CXA3276Q
8-bit 160MSPS Flash A/D Converter
Description The CXA3276Q is an 8-bit high-speed flash A/D converter capable of digitizing analog signals at the maximum rate of 160MSPS. ECL, PECL or TTL can be selected as the digital input level in accordance with the application. The TTL digital output level allows 1: 2 demultiplexed output. Features • Differential linearity error: ±0.5LSB or less • Integral linearity error: ±0.5LSB or less • Maximum conversion rate of 160MSPS • Low input capacitance: 10pF • Wide analog input bandwidth: 250MHz • Low power consumption: 550mW • 1: 2 demultiplexed output • 1/2 frequency-divided clock output (with reset function) • Compatible with ECL, PECL and TTL digital input levels • TTL output "H" levels: 2.8V (Typ.) • +3.3V line CMOS IC direct connecting available • Single +5V power supply operation available • Surface mounting package (48-pin QFP)
DGND3
48 pin QFP (Plastic)
LEAD TREATMENT: PALLADIUM PLATING
Structure Bipolar silicon monolithic IC Applications • LCD monitors • LCD projectors
VRM3
AVCC
12 11 10 CLK/E 13 CLKN/E 14 CLK/T 15 N.C. 16 N.C. 17 N.C. 18 DVCC2 19 DGND2 20 PAD0 21 PAD1 22 PAD2 23 PAD3 24
9
8
7
6
5
VRB
2
VRT
4
3
DVEE3
1 48 RESETN/E 47 RESET/E 46 RESETN/T 45 SELECT 44 INV 43 CLKOUT 42 DVCC2 41 DGND2 40 PBD7 39 PBD6 38 PBD5 37 PBD4
AGND
25 26 27 28 29 30 31 32 33 34 35 36
DGND2
DGND1
PBD1
AGND
Pin Configuration (Top View)
AVCC
VRM2
VRM1
VIN
PAD7
PAD5
DVCC1
PBD0
PAD4
PAD6
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
DVCC2
PBD2
PBD3
E98773-PS
CXA3276Q
Absolute Maximum Ratings (Ta = 25°C) Unit –0.5 to +7.0 V AVCC, DVCC1, DVCC2 DGND3 –0.5 to +7.0 V DVEE3 –7.0 to +0.5 V DGND3 – DVEE3 –0.5 to +7.0 V • Analog input voltage VIN VRT – 2.7 to AVCC V • Reference input voltage VRT 2.7 to AVCC V VRB VIN – 2.7 to AVCC V |VRT – VRB| 2.5 V • Digital input voltage ECL/PECL input pin DVEE3 – 0.5 to DGND3 + 0.5 V TTL input pin DGND1 – 0.5 to DVCC1 + 0.5 V ∗1 (|∗∗∗/E – ∗∗∗N/E|) VID 2.7 V • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1.6 W (when mounted on a two-layer glass fabric base epoxy board with dimentions of 50mm × 50mm, 1.6mm thick) • Supply voltage Recommended Operating Conditions With a single power supply With dual power supply Unit Min. Typ. Max. Min. Typ. Max. +4.75 +5.0 +5.25 +4.75 +5.0 +5.25 V Supply voltage DVCC1, DVCC2, AVCC DGND1, DGND2, AGND –0.05 0 +0.05 –0.05 0 +0.05 V DGND3 +4.75 +5.0 +5.25 –0.05 0 +0.05 V DVEE3 –0.05 0 +0.05 –5.5 –5.0 –4.75 V VRB VRT VRB VRT V Analog input voltage VIN Reference input voltage VRT +2.9 +4.1 +2.9 +4.1 V VRB +1.4 +2.6 +1.4 +2.6 V |VRT – VRB| 1.5 2.1 1.5 2.1 V Digital input voltage ECL/PECL input pin : VIH DVEE3 + 1.5 DGND3 DVEE3 + 1.5 DGND3 V VIH – 0.4 DVEE3 + 1.1 VIH – 0.4 V : VIL DVEE3 + 1.1 TTL input pin : VIH 2.0 2.0 V : VIL 0.8 0.8 V ∗1 (|∗∗∗/E – ∗∗∗N/E|) VID 0.4 0.8 0.4 0.8 V Maximum conversion rate Fc (Straight mode) 125 125 MSPS (DMUX mode) 160 160 MSPS Ambient temperature Ta –20 +75 –20 +75 °C
•
• •
•
• •
∗1 VID: Input Voltage Differential ECL and PECL input signal switching level
DGND3 VIH (max.) VIL VTH (DGND3 – 1.2V) VID VIH VIL (min.)
