CXB1573R
Post-Amplifier for Optical Fiber Communication Receiver
Description The CXB1573R achieves the 2R optical-fiber communication receiver functions (Reshaping and Regenerating) on a single chip. This IC is equipped with the signal detection function, which is used to enable TTL/ECL outputs. Also, the output disable function performs the output shutdown. Features • Output disable function (TTL input) • Signal detection function (TTL/ECL output) Applications • SONET/SDH: • Fibre Channel: : • Gigabit-Ethernet: 32 pin LQFP (Plastic)
622.08Mbps 531.25Mbps 1.062Gbps 1.25Gbps
Absolute maximum Ratings • Supply voltage • Storage temperature • Input voltage difference | VD – VD | • SW input voltage • ECL output current • TTL output current (High level) • TTL output current (Low level) • D/DB input voltage • ODIS input voltage Recommended Operating Conditions • Supply voltage • Termination voltage (for data) • Termination voltage (for alarm 1,alarm 2) • Termination resistance (for data) • Termination resistance (for alarm 1) • Termination resistance (for alarm 2) • Operating temperature Structure Bipolar silicon monolithic IC
VCC – VEE Tstg Vdif Vi IOQ/SD-ECL IOH SD-TTL IOL SD-TTL
–0.3 to +6 –65 to +150 0 to +2 VEE to VCC –30 to 0 –20 to 0 0 to 20 Vcc – 2 to Vcc VEE – 0.5 to VEE + 5.5
V °C V V mA mA mA V V
VCC – VEE VCC – VTD VTA RTD RTA1 RTA2 Ta
3.3 ± 0.2 1.8 to 2.2 VEE 46 to 56 240 to 300 460 to 560 –40 to +85
V V V Ω Ω Ω °C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E98401-PS
CXB1573R
Block Diagram and Pin Configuration
CAP3
CAP2
VEE4
VccZ
VEE2
VEEI
DN
24
23
22
21
20
19
18
17
VCC4 25
UP
16
VCC2
∆V SD-TTL 26 peak hold SDB-TTL 27 peak hold
15
VEE1
14 D
13
DB
SD-ECL
28
12
CAP1
SDB-ECL 29
11 CAP1B
Q 30
10 VccY
QB 31 VCC3 32
9
VCC1
1
2
3
4
5
6
7
8
VEE3
SW
VCC2
ODIS
–2–
VccX
VEE2
VEE1
TM
CXB1573R
Pin Description Pin No. 1 Typical pin voltage (V) DC VEE3 0
VCC2 10k
Symbol
Equivalent circuit
Description Negative power supply for ECL output buffer.
AC
2
ODIS
0 or 3.3 (Open)
2 300 10k
VREF
Controls the output shutdown function. High voltage when open; the Q output is fixed to Low. Low voltage when connected to VEE; the D input results in the Q output with ECL level. TTL level is also available.
VEE2
VCC2
3
SW
0 or 3.3 (Open)
60k 3 40k
Switches the identification maximum voltage amplitude. High voltage when open; the identification maximum voltage amplitude becomes 40mVp-p. Low voltage when connected to VEE; the amplitude becomes 20mVp-p.
VEE2
4 5 6 7
VCC2 VccX VEE2 VEE1
3.3 3.3 0 0
Positive power supply for digital block. Positive power supply for digital block. Negative power supply for digital block. Negative power supply for analog block.
7 8
8
TM
1.6
VEE1
Chip temperature monitor.
9
VCC1
3.3
Positive power supply for analog block.
–3–
CXB1573R
Pin No. 10 11 12
Symbol
Typical pin voltage (V) DC AC
Equivalent circuit
Description Positive power supply for analog block.
VCC1
VccY CAP1B CAP1
3.3
14
7.5k
200 12 100p 11
13
DB
2
1.6 to 2.4 1.6 to 2.4
13 1k 1k 7.5k
200
VEE1
Pins 11 and 12 connect a capacitor which determines the cut-off frequency for DC feedback block. Pins 13 and 14 are input pins for limiting amplifier block. Input the signal with AC coupled.
14
D
2
15 16
VEE1 VCC2
0 3.3
Negative power supply for analog block. Positive power supply for digital block. Connects a resistor for alarm level setting. Default voltage can be generated without an external resistor by shorting the VEEI pin to VEE. Generates the default voltage between UP and DOWN. The voltage (8.0mV for input conversion) can be generated between UP and DOWN (Pins 17 and 18) as alarm setting level by connecting this pin to VEE. Negative power supply for digital block.
