0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXA2647

CXA2647

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXA2647 - RF Signal Processor for CD Players - Sony Corporation

  • 数据手册
  • 价格&库存
CXA2647 数据手册
CXA2647N RF Signal Processor for CD Players Description The CXA2647N is an RF signal processing IC for compact disc players. Features • RF signal processor supporting 6× speed CD • RF system VCA circuit • RF system equalizer • Supports pickups with built-in RF summing amplifier • Low current consumption mode (RF off mode) • ROM/RW switching mode • Center error amplifier • Output DC level shift circuit • TE balance adjustment function Functions • RF AC summing amplifier, equalizer, VCA • RF DC summing amplifier • Focus error amplifier • Tracking error amplifier • Center error amplifier • Automatic power control • VC buffer amplifier (analog block, digital block) Pin Configuration DC_OFST TE_BAL 30 pin SSOP (Plastic) Absolute Maximum Ratings 7 • Supply voltage VCC • Storage temperature Tstg –65 to +150 • Allowable power dissipation PD 620 V °C mW Operating Conditions • Operating supply voltage range VCC – GND 3.0 to 3.6 V DVCC – GND 3.0 to 3.6 V (0V ≤ VCC – DVCC < 2V) • Operating temperature Topr –30 to +85 °C RFDCI RFDC RFG RFC VFC BST VCC CEI FEI 17 14 DVC VC CE TE 30 29 28 27 26 25 24 23 22 21 20 19 18 16 1 LD 2 PD 3 EQ_IN 4 AC_SUM 5 GND 6 A 7 B 8 C 9 D 10 E 11 F 12 SW 13 DVCC 15 RFAC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– FE E01997-PS CXA2647N Block Diagram AC_SUM EQ_IN 4 3 23 24 25 26 RF off at VCC RFC 15 AC_SUM VCA EQ 30 DC_OFST ROM/ RW A 6 ROM/ RW VC VOFST VC C 8 ROM/ RW RFAC RFG VFC BST 29 RFDCI 28 RFDC B 7 21 CEI D 9 DVC ROM/ RW VC VOFST ROM/ RW 20 CE 17 FEI ROM/ RW DVC VC 16 FE 19 VOFST F 11 gm VC E 10 gm VC L: ROM DVC H: RW VC DVC or Hi-Z Sleep, APC off VCC ROM/ RW VC VOFST VC VCC DVC ROM/ RW 18 TE_BAL TE L or H SW 12 13 DVCC PD 2 APC LD 1 5 GND 22 VCC 27 VC 14 DVC –2– CXA2647N Pin Description Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Symbol LD PD EQ_IN AC_SUM GND A B C D E F SW DVCC DVC RFAC FE FEI TE TE_BAL CE CEI VCC RFG BST VFC RFC VC RFDC RFDCI DC_OFST I/O O I I O I I I I I I I I I O O O I O I O I I I I I I O O I I APC amplifier output. APC amplifier input. RFAC system VCA block and EQ block input. RFAC system RF_SUM output. GND. Signal A input. Signal B input. Signal C input. Signal D input. Signal E input. Signal F input. Mode switching signal input. DVCC. DVC output. RFAC signal output. Focus error signal output. FE amplifier virtual ground. Tracking error signal output. TE balance adjustment. Center error signal output. CE amplifier virtual ground. VCC. RFAC system VCA block low frequency gain adjustment. EQ boost level adjustment. EQ cut-off frequency adjustment. EQ cut-off frequency adjustment. VC voltage output. RFDC signal output. RFDC amplifier virtual ground. RFDC signal output offset adjustment. Description –3– CXA2647N Pin Description Pin No. Symbol I/O Equivalent circuit Description 600µA 100µA 10k 1 LD O 1 1k APC amplifier output. 