CXA2570N
RF Matrix Amplifier
Description The CXA2570N is an IC developed for the RF signal processing of compact disc players. Features • Wide band RF signal processing • RF system VCA circuit • RF system equalizer (supports CAV mode) • Supports pickups with built-in RF summing amplifier • Low power consumption mode (EQ Pass mode) • RW/ROM switching mode Functions • RFAC summing amplifier, equalizer, VCA • RFDC summing amplifier • Focus error amplifier • Tracking error amplifier • Automatic power control • VC buffer amplifier Applications CD-ROM/RW compatible systems Structure Bipolar silicon monolithic IC 24 pin SSOP (Plastic)
Absolute Maximum ratings • Supply voltage Vcc • Operating temperature Topr • Storage temperature Tstg • Allowable power dissipation PD
7 V –20 to +75 °C –65 to +150 °C 620 mW
Operating Conditions • Supply voltage Vcc – GND 3.0 to 5.5 V • Operating temperature Topr –20 to +75 °C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E98259A98-PS
CXA2570N
Connected Circuit Diagram
0.1µ VCC ACSUM EQI AC SUM RF VC A B C D A B C D DC SUM RW/ROM C VC D VC RW/ROM RW/ROM F VC E PD VC LD SW APC-OFF (Hi-Z) RW/ROM (H/L) VC APC F E 10k F E VC RW/ROM VC RW/ROM
VCC 5.1k ACG AC VCA BST Rfc Vfc RFAC EQ RFDCI 5.1k RFDC RFDCO FEI 100k VC FE FE RFAC
A VC B VC
A B C D
TE TE
10k
RW/ROM VCC VC VCC
VCC GND
VCC VC GND
VCC 0.1 ACSUM AC SUM DC SUM RW/ROM C VC D VC RW/ROM RW/ROM F VC E PD VC LD SW APC-OFF (Hi-Z) RW/ROM (H/L) VC APC RW/ROM VCC VC VCC GND F E 10k F E VC TE TE A B C D A B C D RW/ROM VC RW/ROM FEI 100k VC FE FE VCC EQI ACG AC VCA 5.1k BST Rfc Vfc RFAC EQ RFDCI 5.1k RFDC RFDCO RFAC
A VC B VC
10k
VCC
VCC VC GND
–2–
CXA2570N
Pin Description Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Symbol LD PD EQ_IN AC_SUM GND A B C D E F SW RFAC FE FEI TE VCC RFG BST VFC RFC VC RFDCO RFDCI I/O Out In In Out In In In In In In In In Out Out — Out In In In In In Out Out — APC amplifier output. APC amplifier input. RFAC system VCA block and EQ block input. RFAC system RF SUM output. Ground. A signal input. B signal input. C signal input. D signal input. E signal input. F signal input. Mode switching signal input. RFAC signal output. Focus error signal output. FE amplifier virtual ground. Tracking error signal output. VCC. RFAC system VCA block low-frequency gain adjustment. EQ boost amount adjustment range. EQ cut-off frequency adjustment. EQ cut-off frequency adjustment. VC voltage output. RFDC signal output. RFDC amplifier virtual ground. Description
–3–
CXA2570N
Pin Description and Equivalent Circuit Pin No. Symbol I/O Equivalent circuit Description
10k
1
LD
O
1 1k
APC amplifier output.
2
PD
I
55k 20k 2 20k
APC amplifier input.
1.1k
1.1k
3
EQ_IN
I
3 5k VC
1.2k
Equalizer circuit input.
5k VC
1.6k 1.6k
4
AC_SUM
O
4
RFAC summing amplifier output.
5
GND
—
—
Ground.
–4–
CXA2570N
Pin No.
Symbol
I/O
Equivalent circuit
Description
6
A
I
15k 6
7
B
I
7
100µA
100µA
30k
RF summing amplifier and focus error amplifier input.
8
C
I
8 100µA 9 100µA 47k VC 47k
9
D
I
10
E
I
27k 10 27k
Tracking error amplifier input.
124 16
11
F
I
11
16
TE
O
Tracking error amplifier output.
200k
12
SW
I
200k 12 200k
CD-ROM/RW switching input. RW when connected to VCC, ROM when connected to GND.
13
RFAC
O
2mA
100 13
RFAC amplifier output.
14
FE
O
50k VC 124 14 124 15
Focus error amplifier output. Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 14.
15
FEI
I
–5–
CXA2570N
Pin No. 17
Symbol VCC
I/O —
Equivalent circuit —
Description Power supply.
20k
18
RFG
I
18 VC 100µA
Sets the RFAC low-frequency gain.
