0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXB1577Q

CXB1577Q

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXB1577Q - Post-Amplifier for Optical Fiber Communication Receiver - Sony Corporation

  • 数据手册
  • 价格&库存
CXB1577Q 数据手册
CXB1577Q Post-Amplifier for Optical Fiber Communication Receiver Description The CXB1577Q achieves the 2R optical-fiber communication receiver functions (Reshaping and Regenerating) on a single chip. This IC is equipped with the signal detection function, which is used to enable TTL/ECL outputs. Also, the output disable function performs the output shutdown. 3.3V/5.0V can be used for the supply voltage. Features • Output disable function (TTL input) • Signal detection function (TTL/ECL output) • Supply voltage supports both 3.3V/5.0V Applications • SONET/SDH: • Fibre Channel: : • Gigabit-Ethernet: 40 pin QFP (Plastic) 622.08Mbps 531.25Mbps 1.062Gbps 1.25Gbps Absolute maximum Ratings • Supply voltage • Storage temperature • Input voltage difference VD – VD • SW input voltage • ECL output current • TTL output current (High level) • TTL output current (Low level) — VCC – VEE Tstg Vdif Vi IOQ/SD-ECL IOH SD-TTL IOL SD-TTL –0.3 to +7 –65 to +150 0 to +2 VEE to VCC –30 to 0 –20 to 0 0 to 20 V °C V V mA mA mA Recommended Operating Conditions • Supply voltage • Termination voltage (for data) • Termination voltage (for alarm 1,alarm 2) • Termination resistance (for data) • Termination resistance (for alarm 1) • Termination resistance (for alarm 2) • Operating temperature Structure Bipolar silicon monolithic IC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. — VCC – VEE VCC – VTD VTA RTD RTA1 RTA2 Ta 3.3 ± 0.2/5 ± 0.25 1.8 to 2.2 VEE 46 to 56 240 to 300 460 to 560 –40 to +85 V V V Ω Ω Ω °C –1– E96Z24-PS CXB1577Q Block Diagram and Pin Configuration CAP3 CAP2 VEE4 VEE2 N.C. VC3 VEEI DN 30 29 28 27 26 25 24 23 UP 22 21 VCC4 31 N.C. 20 VCC2 VC1 32 ∆V 19 VEE1 SD-TTL 33 peak hold SDB-TTL 34 peak hold 18 D 17 DB SD-ECL 35 16 CAP1 SDB-ECL 36 15 CAP1B Q 37 14 N.C. QB 38 13 VC0 VCC3 39 12 VCC1 N.C. 40 11 TM 1 2 3 4 5 6 7 8 9 10 VEE3 VCC2 ODIS –2– VEE2 VEE1 N.C. VC2 N.C. N.C. SW CXB1577Q Pin Description Pin No. 1 Typical pin voltage DC VEE3 –3.3V / –5V Symbol Equivalent circuit Description Negative power supply for ECL output buffer. VCC2 AC 0V (Open) 10k 2 300 10k VREF 2 ODIS or –3.3V / –5V Controls the output shutdown function. High voltage when open; the Q output is fixed to Low. Low voltage when connected to VEE; the D input results in the Q output with ECL level. TTL level is also available. VEE2 VCC2 0V (Open) 60k 3 40k 3 SW or –3.3V / –5V Switches the identification maximum voltage amplitude. High voltage when open; the identification maximum voltage amplitude becomes 40mVp-p. Low voltage when connected to VEE; the amplitude becomes 20mVp-p. VEE2 4 VCC2 0V Positive power supply for digital block. VCC2 6k 0V 5 VC2 /–1.7V 5 2k (Open) VEE2 Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE. 6 7 8 9 10 VEE2 VEE1 –3.3V / –5V –3.3V / –5V N.C. No connected. Negative power supply for digital block. Negative power supply for analog block. 