10µA 20µA 10µA 2 PD I 2 55k 20k APC amplifier input. 20k 3 EQ_IN I 3 5k VC 1.2k Equalizer circuit input. VC 400µA 400µA 3.4k 4 AC_SUM O 2k 50 4 RFAC summing amplifier output. 400µA 400µA 500µA 5 GND — — GND. –4– CXA2647N Pin No. Symbol I/O Equivalent circuit Description 6 A I 6 100µA 10k 10k 100µA 7 400µA 7 B I 100µA 30k 8 100µA 47k 47k RFAC summing amplifier, RFDC amplifier, focus error amplifier and center error amplifier input. 100µA 50µA 8 C I 9 100µA 30k VC 24k 9 D I 24k VC 50µA 100µA 10 E I 10 11 Tracking error amplifier input. 100µA VC 11 F I 200k 200k 12 200k VC 12 SW I CD-ROM/SLEEP/CD-RW switching input. ROM when connected to GND, RW when connected to DVCC, SLEEP mode when connected to DVC or Hi-Z. Digital power supply. 13 DVCC — — 14 DVC O 100 14 100 25 (DVCC + GND)/2 voltage output. –5– CXA2647N Pin No. Symbol I/O Equivalent circuit Description 15 RFAC O 1.4mA 100 15 RFAC amplifier output. 16 FE O 50k VC 124 16 Focus error amplifier output. 50µA 500µA 124 17 17 FEI I Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 16. 18 TE O 100µA 18 63k 500µA Tracking error amplifier output. 45k 19 19 TE_BAL I 5k 50µA Input for adjusting the tracking error amplifiers E and F gain balance with the control voltage. VC 20 CE O 50k VC 124 20 Center error amplifier output. 50µA 500µA 124 21 21 CEI I Center error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 20. –6– CXA2647N Pin No. 22 Symbol VCC I/O — Equivalent circuit — VCC. Description 19.5k 23 RFG I 23 VC 100µA Input for setting the RFAC low frequency gain with the control voltage. 50µA 24 BST I 20k 24 VC 25µA Input for adjusting the equalizer circuit boost level with the control voltage. 19k 25 VFC I 25 VC 100µA Input for adjusting the equalizer circuit cut-off frequency with the control voltage. 10µA 124 1.5V 26 RFC I 26 Input for adjusting the equalizer circuit cut-off frequency with the external resistance. 27 VC O 100 27 100 25 (VCC + GND)/2 voltage output. –7– CXA2647N Pin No. Symbol I/O Equivalent circuit Description 28 RFDC O 2k 100µA 250µA 124 VC 1mA 28 RFDC amplifier output. 124 29 RFDCI I 29 RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 28. 24k 30 30 DC_OFST I 15k 100µA VC 10k 400µA Input for adjusting RFDC amplifier offset with the control voltage. –8– CXA2647N Description of Functions • RFAC The RF signal input by connecting capacitance to EQ_IN (Pin 3) is equalized, arithmetically amplified and then output from RFAC (Pin 15). A B C D AC_SUM 6 7 8 9 4 AC SUM Amp VCC 100k BST VFC 24 25 26 RFC 3 EQ_IN RFG 23 VCA EQ RFAC OFF when BST = VCC Amp 15 RFAC ROM/RW Control Bias VC – 1V to VC + 1V Low frequency gain (100kHz) AC_SUM (ABCD to AC_SUM) 13dB RFAC (EQ_IN to RFAC) ROM: 1.5dB RW: 13.5dB When BST (Pin 24) is connected to VCC, the RFAC function is turned off and the low consumption mode is entered. If RF (summing signal) is present at the pickup output pin, input the addition output signal to EQ_IN (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC_SUM and then input the signal to EQ_IN (Pin 3) coupled by capacitance. ROM/RW switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. Gain [dB] VCA variable range The VCA low frequency gain can be adjusted by the RFG (Pin 23) voltage control. The control voltage vs. low frequency gain characteristics are shown in the graph to the right. 