0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXD1856R

CXD1856R

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXD1856R - MPEG1 Decoder - Sony Corporation

  • 数据手册
  • 价格&库存
CXD1856R 数据手册
CXD1856Q/R MPEG1 Decoder Description The CXD1856Q/R is a single-chip MPEG1 decoder with a built-in CD-ROM decoder which allows decoding of MPEG1 system, video and audio layers. A built-in CD-ROM decoder enables direct connection with a CD-DSP. Combining this chip with a control microcomputer and 4-Mbit DRAM, etc. allows configuration of a MPEG1 decoding system for video CD players, etc. Features • Supply voltage: 3.3 ± 0.3V • Input and output voltages: LVTTL compatible • 5V can be applied as the input voltage (excluding some pins) • Allows decoding of MPEG1 system, video and audio layers • Built-in CD-ROM decoder allows direct connection with a CD-DSP • CD-ROM decoded output can be transferred to and stored in an external DRAM • RGB and YCbCr video data output allowed • Built-in video sync generator • Audio data output can support various DAC • Supports various special playback modes • Video CD PAL high resolution still picture can be decoded with a single 4-Mbit DRAM • 8-bit parallel and 4-line serial host interfaces • CD-DA through operation allowed Block Diagram 120 pin QFP (Plastic) 120 pin LQFP (Plastic) Structure Silicon gate CMOS IC Applications Video CD players, MPEG1 decoder boards, etc. CD-DSP I/F CD-ROM Decoder MPEG System Decoder MPEG Audio Decoder Audio I/F To each circuit block MPEG Video Decoder Host interface DRAM Controler Video Postprocessor & Sync Generator Video I/F Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– Video Sync Signal DRAM I/F Host I/F E97815-PS CXD1856Q/R 1. Pin Configuration CBLNK/FSC FID/FHREF XSGRST BCKO DOIN HA0 VDD CSYNC XHIRQ XTL2O XRST XTL2I LRCO BCKI DATO HRW DATI VSS DOUT LRCI VSYNC XHDT VDD CLK0O C2PO HSYNC XHCS HA1 FSXI 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 VSS XTL0O XTL0I VDD HA2 HA3 HD0 HD1 HD2 1 2 3 4 5 6 7 8 9 90 VDD 89 DCLK 88 B/Cb7 87 B/Cb6 86 B/Cb5 85 B/Cb4 84 B/Cb3 83 B/Cb2 82 B/Cb1 81 B/Cb0 80 G/Y7 79 G/Y6 78 G/Y5 77 G/Y4 76 G/Y3 HD3 10 HD4 11 HD5 12 HD6 13 VDD 14 VSS 15 HD7 16 MA3 17 MA4 18 MA2 19 MA5 20 MA1 21 VSS 22 MA6 23 MA0 24 CKEY 25 DTVLD 26 VSS 27 VSS 28 VSS 29 VSS 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 VSS 75 VSS 74 VDD 73 G/Y2 72 G/Y1 71 G/Y0 70 R/Cr7 69 R/Cr6 68 R/Cr5 67 R/Cr4 66 R/Cr3 65 R/Cr2 64 R/Cr1 63 R/Cr0 62 XVOE 61 VSS XMWE OSDEN XCAS0 OSDG OSDR MD11 XRAS MD14 MD9 MD6 MD4 MD1 OSDB MD13 MD8 MA8 VSS MD7 MD2 MA7 VDD MD10 MD12 MD15 VSS MD0 XCAS2/MA9 MD5 –2– MD3 VDD CXD1856Q/R 2. Pin Description Pin No. Symbol VDD VSS 2 3 XTL0O XTL0I O I I I/O +3.3V power supply Connect to ground. Video decoder master clock. Input the clock to XTL0I or connect an oscillator between XTL0I and XTL0O. The recommended frequencies are 27MHz, 28.6363MHz (NTSC 8fsc) and 35.4686MHz (PAL 8fsc). When the host interface operates in parallel mode, these pins are the register address inputs. In serial mode, HA0 is the serial data input, and HA1 to HA3 should be fixed to low level. When the host interface operates in parallel mode, these pins are the register data I/Os. In serial mode, HD0 is the serial data output, and HD1 to HD7 should be fixed to low level. DRAM address signal outputs. Connect to the DRAM address pins so that the numbers match. Row address strobe signal output. Connect to the DRAM RAS signal pin. DRAM write enable signal output. Connect to the DRAM WE signal pin. Used when connecting 8 Mbits of DRAM. Connect to the upper word (256K to 512K-1) DRAM CAS signal pin (for both the upper and lower bytes) when the DRAM configuration is 256 Kwords × 16 bits × 2, and to the MA9 pin (for two DRAMs) when the DRAM configuration is 512 Kwords × 8 bits × 2. DRAM column address strobe signal output. Connect to the lower word (0 to 256K-1) DRAM CAS signal pin (for both the upper and lower bytes) when the DRAM configuration is 256Kwords × 16 bits × 2, and to all DRAM CAS signal pins in all other cases. DRAM data signal I/Os. Connect to the DRAM data pins so that the numbers match. OSD enable signal. The enabled polarity is changed by the register settings. OSD data inputs. When the signal input to the OSDEN pin is enabled, the color registered in the color table which is specified by these three inputs (3 bits) is output as the image data. Video output enable signal. Image data output and DCLK output are enabled when this pin is low, and disabled when this pin is high (high impedance). Note that the