50µA
19
BST
I
20k 19 VC
Input for adjusting the equalizer circuit boost amount.
20k
20
VFC
I
20 VC 100µA
Input for adjusting the equalizer circuit boost frequency with the control voltage.
1.0V 124
21
RFC
I
21
Input for adjusting the equalizer circuit boost frequency with external resistance.
22
VC
O
150k 25 22 150k
(VCC + GND)/2 voltage output.
23
RFDC
O
1.5k 124 24 VC
1mA 23 124
RFDC amplifier output. This pin serves as the eye pattern check point. RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 23.
24
RFDCI
I
–6–
Electrical Characteristics
Switch conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 E2 0V 0V 0V Pin current Pin current Pin current Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) – Gsum Pin voltage Pin voltage Pin voltage Pin voltage 3.0 10 25 5 –1.2 –0.6 25 45 17 17 4 O O O O O O O 0V 13 13 1.6Vp-p 100kHz –1.0V 0V 1.0V –1.0V 0V 1.0V 0V –1.9V 1.9V 1.9V 0V 2V –2V 0V O O O O O O O O O O O O O O O O O O O O O O O O O O O 0.1Vp-p 100kHz 25mVp-p 100kHz 0.1Vp-p 10MHz 25mVp-p 10MHz 0.25V –0.25V 0V 0.8Vp-p 100kHz 0.3Vp-p 100kHz O 0.4Vp-p 100kHz 0.2Vp-p 100kHz 75mVp-p 100kHz 0.8Vp-p 100kHz 0.2Vp-p 10MHz 0.2Vp-p 30MHz 0.8Vp-p 30MHz O O O O 13 13 13 13 13 13 13 13 13 13 13 13 23 23 23 23 23 23 23 23 O O O O O O O O O O O O O –0.3V 4 0.3V 4 0.1Vp-p 30MHz 4 O O O O O O O O O 0.1Vp-p 100kHz 4 1.9V Hi-Z 0V 17 0V E3 E4 E5 0V Measurement pin 65 40 7.5 0 Measurement conditions Bias conditions Min. Typ. Max. Unit mA mA mA V 14.0 16.0 18.0 dB –3.0 –1.5 0.3 0.9 — –0.3 –0.3 1.25 — –0.5 –0.3 0 0 0.3 0.3 dB V V V V 20 log (Vout/Vin) – Gac_ROM2 –11.0 –8.0 –5.0 dB 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_EQoff Pin voltage – AC_OfstROM Pin voltage – AC_OfstROM Pin voltage Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) –1.0 5.0 2.0 5.0 dB 8.0 11.0 dB –11.0 –8.0 –5.0 dB 9.0 5.0 –1.0 3.5 3.5 12.0 15.0 dB 8.0 11.0 dB 2.0 6.0 6.0 5.0 8.5 8.5 dB dB dB –2.0 –1.0 –0.5 dB 0.6 — –150 –100 0.8 — –0.8 –0.6 0 0 V V 150 mV 400 mV 16.5 19.5 22.5 dB 29.0 32.0 35.0 dB 20 log (Vout/Vin) – Gdc_ROM –3.5 –1.5 –0.5 dB 20 log (Vout/Vin) – Gdc_RW Pin voltage Pin voltage –6.0 –3.0 –0.5 dB 1.3 — 1.6 — –1.0 –0.6 V V
(VCC = 1.9V, VEE = –1.9V)
Measurement No.