8 0 –8 Vcnt [V] VC – 1 VC VC + 1 The RFAC pin (Pin 15) is an NPN transistor emitter follower output. The maximum drive current is approximately 1.4mA. If the load capacitance distorts the output waveform, connect resistance between the RFAC pin and GND to increase the drive current. –9– CXA2647N • EQ The EQ internal block diagram is shown below. The EQ is configured with the filter of the Bessel function of order 4. Boost 79.517fc2 Control LPF1 = 2 + (17.085fc) S + 79.517fc2 S 24 BST In HPF1 Amp Control Bias VC – 1V to VC + 1V HPF1 = S2 S2 + (17.085fc) S + 79.517fc2 99.963fc2 S2 + (12.412fc) S + 99.963fc2 LPF2 = LPF1 LPF2 Out fc Control RFC 26 33kΩ to 100kΩ 25 VFC Control Bias VC – 1V to VC + 1V The boost gain can be adjusted by adjusting the HPF1 gain. The cut-off frequency is adjusted by the RFC external resistance value and the VFC control voltage value. RFC resistance value: The cut-off frequency fc of each filter is adjusted by the Pin 26 external resistance value. The VFC voltage can be varied using this fc as the reference. VFC voltage: fc can be adjusted by the voltage applied to Pin 25. The cut-off frequency control characteristics are shown in the graph below. 1.5fc The boost gain can be adjusted by the BST (Pin 24) control voltage. The control characteristics are shown in the graph below. The boost gain stands for the increased gain from the low frequency gain in the fc frequency. Gain 8dB Boost gain [dB] 5dB Boost gain fc [Hz] fc Freq. fc 0.5fc –1dB VC – 1.0 VC – 1.0 VC VC + 1.0 BST voltage [V] VC VC + 1.0 VFC voltage [V] • APC (Automatic Power Control) RFC pin external resistor value 100kΩ: fc = 1.6MHz 33kΩ: fc = 4.8MHz When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function. VCC 56k PD 2 10k 55k 10k 10k 1.25V 56k 1 LD 1k – 10 – CXA2647N • Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has ROM/RW switching and offset addition functions. VC ROM 23.5k A6 C8 B7 D9 ROM VOFST 30k 30k 30k ROM 30k 47k 47k 200k RW DVC RW FEI 17 100k 124 50k 124 16 FE 100k RW 200k FE = Gain { (B + D) – (A + C) } Low frequency gain ROM: 15.5dB RW: 27.5dB Cut-off frequency fc (typ.) ROM: 400kHz RW: 300kHz • Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has ROM/RW switching and offset addition functions. VC Control bias VC – 1V to VC + 1V TE_BAL 19 ROM VOFST 20k 11 20k 10 F VC gm RW 20k 20k VC 31.5k ROM VC 251k 10k 251k RW 18 TE gm 10k 125.5k RW TE balance adjustment (F – E) low frequency gain = ±6dB Cut-off frequency fc (typ.) ROM: 200kHz RW: 150kHz 63k 63k ROM TE = Gain (F – E) Low frequency gain ROM: 16dB RW: 28dB E External resistance value