output control register must be set to output enable for output to be enabled. Description 5, 6, 119, HA0 to HA3 120 7 to 13, 16 17 to 21, 23, 24, 32, 33 34 35 HD0 to HD7 I/O MA0 to MA8 XRAS XMWE O O O 36 XCAS2/ MA9 O 37 XCAS0 O 38 to 43, 46 to 55 56 MD0 to MD15 OSDEN OSDB, OSDG, OSDR I/O I 57 to 59 I 62 XVOE I 63 to 70 71 to 73, 76 to 88 81 to 88 R/Cr0 to R/Cr7 G/Y0 to G/Y7 B/Cb0 to B/Cb7 DCLK I/O Dot clock (DCLK) signal. The DCLK frequency is normally 13.5MHz. DCLK can be input from this pin, or frequency divided from the clock input and output from this pin. O Image data outputs. The output data format (RGB, YCbCr, etc.) and the correspondence between the pins and output data can be changed by setting the registers. 89 –3– CXD1856Q/R Pin No. 92 Symbol HSYNC I/O I/O Description Horizontal sync signal. When using the built-in sync generator, the dot clock (DCLK) is frequency divided and output. When not using the sync generator, this pin is an input. Vertical sync signal. When using the built-in sync generator, the dot clock (DCLK) is frequency divided and output. When not using the built-in sync generator, this pin is an input. Field identification signal (FID) and horizontal sync phase reference signal (FHREF). The signal to be used is set in the register. When set to FID, this pin is an output if using the built-in sync generator, and an input if not using the built-in sync generator. High corresponds to odd fields. When set to FHREF, this pin outputs the signal obtained by frequency dividing XTL0. When XTL0 is 8fsc, this signal is equivalent to the HSYNC cycle, and can be used for phase comparison with the HSYNC signal. Composite blanking signal (CBLNK) and fsc signal. The signal to be used is set in the register. When set to CBLNK, this pin is an output if using the built-in sync generator, and an input if not using the built-in sync generator. When set to fsc, this pin outputs the signal obtained by frequency dividing XTL0. The frequency division ratio can be selected from 1/8 or 1/16. Composite sync signal obtained by frequency dividing DCLK. This pin cannot be input. Sync generator reset signal input. The built-in sync generator is initialized by setting this pin low. Output for clock obtained by frequency dividing XTL0. The frequency division ratio can be selected from 1, 1/2, 1/4 or 1/8. Audio digital output. Audio serial data output to DAC. L/R clock output to DAC. Bit clock output to DAC. Audio interface clock input. Input 256fs (11.2896MHz), 384fs (16.9344MHz), 512fs (22.5792MHz), or 768fs (33.8688MHz), etc. Master clock for CD-ROM and audio decoders. Input the clock to XTL2I or connect an oscillator between XTL2I and XTL2O. The recommended frequency is 45MHz. Note that this clock is for the internal circuits, and the input and output are not synchronized. C2 pointer input from CD-DSP. Indicates that the DATI input contains an error. LR clock input from CD-DSP. Indicates the L or R channel of DATI. Serial data input from CD-DSP. Bit clock input from CD-DSP. This clock strobes the DATI input. Digital data input from CD-DSP. Chip select signal input during register access. Wait signal output during register access. Host interface operates in parallel mode and the wait signal is output by the register switching during DRAM access. This pin functions as an open drain, and should therefore be pulled up. It should be pulled up when the host interface operates in serial mode as well. 93 VSYNC I/O 94 FID/FHREF I/O 95 CBLNK/ FSC I/O 96 97 98 99 100 101 102 103 106 107 109 110 111 112 113 114 CSYNC XSGRST CLK0O DOUT DATO LRCO BCKO FSXI XTL2O XTL2I C2PO LRCI DATI BCKI DOIN XHCS O I O O O O O I O I I I I I I I 115 XHDT I/O –4– CXD1856Q/R Pin No. 116 117 118 Symbol HRW XHIRQ XRST I/O I O I Description R/W signal input when the host interface operates in parallel mode. Serial clock input in serial mode. Interrupt request signal output. This pin functions as an open drain, and should therefore be pulled up. Hardware reset signal input. All operation is initialized by setting this pin low. Chroma key signal. While the color specified as the key is output, this pin becomes low. When not used, leave this pin open. Video data judgement signal. While the image data within the frame memory is output, this pin becomes high; during the border color output or blanking, low. When not used, leave this pin open. 25 CKEY O 26 DTVLD O –5– CXD1856Q/R 3. Electrical Characteristics 3-1. Absolute Maximum Ratings Item Supply voltage Input pin voltage Input pin voltage Output pin voltage Output pin voltage I/O pin voltage Symbol VDD VI VI VO VO VI/O Rating –0.5 to +4.6 –0.5 to VDD + 0.5 –0.5 to +5.5 –0.5 to VDD + 0.5 –0.5 to +5.5 –0.5 to +5.5 1.0 –20 to +75 –55 to +150 (Ta = 25°C, VSS = 0V) Unit V V V V V V W °C °C ∗1 ∗2 ∗3 ∗4 Remarks Allowable power dissipation PD Operating temperature Storage temperature Topr Tstg ∗1 XTL0I and XTL2I pins ∗2 Input pins other than those in ∗1 above. ∗3 XTL0O and XTL2O pins ∗4 Output pins other than those in ∗3 above. 