10 11 11 TM –1.8V / –3.5V Chip temperature monitor. VEE1 –3– CXB1577Q Pin No. 12 Symbol VCC1 Typical pin voltage DC 0V AC Equivalent circuit Description Positive power supply for analog block. VCC3 6k 13 VC0 0V /–1.7V (Open) 13 2k Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE. VEE3 14 15 16 N.C. CAP1B VCC1 No connected. CAP1 –0.9V to –1.3V –1.7V –0.9V to –1.3V –1.7V –3.3V /–5V 0V 18 17 1k 1k 7.5k 7.5k 200 16 100p 15 200 17 DB Pins 15 and 16 connect a capacitor which determines the cut-off frequency for DC feedback block. Pins 17 and 18 are input pins for limiting amplifier block. Input the signal with AC coupled. 18 D VEE1 19 20 21 22 VEE1 VCC2 N.C. UP Negative power supply for analog block. Positive power supply for digital block. No connected. Connects a resistor for alarm level setting. Default voltage can be generated without an external resistor by shorting the VEEI pin to VEE. Generates the default voltage between UP and DOWN. The voltage (8.0mV for input conversion) can be generated between UP and DOWN (Pins 22 and 23) as alarm setting level by connecting this pin to VEE. Negative power supply for digital block. VCC2 986 140.9 140.9 22 100 23 100 VCS SW SW VEE2 24 23 DN 24 VEEI –3.3V /–5V 25 VEE2 –3.3V /–5V –4– CXB1577Q Pin No. Symbol Typical pin voltage DC AC Equivalent circuit Description 26 80 10p VCC2 26 CAP2 –1.8V 5µA 200 VEE2 27 80 10p VCC2 Connects a peak hold circuit capacitor for alarm block. 470pF should be connected to Vcc each. CAP2 pin connects a peak hold capacitor for alarm level setting block. CAP3 pin connects a peak hold capacitor for limiting amplifier signal. 27 CAP3 –1.8V 5µA 200 VEE2 VCC3 6k 0V 28 VC3 /–1.7V (Open) 28 2k Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE. VEE3 29 30 31 VEE4 N.C. VCC4 –3.3V /–5V Negative power supply for TTL output buffer. No connected. 0V Positive power supply for TTL output buffer. VCC3 6k 0V 32 VC1 –1.7V 32 2k (Open) VEE3 Switches 3.3V/5V. Short this pin to Vcc for 3.3V between Vcc and VEE. Leave this pin open for 5V between Vcc and VEE. –5– CXB1577Q Pin No. Symbol Typical pin voltage DC AC Equivalent circuit Description VCC4 33 SD-TTL VEE or VEE + 3V 40k 33 Alarm signal TTL level output. VEE4 VCC4 34 SDB-TTL VEE or VEE + 3V 40k 34 Alarm signal TTL level output. VEE4 35 SD-ECL –0.9V or –1.7V VCC3 35 36 Alarm signal ECL level output. Terminate this pin in 510Ω to VEE at VEE = 5V; in 270Ω to VEE at VEE = 3.3V. 36 SDB-ECL –0.9V or –1.7V VEE3 –6– CXB1577Q Pin No. Symbol Typical pin voltage DC AC Equivalent circuit Description 37 Q –0.9V or –1.7V VCC3 37 38 Data signal output. Terminates this pin in 50Ω to VTT = Vcc–2V. 38 QB –0.9V or –1.7V VEE3 39 40 VCC3 N.C. 0V Positive power supply for ECL output buffer. No connected. –7– CXB1577Q Electrical Characteristics DC Characteristics Item Supply current Q/QB High output voltage Q/QB Low output voltage VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open, or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND Symbol IEE VOH VOL 50Ω to VTT Ta = 0 to +85°C When Vcc – VEE = 5.0V, 510Ω to VEE; when Vcc – VEE = 3.3V, 270Ω to VEE Ta = 0 to +85°C Conditions Min. –74 –1100 –1860 –1100 Typ. –51 Max. –34 –860 –1620 –860 mV Unit mA SD-ECL/SDB-ECL High output voltage VOH-E SD-ECL/SDB-ECL Low output voltage VOL-E –1890 –1650 IOH = –0.4mA, SD-TTL/SDB-TTL High output voltage 1 VOH-T1 VCC – VEE = 3.3V, Ta = 0 to +85°C IOH = –0.4mA, SD-TTL/SDB-TTL High output voltage 2 VOH-T2 VCC – VEE = 5V, Ta = 0 to +85°C SD-TTL/SDB-TTL Low output voltage SW High input voltage SW Low input voltage SW High input current SW Low input current ODIS High input voltage ODIS Low input voltage ODIS High input current ODIS Low input current D/DB input resistance VOL-T VIHSW VILSW IIHSW IILSW VIHOD VILOD IIHOD IILOD Rin IOL = 2mA Ta = 0 to +85°C VEE + 2.2 VEE + 2.4 V VEE + 0.5 VCC VEE + 0.5 10 –100 µA at SW pin Open: High VCC – 0.5 VEE at ODIS pin Open: High VEE + 2.0 VEE VCC + 0.5 VEE + 0.8 20 V –400 765 1020 1275 µA Ω –8– CXB1577Q AC Characteristics VCC = GND, VEE = –5V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = open, or VCC = GND, VEE = –3.3V ± 5%, Ta = –40 to +85°C, VC0 to VC3 = GND Symbol Vmax Conditions single-ended input Min. 1600 52 SW pad: Low, single-ended input 20 mVp-p 40 3 3 6 6 7 dB 7 Typ. Max. Unit mVp-p dB Item Maximum input voltage amplitude Amplifier gain (excluding the output buffer) GL Identification maximum voltage amplitude of alarm level VmaxA1 SW pad: Open High, VmaxA2 single-ended input ∆P1 SW pin: Low, at default alarm level SW pin: Open High, at default alarm level UP/DOWN pin: open, VEEI = VEE, Differential voltage input 20% to 80% 50Ω to VTT VEE + 0.8V to VEE + 2.0V CL = 10pF 20% to 80% When Vcc – VEE = 5.0V, 510Ω to VEE, when Vcc – VEE = 3.3V, 270Ω to VEE SD/SDB hysteresis width ∆P2 Alarm setting level for default Q/QB rise time Q/QB fall time SD-TTL/SDB-TTL rise time SD-TTL/SDB-TTL fall time SD-ECL/SDB-ECL rise time Vdef TrQ TfQ TrSDT TfSDT TrSDE TfSDE TPD Tas Tdas Tasd Tdasd 7.0 8.4 230 230 9.7 350 350 10 10 1.6 1.6 mV ps ns SD-ECL/SDB-ECL fall time Propagation delay time SD response assert time SD response deassert time SD response assert time for alarm level default SD response deassert time for alarm level default 0.4 ∗1 ∗2 ∗3 ∗4 0 2.3 0 2.3 1.9 100 100 100 100 µs ∗1 VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW pin: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI to VEE. ∗2 VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW pin: High, peak hold capacitance (CAP2, CAP3 pins) of 470pF, connect VEEI to VEE. ∗3 Vin = 50mVp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE. ∗4 Vin = 1Vp-p (single ended), SW pin: Low, peak hold capacitance of 470pF, connect VEEI to VEE. –9– CXB1577Q DC Electrical Characteristics Measurement Circuit C3 C3 CAP3 CAP2 N.C. VEE4 VEE2 VC3 VEEI DN 30 29 28 27 26 25 24 23 UP 22 21 N.C. VCC4 31 VC1 32 SD-TTL 33 peak hold SDB-TTL 34 SD-ECL 510 270 510 270 51 QB 51 VTT –2V VCC3 39 12 38 13 SDB-ECL 36 Q 37 14 15 35 16 peak hold 18 ∆V 19 20 VCC2 VEE1 C1 VD D C1 DB 17 CAP1 CAP1B C2 N.C. VC0 VCC1 TM N.C. 40 11 1 2 3 4 5 6 7 8 9 10 VCC2 VEE3 ODIS N.C. N.C. N.C. VEE2 VEE1 SW VC2 VODIS VSW VEE –5.0V/–3.3V ∗ When VEE = –5.0V: VC0 to VC3 = open When VEE = –3.3V: VC0 to VC3 = Vcc – 10 – CXB1577Q AC Electrical Characteristics Measurement Circuit 470p 470p REX1 N.C. CAP3 CAP2 VEE4 VC3 VEE2 VEEI DN 30 29 28 27 26 25 24 23 UP 22 21 VCC4 31 VC1 32 SD-TTL 33 Oscilloscope Hi-Z input peak hold SDB-TTL 34 SD-ECL Z0 = 50 SDB-ECL Z0 = 50 Oscilloscope 50Ω input Z0 = 50 QB Z0 = 50 VCC3 39 12 38 13 Q 37 36 15 35 16 peak hold 18 ∆V 19 20 N.C. VCC2 VEE1 0.047µF D DB 17 CAP1 1µF 0.047µF CAP1B 14 N.C. VC0 VCC1 TM N.C. 40 11 1 2 3 4 5 6 7 8 9 10 ODIS VEE2 SW VC2 VCC2 VEE3 N.C. N.C. VCC +2V VEE –3V/ –1.3V ∗ When VEE = –3.0V: VC0 to VC3 = open When VEE = –1.3V: VC0 to VC3 = Vcc – 11 – N.C. VEE1 CXB1577Q Application Circuit VEE 470p 470p REX1 VC3 VEE2 N.C. CAP3 VEE4 CAP2 VEEI DN 30 29 28 27 26 25 24 23 UP 22 21 VCC4 31 N.C. 20 VCC2 51Ω 0.047µF Signal Generator 51Ω VIN VC1 32 SD-TTL 33 TTL Output peak hold SDB-TTL 34 SD-ECL 35 ECL Output SDB-ECL 36 51Ω ECL Output 51Ω VTT –2.0V QB 38 Q 37 peak hold ∆V 19 VEE1 VTT D 18 DB 17 CAP1 16 CAP1B 15 1µF VTT VTT 0.047µF 51Ω 51Ω 14 N.C. 13 VC0 VCC3 39 12 VCC1 N.C. 40 11 TM 1 2 3 4 5 6 7 8 9 10 ODIS SW VEE2 N.C. N.C. VC2 TTL Input ∗ When VEE = –3.3V: VC0 to VC3 = Vcc When VEE = –5.0V: VC0 to VC3 = open VEE Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. VCC2 VEE3 – 12 – VEE1 N.C. CXB1577Q Notes on Operation 1. Limiting amplifier block The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended input is used, provide AC grounding by connecting Pin 17 to a capacitor which has the same capacitance as capacitor C1. R1 (internal): 1kΩ f2: 3.4kHz C1 (external): 0.047µF C2 (external): 1µF R2 (internal): 7.5kΩ f1: 21Hz D C1 18 To IC interior 17 C1 R1 R1 R2 16 C2 15 R2 Fig. 1 Feedback frequency response Amplifier frequency response Gain f1 f2 Frequency Fig. 2 – 13 – CXB1577Q 2. Alarm block In order to operate the alarm block, give the voltage difference between Pins 22 and 23 to set an alarm level and connect the peak hold capacitor C3 shown in Fig. 3. This IC has two setting methods of alarm level; one is to connect Pin 24 to VEE and leave Pins 22 and 23 open to set an alarm level default value (8mV for input conversion). The other is to connect Pin 24 to VEE and set a desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between Pins 22 and 23 or connect REX3 between Pin 23 and Vcc when less alarm level is desired to be set than its default value; connect REX2 between Pin 22 and Vcc when more alarm level is desired to be set than its default value. However, the Pin 22 voltage must be higher than that of Pin 23. This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to 40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input voltage and peak hold output voltage is shown in Fig. 5. In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to maintain a constant gain (design target value: 6dB) as shown in Fig. 4. This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired assert time and deassert time settings for the alarm signal. The electrical characteristics for the SD response assert and deassert times are guaranteed only when the waveforms are input as shown in the timing chart of Fig. 6. REX1: 100Ω (when the alarm level is set to 4mV for input conversion.) REX2: 8kΩ (when the alarm level is set to 10mV for input conversion.) REX3: 4kΩ (when the alarm level is set to 4mV for input conversion.) C3: 470pF The table below shows the alarm logic. Optical signal input state Signal input Signal interruption SD High level Low level SD Low level High level The table below shows the output disable function logic. Optical signal input state ODIS: Open High ODIS: Low Q Fixed Low Data Q Fixed High Data Ra1, Ra2A and Ra2B values are typical values. VCCA Ra1 986 Ra2A 141 Ra2B 141 From limiting amplifier Peak Hold SD-TTL SDB-TTL Peak Hold SD-ECL SDB-ECL VCCA VCS ∆V 3 IC interior 22 23 24 24 22 23 26 27 