vs. Low frequency gain for E and F input pins Low frequency gain [dB] 22 15.5 12.5 10k 20k Resistance value [Ω] 30k – 11 – CXA2647N • VC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately ±3mA. Use this voltage as the analog block VC voltage. VCC • DVC Buffer This outputs the DVC ((1/2) DVCC) voltage. The maximum output current is approximately ±3mA. Use this voltage as the digital block VC voltage. The each output DC voltage of FE, TE and CE is level shifted using the DVC voltage as the reference. DVCC 40k VC 27 25 40k DVC 14 25 40k 40k • RFDC The signals input to the A, B, C and D pins are added, amplified and the RFDC signal is output. ROM/RW switching, low frequency gain adjustment and output DC voltage adjustment are possible. VC Control bias VC – 1V to VC + 1V 30 ROM 24k A6 B7 C8 D9 ROM VC RW 15k 15k 15k 15k 2.4k 3.3k RW 96k 10k ROM 40k RW 124 2k 124 RFDCI 29 5.1k 28 RFDC VC RFDC = Gain (A + B + C + D) Low frequency gain ROM: 16.5dB RW: 28.5dB Cut-off frequency fc (typ.) ROM : 15MHz RW : 6MHz The gain can be adjusted by the external resistance connected between Pins 28 and 29. The output voltage offset can be adjusted by controlling the Pin 30 voltage. – 12 – CXA2647N • Center Error The signals input to the A and D pins and the B and C pins are arithmetically amplified and the center error signal is output. ROM/RW switching and offset addition functions are incorporated. VC ROM 12k A6 D9 B7 C8 ROM VOFST RW 30k 30k 30k ROM 30k 24k 96k Cut-off frequency fc (typ.) ROM: 200kHz RW: 200kHz 24k 96k RW DVC RW 48k CEI 21 50k 124 200k 20 CE 124 CE = Gain {(B + C) – (A + D)} signal is arithmetically amplified. Low frequency gain ROM: 15.5dB RW: 27.5dB • Output DC Level Shift The FE, TE and CE output DC voltages are level shifted to the digital VC voltage (DVC). The reference voltage of this IC is the VC voltage, and only the output reference voltage changes. The maximum output voltage of each output signal should be kept to the digital VCC voltage (DVCC) or less in order to protect the DSP IC. The VC and DVC voltages are arithmetically amplified 30k and output as the VOFST voltage. 30k The VOFST voltage serves as the level shift reference DVC VOFST voltage, and is distributed to each block. VC 15k VOFST = 2VC –DVC • SW This controls the laser (APC) on/off, active/sleep mode, and ROM/RW mode switching. Switching is controlled by the voltage applied to the SW pin. Active/Sleep SW 12 SW ROM/RW APC ON/OFF SW low/high condition Low: GND to DVC – 1.2V High: DVC + 1.2V to Vcc Status of Functions on SW Switching Control voltage Item VCC APC ON OFF ON Active/Sleep Active Sleep Active ROM/RW RW — ROM – 13 – VC or Hi-Z GND The VC buffer is always in active mode even if it enters sleep mode. In the function block, MODE SW is always set to active mode. Electrical Characteristics Switch conditions Measurement pin (VCC = 1.5V, VEE = –1.5V, DVCC = 1.5V, DVEE = –1.5V) Bias conditions E3 0V 1.5V 22 13 22 4 OOOO 0.1Vp-p 100kHz 0.1Vp-p 10MHz 0.35V –0.15V 0V O