3-2. Recommended Operating Conditions Item Supply voltage High level input voltage High level input voltage Low level input voltage Input rise time Input fall time Operating temperature Symbol VDD VIH VIH VIL Tr Tf Topr Min. 3.0 2.2 2.2 0 0 0 –20 Typ. 3.3 — — — — — — (Ta = –20 to +75°C, VSS = 0V) Max. 3.6 VDD 5.0 0.8 50 50 75 Unit V V V V ns ns °C ∗1 ∗2 Remarks ∗1 XTL0I and XTL2I pins ∗2 I/O pins and input pins other than those in ∗1 above. –6– CXD1856Q/R 3-3. DC Characteristics Item Average operating supply current Input leak current High level output voltage High level output voltage Low level output voltage Low level output voltage Output leak current Feedback resistance Logic threshold value High level output voltage Low level output voltage Symbol Measurement conditions IDD II VOH VOH VOL VOL IOZ RFB LVth VOH VOL IOH = –12mA IOL = 12mA VI = 0 to 5.0V IOH = –2mA IOH = –100µA IOL = 4mA IOL = 100µA VO = 0 to 5.0V, output disabled status VI = 0V or VI = VDD (Ta = –20 to +75°C, VSS = 0V, VDD = 3.3 ± 0.3V) Min. — –40 VDD – 0.8 — — — –40 250k — VDD/2 — Typ. — — — VDD – 0.4 — 0.04 — 1M VDD/2 — — Max. 100 40 — — 0.4 — 40 2.5M — — VDD/2 Unit Remarks mA µA V V V V µA Ω V V V ∗1 ∗2 ∗2 ∗2 ∗2 ∗2 ∗3 ∗4 ∗5 ∗5 ∗1 Input pins other than XTL0I and XTL2I ∗2 I/O pins and output pins other than XTL0O and XTL2O ∗3 Oscillators (between XTL0I and XTL0O, and between XTL2I and XTL2O) ∗4 XTL0I and XTL2I pins ∗5 XTL0O and XTL2O pins 3-4. Clock Signal AC Characteristics tCX0 tWLX0 XTL0I tWHX0 tCX2 tWLX2 XTL2I tWHX2 Item XTL0I frequency XTL0I cycle XTL0I high level interval XTL0I low level interval XTL2I frequency XTL2I cycle XTL2I high level interval XTL2I low level interval Symbol fX0 Min. — 33.3 10 10 44.7 — 8 8 Typ. — — — — 45.1584 22.2 — — Max. 60 — — — 45.4 — — — Unit Remarks MHz ns ns ns MHz ns ns ns ∗2 ∗2 ∗1 ∗1 tCX0 tWHX0 tWLX0 fX2 tCX2 tWHX2 tWLX2 ∗1 When using in combination with the XTL0O pin as an oscillator, the maximum oscillation frequency is 50MHz. ∗2 When using in combination with the XTL2O pin as an oscillator, the maximum oscillation frequency is 50MHz. –7– CXD1856Q/R 3-5. Host Interface AC Characteristics 3-5-1. Serial Mode (write, read) XHCS tSCS HRW (SCK) tSSI HA0 (SI) tLZSQ HD0 (SQ) tDSQ tOHSQ tHZSQ tWLSK tWHSK tHSI tCSK tHCS Item Serial clock frequency Serial clock cycle Serial clock high level interval Serial clock low level interval Chip select setup time Chip select hold time Serial input setup time Serial input hold time Serial output enable time Serial output determination time Serial output hold time Serial output disable time Symbol fSK Min. — 500 100 100 0 500 30 30 0 — 5 0 Max. 2 — — — — — — — 15 40 — 15 Unit MHz ns ns ns ns ns ns ns ns ns ns ns Remarks tCSK tWHSK tWLSK tSCS tHCS tSSI tHSI tLZSQ tDSQ tOHSQ tHZSQ –8– CXD1856Q/R 3-5-2. Parallel Mode, Register Write HA0 to 3 tSA tWCSH XHCS tSW HRW tSD1 HD0 to 7 input tHD1 tWWL1 tHA Item Address setup time Address hold time Chip disable time Write pulse width Write command setup time HD input setup time HD input hold time Symbol Min. 20 20 20 70 0 25 25 Max. — — — — — — — Unit ns ns ns ns ns ns ns Remarks tSA tHA tWCSH tWWL1 tSW tSD1 tHD1 ∗2 ∗1 ∗1 ∗1 Specified for the edge of XHCS or HRW, whichever is earlier. The data bus does not enter the read mode even when HRW rises ealier than XHCS. ∗2 Interval during which both XHCS and HRW are low. Pay attention to the timing shown below for the CXD1856Q/R parallel mode write. XHCS HRW 1. XHCS is enable after determining HRW. 2. It is recommended that XHCS rises firstly and then HRW rises, through the rising order is not so much considered. –9– CXD1856Q/R 3-5-3. Parallel Mode, Register Read HA0 to 8 tWCSH XHCS (CS) tSR XHRW (WR) tLZQ1 HD0 to 7 valid output tDQ2 tDQ1 tHR tHZQ1 tWRD1 Item Chip disable time Read pulse width Read setup time Read hold time HD output enable time (for CE) HD output determination time (for CE) HD output determination time (for HA) HD output disable time (for CE) Symbol Min. 20 70 10 10 0 — 0 — Max. — — — — — 60 60 15 Unit ns ns ns ns ns ns ns ns Remarks tWCSH tWRD1 tSR tHR tLZQ1 tDQ1 tDQ2 tHZQ1 ∗1 ∗2 ∗2 ∗1 HD