17
UP
986 140.9
VCC2
18
DN
17 18
140.9 100 100 VCS SW SW
19
VEEl
0
19
VEE2
20
VEE2
0
–4–
CXB1573R
Pin No.
Symbol
Typical pin voltage (V) DC AC
Equivalent circuit
Description
21 80 10p
VCC2
21
CAP2
1.5
5µA
200
VEE2
22 80 10p
VCC2
Connects a peak hold circuit capacitor for alarm block. 470pF should be connected to Vcc each. CAP2 pin connects a peak hold capacitor for alarm level setting block. CAP3 pin connects a peak hold capacitor for limiting amplifier signal.
22
CAP3
1.5
5µA
200
VEE2
23 24 25
VccZ VEE4 VCC4
3.3 0 3.3
VCC4
Positive power supply for ECL output buffer. Negative power supply for TTL output buffer. Positive power supply for TTL output buffer.
26
SD-TTL
VEE or 2.2
40k
26
Alarm signal TTL level output.
VEE4
–5–
CXB1573R
Pin No.
Symbol
Typical pin voltage (V) DC AC
Equivalent circuit
Description
VCC4
27
SDB-TTL
VEE or 2.2
40k
27
Alarm signal TTL level output.
VEE4
28
SD-ECL
1.6 or 2.4
VCC3
28 29
Alarm signal ECL level output. Terminate this pin in 270Ω to VEE.
29
SDB-ECL
1.6 or 2.4
VEE3
30
Q
1.6 or 2.4
VCC3
30 31
Data signal output. Terminates this pin in 50Ω to VTT = Vcc – 2V.
31
QB
1.6 or 2.4
VEE3
32
VCC3
3.3
Positive power supply for ECL output buffer.
–6–
CXB1573R
Electrical Characteristics DC Characteristics Item Supply current Q/QB High output voltage Q/QB Low output voltage Symbol IEE VOH VOL 50Ω to VTT 270Ω to VEE IOH = –0.4mA Ta = 0 to +85°C IOL = 2mA Ta = 0 to +85°C at SW pin Open: High VCC – 0.5 0 VCC = 3.3 ± 0.2V, VEE = GND, Ta = –40 to +85°C Conditions Min. –74 VCC – 1100 VCC – 1860 VCC – 1100 VCC – 1900 2.2 0.5 VCC 0.5 10 –100 at ODIS pin Open: High 2.0 0 VIH = Vcc VIL = VEE –400 765 Iin = 1mA 1.2 1020 1275 2.0 VCC + 0.5 0.8 20 µA V Typ. –51 VCC – 860 VCC – 1620 VCC – 860 VCC – 1620 mV Max. Unit mA
SD-ECL/SDB-ECL High output voltage VOH-E SD-ECL/SDB-ECL Low output voltage SD-TTL/SDB-TTL High output voltage SD-TTL/SDB-TTL Low output voltage SW High input voltage SW Low input voltage SW High input current SW Low input current ODIS High input voltage ODIS Low input voltage ODIS High input current ODIS Low input current D/DB input resistance TM voltage VOL-E VOH-T VOL-T VIHSW VILSW IIHSW IILSW VIHOD VILOD IIHOD IILOD Rin VTM
V
µA Ω V
–7–
CXB1573R
AC Characteristics Item Maximum input voltage amplitude Symbol Vmax
VCC = 3.3 ± 0.2V, VEE = GND, Ta = –40 to +85°C Conditions single-ended input Min. 1600 52 SW: Low, single-ended input 20 mVp-p 40 3 3 6 6 7 dB 7 Typ. Max. Unit mVp-p dB
Amplifier gain (excluding the output buffer) GL Identification maximum voltage amplitude of alarm level VmaxA1
SW: Open High, VmaxA2 single-ended input ∆P1 SW: Low, at default alarm level SW: Open High, at default alarm level SW: Open High, VEEI = VEE, fin = 100Mbps Differential voltage input 20% to 80% 50Ω to VTT 0.6V to 2.2V CL = 10pF 20% to 80% 510Ω to VEE
SD/SDB hysteresis width
∆P2
Alarm setting level for default Q/QB rise time Q/QB fall time SD-TTL/SDB-TTL rise time SD-TTL/SDB-TTL fall time SD-ECL/SDB-ECL rise time SD-ECL/SDB-ECL fall time Propagation delay time SD response assert time SD response deassert time SD response assert time for alarm level default SD response deassert time for alarm level default
Vdef TrQ TfQ TrSDT TfSDT TrSDE TfSDE TPD Tas Tdas Tasd Tdasd
6.6
8.0 230 230
9.3 350 350 10 10 1.6 1.6
mV
ps
ns
0.4 ∗1 ∗2 ∗3 ∗4 0 2.3 0 2.3
1.9 100 100 100 100 µs
∗1 VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, VEEI: Open. ∗2 VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI: Open. ∗3 Vin = 50mVp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE. ∗4 Vin = 1Vp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