–2–
CXA3276Q
Pin Description [Symbol] DVEE3 VRB AGND VRM1 AVCC VIN VRM2 AVCC VRM3 AGND VRT DGND3 CLK/E CLKN/E CLK/T N.C. DVCC2 DGND2 PAD0 to PAD7 DGND1 DVCC1 DVCC2 DGND2 PBD0 to PBD7 DGND2 DVCC2 CLKOUT INV SELECT RESETN/T RESET/E RESETN/E [Pin No.] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 to 18 19 20 21 to 28 29 30 31 32 33 to 40 41 42 43 44 45 46 47 48 [Description] Digital power supply Bottom reference voltage Analog ground Reference voltage mid point Analog power supply Analog signal input Reference voltage mid point Analog power supply Reference voltage mid point Analog ground Top reference voltage Digital power supply ECL/PECL clock input ECL/PECL clock input TTL clock input No connected pin Digital power supply Digital ground PA side data output Digital ground Digital power supply Digital power supply Digital ground PB side data output Digital ground Digital power supply Clock output Data output polarity inversion Output mode selection TTL reset input ECL/PECL reset input ECL/PECL reset input Typical voltage level with a single power supply 0V 1.4 to 2.6V 0V — +5V VRB to VRT — +5V — 0V 2.9 to 4.1V +5V PECL PECL TTL — +5V 0V TTL 0V +5V +5V 0V TTL 0V +5V TTL TTL TTL TTL PECL PECL Typical voltage level with dual power supply –5.0V 1.4 to 2.6V 0V — +5V VRB to VRT — +5V — 0V 2.9 to 4.1V 0V ECL ECL TTL — +5V 0V TTL 0V +5V +5V 0V TTL 0V +5V TTL TTL TTL TTL ECL ECL
–3–
CXA3276Q
Block Diagram
AVCC 5 VRT 11 r1 r/2 r
1
INV 44
DVCC1 30
DVCC2 19 31 42
DGND3 12
8
(MSB) 40 PBD7 39 PBD6
2
• • •
r
6bit
38 PBD5
r VRM3 9 r
LATCH B
TTLOUT
63
8bit
37 PBD4 36 PBD3 35 PBD2
64
r
65
r r
• • •
6bit
34 PBD1
126
6bit LATCH + ENCODER
33 PBD0 (LSB)
127
VRM2 7 VIN 6
r
128
r
129
ENCODER
(MSB) 28 PAD7 27 PAD6 26 PAD5
r VRM1 4 r
• • •
6bit
191
LATCH A
LATCH B
TTLOUT
192
r
193
25 PAD4 24 PAD3 23 PAD2 22 PAD1
8bit 6bit
r r
• • •
254
255
r2 VRB 2 CLK/T 15 CLK/E 13 CLKN/E 14
r/2
21 PAD0 (LSB) 16 N.C. 17 N.C. 18 N.C. D Q Q Select 43 CLKOUT
RESETN/T 46 RESETN/E 48 RESET/E 47 3 10 AGND
45 SELECT
29 DGND1
20 32 41 DGND2
1 DVEE3
–4–
CXA3276Q
Pin Description and I/O Pin Equivalent Circuit Pin No. 3, 10 Symbol AGND I/O Standard voltage level GND +5V (typ.) GND +5V (typ.) +5V (typ.) (With a single power supply) GND (With dual power supply) GND (With a single power supply) –5V (typ.) (With dual power supply) 16, 17, N.C. 18 13 CLK/E I Equivalent circuit Description Analog ground. Separated from the digital ground. Analog power supply. Separated from the digital power supply. Digital ground. Digital power supply.
5, 8
AVCC
20, 29 DGND1 32, 41 DGND2 19, 30 DVCC1 31, 42 DVCC2
12
DGND3
Digital power supply. Ground for ECL input. +5V for PECL and TTL inputs.
1
DVEE3
Digital power supply. –5V for ECL input. Ground for PECL and TTL inputs.