output is enabled when both conditions are met. ∗2 HD output is determined when all conditions are met. – 10 – CXD1856Q/R 3-6. Interface for CD Signal Processing LSI BCKFEDG = 0 tBCKI BCKI tBCKI DATI tSBC1 LRCI, C2PO tHBC2 tSBC2 tHBC1 BCKFEDG = 1 tBCKI BCKI tBCKI DATI tSBC1 LRCI, C2PO tHBC2 tSBC2 tHBC1 Item BCKI frequency BCKI pulse width DATI setting time (for BCKI) DATI hold time (for BCKI) LRCI, C2PO setting time (for BCKI) LRCI, C2PO hold time (for BCKI) Symbol fBCKI Min. Max. 5.7 Unit MHz ns ns ns ns ns Remarks tBCKI tSBC1 tHBC1 tSBC2 tHBC2 87 20 20 20 20 — — — — — – 11 – CXD1856Q/R 3-7. Image Data Output, Video Sync Signal Output AC Characteristics tCDCK tWLDCK DCLK tWHDCK tHPD R/Cr0 to 7 G/Y0 to 7 B/Cb0 to 7 tDHSY HSYNC tDVSY VSYNC tDCSY CSYNC tDCBL CBLNK tDFID FID tDCKY CKEY tDDVLD DTVLD tDFID tDCBL tDCSY tDVSY tDPD tDHSY Item DCLK frequency DCLK cycle DCLK high level interval DCLK low level interval Image data output determination time Image data output hold time HSYNC output delay time VSYNC output delay time CSYNC output delay time CBLNK output delay time FID output delay time CKEY output delay time DTVLD output delay time Symbol fDCK Min. — — — — — 0 — — — — — — — Typ. 13.5 74.1 37 37 — — — — — — — — — Max. — — — — 15 — 30 30 30 30 30 47 48 Unit Remarks MHz ns ns ns ns ns ns ns ns ns ns ns ns ∗1 ∗1 ∗1 ∗1 ∗1, ∗2 ∗1, ∗2 ∗1 ∗1 ∗1 ∗1 ∗1 tCDCK tWHDCK tWLDCK tDPD tHPD tDHSY tDVSY tDCSY tDCBL tDFID tDCKY tDDVLD ∗1 When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK. ∗2 The chart shows the case where the pixel data output is synchronized to the fall of DCLK, but is also the same when synchronized to the rise of DCLK. – 12 – CXD1856Q/R 3-8. Video Sync Signal Input AC Characteristics DCLK tHHSY HSYNC tHVSY VSYNC tHCBL CBLNK tHFID FID tSFID tHFID tSFID tSCBL tHCBL tSCBL tSVSY tHVSY tSVSY tSHSY tHHSY tSHSY Item HSYNC hold time HSYNC setup time VSYNC hold time VSYNC setup time CBLNK hold time CBLNK setup time FID hold time FID setup time Symbol Min. 5 5 5 5 5 5 5 5 Max. — — — — — — — — Unit ns ns ns ns ns ns ns ns Remarks ∗1 ∗1 ∗1 ∗1 ∗1 ∗1 ∗1 ∗1 tHHSY tSHSY tHVSY tSVSY tHCBL tSCBL tHFID tSFID ∗1 When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK. – 13 – CXD1856Q/R 3-9. fsc System Signal Output, DCLK Output AC Characteristics tCX0 XTL0O tDFSC FSC tWLFSC tCFSC tWHFSC tDFHR FHREF tCDCK tWHDCK tWLDCK tDDCK DCLK Item FSC frequency FSC cycle FSC high level interval FSC low level interval FSC output delay time FHREF output delay time DCLK frequency DCLK cycle DCLK high level interval DCLK low level interval DCLK output delay time Symbol fFSC Min. — — — — — — — — — — — Typ. 1/(i × tCX0) i × tCX0 i × tCX0/2 i × tCX0/2 — — 1/(j × tCX0) j × tCX0 j × tCX0/2 j × tCX0/2 — Max. — — — — 15 15 — — — — 15 Unit Remarks ∗1 ∗1 ∗1 ∗1 ns ns ∗2 ∗2 ∗2 ∗2 ns tCFSC tWHFSC tWLFSC tDFSC tDFHR fDCK tCDCK tWHDCK tWLDCK tDDCK ∗1 The frequency division ratio i can be selected from 8 or 16. ∗2 The frequency division ratio j can be selected from 2 or 4. – 14 – CXD1856Q/R 3-10. Audio Interface tBCKO BCKO tBCKO DATO tDDAT LRCO tDLRC Item BCKO frequency BCKO pulse width DATO delay time (for BCKO) LRCO delay time (for BCKO) Symbol fBCKO Min. Max. 3.1 Unit MHz ns ns ns Remarks tBCKO tDDAT tDLRC 160 — — — 40 40 – 15 – CXD1856Q/R 3-11. DRAM Interface AC Characteristics 3-11-1. Write Cycle XRAS tRP tPC tRCD tCAS tCP tRSH XCAS0 to 3 tWCS XMWE tASR MA0 to 9 tDS MD0 to 15 tDH tRAH tASC tCAH tWCH Item RAS precharge time RAS to CAS delay time RAS hold time Fast page mode cycle time CAS pulse width CAS precharge time Write command setup time Write command hold time Row address setup time Row address hold time Column address setup time Column address hold time Write data setup time Write data hold time Symbol Min. Typ. 2 × tv 2 × tv Max. — — — — — — — — — — — — — — Unit Remarks ns ns ns ns ns ns ns ns ns ns ns ns ns ns ∗2 ∗2 ∗2 ∗2 ∗2 ∗2 ∗2 ∗2 ∗2 ∗2 tRP tRCD tRSH tPC tCAS tCP tWCS tWCH tASR tRAH tASC tCAH tDS tDH tv 2 × tv tv tv tv 2 × tv tv tv tv tv tv tv ∗1 tv is the basic clock cycle for the DRAM interface circuit. ∗2 Same as the DRAM interface read cycle. – 16 – CXD1856Q/R 3-11-2. Read Cycle XRAS tRP tPC tRCD tCAS tCP tRSH XCAS0 to 3 tRCS XMWE tASR MA0 to 9 tMDS MD0 to 15 tMDH tRAH tASC tCAH tRCH Item Read command setup time Read command hold time Read data setup time Read data hold time Symbol Min. Typ. 4 × tv Max. — — — — Unit Remarks ns ns ns ns tRCS tRCH tMDS tMDH tv 2 8 ∗1 tv is the basic clock cycle for the DRAM interface circuit. ∗2 See the DRAM interface write cycle for items which appear in the timing