O O O O O O O O O O O O OO OO O O O O O 75mVp-p 100kHz 0.8Vp-p 100kHz 0.4Vp-p 800kHz 0.4Vp-p 2.4MHz 0.4Vp-p 7.2MHz 70mVp-p 1.6MHz 0.2Vp-p 1.6MHz 0.85V –0.85V 1.0V –1.0V 0V O 0.2Vp-p 100kHz O 0.35Vp-p 100kHz 0.3Vp-p 100kHz 0.8Vp-p 100kHz 1.4Vp-p 100kHz –1.0V 0V 1.0V –1.0V 0V 1.0V 0V 1.0V –1.0V 1.0V 1.0V 0V 4 4 15 15 4 OOOO OOOO OOOO 4 Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) – Gsum Pin current Pin current Pin current 7 0V O 0V 0V 0V 0V 22 Pin current 18 0V 30 12 E19 E23 E24 E25 E30 Measurement conditions Min. Typ. Max. Unit V3 V3 S1 S3-1 S3-2 S6 S7 S8 S9 S10 S11 S12-1 S12-2 S26 S27 amplitude frequency E2 0V Measure- Funcment No. tion Measurement item Symbol 1 Current consumption (Active, RF On) Icc_ARFon 42 mA 17 mA 2 Current consumption (Active, RF Off) Icc_ARFoff 3 Current consumption (DVCC) Icc_Dvcc 0.2 0.7 1.2 mA 1.8 3 4.2 mA –0.95 –0.55 –0.15 V 11 13 15 dB –2.5 –0.5 0.5 dB 4 Current consumption (Sleep) Icc_Slp 5 SUM offset voltage ACSUM_Ofst 6 SUM low frequency gain Gsum 8 RFAC SUM 7 SUM frequency response Fsum SUM maximum output voltage H Vsum_H Pin voltage – ACSUM_Ofst 1.15 1.35 1.55 V Pin voltage – ACSUM_Ofst –0.55 –0.35 –0.15 V Pin voltage Pin voltage –0.45 –0.05 0.35 –0.45 –0.05 0.35 15 20 log (Vout/Vin) – Gac_ROM2 –10 15 20 log (Vout/Vin) 15 20 log (Vout/Vin) – Gac_ROM2 –2 6 15 20 log (Vout/Vin) – Gac_RW2 – Gac_ROM2 –10 15 20 log (Vout/Vin) – Gac_ROM2 15 20 log (Vout/Vin) – Gac_RW2 – Gac_ROM2 15 20 log (Vout/Vin) 15 20 log (Vout/Vin) – Gac_ROM2 15 20 log (Vout/Vin) – Gac_ROM2 15 20 log (Vout/Vin) – Gac_HiFc 10 6 –2 3 3 3 15 20 log (Vout/Vin) – Gac_RW2 – Gac_ROM2 6.5 –8 1.5 8 –8 12 8 1.5 5 5 5 –6 5 10 –6 14 10 5 7 7 7 V V dB dB dB dB dB dB dB dB dB dB 8.5 10.5 dB 15 20 log (Vout/Vin) – Gac_RW2 – Gac_ROM2 –2.5 –0.5 1.5 dB 15 Pin voltage – AC_OfstROM 0.65 0.85 1.05 V 15 Pin voltage – AC_OfstROM –0.95 –0.75 –0.55 V 9 SUM maximum output voltage L Vsum_L 10 Offset voltage ROM AC_OfstROM 11 Offset voltage RW AC_OfstRW RFAC EQ – 14 – 12 Low frequency gain ROM_min Gac_ROM1 13 Low frequency gain ROM_cnt Gac_ROM2 14 Low frequency gain ROM_max Gac_ROM3 15 Low frequency gain RW_min Gac_RW1 16 Low frequency gain RW_cnt Gac_RW2 17 Low frequency gain RW_max Gac_RW3 18 Low frequency gain RF_HiFc Gac_HiFc 19 Frequency response Min_L Fac_MinL 20 Frequency response Min_H Fac_MinH 21 Frequency response RF_HiFc Fac_HiFcf 22 Boost response BST_H Fac_BSTH 23 Boost response BST_L Fac_BSTL 24 Maximum output voltage H Vac_H CXA2647N 25 Maximum output voltage L Vac_L Switch conditions Measurement pin Bias conditions E3 0V 28 50mVp-p 100kHz 28 28 28 28 0.13V –0.25V 0V 28 –0.5V 28 0V O 16 16 0.1Vp-p 1kHz 1kHz 16 16 16 16 16 16 16 16 0.18V 0.18V 16 16 28 O 50mVp-p 10MHz O 12.5mVp-p 3MHz 12.5mVp-p 100kHz 20 log (Vout/Vin) Pin voltage –120 0 0V 0V 28 Pin voltage –120 0 0V 0V 0V E19 E23 E24 E25 E30 Measurement conditions Measure- Funcment No. tion Measurement item V3 V3 S1 S3-1 S3-2 S6 S7 S8 S9 S10 S11 S12-1 S12-2 S26 S27 amplitude frequency E2 0V