1
Function
Measurement item
Symbol
Current consumption (Active, EQ On)
Icc_Aeqon
2
Current consumption (Active, EQ Off)
Icc_Aeqoff
3
Current consumption (Sleep)
Icc_Slp
4
SUM offset voltage
ACSUM_Ofst
5
SUM frequency gain
Gsum
7
RFAC SUM
6
SUM frequency response
Fsum
SUM maximum output voltage H
Vsum_H
8
SUM maximum output voltage L
Vsum_L
9
Offset voltage ROM
AC_OfstROM
10
Offset voltage RW
AC_OfstRW
11
Low-frequency gain ROM_min Gac_ROM1
12
Low-frequency gain ROM_cnt
Gac_ROM2
13
Low-frequency gain ROM_max
Gac_ROM3
RFAC EQ
RFDC
–7–
14
Low-frequency gain RW_min
Gac_RW1
15
Low-frequency gain RW_cnt
Gac_RW2
16
Low-frequency gain RW_max
Gac_RW3
17
Low-frequency gain EQ_off
Gac_EQoff
18
Frequency response Min_L
Fac_MinL
19
Frequency response Min_H
Fac_MinH
20
Frequency response EQ_OFF
Fac_ECoff
21
Maximum output voltage H
Vac_H
22
Maximum output voltage L
Vac_L
23
Offset voltage ROM
DC_OfstROM
24
Offset voltage RW
DC_OfstRW
25
Low-frequency gain ROM
Gdc_ROM
26
Low-frequency gain RW
Gdc_RW
27
Frequency response ROM
Fdc_ROM
28
Frequency response RW
Fdc_RW
29
Maximum output voltage H
Vdc_H
CXA2570N
30
Maximum output voltage L
Vdc_L
Switch conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 E2 0V Pin voltage –150 –150 0 Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 14 0.1Vp-p 10kHz 14 14 14 14 14 14 14 14 0.3V –0.3V 0V O O O O O O O O O O O O O O O O O O Hi-Z O O 0.1Vp-p 200kHz 0.1Vp-p 200kHz 25mVp-p 200kHz 25mVp-p 200kHz 0.3V –0.3V 0V –30mV 30mV 0V O 25mVp-p 10kHz O 25mVp-p 10kHz 0.1Vp-p 10kHz 0.1Vp-p 10kHz 14 14 16 16 16 16 16 16 16 16 16 16 16 16 1 1 1 1 1 22 O O O O O O O O O O O O O O O 25mVp-p 50kHz O 25mVp-p 50kHz O 0.1Vp-p 100kHz 0.1Vp-p 100kHz O O 25mVp-p 10kHz O 25mVp-p 10kHz 0.1Vp-p 10kHz 0V 0V 0V 14 0 E3 E4 0V O O O O O E5 Measurement pin Min. Typ. Max. Unit 150 mV 150 mV Measurement conditions
Bias conditions
Measurement No.
31
Function
Measurement item
Symbol
Offset voltage ROM
FE_OfstROM
32
Offset voltage RW
FE_OfstRW
33
Low-frequency gain ROM1
Gfe_ROM1
13.0 16.0 19.0 dB 13.0 16.0 19.0 dB 25.0 28.0 31.0 dB 25.0 28.0 31.0 dB dB dB –3.5 –0.5 0.3 –3.5 –0.5 0.3 dB dB
34
Low-frequency gain ROM2
Gfe_ROM2
35
Low-frequency gain RW1
Gfe_RW1
FE
36
Low-frequency gain RW2
Gfe_RW2
37
Frequency response ROM1
Ffe_ROM1
20 log (Vout/Vin) – Gfe_ROM1 –3.5 –0.5 0.3 20 log (Vout/Vin) – Gfe_ROM2 –3.5 –0.5 0.3 20 log (Vout/Vin) – Gfe_RW1 20 log (Vout/Vin) – Gfe_RW2 Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin)
38
Frequency response ROM2
Ffe_ROM2
39
Frequency response RW1
Ffe_RW1
40
Frequency response RW2
Ffe_RW2
41
Maximum output voltage H
Vfe_H
1.2 — –150 –150
1.7
— –1.5 –1.1 0 0
V V 150 mV 150 mV 17.0 20.0 23.0 dB 17.0 20.0 23.0 dB 29.0 32.0 35.0 dB 29.0 32.0 35.0 dB 20 log (Vout/Vin) – Gte_ROM1 –1.5 20 log (Vout/Vin) – Gte_ROM2 –1.5 20 log (Vout/Vin) – Gte_RW1 20 log (Vout/Vin) – Gte_RW2 Pin voltage Pin voltage Input where output voltage = 0V Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage 0 0 1.5 1.5 dB dB –4.5 –2.0 –0.2 dB –4.5 –2.0 –0.2 dB 1.2 — 85 0.45 1.7 — –1.5 –1.1 V V 135 185 mV 0.7 0.95 V –0.95 –0.7 –0.45 V 1.4 –0.2 –100 1.6 0 0 – 0.6 V V 100 mV
42
Maximum output voltage L
Vfe_L
43
Offset voltage ROM
TE_OfstROM
44
Offset voltage RW
TE_OfstRW
TE
APC
VC
–8–
45
Low-frequency gain ROM1
Gte_ROM1
46
Low-frequency gain ROM2
Gte_ROM2
47
Low-frequency gain RW1
Gte_RW1
48
Low-frequency gain RW2
Gte_RW2
49
Frequency response ROM1
Fte_ROM1
50
Frequency response ROM2
Fte_ROM2
51
Frequency response RW1
Fte_RW1
52
Frequency response RW2
Fte_RW2
53
Maximum output voltage H
Vte_H
54
Maximum output voltage L
Vte_L
55
Output voltage 1