chart but not in the table. – 17 – CXD1856Q/R 4. Description of Functions 4-1. Host Interface Function • The CXD1856Q/R operation is controlled by writing and reading registers. Write and read can also be performed to an external DRAM via the registers. See the separately issued Register Manual for the relationship between the registers and operation. • The host interface operates while XHCS is low and does not operate while XHCS is high. • The host interface operating mode can be set to 4-line serial or 8-bit parallel. The operating mode is selected automatically at the end of the initial access after the hardware has been reset. (See the figure below.) Registers are not accessed correctly until this selection has been determined, or in other words until the end of the initial access after the hardware has been reset. Also, the HA3 to HA0 inputs should all be fixed low during the operating mode selection access. XHCS HRW XHCS HRW Access judged as parallel mode XHCS HRW 8 rises Access judged as serial mode • The serial mode signal format is as follows. XHCS HRW (SCK) HA0 (SI) bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 bit9 byte1 byte0 HD0 (SO) bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 bit9 1) In serial mode, input data is fetched in sync with the rise of HRW (SCK). Output data is synchronized with the fall of HRW. 2) The initial byte (byte0) of the input after XHCS changes to low is a command. This command determines the subsequent byte processing. See the following page for a description of commands and processing. 3) Input data is processed in one byte units. Therefore, when the final data consists of a number of bits which is less than one byte, this deficient data is not processed. Be sure to input data with a number of bits which is an integer multiple of 8. Also, the 0x20, 0x60, 0xA0 and 0xE0 commands process data in two byte units, so data which is an even multiple of 8 should be input when using these commands. – 18 – CXD1856Q/R Command write 2nd input byte 3rd input byte bit7 ··· bit0 read 00000000 write 00010000 read 00100000 write 00110000 read 01100000 write 01110000 read 10000000 write 10010000 read 10100000 write 10110000 read 11100000 write 11110000 read Successive Successive first Auto 4th input byte odd-numbered even-numbered bit inc. input bytes input bytes Register No. LSB Register No. Register No. Register data Register data No +U/L byte select first +U/L byte select +U/L byte select Register No. +U/L byte select Register No. Register No. Register No. Register No. don’t care Register data (Lower byte) don’t care Register data (Lower byte) don’t care Register No. +U/L byte select Register data (Upper byte) don’t care Register data (Upper byte) don’t care don’t care Register data (Lower byte) don’t care Register data (Lower byte) don’t care Register No. LSB No +U/L byte select first Register data (Upper byte) don’t care Register data (Upper byte) don’t care LSB No first LSB No first LSB Yes first LSB Yes first Register No. Register No. MSB Register No. Register data Register data No +U/L byte select first +U/L byte select +U/L byte select Register No. +U/L byte select Register No. Register No. Register No. Register No. don’t care Register data (Upper byte) don’t care Register data (Upper byte) don’t care Register No. +U/L byte select Register data (Lower byte) don’t care Register data (Lower byte) don’t care don’t care Register data (Upper byte) don’t care Register data (Upper byte) don’t care Register No. MSB No +U/L byte select first Register data (Lower byte) don’t care Register data (Lower byte) don’t care MSB No first MSB No first MSB Yes first MSB Yes first Description of Commands 1) The "write read" column indicates whether that command writes data to or reads data from the registers. 2) Bytes marked with "Register No. + U/L byte select" specify the register to be accessed as well as whether to access the upper or lower bytes of the register. The upper 7 bits specify the register No., and the lowermost bit specifies the upper or lower bytes. When the lowermost bit is "0", the lower bytes are selected, when "1", the upper bytes are selected. 3) Bytes marked with "Register No." specify the register to be accessed. The upper 7 bits specify the register No., and the lowermost bit can be either "0" or "1". 