No connected pin. Not connected with the internal circuits. Clock input. CLK/E complementary input. When left open, this pin goes to the threshold voltage. Only CLK/E can be used for operation, but complementary inputs are recommended to attain fast and stable operation. Reset signal input. When set to low level, the built-in CLK frequency divider circuit can be reset. RESETN/E complementary input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation. –5–
14
CLKN/E
I
DGND3
ECL/ PECL 48 RESETN/E I
13 48 14 47
DVEE3
47
RESET/E
I
CXA3276Q
Pin No. 15
Symbol CLK/T
I/O I
Standard voltage level
Equivalent circuit Clock input.
Description
46
RESETN/T
TTL I
DVCC1
Reset signal input. When left open, this pin goes to high level. When set to low level, the built-in CLK frequency divider circuit can be reset. Data output polarity inversion input. When left open, this input goes to high level. (See Table 1. I/O Correspondence Table.) Data output mode selection. (See Table 2. Operation Mode Table.)
r1
44
INV
I
TTL
15 46 or 44 , 45 DGND1 DVEE3
1.5V
45
SELECT
Vcc or GND 4.0V (typ.)
11
VRT
I
11 r/2 r
Top reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor.
Comparator 1
9
VRM3
VRB +
3 (VRT – VRB) 4
9 r r
Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Bottom reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor.
Comparator 63 Comparator 64 Comparator 127
7
VRM2
VRB +
2 (VRT – VRB) 4
7 r
Comparator 128 Comparator 191 4 r Comparator 192 r Comparator 255 r/2
VRB + 4 VRM1
1 (VRT – VRB) 4
2
VRB
I
2.0V (typ.)
2 r2
AVCC
Comparator AVCC
6
VIN
I
VRT to VRB
Analog input.
6 Vref
DVEE3
AGND
–6–
CXA3276Q
Pin No. 21 to 28 33 to 40
Symbol PAD0 to PAD7 PBD0 to PBD7
I/O
Standard voltage level
Equivalent circuit
Description Port A side data output. TTL output; the high level is clamped to approximately 2.8V. Port B side data output. TTL output; the high level is clamped to approximately 2.8V. Clock output. (See Table 2. Operation Mode Table.) TTL output; the high level is clamped to approximately 2.8V.
O
DVCC1 DVCC2
O
TTL
100K
21 to 28 33 to 40 43 DGND2 DVEE3
DGND1
43
CLKOUT
O
–7–
CXA3276Q
Electrical Characteristics ( AVCC, DVCC1, 2,DGND3 = +5V, AGND,DGND1, 2,DVEE3 = 0V, VRT = 4V, VRB = 2V, Ta = 25°C) Item Resolution DC characteristics Integral linearity error Differential linearity error Analog input Analog input capacitance Analog input resistance Analog input current Reference input Reference resistance Reference current Offset voltage VRT side VRB side Digital input (ECL, PECL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance Digital input (TTL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance Digital output (TTL) Digital output voltage : High : Low Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Clock high pulse width Clock low pulse width Reset signal setup time Reset signal hold time Clock output delay Data output delay Output rise time Output fall time EIL EDL CIN RIN IIN Rref∗2 Iref∗3 EOT EOB VIH VIL VTH IIH IIL Symbol Conditions Min. Typ. 8 ±0.5 ±0.5 10 15 100 600 3.3 8 1.5 Max. Unit bits LSB LSB pF kΩ µA Ω mA mV mV V V V µA µA pF V V V µA µA pF
VIN = 2Vp-p, Fc = 5MSPS
VIN = +3.0V + 0.07Vrms 7 0 400 2.7 6 0 DVEE3 + 1.5 DVEE3 + 1.1
35 285 740 5.0 10 3 DGND3 VIH – 0.4
DGND3 – 1.2
VIH = DGND3 – 0.8V VIL = DGND3 – 1.6V
–50 –50
20 20 5
VIH VIL VTH IIH IIL
2.0 0.8 1.5 VIH = 3.5V VIL = 0.2V –10 –20 5 0 5
VOH VOL Fc Taj Tds Tpw1 Tpw0 T_rs T_rh Td_clk Tdo1 Tdo2 Tr Tf
IOH = –2mA IOL = 1mA DMUX mode
2.4 0.5 160 1.2 2.5 2.9 1.0 –0.5 3.0 3.5 10 1.3 1.5
V V MSPS ps ns ns ns ns ns ns ns ns ns ns
CLK CLK RESETN – CLK RESETN – CLK DMUX mode 0.8 to 2.0V 0.8 to 2.0V (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF)
4.0 T∗4 + 0.5 4.5 1 1
6.5 7.0
∗ These characteristics are for PECL input unless otherwise specified.