O OOOO OOOO OOOO OOOO OOOO OOOO Symbol Min. Typ. Max. Unit 26 Offset voltage ROM DC_OfstROM 120 mV 120 mV 27 Offset voltage RW DC_OfstRW 28 Low frequency gain ROM Gdc_ROM 13.5 16.5 19.5 dB 12 13 dB 29 Low frequency gain RW Gdc_RW 20 log (Vout/Vin) – Gdc_ROM 11 RFDC 30 Frequency response ROM Fdc_ROM 20 log (Vout/Vin) – Gdc_ROM –3 –0.5 0.5 dB 20 log (Vout/Vin) – Gdc_RW _Gdc_ROM Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) –3 –0.5 0.5 dB 0.35 0.55 0.75 V –1.5 –1.3 –1.1 V –0.67 –0.55 –0.43 V –120 0 –120 0 120 mV 120 mV 12.5 15.5 18.5 dB 12.5 15.5 18.5 dB 20 log (Vout/Vin) – Gfe_ROM1 11 20 log (Vout/Vin) – Gfe_ROM2 11 12 12 13 13 20 log (Vout/Vin) – Gfe_ROM1 –2.5 –0.5 0.5 20 log (Vout/Vin) – Gfe_ROM2 –2.5 –0.5 0.5 20 log (Vout/Vin) – Gfe–RW1 –Gfe_ROM1 –2.5 –0.5 0.5 20 log (Vout/Vin) – Gfe_RW2–Gfe_ROM2 –2.5 –0.5 0.5 Pin voltage Pin voltage 0.75 1 1.45 dB dB dB dB dB dB V –1.45 –1 –0.75 V 31 Frequency response RW Fdc_RW 32 Maximum output voltage H Vdc_H 33 Maximum output voltage L Vdc_L 34 Offset voltage 1 DC_Ofst1 35 Offset voltage ROM FE_OfstROM 36 O O O O O O O O O O O O O O O O O 0.1Vp-p 200kHz 25mVp-p 100kHz 25mVp-p 100kHz O 0.1Vp-p 200kHz O O 25mVp-p 1kHz O O 25mVp-p 1kHz O 0.1Vp-p O Offset voltage RW FE_OfstRW FE – 15 – 37 Low frequency gain ROM1 Gfe_ROM1 38 Low frequency gain ROM2 Gfe_ROM2 39 Low frequency gain RW1 Gfe_RW1 40 Low frequency gain RW2 Gfe_RW2 41 Frequency response ROM1 Ffe_ROM1 42 Frequency response ROM2 Ffe_ROM2 43 Frequency response RW1 Ffe_RW1 44 Frequency response RW2 Ffe_RW2 45 Maximum output voltage H Vfe_H 46 Maximum output voltage L Vfe_L CXA2647N Switch conditions Measurement pin Bias conditions E3 0V 18 Pin voltage 0.1Vp-p 1kHz 1kHz 18 20 log (Vout/Vin) 18 20 log (Vout/Vin) 13 13 –350 0 16 16 12 12 –1 –1 0V 0V 0V 0V 0V 18 Pin voltage –150 0 E19 E23 E24 E25 E30 Measurement conditions Min. Typ. Max. Unit 150 mV 350 mV 19 19 13 13 0 0 0 18 20 log (Vout/Vin) – Gte_RW2– Gte_ROM2 –3.5 –1.5 1.0V –1.0V 0.18V 0V 0.18V 0V O 18 E, F gain difference 18 E, F gain difference 18 Pin voltage 18 Pin voltage 20 Pin voltage 20 Pin voltage 0.1Vp-p 0.1Vp-p 1kHz 1kHz 20 20 log (Vout/Vin) 20 20 log (Vout/Vin) 4 –8 6 –6 0 8 –4 0.8 1.2 1.45 dB dB dB dB dB dB dB dB dB dB V –1.45 –1.2 –0.8 V –120 0 –120 0 120 mV 120 mV 12.5 15.5 18.5 dB 12.5 15.5 18.5 dB 20 20 log (Vout/Vin) – Gce_ROM1 11 20 20 log (Vout/Vin) – Gce_ROM2 11 25mVp-p 1kHz 0.1Vp-p 100kHz 0.1Vp-p 100kHz 12 12 13 13 dB dB 20 20 log (Vout/Vin) – Gce_ROM1 –2.7 –1.2 0.3 dB 20 20 log (Vout/Vin) – Gce_ROM2 –2.7 –1.2 0.3 dB O O 25mVp-p 100kHz 25mVp-p 100kHz 0.18V 20 20 log (Vout/Vin) – Gce_RW1– Gce_ROM1 –2.7 –1.2 0.3 dB 20 20 log (Vout/Vin) – Gce_RW2 – Gce_ROM2 –2.7 –1.2 0.3 dB 20 Pin voltage 0.75 1 1.45 V Measure- Funcment No. tion Measurement item V3 V3 S1 S3-1 S3-2 S6 S7 S8 S9 S10 S11 S12-1 S12-2 S26 S27 amplitude frequency E2 0V O O O O O O O O O OO OO O O 0.1Vp-p 10kHz 0.1Vp-p 10kHz O 25mVp-p 100kHz O 25mVp-p 100kHz 0.1Vp-p 100kHz 0.1Vp-p 100kHz O 25mVp-p 1kHz O 25mVp-p 