4) The "Auto inc." column indicates the presence of the register No. auto increment function. For commands without this function, the most recently input register No. is valid. For example, in case of the command 0x00, the register data input by the odd bytes is written to the register specified by the previous byte's input. For the command 0x20, all subsequent data is written sequentially to the register specified by the 2nd input byte. 5) For commands with the register No. auto increment function, the register specified by the 2nd input byte is accessed first, and then access shifts to the register No. incremented by one each time the data for one register (2 bytes) is read or written. For example, when using the command 0x60, if 0x08 is specified by the 2nd input byte, the 3rd and 4th input bytes are written to register 0x08, and the 5th and 6th input bytes are written to register 0x09. 6) Bytes marked with "register data" are the data to be written to the registers during write commands. – 19 – CXD1856Q/R 7) When executing read commands, register data output starts from the 3rd output byte (bit 16). All earlier output data is invalid data. Access shifts to a new register each time the output for one register (2 bytes) is finished. For example, in case of the command 0x10, the byte data specified by the 2nd input byte is output to the 3rd output byte, the other byte data in the same register is output to the 4th byte, and the byte data specified by the 4th input byte is output to the 5th output byte. 8) The "first bit" column indicates whether LSB first or MSB first processing is performed for input or output of the 2nd and subsequent bytes. This specification does not apply to the 1st byte (command). Commands are normally LSB first. If LSB first is specified, processing is performed in the order where the initial bit in each byte is LSB and the final bit is MSB. This order is reversed for MSB first. Note that for registers, bit 15 noted in the Register Manual is MSB and bit 0 is LSB. 4-2. DRAM Interface Function • The applicable DRAMs are speed version 70 devices (RAS access time (Trac) of 70ns or less) with the fast page mode function. • When the total capacity of the external DRAM is 4 Mbits, use a 2CAS type DRAM with a configuration of 256 Kwords × 16 bits. When the total capacity is 8 Mbits, use two 2CAS type DRAMs with a configuration of 256 Kwords × 16 bits or 512 Kwords × 8 bits. • Refresh is performed automatically using RAS-only-refresh. External control is not necessary. • The DRAM is divided into the image frame memory, audio bit stream buffer, video bit stream buffer, user data and on-memory register areas. • The user data area can be used freely by the user, and CD-ROM decoded output can also be transferred to this area. This area can be used to store video CD PSD, etc. • The desired DRAM areas can be accessed from the control microcomputer via the registers. 4-3. CD-ROM Decoder Function • CD signal processor LSI interface The CD-ROM decoder has a CD signal processor LSI (CD-DSP) interface which directly interfaces the serial data output from the CD-DSP. This interface supports a wide variety of input formats to enable connection with general CD-DSP. • CD-ROM data decoding (supports CD-ROM XA format mode2, form1 and form2) CD-ROM data input from the CD-DSP supports CD-ROM XA format (mode2, form1 and form2). • Input CD-ROM data is decoded by the CD-ROM decoder block. Also, the CD-DA signal input from the CDDSP can be output directly from the audio interface. • The CD-ROM decoder has the following decoding and data transfer operating modes. The real-time correction and write-only modes facilitate the loading of video CD PSD to the external DRAM, etc. 1) Auto transfer mode The MPEG pack data within one sector of the video CD is automatically transferred to the system decoder, where the audio stream sector or video stream sector can be decoded. This mode transfers 2324 bytes counted from the initial byte of user data within one sector to the system decoder. 2) Real-time correction mode This mode executes error detection and correction processing for mode2, form1 sectors. The 2048 bytes of user data within the error processed sector are transferred to the user area of the external DRAM. The 4 bytes of header information within the sector can also be loaded in the on-memory register within the DRAM. 3) Write-only mode This mode transfers the 2340 bytes of header, subheader and user data within one sector to the user area of the external DRAM. When a form1 sector is input, error detection and correction processing is performed and then the data is transferred to the buffer memory. When a form2 sector is input, the data is transferred as is. – 20 – CXD1856Q/R CD-DSP Input Signal Formats 1) 32-bit