Vapc1
56
Output voltage 2
Vapc2
57
Output voltage 3
Vapc3
58
APC OFF voltage
Vapc_off
59
Maximum output current
Iapc_max
CXA2570N
60
Output voltage
Vvc
CXA2570N
Electrical Characteristics Measurement Circuit
VCC 5.1k 24 RFDCI 23 RFDCO 10k 22 VC S12 21 RFC 5.1k 20 VFC E5 19 BST E4 18 RFG E3
VCC 1.9V 10k 17 VCC 16 TE 15 FEI 100k 14 FE 10k 13 RFAC 12 S11 VEE VCC SW 10k
AC_SUM
EQ_ IN
GND
PD
LD
C
D
A
B
E
1 S1 S2
2 S3
3
4 10k
5
6
7
8
9 10k
10 10k S10
11
E2 0.8mA 0.1µ VCC VEE V1 E1
VEE S5 –1.9V
S6
S7
S8
S9
–9–
F
CXA2570N
Application Circuits
RFDC OUT 5.1k 24 RFDCI 23 RFDCO VC
VCC 0.1µ 20k 5.1k
VCC 20k 20k
TE OUT
FE OUT 100k
RFAC OUT
22 VC
21 RFC
20 VFC
19 BST
18 RFG
17 VCC
16 TE
15 FEI
14 FE
13 RFAC 12 MODE Control RFAC OUT 13 RFAC 12 MODE Control SW SW
AC_SUM
EQ_ IN
GND
PD
LD
C
D
A
B
E
1
2
3 0.1µ
4
5
6 A
7 B
8 C
9 D 10k
10 10k E
11
LD PD IN Drive
RF SUM
RFDC OUT 5.1k 24 RFDCI 23 RFDCO VC
VCC 0.1µ 20k 5.1k
VCC 20k 20k
TE OUT
FE OUT 100k
22 VC
21 RFC
20 VFC
19 BST
18 RFG
17 VCC
16 TE
15 FEI
14 FE 11 10k F F
AC_SUM
EQ_ IN
GND
PD
LD
C
D
A
B
1
2
3 0.1µ
4
5
6 A
7 B
8 C
9 D 10k
10
PD IN LD Drive
E
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 10 –
E
F F
CXA2570N
Description of Functions • RFAC The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin.
A6 B7 C8 D9 AC_SUM 4 AC SUM BST VFC 19 20 21 RFC VCC
5.1k
0.1
RF EQ_IN
3 RFG 18 RW/ROM Low-frequency gain AC_SUM: 16dB (both ROM/RW) VCA to RFAC ROM: 2dB RW: 14dB
EQ
Amp
13 RFAC
When BST = VCC
The EQ can be bypassed by connecting the BST control pin (Pin 19) to VCC. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode. The RF_SUM input dynamic range is VC ± 300mV (typ.). If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance. RW/ROM switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. The VCA low-frequency gain can be adjusted by the RFG pin (Pin 18) voltage. The control voltage vs. low-frequency gain characteristics are shown in the graph to the right.
Gain [dB] VCA variable range 8 0 –8 Vcut [V] VC – 1 VC VC + 1
The RFAC pin (Pin 13) is an NPN transistor emitter follower output. The maximum drive current is approximately 2mA. If the load capacitance distorts the output waveform, increase the drive current. Connect resistance between Pin 13 and GND. – 11 –
CXA2570N
• EQ The diagram to the left shows the EQ internal block diagram. The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain. The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value. RFC resistance value: The cut-off frequency fo of each filter is adjusted by the Pin 21 external resistance value. The VFC voltage can be varied using this fo as the reference. VFC voltage: fo can be changed by the voltage applied to Pin 20.
In
HPF
Amp
LPF fc Boost
LPF
Out
EQ CNT
RFC 21
VFC 20
BST 19
VCC
VC
VC
The boost gain can be adjusted by the BST pin control voltage. The control characteristics are shown in the graph below.
Boost Gain [dB] 8dB
The cut-off frequency control characteristics are shown in the graph below.
fc [Hz] 1.5fo
fo
0dB Vcut [V] VC – 1.0 VC Pin 19 voltage VC + 1.0
0.5fo Vcut [V] VC – 1.0 VC Pin 20 voltage VC + 1.0
• APC (Automatic Power Control) When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function
VCC 56k PD 2 10k 10k 55k 10k 56k 1.25V 1 LD 1k
– 12 –
CXA2570N
• Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions.
VC R (ofst) ROM 50k A6 C8 B7 D9 30k ROM 50k 200k RW VC 50k RW 200k FEI 15 14 FE 100k
FE = Gain {(B + D) – (A + C)} Low-frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 400kHz RW: 300kHz
• Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset adjustment (external resistance) functions.