10p 10p VCCA VEEI UP DN IC exterior REX2 VEE REX1 C3 REX3 VCC VCC C3 VCC VCC Fig. 3 – 14 – CXB1577Q VDAS → Deassert level VAS → Assert level High level SD output Peak hold output voltage Low level SW → Low VDAS Small 3dB 3dB Alarm setting input level Hysteresis Input electrical signal amplitude VAS Large SW → Open High 0 20 40 Input voltage [mVp-p] Fig. 4 Fig. 5 Data input (D) Hysteresis width Alarm setting level Data output (Q) Alarm output (SD) Assert time Deassert time Fig. 6 – 15 – CXB1577Q Example of Representative Characteristics 1. Q/QB output waveform Q VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 622Mbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT QB Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div Fig. 7 Q VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 622Mbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT QB Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div Fig. 8 Q VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 1.25Gbps Vin = 5mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT QB Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div Fig. 9 – 16 – CXB1577Q Q VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C D = 1.25Gbps Vin = 10mVp-p Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT QB Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div Fig. 10 2. Bit error rate Bit error rate vs. Data input level 10 –3 10 –4 622Mbps 1.0Gbps 1.25Gbps VCC = GND VEE = –3.3V VTT = –2V Ta = 27°C Single input pattern: PRBS223-1 Q/QB = 50Ω to VTT 10 –5 Bit error rate 10 –6 10 –7 10 –8 10 –9 10 –10 1.5 2 2.5 3 3.5 Data input level [mVp-p] 4 4.5 3. Alarm level Alarm level vs. REX1 9 8 7 SW = H SW = L Fig. 11 Alarm level temperature 6.0 5.5 5.0 SW = H SW = L Alarm level [mV] Alarm level [mV] fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input 103 UP-DOWN (REX1) [Ω] 104 4.5 4.0 3.5 3.0 2.5 2.0 –40 –20 0 40 20 Ta [°C] 60 80 fin = 100Mbps VCC – VEE = 3.3V Up-Down = 200Ω (REX1) 6 5 4 3 2 102 Fig. 12 – 17 – Fig. 13 CXB1577Q Alarm level supply voltage 6.0 5.5 5.0 SW = H SW = L 16 15 14 Alarm level vs. REX2 fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input Alarm level [mV] Alarm level [mV] fin = 100Mbps Ta = 27°C Up-Down = 200Ω (REX1) 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6 4.5 4.0 3.5 3.0 2.5 2.0 3.0 13 12 11 10 9 8 103 SW = H SW = L 104 VCC-UP (REX2) [Ω] 105 Fig. 14 Alarm level temperature 15.0 14.5 14.0 SW = H SW = L 15.0 14.5 14.0 SW = H SW = L Fig. 15 Alarm level supply voltage Alarm level [mV] 13.5 13.0 12.5 12.0 11.5 11.0 –40 –20 0 40 20 Ta [°C] 60 80 fin = 100Mbps VCC – VEE = 3.3V VCC-UP = 5kΩ (REX2) Alarm level [mV] 13.5 12.0 12.5 12.0 11.5 11.0 3.0 fin = 100Mbps Ta = 27°C VCC-UP = 5kΩ (REX2) 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6 Fig. 16 Alarm level vs. REX3 9 SW = H SW = L 8 6.0 5.5 5.0 SW = H SW = L Fig. 17 Alarm level temperature fin = 100Mbps VCC – VEE = 3.3V VCC-Down = 3kΩ (REX3) Alarm level [mV] Alarm level [mV] fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C Differential input 104 VCC-DOWN (REX3) [Ω] 105 7 4.5 4.0 3.5 3.0 2.5 –40 –20 0 20 Ta [°C] 40 60 80 6 5 4 3 103 Fig. 18 – 18 – Fig. 19 CXB1577Q Alarm level supply voltage 6.0 5.5 5.0 SW = H SW = L fin = 100Mbps Ta = 27°C VCC-Down = 3kΩ (REX3) 8.0 7.0 6.0 5.0 