–8–
CXA3276Q
Item Dynamic characteristics Input bandwidth S/N ratio
Symbol
Conditions VIN = 2Vp-p, –3dB Fc = 160MSPS, fin = 1kHz Fs DMUX mode Fc = 160MSPS, fin = 9.999MHz Fs DMUX mode Fc = 160MSPS, fin = 1kHz Fs DMUX mode Error > 16LSB Fc = 160MSPS, fin = 9.999MHz Fs DMUX mode Error > 16LSB Fc = 125MSPS, fin = 31.249MHz Fs Straight mode Error > 16LSB
Min. 250
Typ.
Max.
Unit MHz dB
{ {
46
42
dB TPS∗5
Error rate
{ { {
ICC + IEE AICC DICC1 DICC2 IEE Pd∗6
10–12
2 × 10–8
TPS
10–9
TPS
Power supply Supply current AVcc pin supply current DVcc1 pin supply current DVcc2 pin supply current DGND3 pin supply current Power consumption
89 62 22 4.0 0.5 480
108
140 87 36 15 1.5 700
mA mA mA mA mA mW
550
∗2 Rref: Resistance value between VRT and VRB ∗3 Iref = VRT – VRB Rref ∗4 T = 1 Fc ∗5 TPS: Times Per Sample 2 ∗6 Pd = (ICC + IEE) · VCC + (VRT – VRB) Rref
–9–
CXA3276Q
INV VIN Step D7 VRT 255 254 . . . 128 127 . . . 1 0 11111 11111 . . . 10000 01111 . . . 00000 00000 1 D0 D7 111 110 000 111 001 000 00000 00000 . . . 01111 10000 . . . 11111 11111 0 D0 000 001 111 000 110 111
VRM2
VRB
Table 1. I/O Correspondence Table
– 10 –
CXA3276Q
Electrical Characteristics Measurement Circuit Current Consumption Measurement Circuit
5V 5V
Sampling Delay Measurement Circuit Aperture Jitter Measurement Circuit
100MHz Amp OSC1 φ: Variable VIN fr CLK CXA3276Q 8
A Icc
4V VRT AVCC DVCC1 DVCC2
A IEE
DGND3
Logic Analiyzer 1024 samples
1.95V
VIN
CLK/E
5MHz PECL OSC2
2V
VRB
DGND2 DGND1 AGND
ECL Buffer DVEE3 100MHz
Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit
+V
Aperture Jitter Measurement Method
VRT VIN VRM2 VRB
S2 S1: ON when A < B S2: ON when A > B CLK ∆υ ∆t AB Comparator VIN CXA3276Q 8 A8 to A1 A0 “0” DVM Controller B8 to B1 B0 “1” 000 ··· 00 to 111 ··· 10 8 Buffer CLK VIN 129 128 127 126 125
S1
–V
σ (LSB)
Sampling timing fluctuation (= aperture jitter)
Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter Taj is: Taj = σ/ ∆υ ∆t A B Comparator A>B Pulse Counter = σ/ ( 256 × 2πf ) 2
Error Rate Measurement Circuit
Signal Source VIN 8
CXA3276Q CLK CLK
Latch
Fc – 1kHz N 2Vp-p Sin Wave
+
Latch
16LSB Signal Source Fc 1/N
– 11 –
CXA3276Q
Description of Operation Modes The CXA3276Q has two types of operation modes which are selected with Pin 45 (SELECT). Operation mode DMUX mode Straight mode SELECT1 Maximum pin conversion rate VCC GND 160MSPS 125MSPS Data output Demultiplexed output 80Mbps Straight output 125Mbps Clock output The input clock is 1/2 frequency divided and output. 80MHz The input clock is inverted and output. 125MHz
Table 2. Operation Mode Table
1. DMUX mode (See Application Circuit 1-(1), (2) and (3).) Set the SELECT pin to Vcc for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this 1/2 frequency-divided clock. The 1/2 frequency-divided clock, which has adequate setup time and hold time for the output data, is output from the clock output pin. When using the multiple CXA3276Q in DMUX mode, the start timing of the 1/2 frequency-divided clocks becomes out of phase, producing operation such as that shown in the example on the next page. As a countermeasure, the CXA3276Q has a function that resets the 1/2 frequency-divided clocks. When resetting this 1/2 frequency-divided clock, the low level of the reset signal should be input to the RESETN pin (Pin 46 or 48). The reset signal requires the setup time (T_rs ≥ 1.0ns) and hold time (T_rh ≥ –0.5ns) to the clock rising edge because it is synchronized with and taken in the clock. The reset period can be extended by making the low level period of the reset signal longer because the clock output pin is fixed to low (reset) during the low level period at the clock rising edge. If the reset start timing is regarded as not important, the timing where the reset signal is set from high to low is not so consequence. However, when the reset is released the timing where the reset signal is set from low to high must become significant because the timing is used to commence the 1/2 frequency-divided clock. In this case, the setup time (T_rs) is also necessary. See the timing chart for detail. (This chart shows the example of reset for 2T.) The A/D converter can operate at Fc (min.) = 160MSPS in this mode.