1kHz 0.1Vp-p Symbol 47 Offset voltage ROM TE_OfstROM 48 Offset voltage RW TE_OfstRW 49 Low frequency gain ROM1 Gte_ROM1 50 Low frequency gain ROM2 Gte_ROM2 51 Low frequency gain RW1 Gte_RW1 18 20 log (Vout/Vin) – Gte_ROM1 11 18 20 log (Vout/Vin) – Gte_ROM2 11 18 20 log (Vout/Vin) – Gte_ROM1 –3 18 20 log (Vout/Vin) – Gte_ROM2 –3 52 Low frequency gain RW2 Gte_RW2 54 TE 53 Frequency response ROM1 Fte_ROM1 Frequency response ROM2 Fte_ROM2 55 Frequency response RW1 Fte_RW1 18 20 log (Vout/Vin) – Gte_RW1– Gte_ROM1 –3.5 –1.5 56 Frequency response RW2 Fte_RW2 57 Balance gain 1 Gte1 58 Balance gain 2 Gte2 CE – 16 – O OO O OO O OO O OO OO O O O O O O O O 25mVp-p 1kHz 0.18V 59 Maximum output voltage H Vte_H 60 Maximum output voltage L Vte_L 61 Offset voltage ROM CE_OfstROM 62 Offset voltage RW CE_OfstRW 63 Low frequency gain ROM1 Gce_ROM1 64 Low frequency gain ROM2 Gce_ROM2 65 Low frequency gain RW1 Gce_RW1 66 Low frequency gain RW2 Gce_RW2 67 Frequency response ROM1 Fce_ROM1 68 Frequency response ROM2 Fce_ROM2 69 Frequency response RW1 Fce_RW1 70 Frequency response RW2 Fce_RW2 CXA2647N 71 Maximum output voltage H Vce_H 72 Maximum output voltage L Vce_L 20 Pin voltage –1.45 –1 –0.75 V Switch conditions Measurement pin Bias conditions E3 0V Input at which output voltage = 0V Measure- Funcment No. tion Measurement item V3 V3 S1 S3-1 S3-2 S6 S7 S8 S9 S10 S11 S12-1 S12-2 S26 S27 amplitude frequency E2 E19 E23 E24 E25 E30 0V 1 1 1 1 O 27 14 Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage 0.5 0.75 0V 0V 0V 0V 1 adj Symbol Measurement conditions Min. Typ. Max. Unit 50 150 250 mV 1 V V 1.25 1.45 1.5 –0.25 0.1 0.45 –50 –50 0 0 V V 50 mV 50 mV 73 Output voltage 1 Vapc1 74 Output voltage 2 Vapc2 APC 75 O 0V Output voltage 3 Vapc3 Vapc1 + 20mV Vapc1 – 20mV –1 –0.75 –0.5 76 APC OFF voltage Vapc_off 77 Maximum output current Iapc_max O 78 Output voltage Vavc DVC AVC 79 Output voltage Vdvc – 17 – CXA2647N CXA2647N Electrical Characteristics Measurement Circuit VCC 100k 5.1k E30 30 DC_OFST 29 RFDCI 28 RFDC 10k S27 27 VC S26 26 RFC 33k VCC 200k 10k E19 20 CE 19 TE_BAL 18 TE 10k 100k 17 FEI 16 FE 15 10k DVCC DVC S12-1 DVC S12-2 FE OUT 16 FE 15 RFAC RFAC 10k E25 E24 E23 25 24 23 22 VFC BST RFG VCC 21 CEI AC_SUM EQ_IN DVCC 13 TE OUT 18 TE DVCC 13 GND 1 S1 E2 0.8mA 2 S3-1 3 4 5 10k VEE S6 6 7 8 9 20k 10 11 20k 12 14 S7 S8 S9 S10 S11 VEE VCC S3-2 V3 E3 VEE DVCC Application Circuit RFDC OUT VC VCC VCC 0.1µ VCC CE OUT VCC VCC VCC VCC 30 DC_OFST 29 RFDCI 28 RFDC 27 VC 26 RFC 25 VFC 24 BST 23 RFG 22 VCC 21 CEI 20 CE 19 TE_BAL 17 FEI 14 DVC AC_SUM EQ_IN GND 1 2 3 4 5 6 7 8 9 10 11 12 LD PD IN Drive RF SUM A B C D E F DVCC DVC MODE RFAC Control OUT Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 18 – SW PD LD C D A B E F DVC SW PD LD C D A B E F CXA2647N Connection Example of DP and DSP VCC VCC VCC AC_SUM VCC RFC RFAC EQ_IN RFG VFC BST 4 A B C D VC 3 23 24 25 26 RF off at VCC 25 RF AC_SUM VCA EQ 30 29 ROM/ RW VC VOFST VC 8 D VC D ROM/ RW 28 RFDCI RFDC RFAC VCC