Hysteresis width vs. Alarm level SW = H SW = L Alarm level [mV] 4.5 4.0 3.5 3.0 2.5 2.0 3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6 HYS [dB] 4.0 3.0 2.0 1.0 0.0 2.0 fin = 100Mbps VCC – VEE = 3.3V Ta = 27°C 4.0 6.0 10.0 8.0 Alarm level [mV] 12.0 14.0 Fig. 20 Hysteresis width temperature 8.0 7.0 6.0 5.0 SW = H SW = L 8.0 7.0 6.0 5.0 SW = H SW = L Fig. 21 Hyteresis width supply voltage HYS [dB] HYS [dB] fin = 100Mbps VCC – VEE = 3.3V Up, Down = Open VEEI = VEE –40 –20 0 20 40 Ta [°C] 60 80 4.0 3.0 2.0 1.0 0.0 4.0 3.0 2.0 1.0 0.0 3.0 fin = 100Mbps Ta = 27°C Up, Down = Open VEEI = VEE 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6 Fig. 22 Alarm level vs. Data rate 16 14 12 SW = H SW = L 10 12 SW = H SW = L Fig. 23 Hysteresis width vs. Data rate Alarm level [mV] 8 10 8 6 4 2 0 200 400 600 800 fin [Mbps] 1000 1200 1400 VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE 2 VCC – VEE = 3.3V Ta = 27°C Up, Down = Open VEEI = VEE 0 200 400 600 800 fin [Mbps] 1000 1200 1400 HYS [dB] 6 4 0 Fig. 24 – 19 – Fig. 25 CXB1577Q 4. DC voltage SD-ECL "H" level supply voltage –860 SD-ECL SDB-ECL –900 Ta = 27°C –900 –860 SD-ECL SDB-ECL VCC – VEE = 3.3V SD-ECL "H" level temperature "H" level [mV] –980 "H" level [mV] 3.0 3.3 3.2 3.4 VCC – VEE [V] 3.6 –940 –940 –980 –1020 –1020 –1060 –1060 –1100 3.1 3.5 –1100 –50 0 Ta [°C] 50 100 Fig. 26 SD-ECL "L" level supply voltage SD-ECL SDB-ECL Ta = 27°C –1680 Fig. 27 SD-ECL "L" level temperature SD-ECL SDB-ECL VCC – VEE = 3.3V –1680 –1720 –1720 "L" level [mV] –1760 "L" level [mV] –1760 –1800 –1800 –1840 –1840 –1880 3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6 –1880 –50 0 Ta [°C] 50 100 Fig. 28 SD-TTL "H" level supply voltage 3.4 Ta = 27°C 3.2 3.2 3.4 Fig. 29 SD-TTL "H" level temperature VCC – VEE = 3.3V 3.0 3.0 "H" level [V] 2.8 "H" level [V] 3.1 3.2 3.4 3.3 VCC – VEE [V] 3.5 3.6 2.8 2.6 2.6 2.4 2.4 2.2 3.0 2.2 –50 0 Ta [°C] 50 100 Fig. 30 – 20 – Fig. 31 CXB1577Q SD-TTL "L" level supply voltage 400 Ta = 27°C 400 SD-TTL "L" level temperature VCC – VEE = 3.3V 350 350 "L" level [mV] 300 "L" level [mV] 3.0 3.3 3.2 3.4 VCC – VEE [V] 3.6 300 250 250 200 3.1 3.5 200 –50 0 Ta [°C] 50 100 Fig. 32 Q "H" level supply voltage –860 Q-H QB-H –900 Ta = 27°C –900 –860 Q-H QB-H Fig. 33 Q "H" level temperature VCC – VEE = 3.3V "H" level [mV] –980 "H" level [mV] –940 –940 –980 –1020 –1020 –1060 –1060 –1100 3.0 3.1 3.3 3.2 3.4 VCC – VEE [V] 3.5 3.6 –1100 –50 0 Ta [°C] 50 100 Fig. 34 Q "L" level supply voltage –1620 Q-L QB-L –1660 Ta = 27°C –1660 –1620 Q-L QB-L Fig. 35 Q "L" level temperature VCC – VEE = 3.3V –1700 –1700 "L" level [mV] –1740 "L" level [mV] 3.0 3.3 3.2 3.4 VCC – VEE [V] 3.6 –1740 –1780 –1780 –1820 –1820 –1860 3.1 3.5 –1860 –50 0 Ta [°C] 50 100 Fig. 36 – 21 – Fig. 37 CXB1577Q Package Outline Unit: mm 40PIN QFP (PLASTIC) 9.0 ± 0.4 + 0.4 7.0 – 0.1 30 21 + 0.35 1.5 – 0.15 + 0.1 0.127 – 0.05 0.1 31 20 A 40 1 0.65 + 0.15 0.3 – 0.1 + 0.15 0.1 – 0.1 11 10 ± 0.12 M 0.5 ± 0.2 (8.0) PACKAGE STRUCTURE PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER / PALLADIUM PLATING 42/COPPER ALLOY 0.2g DETAIL A SONY CODE EIAJ CODE JEDEC CODE QFP-40P-L01 QFP040-P-0707 NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 22 –
CXB1577Q 价格&库存

很抱歉,暂时无法提供与“CXB1577Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货