– 12 –
CXA3276Q
When the reset signal is not used
CLK
CXA3276Q CLK
CLK
CLKOUT 8bit DATA
AA
RESETN
CXA3276Q
CLK
CLKOUT 8bit DATA
BB
RESETN
When the reset signal is used
CLK Reset signal CXA3276Q CLK
CLK RESETN
CLKOUT 8bit DATA
(Reset period)
A
CXA3276Q
CLK
CLKOUT 8bit DATA
(Reset period)
B
Reset signal
RESETN
2. Straight mode (See Application Circuits 1-(4), (5) and (6).) Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at Fc (min.) = 125MSPS in this mode. Digital input level and supply voltage settings The logic input level for the CXA3276Q supports ECL, PECL and TTL levels. The power supplies (DVEE3, DGND3) for the logic input block must be set to match the logic input (CLK and reset signals) level. Digital input level ECL PECL TTL DVEE3 –5V 0V 0V DGND3 0V +5V +5V Supply voltage Application circuits ±5V +5V +5V (1) (4) (2) (5) (3) (6)
Table 3. Logic Input Level and Power Supply Settings
– 13 –
CXA3276Q
Application Circuit 1 (1) DMUX ECL input
+5V (D) DG ECL RESET signal
+5V (A) –5V (D) AG AG AG
48 47 46 45 44 43 42 41 40 39 38 37 1 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 PAD0 to PAD7 8 bit Digital Data Latch 2 3 4 5 6 7 8 9 PBD0 to PBD7 8 bit Digital Data Latch
8 bit Digital Data
2V
+5V (A)
DG AG AG
10
DG
DG +5V (D)
4V
11 12
8 bit Digital Data
ECL-CLK DG +5V (D)
(2) DMUX PECL input
PECL RESET signal
+5V (A) AG AG DG AG
+5V (D) DG
48 47 46 45 44 43 42 41 40 39 38 37 1
2V
36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24
2 3 4 5 6 7 8 9 10
PBD0 to PBD7 8 bit Digital Data
8 bit Digital Data Latch
+5V (A)
+5V (D) AG AG
DG
DG +5V (D)
4V
11 12
PAD0 to PAD7 8 bit Digital Data
8 bit Digital Data Latch
PECL-CLK DG +5V (D)
(3) DMUX TTL input
+5V (D) DG TTL RESET signal
AG AG DG
48 47 46 45 44 43 42 41 40 39 38 37 1 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 8 bit Digital Data PAD0 to PAD7 8 bit Digital Data Latch 2 3 4 5 6 7 8 9 10 PBD0 to PBD7 8 bit Digital Data 8 bit Digital Data Latch
+5V (A) AG
2V
DG DG +5V (D)
+5V (D) +5V (A) AG AG
4V
11 12
TTL-CLK DG +5V (D)
– 14 –
CXA3276Q
(4) Straight ECL input
DG +5V (D) DG
–5V (D) +5V (A) AG AG AG
48 47 46 45 44 43 42 41 40 39 38 37 1 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 2 3 4 5 6 7 8 9 PBD0 to PBD7 8 bit Digital Data 8 bit Digital Data Latch
2V
DG DG +5V (D)
+5V (A) DG AG AG
10
4V
11 12
ECL-CLK ECL → TTL DG +5V (D)
(5) Straight PECL input
DG +5V (D) DG
+5V (A) AG AG DG AG
48 47 46 45 44 43 42 41 40 39 38 37 1 36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24 2 3 4 5 6 7 8 9 10 PBD0 to PBD7 8 bit Digital Data 8 bit Digital Data Latch
2V
+5V (A) +5V (D) AG AG
4V
11 12
PECL-CLK PECL → TTL DG +5V (D)
(6) Straight TTL input
DG +5V (D) DG
+5V (A) +5V (A) +5V (D) AG AG DG AG AG AG
48 47 46 45 44 43 42 41 40 39 38 37 1
2V
DG
DG +5V (D)
36 35 34 33 32 31 30 29 28 27 26 25 13 14 15 16 17 18 19 20 21 22 23 24
2 3 4 5 6 7 8 9 10
PBD0 to PBD7 8 bit Digital Data
8 bit Digital Data Latch
DG DG +5V (D)
4V
11 12
TTL-CLK
DG +5V (D)
– 15 –
CXA3276Q
Application Circuit 2
DMUX Mode TTL I/O (When a single power supply is used)
AG Analog input
4V AG +5V (D) DG 1µF AG 10µF short short 10µF +5V (A)
AG 2V
1µF AG
12
11
10
9
8
7
6
5
4
3
2
1
AGND
DGND3
AGND
