D5 D6 D7 D0 XLT (VCC = 3.0V) Item Clock frequency Clock pulse width Setup time Hold time Delay time Latch pulse width Data transfer interval Low level input voltage High level input voltage Symbol fck fwck 500 500 500 500 1000 1000 0.0 (VCC – VEE) × 0.9 (VCC – VEE) × 0.1 VCC Min. Typ. Max. 1 Unit MHz ns ns ns ns ns ns V V tsu th tD tWL tCD VIL VIH – 36 – System Control DATA (Pin 20) 8-bit transfer DATA SENS1 D1 D0 SENS2 D3 D2 Item ADDRESS D7 D6 D5 D4 FOCUS CONTROL — FZC H (HIGH-Z) TG1, TG2 BRAKE 1 = ENABLE 0 = DISABLE SLED MODE ∗2 TZC DFCT1 DFCT2 SLED KICK + 2 SLED KICK + 1 1 = GAIN UP 0 = NORMAL TRACKING MODE ∗1 0 0 0 0 FS4 Focus 1 = ON 0 = OFF FS2 SRCH ON 1 = ON 0 = OFF FS2 SRCH UP 1 = UP 0 = DOWN TRACKING CONTROL 0 0 0 1 TRACKING SLED MODE 0 0 1 0 MIRR – 37 – D1 OFF ON FWD MOVE REV MOVE 1 1 1 0 0 1 0 0 D0 ∗1 TRACKING MODE ∗2 SLED MODE D3 D2 OFF 0 0 ON 0 1 FWD JUMP 1 0 REV JUMP 1 1 CXA2542AQ DATA (Pin 20) 12-bit transfer DATA SENS1 D2 BAL3 1 = OFF 0 = ON TOG3 1 = OFF 0 = ON IFB3 1 = OFF 0 = ON LDON LPCL 1 = ±50% 0 = ±30% 1 = OFF 0 = ON IFB2 IFB1 1 = OFF 0 = ON LPC 1 = ON 0 = OFF ATSC H (HIGH-Z) FOH FOL 1 = OFF 0 = ON 1 = OFF 0 = ON TOG2 TOG1 TGH TGL 1 = OFF 0 = ON 1 = OFF 0 = ON BALH BAL2 BAL1 BALL D1 D0 SENS2 D5 DFCT BAL4 — 1 = OFF 0 = ON TOG4 — 1 = OFF 0 = ON IFB4 1 = OFF 0 = ON ATSC 0 1 = DISABLE 0 = ENABLE TGFL 1 1 = GAIN UP 0 = NORMAL IFB6 IFB5 1 = OFF 0 = ON RDFCT2 0 1 = OFF 0 = ON INT 1 1 = ENABLE 1 = RESET 1 = DISABLE 1 = ON 0 = DISABLE 0 = NORMAL 0 = ENABLE 0 = OFF D4 D3 Item ADDRESS D11 D10 D9 D8 D7 D6 E-F BALANCE 0 0 1 1 0 TRACKING GAIN 0 0 1 1 0 FOCUS BIAS 0 0 1 1 1 – 38 – Others 0 0 1 1 1 Notes) • When ATSC is enabled, even if TG1 and TG2 are in NORMAL mode, TG1 and TG2 switch to GAIN UP mode in conjunction with ATSC. • INT is forcibly disabled regardless of the command when the tracking gain is increased. (including when the gain is increased by ATSC) When reset • SENS1 = FZC • SENS2 = High (Hi-Z) • RDFCT2 = 1 (Reset) • IFB1 to IFB6 = 0 (switch ON) • TOG1 to TOG4 = 0 (switch ON) • BAL1 to BAL4 = 1 (switch ON) • Other data is "0". CXA2542AQ CXA2542AQ Serial Data Truth Table Serial Data FOCUS CONTROL 0000 0000 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 $00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0A $0B $0C $0D $0E $0F HEX FS4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Functions FS2 FS1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • FS1 1: OFF 0: ON • FS2 1: ON 0: OFF • FS4 In the Block Diagram: 1: SW side 0: SW side BRAK SLD KICK TRACKING CONTROL 0001 0000 0001 0001 0001 0010 0001 0011 0001 0100 0001 0101 0001 0110 0001 0111 0001 1000 0001 1001 0001 1010 0001 1011 0001 1100 0001 1101 0001 1110 0001 1111 $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $1B $1C $1D $1E $1F TG1 Fig. 6 KICK KICK TG2 