–8–
CXB1573R
DC Electrical Characteristics Measurement Circuit
C3
C3
CAP3
CAP2
VccZ
VEE4
VEE2
VEEI
DN
24
23
22
21
20
19
18
UP
17
VCC4 25 16
VCC2
VEE1 ∆V SD-TTL 26 peak hold SDB-TTL 27 SD-ECL 270 SDB-ECL 29 270 Q 30 51 QB 51 VTT 1.3V VCC3 32 9 31 VCC1 10 VccY 11 28 12 CAP1B C2 peak hold DB 13 CAP1 14 C1 15 C1 VD D
1
2
3
4
5
6
7
8
VCC2
VEE3
VEE2
SW
ODIS
VccX
VEE1
TM
3.3V VODIS VSW
–9–
CXB1573R
AC Electrical Characteristics Measurement Circuit
470p
470p
REX1
CAP3
CAP2
VccZ
VEE4
VEE2
VEEI
DN
24
23
22
21
20
19
18
UP
17
VCC4 25 16
VCC2
VEE1 ∆V SD-TTL 26 Oscilloscope Hi-Z input peak hold SDB-TTL 27 SD-ECL Z0 = 50 SDB-ECL Z0 = 50 Oscilloscope 50Ω input Z0 = 50 QB Z0 = 50 VCC3 32 9 31 VCC1 Q 30 10 29 11 VccY 28 12 CAP1B 1µF peak hold DB 13 CAP1 0.047µF 14 15 D 0.047µF
1
2
SW
ODIS
VCC2
VccX
VEE3
VEE2
VCC +2V
VEE –1.3V
– 10 –
VEE1
TM
3
4
5
6
7
8
CXB1573R
Application Circuit
VEE 470p 470p
VccZ
CAP3
VEE4
CAP2
VEE2
REX1
VEEI
DN
24
23
22
21
20
19
18
VCC4 25
UP
17
16
VCC2 51Ω 0.047µF Signal Generator 51Ω VIN
∆V SD-TTL 26 TTL Output peak hold SDB-TTL 27 SD-ECL 28 ECL Output SDB-ECL 29 51Ω ECL Output 51Ω VCC –2V QB 31 Q 30 peak hold
15 VEE1 VTT D 14 DB 13 CAP1 12 CAP1B 11
0.047µF 51Ω VTT VTT 1µF 51Ω
10 VccY
VCC3 32
9
VCC1
1
2
3
4
5
6
7
8
ODIS
SW
VccX
VEE1
VCC2
VEE3
TTL Input
VEE
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 11 –
VEE2
TM
CXB1573R
Notes on Operation 1. Limiting amplifier block The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended input is used, provide AC grounding by connecting Pin 13 to a capacitor which has the same capacitance as capacitor C1. R1 (internal): 1kΩ f2: 3.4kHz C1 (external): 0.047µF C2 (external): 1µF R2 (internal): 7.5kΩ f1: 21Hz
D C1
14 To IC interior 13 C1 R1 R1
R2 12 C2 11 R2
Fig. 1
Feedback frequency response
Amplifier frequency response
Gain
f1
f2
Frequency
Fig. 2 – 12 –
CXB1573R
2. Alarm block In order to operate the alarm block, give the voltage difference between Pins 17 and 18 to set an alarm level and connect the peak hold capacitor C3 shown in Fig. 3. This IC has two setting methods of alarm level; one is to connect Pin 19 to VEE and leave Pins 17 and 18 open to set an alarm level default value (8mV for input conversion). The other is to connect Pin 19 to VEE and set a desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between Pins 17 and 18 or connect REX3 between Pin 18 and Vcc when less alarm level is desired to be set than its default value; connect REX2 between Pin 17 and Vcc when more alarm level is desired to be set than its default value. However, the Pin 17 voltage must be higher than that of Pin 18. This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to 40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input voltage and peak hold output voltage is shown in Fig. 5. In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to maintain a constant gain (design target value: 6dB) as shown in Fig. 4. This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired assert time and deassert time settings for the alarm signal. The electrical characteristics for the SD response assert and deassert times are guaranteed only when the waveforms are input as shown in the timing chart of Fig. 6. REX1: 100Ω (when the alarm level is set to 4mV for input conversion.) REX2: 8kΩ (when the alarm level is set to 10mV for input conversion.) REX3: 4kΩ (when the alarm level is set to 4mV for input conversion.) C3: 470pF The table below shows the alarm logic. Optical signal input state Signal input Signal interruption SD High level Low level SD Low level High level The table below shows the output disable function logic. Optical signal input state ODIS: Open High ODIS: Low Q Fixed Low Data Q Fixed High Data