13 CLK/E
RESETN/E 48 RESET/E 47 RESETN/T 46 SELECT 45 INV 44 CLKOUT 43 DVCC2 42 DGND2 41 PBD7 40 PBD6 39 PBD5 38 C∗
14 CLKN/E 15 CLK/T TTL CLK 16 N.C. 17 N.C. 18 N.C. C∗ 19 DVCC2 20 DGND2 21 PAD0 22 PAD1 23 PAD2
DGND1
DGND2
DVCC1
DVCC2
24 PAD3
DVEE3
PBD4 37 36
VRM2
VIN
AVCC
VRM1
VRT
VRM3
AVCC
PBD1
VRB
35
PAD4
PAD5
PAD6
PAD7
25
26
27
28
29
30
31
32
PBD0
33
34
C∗
(LSB) PAD0 PAD1
PAD2 PAD3
PBD2
PBD3
PBD3
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
(MSB) PAD7
Short the analog system and digital system at one point immediately under the A/D converter. See the Notes on Operation. is the chip capacitor of 0.1µF. Also, C∗ is important to suppress the noise generated during the TTL output circuit is operating. Place C∗ at the fixed position between the pins with the shortest distance.
– 16 –
PBD6 (MSB) PBD7
(LSB) PBD0
PBD1
PAD4
PBD2
PAD5
PAD6
PBD4 PBD5
CXA3276Q
DMUX Mode Timing Chart (Select = VCC)
Tds N–2 VIN (Pin 6) N–1 T N N+2 N+3 1.3ns (typ.) N+4 N+5 N+6
N+1
CLK (Pin 13) Tpw1 Tpw0 Tdo2; 4.5ns (typ.) 3.5ns (min) 7.0ns (max) PAD0 to D7 (Pin 21 to 28) 2.0V 0.8V
N
N+2
PBD0 to D7 (Pin 33 to 40) Td_clk; 4.0ns (typ.) 6.5ns (max) 3.0ns (min) CLK OUT (Pin 43) 2.0V 0.8V 2.0V 0.8V
N+1 Tdo1 T + 0.5ns (typ.)
2.0V 0.8V ≈T
N+3 ≈T
(Reset period)
2.0V 0.8V
T_rh RESETN (Pin 48)
T_rs
T_rh
T_rs
– 17 –
CXA3276Q
Straight Mode Timing Chart (Select = GND)
N–1 VIN (Pin 6) Tds 1.3ns (typ.) T N N+1 N+2
N+3
CLK (Pin 13) Tpw1 Tpw0
Tdo2; 4.5ns (typ.) 3.5ns (min) 7.0ns (max) PAD0 to D7 (Pin 21 to 28) N–4 2.0V 0.8V N–3 N–2 N–1 N
PBD0 to D7 (Pin 33 to 40)
N–3
2.0V 0.8V
N–2
N–1
N
N+1
Td_clk; 4.0ns (typ.) 3.0ns (min) 6.5ns (max) CLK OUT (CLK is inverted and output.) (Pin 43) 2.0V 0.8V
– 18 –
CXA3276Q
Notes on Operation • The CXA3276Q has the PECL and TTL input pins for the clock and reset input pins. When the clock is input in PECL level, inputting the reset signal in PECL level is recommended. Also, when the clock is input in TTL level, inputting the reset signal in TTL is recommended. • The impedance of the input signal should be properly matched to ensure the CXA3276Q's stable operation at high speed. • The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during high-speed operation. General points for caution are as follows. — The ground pattern should be as large as possible. It is recommended to make the power supply and ground patterns wider at an inner layer using a multi-layer board. — To prevent interference between AGND and DGND and between AVcc and DVcc, make sure the respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVcc and DVcc lines at one point each via a ferrite-bead filter, etc. Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance. — Be sure to turn the analog and digital power supplies on simultaneously. If not simultaneously, the IC does not operate correctly. — Ground the power supply pins (AVcc, DVcc1, DVcc2, DVEE3) as close to each pin as possible with a 0.1µF or larger ceramic chip capacitor. (Connect the AVcc pin to the AGND pattern and the DVcc1, DVcc2 and DVEE3 pins to the DGND pattern.) — It is recommended to place the ceramic chip capacitor of 0.1µF or more, in particular, between DVcc2 and DGND2 with the