DC_OFST ROM/ RW 6 A VC A B B 7 RFDC VC C C 21 CEI 9 ROM/ RW DVC VC VOFST ROM/ RW 17 FEI 20 CE CE VC ROM/ RW DVC VC 16 FE VCC TE_BAL FE 19 VOFST F VC E VC L or H SW 12 E 10 gm VC L: ROM DVC H: RW VC DVC or Hi-Z Sleep, APC off VCC VC 5 GND 22 VCC 27 VC 14 DVC ROM/ RW VC VOFST VC VCC DVC 13 F 11 gm VC ROM/ RW TE 18 TE DVCC VCC PD GND VCC 2 APC VC LD 1 Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 19 – CXA2647N Characteristics Graphs 1. EQ characteristics (Vcc = 3.0V, DVcc = 3.0V) Input: Pin 3 EQ_IN Output: Pin 15 RFAC 1-2. EQ fc control characteristics 25 ROM mode Pin 26 RFC = 100k/33kΩ Pin 25 VFC = control Pin 24 BST = VC Pin 23 RFG = VC RFC = 100kΩ VFC = VC + 1V VFC = VC VFC = VC – 1V RFC = 33kΩ VFC = VC VFC = VC + 1V 1-1. EQ ROM/RW characteristics 25 Pin 26 RFC = 100kΩ Pin 25 VFC = VC Pin 24 BST = VC Pin 23 RFG = VC 20 20 15 RW 10 [dB] [dB] 5 ROM 0 15 10 5 0 –5 –5 –10 1k 10k 100k [Hz] 1M 10M –10 10k 100k 1M [Hz] 10M 100M 1-3. EQ boost control characteristics 25 ROM mode Pin 26 RFC = 100k/33kΩ Pin 25 VFC = VC Pin 24 BST = control Pin 23 RFG = VC 30 1-4. EQ gain control characteristics 20 25 RFC = 33kΩ BST = VC + 1V BST = VC BST = VC – 1V [dB] RFG = VC + 1V 20 15 10 [dB] 5 RFC = 100kΩ BST = VC + 1V BST = VC BST = VC – 1V 15 RFG = VC 10 RFG = VC – 1V RW mode Pin 26 RFC = 100kΩ Pin 25 VFC = VC Pin 24 BST = VC Pin 23 RFG = control 1k 10k 100k [Hz] 1M 10M 0 5 –5 0 –10 10k –5 100k 1M [Hz] 10M 100M – 20 – CXA2647N 2. AC_SUM characteristics Input: Pin 6, 7, 8, 9 A, B, C, D Output: Pin 4 AC_SUM 25 40 3. RFDC characteristics Input: Pin 6, 7, 8, 9 A, B, C, D Output: Pin 28 RFDC Feed back registor 5.1kΩ between Pin 28 & 29 20 35 RW 15 30 10 [dB] [dB] 5 25 20 ROM 0 15 –5 10 –10 10k 100k 1M [Hz] 10M 100M 5 10k 100k 1M [Hz] 10M 100M 3. FE characteristics Input: Pin 6, 8 A, C Output: Pin 16 FE 40 Feed back registor 100kΩ between Pin 16 & 17 35 35 40 4. TE characteristics Input: Pin 10 E Output: Pin 18 TE Input (Pin 10 & 11) registor 200kΩ Pin 19 TE_BAL = VC 30 RW 30 RW 25 [dB] [dB] 20 ROM 15 25 20 ROM 15 10 10 5 1k 10k 100k [Hz] 1M 10M 5 1k 10k 100k [Hz] 1M 10M – 21 – CXA2647N 3. CE characteristics Input: Pin 6, 9 A, D Output: Pin 20 CE 40 Feed back registor 200kΩ between Pin 20 & 21 35 3.0 3.5 3. APC input/output characteristics Input: Pin 2 PD Output: Pin 1 LD VCC = 3.6V 30 RW Output LD [V] ROM 15 1.0 2.5 25 [dB] 2.0 20 1.5 VCC = 3.0V 10 0.5 5 1k 10k 100k [Hz] 1M 10M 0 0 0.05 0.1 Input PD [V] 0.15 0.2 – 22 – CXA2647N Package Outline Unit: mm 30PIN SSOP (PLASTIC) + 0.2 1.25 – 0.1 ∗9.7 ± 0.1 0.10 30 16 ∗5.6 ± 0.1 A 1 b 0.13 M 15 0.65 b=0.22 ± 0.03 0.1 ± 0.1 0.5 ± 0.2 DETAIL B : PALLADIUM 0° to 10° DETAIL A NOTE: Dimension "∗" does not include mold protrusion. PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE SSOP-30P-L01 P-SSOP30-5.6x9.7-0.65 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN PALLADIUM PLATING COPPER ALLOY 0.1g – 23 – + 0.03 0.15 – 0.01 7.6 ± 0.2 Sony Corporation
CXA2647 价格&库存

很抱歉,暂时无法提供与“CXA2647”相匹配的价格&库存,您可以联系我们找货

免费人工找货