slot, MSB first, BCKMOD1, 0 = 00, LSBFST = 0 LRCI 0 BCKI MSB DATI D15 D14 D13 D12 D11 D10 D9 Lch 15 16 Rch 31 LSB MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 LSB D0 C2PO Upper Lower Upper Lower 2) 32-bit slot, LSB first, BCKMOD1, 0 = 00, LSBFST = 1 LRCI 0 BCKI LSB DATI D0 D1 D2 D3 D4 D5 D6 Lch 15 16 Rch 31 MSB LSB D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 MSB D9 D10 D11 D12 D13 D14 D15 C2PO Upper Lower Upper Lower 3) 48-bit slot, MSB first, BCKMOD1, 0 = 01, LSBFST = 0 LRCI 0 BCKI MSB DATI Lch 23 24 Rch 47 LSB MSB LSB D15 D14D13D12 D11D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14D13 D12D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 C2PO Upper Lower Upper Lower – 21 – CXD1856Q/R 4) 48-bit slot, LSB first, BCKMOD1, 0 = 01, LSBFST = 1 LRCI 0 BCKI LSB DATI Lch 23 24 Rch 47 MSB LSB MSB D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12 D13D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 C2PO Upper Lower Upper Lower 5) 64-bit slot, MSB first, BCKMOD1, 0 = 10, LSBFST = 0 LRCI 0 BCKI Lch 31 32 Rch 63 MSB DATI don't care LSB don't care MSB LSB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 C2PO Upper Lower Upper Lower 6) 64-bit slot, LSB first, BCKMOD1, 0 = 10, LSBFST = 1 LRCI 0 BCKI Lch 31 32 Rch 63 LSB DATI don't care MSB don't care LSB MSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C2PO Upper Lower Upper Lower – 22 – CXD1856Q/R 4-4. System Decoder Function • The MPEG1 system layer (ISO/IEC 11172-1) is decoded, the audio and video bit streams are separated, and each bit stream is transferred to the respective bit stream buffer. • The MPEG1 bit stream input can be selected from either the built-in CD-ROM decoder or the host interface. • The system decoder has a 128-word (256-byte) FIFO for the bit stream input. • Audio and video sync playback are controlled according to the time stamp within the bit stream. 4-5. Video Decoder Function • The MPEG1 video layer (ISO/IEC 11172-2) is decoded. This function supports the range where constrained_parameter_flag = "1" and video CD high resolution still picture. • Video CD high resolution still picture (NTSC, PAL) can be decoded with a single external 4-Mbit DRAM. • Special decoding functions are as follows. Slow playback, fast forward and other modes can be realized by combining these functions. I-Play: Only I-Pictures are decoded. Still (Pause): Decoding is paused. 1 Frame Play: Only one frame (picture) is decoded. IP-Play: Only I and P-Pictures are decoded. IPB-Play: Alternate frames of continuous B-Pictures and all I and P-Pictures are decoded. • This function supports digest play. • The various information in the bit stream is loaded to the on-memory register area within the external DRAM. 4-6. Video Post Processor and Sync Generator Functions • The image data output format can be selected from 24-bit RGB, 24-bit YCbCr and 16-bit YCbCr. See the following page. • Fade in and fade out are allowed. • Image enlargement and reduction are allowed. • The CXD1856Q/R contains an OSD color table and selector, and OSD display is achieved by inputting the OSD character signal. • The video sync signal can be generated using the built-in sync generator. Image data can also be output in sync with an externally input video sync signal. – 23 – CXD1856Q/R DCLK HSYNC R0 to 7 G0 to 7 B0 to 7 R (n) G (n) B (n) R (n + 1) G (n + 1) B (n + 1) R (0) G (0) B (0) R (1) G (1) B (1) R (2) G (2) B (2) R (3) G (3) B (3) 24-bit RGB output format DCLK HSYNC Y0 to 7 Cb0 to 7 Cr0 to 7 Y (n) Cb (n) Cr (n) Y (n + 1) Cb (n + 1) Cr (n + 1) Y (0) Cb (0) Cr (0) Y (1) Cb (1) Cr (1) Y (2) Cb (2) Cr (2) Y (3) Cb (3) Cr (3) 24-bit YCbCr output format DCLK HSYNC Y0 to 7 C0 to 7 Y (n) Cb (n) Y (n + 1) Cr (n) Y (0) Cb (0) Y (1) Cr (0) Y (2) Cb (2) Y (3) Cr (2) 16-bit YCbCr output format Note) • The subscript (i) indicates the data for pixel i. • The above timing charts show the timing when the pixel data output is synchronized with the fall of DCLK. The pixel data output can also be synchronized with the rise of DCLK. – 24 – CXD1856Q/R 4-7. Audio Decoder Function • • • • MPEG audio stream decoding is performed for MPEG1 standard (ISO/IEC 11172-3) layer 1 and layer 2. Monaural, dual, stereo and joint stereo decoding modes are supported. All MPEG1 standard sampling frequencies (32kHz, 44.1kHz, 48kHz) are supported. All MPEG1 standard bit rates are supported. Layer 1: 32Kbps (monaural/stereo) to 448Kbps (monaural/stereo) Layer 2: 32Kbps (monaural) to 384Kbps (stereo) • The audio decoder's audio interface output port is equipped with a PCM audio output which outputs decoded audio data in bit serial format and a digital audio interface output (digital out). The audio interface is set by setting the internal registers. 