D2 +2 +1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Notes) • TG1 In the Block Diagram: 1: SW side 0: SW side • TG2 1: OFF 0: ON • BRAKE When D2 in Fig. 6 is: 1: 1 0: 0 • Sled kick level D1 0 0 1 1 D0 0 1 0 1 Relative value ±1 ±2 ±3 ±4 – 39 – CXA2542AQ Serial Data TRACKING/SLED MODE 0010 0000 0010 0001 0010 0010 0010 0011 0010 0100 0010 0101 0010 0110 0010 0111 0010 1000 0010 1001 0010 1010 0010 1011 0010 1100 0010 1101 0010 1110 0010 1111 HEX Function TM6 TM5 TM4 TM3 TM2 TM1 $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $2B $2C $2D $2E $2F 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Notes) • TM1/TM2 In the Block Diagram: 1: SW side 0: SW side • TM3/TM4/TM5/TM6 1: ON 0: OFF – 40 – CXA2542AQ Serial Data $3XX 0011 0000 0000 0011 0000 0001 0011 0000 0010 0011 0000 0011 0011 0000 0100 0011 0000 0101 0011 0000 0110 0011 0000 0111 0011 0000 1000 0011 0000 1001 0011 0000 1010 0011 0000 1011 0011 0000 1100 0011 0000 1101 0011 0000 1110 0011 0000 1111 0011 0001 0000 0011 0001 0001 0011 0001 0010 0011 0001 0011 0011 0001 0100 0011 0001 0101 0011 0001 0110 0011 0001 0111 0011 0001 1000 0011 0001 1001 0011 0001 1010 0011 0001 1011 0011 0001 1100 0011 0001 1101 0011 0001 1110 0011 0001 1111 0011 0010 0000 0011 0010 0001 0011 0010 0010 0011 0010 0011 0011 0010 0100 0011 0010 0101 0011 0010 0110 0011 0010 0111 0011 0010 1000 0011 0010 1001 0011 0010 1010 0011 0010 1011 0011 0010 1100 0011 0010 1101 0011 0010 1110 0011 0010 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E D D D D D D D D D D D D D D D D $300 $301 $302 $303 $304 $305 $306 $307 $308 $309 $30A $30B $30C $30D $30E $30F $310 $311 $312 $313 $314 $315 $316 $317 $318 $319 $31A $31B $31C $31D $31E $31F $320 $321 $322 $323 $324 $325 $326 $327 $328 $329 $32A $32B $32C $32D $32E $32F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— – 41 – CXA2542AQ Serial Data $3XX 0011 0011 0000 0011 0011 0001 0011 0011 0010 0011 0011 0011 0011 0011 0100 0011 0011 0101 0011 0011 0110 0011 0011 0111 0011 0011 1000 0011 0011 1001 0011 0011 1010 0011 0011 1011 0011 0011 1100 0011 0011 1101 0011 0011 1110 0011 0011 1111 0011 0100 0000 0011 0100 0001 0011 0100 0010 0011 0100 0011 0011 0100 0100 0011 0100 0101 0011 0100 0110 0011 0100 0111 0011 0100 1000 0011 0100 1001 0011 0100 1010 0011 0100 1011 0011 0100 1100 0011 0100 1101 0011 0100 1110 0011 0100 1111 0011 0101 0000 0011 0101 0001 0011 0101 0010 0011 0101 0011 0011 0101 0100 0011 0101 0101 0011 0101 0110 0011 0101 0111 0011 0101 1000 0011 0101 1001 0011 0101 1010 0011 0101 1011 0011 0101 1100 0011 0101 1101 0011 0101 1110 0011 0101 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — D D D D D D D D D D D D D D D D — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $330 $331 $332 $333 $334 $335 $336 $337 $338 $339 $33A $33B $33C $33D $33E $33F $340 $341 $342 $343 $344 $345 $346 $347 $348 $349 $34A $34B $34C $34D $34E $34F $350 $351 $352 $353 $354 $355 $356 $357 $358 $359 $35A $35B $35C $35D $35E $35F 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— – 42 – CXA2542AQ Serial Data $3XX 0011 0110 0000 0011 0110 0001 0011 0110 0010 0011 0110 0011 0011 0110 0100 0011 0110 0101 0011 0110 0110 0011 0110 0111 0011 0110 1000 0011 0110 1001 0011 0110 1010 0011 0110 1011 0011 0110 1100 0011 0110 1101 0011 0110 1110 0011 0110 1111 0011 0111 0000 0011 0111 0001 0011 0111 0010 0011 0111 0011 0011 0111 0100 0011 0111 0101 0011 0111 0110 0011 0111 0111 0011 0111 1000 0011 0111 1001 0011 0111 1010 0011 0111 1011 0011 0111 1100 0011 0111 1101 0011 0111 1110 0011 0111 1111 0011 1000 0000 0011 1000 0001 0011 1000 0010 0011 1000 0011 0011 1000 0100 0011 1000 0101 0011 1000 0110 0011 1000 0111 0011 1000 1000 0011 1000 1001 0011 1000 1010 0011 1000 1011 0011 1000 1100 0011 1000 1101 0011 1000 1110 0011 1000 1111 HEX BAL SW TOG SW 43214321 TGFL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $360 $361 $362 $363 $364 $365 $366 $367 $368 $369 $36A $36B $36C $36D $36E $36F $370 $371 $372 $373 $374 $375 $376 $377 $378 $379 $37A $37B $37C $37D $37E $37F $380 $381 $382 $383 $384 $385 $386 $387 $388 $389 $38A $38B $38C $38D $38E $38F ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— ———— 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 43 – CXA2542AQ Serial Data $3XX 0011 1001 0000 0011 1001 0001 0011 1001 0010 0011 1001 0011 0011 1001 0100 0011 1001 0101 0011 1001 0110 0011 1001 0111 0011 1001 1000 0011 1001 1001 0011 1001 1010 0011 1001 1011 0011 1001 1100 0011 1001 1101 0011 1001 1110 0011 1001 1111 0011 1010 0000 0011 1010 0001 0011 1010 0010 0011 1010 0011 0011 1010 0100 0011 1010 0101 0011 1010 0110 0011 1010 0111 0011 1010 1000 0011 1010 1001 0011 1010 1010 0011 1010 1011 0011 1010 1100 0011 1010 1101 0011 1010 1110 0011 1010 1111 0011 1011 0000 0011 1011 0001 0011 1011 0010 0011 1011 0011 0011 1011 0100 0011 1011 0101 0011 1011 0110 0011 1011 0111 0011 1011 1000 0011 1011 1001 0011 1011 1010 0011 1011 1011 0011 1011 1100 0011 1011 1101 0011 1011 1110 0011 1011 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 INT — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RDF ATSC LDON LPCL LPC DFCT CT2 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $390 $391 $392 $393 $394 $395 $396 $397 $398 $399 $39A $39B $39C $39D $39E $39F $3A0 $3A1 $3A2 $3A3 $3A4 $3A5 $3A6 $3A7 $3A8 $3A9 $3AA $3AB $3AC $3AD $3AE $3AF $3B0 $3B1 $3B2 $3B3 $3B4 $3B5 $3B6 $3B7 $3B8 $3B9 $3BA $3BB $3BC $3BD $3BE $3BF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 44 – CXA2542AQ Serial Data $3XX 0011 1100 0000 0011 1100 0001 0011 1100 0010 0011 1100 0011 0011 1100 0100 0011 1100 0101 0011 1100 0110 0011 1100 0111 0011 