shortest distance.This has the effect to suppress the noise generated when the CXA3276Q TTL output circuit operates. — The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast. • The analog input pin VIN has an input capacitance of approximately 10pF. To drive the A/D converter with the proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit, keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc. • The VRT and VRB pins must have adequate by-pass to protect them from high-frequency noise. By-pass them to AGND with approximately 1µF tantal capacitor and 0.1µF chip capacitor as short as possible. • If the CLKN/E pin is not used, by-pass this pin to DGND with an approximately 0.1µF capacitor. At this time, approximately DGND3 – 1.2V voltage is generated. However, this is not recommended for use as the threshold voltage VBB because it is too weak. • When the digital input level is ECL or PECL level, ∗∗∗/E pins should be used and ∗∗∗/T pins left open. When the digital input level is TTL, ∗∗∗/T pins should be used and ∗∗∗/E pins left open. • The CXA3276Q TTL output high level is clamped to approximately 2.8 V in the IC.This makes it possible to directly interface with the 3.3V system CMOS IC. • The CXA3026AQ has the output pins P1∗∗ and P2∗∗. However, in the CXA3276Q, these symbols are changed as PA∗∗and PB∗∗. At this time, the P1 side of the CXA3026AQ is changed to the PB side for the CXA3276Q; the P2 side of the CXA3026AQ to the PA side for the CXA3276Q. • The pipeline delay of the CXA3276Q is smaller by one clock, compared to that of CXA3026AQ. – 19 –
CXA3276Q
Example of Representative Characteristics
Current consumption vs. Ambient temperature characteristics
120 120
Current consumption vs. Conversion rate characteristics
Current consumption [mA]
115
Current consumption [mA]
115 fCLK – 1kHz 4 DMUX mode CL = 5pF
110
110
fin =
105
105
100 –25 25 Ta – Ambient temperature [°C] 75
100 0 80 Fc – Conversion rate [MSPS] 160
Analog input current vs. Analog input voltage characteristics
4 100
Reference current vs. Ambient temperature characteristics
Analog input current [µA]
Reference current [mA]
3 4
VRT = 4V VRB = 2V
3
50
2 0 2 –25 25 Ta – Ambient temperature [°C] 75 Analog input voltage [V]
– 20 –
CXA3276Q
SNR vs. Input frequency response
50
Error rate vs. Conversion rate characteristics
10–5 fin = fCLK – 1kHz 16 Error > 16LSB
Error Rate [TPS]
40
10–6
SNR [dB]
10–7
30 Fc = 160MSPS
10–8
20 1 3 5 10 30 50
10–9 120 140 160 180
Input frequency [MHz]
Fc – Conversion rate [MSPS]
Maximum conversion rate vs. Ambient temperature characteristics
Fc – Maximum conversion rate [MSPS]
180 fin = 170 fCLK – 1kHz 16
Error > 16LSB Error rate: 2 × 10–8 TPS
160
150
140 –25 25 Ta – Ambient temperature [°C] 75
– 21 –
CXA3276Q
Package Outline
Unit: mm
48PIN QFP (PLASTIC)
15.3 ± 0.4 + 0.4 12.0 – 0.1 + 0.1 0.15 – 0.05 0.15 36 25
37
24
48
13
+ 0.2 0.1 – 0.1
1 + 0.15 0.3 – 0.1
12
0.8
0.24
M
+ 0.35 2.2 – 0.15
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-48P-L04 QFP048-P-1212 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER / PALLADIUM PLATING 42/COPPER ALLOY 0.7g
NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 22 –
0.9 ± 0.2
13.5