Ra1, Ra2A and Ra2B values are typical values. VCCA Ra1 986 Ra2A 141 Ra2B 141
From limiting amplifier
Peak Hold
SD-TTL SDB-TTL
Peak Hold
SD-ECL SDB-ECL
VCCA VCS ∆V 3 IC interior 17 18 19 19 17 18 21 22 10p 10p
VCCA
VEEI
UP
DN
IC exterior
REX2 VEE
REX1
C3 REX3 VCC VCC
C3
VCC
VCC
Fig. 3 – 13 –
CXB1573R
VDAS → Deassert level VAS → Assert level High level
SD output
Peak hold output voltage
Low level
SW → Low
VDAS Small 3dB 3dB Alarm setting input level Hysteresis Input electrical signal amplitude
VAS Large
SW → Open High
0
20
40 Input voltage [mVp-p]
Fig. 4
Fig. 5
Data input (D)
Hysteresis width
Alarm setting level
Data output (Q)
Alarm output (SD)
Assert time
Deassert time
Fig. 6
– 14 –
CXB1573R
Example of Representative Characteristics
1. Q/QB output waveform
Q
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C D = 622Mbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 7
Q
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C D = 622Mbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 8
Q
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C D = 1.25Gbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 9
– 15 –
CXB1573R
Q
VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C D = 1.25Gbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 10 2. Bit error rate
Bit error rate vs. Data input level
10 –3 10 –4 10 –5 622Mbps 1.0Gbps 1.25Gbps VCC = 3.3V VEE = GND VTT = 1.3V Ta = 27°C Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT
Bit error rate
10 –6 10 –7 10 –8 10 –9 10 –10 1.5 2 2.5 3 3.5 Data input level [mVp-p]
4
4.5
3. Alarm level
Alarm level vs. REX1
9 8 7 SW = H SW = L
Fig. 11
Alarm level vs.Temperature
6.0 5.5 5.0 SW = H SW = L
Alarm level [mV]
Alarm level [mV]
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input 103 UP-DOWN (REX1) [Ω] 104
4.5 4.0 3.5 3.0 2.5 2.0 –40 –20 0 20 40 Ta [°C] 60 80 100 fin = 100Mbps VCC – VEE = 3.3V Up-Down = 200Ω (REX1)
6 5 4 3 2 102
Fig. 12
Fig. 13
– 16 –
CXB1573R
Alarm level vs. Supply voltage
6.0 5.5 5.0 SW = H SW = L 16 15 14
Alarm level vs. REX2
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input
Alarm level [mV]
Alarm level [mV]
fin = 100Mbps Ta = 27°C Up-Down = 200Ω (REX1) 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6
4.5 4.0 3.5 3.0 2.5 2.0 3.0
13 12 11 10 9 8 103 SW = H SW = L 104 VCC-UP (REX2) [Ω] 105
Fig. 14
Alarm level vs. Temperature
15.0 14.5 14.0 SW = H SW = L 15.0 14.5 14.0 SW = H SW = L
Fig. 15
Alarm level vs. Supply voltage
Alarm level [mV]
13.5 13.0 12.5 12.0 11.5 11.0 –40 –20 0 20 40 Ta [°C] 60 80 100 fin = 100Mbps VCC – VEE = 3.3V VCC-UP = 5kΩ (REX2)
Alarm level [mV]
13.5 12.0 12.5 12.0 11.5 11.0 3.0 fin = 100Mbps Ta = 27°C VCC-UP = 5kΩ (REX2) 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6
Fig. 16
Alarm level vs. REX3
9 SW = H SW = L 8 6.0 5.5 5.0 SW = H SW = L
Fig. 17
Alarm level vs. Temperature
fin = 100Mbps VCC – VEE = 3.3V VCC-Down = 3kΩ (REX3)
Alarm level [mV]
Alarm level [mV]
fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input 104 VCC-DOWN (REX3) [Ω] 105
7
4.5 4.0 3.5 3.0 2.5 –40 –20 0 20 40 Ta [°C] 60 80 100
6
5
4
3 103
Fig. 18
Fig. 19
– 17 –
CXB1573R
Alarm level vs. Supply voltage
6.0 5.5 5.0 SW = H SW = L fin = 100Mbps Ta = 27°C VCC-Down = 3kΩ (REX3) 8.0 7.0 6.0 5.0
Hysteresis width vs. Alarm level