1100 1000 0011 1100 1001 0011 1100 1010 0011 1100 1011 0011 1100 1100 0011 1100 1101 0011 1100 1110 0011 1100 1111 0011 1101 0000 0011 1101 0001 0011 1101 0010 0011 1101 0011 0011 1101 0100 0011 1101 0101 0011 1101 0110 0011 1101 0111 0011 1101 1000 0011 1101 1001 0011 1101 1010 0011 1101 1011 0011 1101 1100 0011 1101 1101 0011 1101 1110 0011 1101 1111 0011 1110 0000 0011 1110 0001 0011 1110 0010 0011 1110 0011 0011 1110 0100 0011 1110 0101 0011 1110 0110 0011 1110 0111 0011 1110 1000 0011 1110 1001 0011 1110 1010 0011 1110 1011 0011 1110 1100 0011 1110 1101 0011 1110 1110 0011 1110 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RDF ATSC LDON LPCL LPC DFCT CT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E E E E E E E D D D D D D D D E E E E E E E E D D D D D D D D E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — $3C0 $3C1 $3C2 $3C3 $3C4 $3C5 $3C6 $3C7 $3C8 $3C9 $3CA $3CB $3CC $3CD $3CE $3CF $3D0 $3D1 $3D2 $3D3 $3D4 $3D5 $3D6 $3D7 $3D8 $3D9 $3DA $3DB $3DC $3DD $3DE $3DF $3E0 $3E1 $3E2 $3E3 $3E4 $3E5 $3E6 $3E7 $3E8 $3E9 $3EA $3EB $3EC $3ED $3EE $3EF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — – 45 – CXA2542AQ Serial Data $3XX 0011 1111 0000 0011 1111 0001 0011 1111 0010 0011 1111 0011 0011 1111 0100 0011 1111 0101 0011 1111 0110 0011 1111 0111 0011 1111 1000 0011 1111 1001 0011 1111 1010 0011 1111 1011 0011 1111 1100 0011 1111 1101 0011 1111 1110 0011 1111 1111 HEX BAL SW TOG SW 43214321 TGFL — — — — — — — — — — — — — — — — IFB SW 654321 —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— —————— INT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 RDF ATSC LDON LPCL LPC DFCT CT2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E E E E E E E E D D D D D D D D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 — — — — — — — — — — — — — — — — $3F0 $3F1 $3F2 $3F3 $3F4 $3F5 $3F6 $3F7 $3F8 $3F9 $3FA $3FB $3FC $3FD $3FE $3FF — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — — — — —— — — — Notes) • 0 means OFF and 1 means ON for TOG SW and BAL SW. These are not equal to the setting values of each bit for serial data. • "—" in the Truth Table indicates that the status does not change. • TGFL In the Block Diagram: 1: SW side 0: SW side • ATSC E: enable/D: disable • DFCT E: enable/D: disable – 46 – CXA2542AQ Initial State (resetting state) Item FOCUS CONTROL TRACKING CONTROL TRACKING SLED MODE ADDRESS DATA HEX $00 $10 $20 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Item E-F BALANCE TRACKING GAIN FOCUS BIAS Others ADDRESS DATA D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HEX $300 $340 $380 $3D0 The above data means the following operation modes. FOCUS CONTROL TRACKING CONTROL TRACKING SLED MODE E-F BALANCE TRACKING GAIN FOCUS BIAS Others : FOCUS OFF, FOCUS SEARCH OFF, FOCUS SEACH DOWN : TG1-TG2 NORMAL, BRAKE