10k E 10 RW 10k F 11 RW 27k 373k VC ROM ROM 16 TE 27k 373k TE = Gain (F – E) Low-frequency gain fc (typ.) ROM: 20dB RW: 32dB ROM: 1MHz RW: 250kHz
• VC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately ±3mA.
VCC VCC
25 22
40k
40k
– 13 –
CXA2570N
• RFDC The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible.
5.1k A6 B7 C8 D9 VC 15k 10k ROM RW 1.5k RFDCI 24 23 RFDCO
40k
VC
RFDC = Gain (A + B + C + D) Low-frequency gain ROM: 20dB RW: 32dB fc (Typ.) ROM: 12MHz RW: 5MHz The gain can be adjusted by the external resistance connected between Pins 23 and 24.
• SW This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12).
12
R (ofst) SW
RW/ROM, Active/Sleep, APC_ON/OFF
The VC buffer is kept active even in sleep mode. In the function block, BGR and MODE_SW are always set to active mode.
Item Control voltage VCC VC or Hi-Z GND
APC ON OFF ON
Active/Sleep Active Sleep Active
RW/ROM RW — ROM
– 14 –
CXA2570N
Notes on Operation Stabilizing the RFAC signal The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks. This is in order to support pickups with built-in RFSUM. Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate). In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc. The VCA gain is low in ROM mode, so the RFAC signal is stable. Also, when not using RFSUM, the RFAC signal is stabilized because the overall gain is low. The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above. Proposed stabilization measures The board and other loop characteristics can be changed by adding external capacitance as noted below. This has a particularly large effect on the stabilization when using RFSUM.
0.1µ VCA ACSUM EQI EQ AMP
RF SUM
Add capacitance of 10pF to 20pF.
– 15 –
CXA2570N
Example of Representative Characteristics
EQ Rfc resistance value – Frequency response
10 Vbst = VC, Vfc = VC 9 8 7 6 Rfc = 100kΩ Rfc = 20kΩ Rfc = 5.1kΩ 12 10 8 6 14
EQ boost voltage – Frequency response
Rfc = 100kΩ Vboost = 1.0V Rfc = 100kΩ Vboost = 0V Rfc = 5.1kΩ Vboost = 1.0V Rfc = 5.1kΩ Vboost = 0V Vfc = VC
[dB]
5 4 3 2 1 0 0.1 1 [MHz] 10 100
[dB]
4 2 0 –2 –4 0.1 1 [MHz] 10 100 Rfc = 100kΩ Vboost = –1.0V
Rfc = 5.1kΩ Vboost = –1.0V
EQ Vfc frequency response
10 9 8 7 6 Rfc = 20kΩ Vfc = –1V Rfc = 20kΩ Vfc = 0V Vbst = VC Rfc = 20kΩ Vfc = 1V 17 14 11 8 20
RF AC frequency response
AC SUM
EQ_Pass RW mode
[dB]
5 4 3 2 1 0 0.1 1 [MHz] 10 100
[dB]
5 2 –1 –4 –7 0.1 1 [MHz] 10 100 EQ_Pass ROM mode
RF DC frequency response
38 35 32 29 26 RW 34 31 28 25 22
FE frequency response
RW
[dB]
23 20 17 14 11 8 0.1
[dB]
ROM
19 16 13 10 7
ROM
1 [MHz]
10
100
4 0.01
0.1 [MHz]
1
10
– 16 –
CXA2570N
TE frequency response
35 32 29 26 23 RW 5.5 5.0 4.5
APC I/O characteristics
VLD – Output voltage [V]
4.0 VCC = 5.5V 3.5 3.0 2.5 2.0 VCC = 3.0V 1.5 1.0
[dB]
20 17 16 13 10 0.01 0.1 [MHz] 1 10 ROM
0.5 0.05
0.1 0.15 0.2 VPD – Input voltage [V]
0.25
– 17 –
CXA2570N
Package Outline
Unit: mm
24PIN SSOP(PLASTIC)
+ 0.2 1.25 – 0.1 ∗7.8 ± 0.1 0.1 13
24
A
1 + 0.1 0.22 – 0.05
12 + 0.05 0.15 – 0.02 0.65 0.1 ± 0.1
0.13 M
∗5.6 ± 0.1
0° to 10° NOTE: Dimensions “∗” does not include mold protrusion. DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE SSOP-24P-L01 SSOP024-P-0056 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER/PALLADIUM PLATING 42/COPPER ALLOY 0.1g
NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 18 –
0.5 ± 0.2
7.6 ± 0.2
很抱歉,暂时无法提供与“CXA2570”相匹配的价格&库存,您可以联系我们找货
免费人工找货