SW = H SW = L
Alarm level [mV]
4.5 4.0 3.5 3.0 2.5 2.0 3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
HYS [dB]
4.0 3.0 2.0 1.0 0 2.0 fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C 4.0 6.0 10.0 8.0 Alarm level [mV] 12.0 14.0
Fig. 20
Hysteresis width vs. Temperature
8.0 7.0 6.0 5.0 SW = H SW = L 8.0 7.0 6.0 5.0 SW = H SW = L
Fig. 21
Hyteresis width vs. Supply voltage
HYS [dB]
4.0 3.0 2.0 1.0 0 –40 –20 0 20 40 Ta [°C] 60 80 fin = 100Mbps VCC – VEE = 3.3V Up, Down = Open VEEI = VEE
HYS [dB]
4.0 3.0 2.0 1.0 0 3.0 fin = 100Mbps Ta = 27°C Up, Down = Open VEEI = VEE 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
Fig. 22
Alarm level vs. Data rate
16 14 12 SW = H SW = L 10 12 SW = H SW = L
Fig. 23
Hysteresis width vs. Data rate
Alarm level [mV]
8 10 8 6 4 2 0 200 400 600 800 fin [Mbps] 1000 1200 1400 VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE 2 VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE 0 200 400 600 800 fin [Mbps] 1000 1200 1400
HYS [dB]
6
4
0
Fig. 24
Fig. 25
– 18 –
CXB1573R
4. DC voltage
SD-ECL "H" level vs. Supply voltage
–860 SD-ECL SDB-ECL –900 Ta = 27°C –900 –860 SD-ECL SDB-ECL VCC – VEE = 3.3V
SD-ECL "H" level vs. Temperature
"H" level [mV]
–980
"H" level [mV]
3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
–940
–940
–980
–1020
–1020
–1060
–1060
–1100
–1100 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 26
SD-ECL "L" level vs. Supply voltage
–1640 –1680 SD-ECL SDB-ECL Ta = 27°C –1680 –1640 SD-ECL SDB-ECL
Fig. 27
SD-ECL "L" level vs. Temperature
VCC – VEE = 3.3V
–1720
–1720
"L" level [mV]
–1760
"L" level [mV]
3.0 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6
–1760
–1800
–1800
–1840
–1840
–1880
–1880 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 28
SD-TTL "H" level vs. Supply voltage
3.4 Ta = 27°C 3.2 3.2 3.4
Fig. 29
SD-TTL "H" level vs. Temperature
VCC – VEE = 3.3V
3.0
3.0
"H" level [V]
2.8
"H" level [V]
3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6
2.8
2.6
2.6
2.4
2.4
2.2 3.0
2.2 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 30
Fig. 31
– 19 –
CXB1573R
SD-TTL "L" level vs. Supply voltage
400 Ta = 27°C 400
SD-TTL "L" level vs. Temperature
VCC – VEE = 3.3V
350
350
"L" level [mV]
300
"L" level [mV]
3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
300
250
250
200
200 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 32
Q "H" level vs. Supply voltage
–860 Q-H QB-H –900 Ta = 27°C –900 –860 Q-H QB-H
Fig. 33
Q "H" level vs. Temperature
VCC – VEE = 3.3V
"H" level [mV]
–980
"H" level [mV]
3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
–940
–940
–980
–1020
–1020
–1060
–1060
–1100
–1100 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 34
Q "L" level vs. Supply voltage
–1620 Q-L QB-L –1660 Ta = 27°C –1660 –1620 Q-L QB-L
Fig. 35
Q "L" level vs. Temperature
VCC – VEE = 3.3V
–1700
–1700
"L" level [mV]
–1740
"L" level [mV]
3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6
–1740
–1780
–1780
–1820
–1820
–1860
–1860 –40 –20 0 20 40 Ta [°C] 60 80 100
Fig. 36
Fig. 37
– 20 –
CXB1573R
Package Outline
Unit: mm
32PIN LQFP (PLASTIC)
7.0 1.7MAX 5.0 B 24 17 B A 25 16 A S 0.08 S
32
9
1 X4 0.2 S AB 0.5
8 X4 0.2 0.08 M S S AB AB
0.25 0.1 ± 0.05 0.2 ± 0.03 (0.2)
0° to 8°
(0.5)
DETAIL A
DETAIL B
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE LQFP-32P-L01 LQFP032-P-0505 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN PALLADIUM PLATING COPPER ALLOY 0.1g
NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 21 –
(0.125)
0.125 ± 0.02
0.6 ± 0.15
(0.5)