DISABLE, SLED KICK relative level value ±1 : TRACKING OFF, SLED OFF : BAL1 to BAL4 = 0 (switch ON). DFCT ENABLE : TOG1 to TOG4 = 0 (switch ON), TGFL NORMAL : IFB1 to IFB6 = 0 (switch ON) : INT DISABLE, DFCT2 RESET, ATSC ENABLE, LDON OFF, LPCL ±30%, LPC OFF – 47 – CXA2542AQ Notes on Operation 1. Focus OK circuit 1) Refer to the "Description of Operation" for the time constant setting of the focus OK amplifier LPF and the mirror amplifier HPF. 2) The equivalent circuit for the output pin (FOK) is shown in the diagram below. VCC 20k FOK 40k 25 RL 100k VCC VEE VEE The FOK and comparator output are as follows: Output voltage High : VFOKH ≈ near Vcc Output voltage Low : VFOKL ≈ Vsat (NPN) + VEE 2. Sled amplifier The sled amplifier may oscillate when used by the buffer amplifier. Use with a gain of approximately 20dB. 3. Focus/Tracking internal phase compensation and reference design material Item FCS 1.2kHz gain 1.2kHz phase 1.2kHz gain TRK 1.2kHz phase 2.7kHz gain 2.7kHz phase 08 08 25 25 25 → 13 25 → 13 13 CTGU = 0.1µF SD Measurement pin 6 Conditions CFLB = 0.1µF CFGD = 0.1µF Typ. 21.5 63 13 –125 26.5 –130 Unit dB deg dB deg dB deg 4. Laser Poser Control The RF level is stabilized by attaching an offset to the APC VL and controlling the laser power in sync with the RF level fluctuations. The laser life is shortened by increasing the laser power when the less light is reflected from the disc. It is recommended that the typical laser power value is set lower to maintain the laser life. Take care of the laser maximum ratings when using the laser power control circuit. – 48 – CXA2542AQ Package Outline Unit: mm 48PIN QFP (PLASTIC) 15.3 ± 0.4 + 0.4 12.0 – 0.1 + 0.1 0.15 – 0.05 36 25 0.15 37 24 48 13 + 0.2 0.1 – 0.1 1 + 0.15 0.3 – 0.1 12 0.8 ± 0.12 M + 0.35 2.2 – 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-48P-L04 ∗QFP048-P-1212-B LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT EPOXY RESIN SOLDER / PALLADIUM PLATING COPPER / 42 ALLOY 0.7g – 49 – 0.9 ± 0.2 13.5
CXA2542
1. 物料型号: - 型号:CXA2542AQ - 制造商:SONY

2. 器件简介: - CXA2542AQ是一款用于CD播放器射频信号处理和伺服控制的双极型集成电路(IC)。 - 封装形式:48引脚QFP(塑料)。

3. 引脚分配: - 1号引脚(FEI):焦点误差输入。 - 2号引脚(FDFCT):连接用于缺陷时间常数的电容器。 - 3号引脚(FGD):通过电容器接地,用于切断焦点伺服高频增益。 - ...(其他引脚功能类似描述)

4. 参数特性: - 绝对最大额定值:供电电压Vcc为12V,工作温度范围为-20至+75°C。 - 推荐工作条件:供电电压VCC-VEE在3.0至3.6V之间,4.5至5.5V之间。

5. 功能详解: - 包括自动聚焦偏置调整电路、自动跟踪平衡和增益调整电路、射频水平控制电路等多种功能。 - RF放大器:将光电二极管电流通过PD I-V放大器进行I-V转换,由RF求和放大器进行求和,并输出到RFO引脚。 - 焦点误差放大器:计算RF I-V放大器输出VA和VB之间的差异,并输出(A+C-B-D)。 - 跟踪误差放大器:输出E I-V放大器输出VE和F I-V放大器输出VF之间的差异。 - APC及激光功率控制:用于维持激光二极管的光功率输出在恒定水平。

6. 应用信息: - 应用于CD播放器。 - 结构:双极型单片集成电路。

7. 封装信息: - 48PIN QFP(塑料)。 - 制造商代码:QFP-48P-L04。 - EIAJ代码:+QFP048-P-1212-B。 - 封装材料:环氧树脂。 - 引脚处理:焊料/钯金电镀。 - 引脚材料:铜/42合金。 - 封装重量:0.7g。
CXA2542 价格&库存

很抱歉,暂时无法提供与“CXA2542”相匹配的价格&库存,您可以联系我们找货

免费人工找货