1) LRCK and BCK generation The LR clock and bit clock can be generated by frequency dividing the clock input from external pins XTLI or FSXI. The generated clocks are output from the BCKO and LRCO pins, respectively. LRCO and BCKO can be output in the desired polarity. Also, the number of slots per sample supports the three types of 32, 48 and 64 bit clocks/LRCK. 2) PCM audio output format The PCM audio output format can be set to any of the following combinations to allow connection with a wide range of 1-bit D/A converters. 16-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 18-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 20-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 24-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 3) Digital out format The digital out output format supports the type2, form1 format for consumer use. The output word length can be selected from 16, 18, 20 or 24 bits. 4) Decoded channel assignment Channels 1 and 0 of the audio sample obtained by decoding the MPEG audio stream can be assigned to the L and R channel outputs in any combination. 5) Audio mute The audio output contains a zero-cross mute circuit. Zero-cross detection is performed for 44 sample sections (approximately 0.1ms when fs = 44.1kHz), and if zero-cross is not detected, the output is forcibly muted. 6) Attenuator The audio output contains an attenuator circuit. Attenuation of –12dB can be obtained by setting the internal register. 7) CD-DA output mode When playing back a CD-DA disc, the data input from the CD-DSP can be output directly from the PCM audio output (DATO) and the digital audio interface output port (DOUT). Output ports LRCO and BCKO can also select and output the clock inputs LRCI and BCKI from the CD-DSP. – 25 – CXD1856Q/R PCM Audio Output Formats 1) 64-bit slot, frontward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 1, OLSBFST = 1 LRCO 0 BCKO LSB DATO Lch 31 32 Rch 63 MSB LSB MSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DAL1, 0 = 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DAL1, 0 = 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DAL1, 0 = 01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DAL1, 0 = 00 2) 64-bit slot, rearward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 0, OLSBFST = 1 LRCO 0 BCKO LSB DATO Lch 31 32 Rch 63 MSB LSB MSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DAL1, 0 = 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DAL1, 0 = 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DAL1, 0 = 01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DAL1, 0 = 00 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first Data word length setting DAL1, 0 = 11: 24 bits DAL1, 0 = 10: 20 bits DAL1, 0 = 01: 18 bits DAL1, 0 = 00: 16 bits – 26 – CXD1856Q/R 3) 48-bit slot, frontward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 1, OLSBFST = 1 LRCO 0 BCKO LSB DATO Lch 23 24 Rch 47 MSB LSB MSB D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D20D21 D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19D20 D21D22 D23 DAL1, 0 = 11 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19 DAL1, 0 = 10 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 DAL1, 0 = 01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 DAL1, 0 = 00 4) 48-bit slot, rearward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 0, OLSBFST = 1 LRCO 0 BCKO LSB DATO Lch 23 24 Rch 47 MSB LSB MSB D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D20D21 D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19D20 D21D22 D23 DAL1, 0 = 11 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12 D13D14 D15D16 D17D18 D19 DAL1, 0 = 10 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14 D15D16 D17 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D12 D13D14 D15D16 D17 DAL1, 0 = 01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D12 D13D14 D15 DAL1, 0 = 00 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first Data word length setting DAL1, 0 = 11: 24 bits DAL1, 0 = 10: 20 bits DAL1, 0 = 01: 18 bits DAL1, 0 = 00: 16 bits – 27 – CXD1856Q/R 5) 32-bit slot, LSB first, OSLT1, 0 = 00, OLSBFST = 1 LRCO 0 BCKO LSB DATO D0 D1 D2 D3 D4 D5 D6 Lch 15 16 Rch 31 MSB LSB D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 MSB D9 D10 D11 D12 D13 D14 D15 6) 32-bit slot, MSB first, OSLT1, 0 = 00, OLSBFST = 0 LRCO 0 BCKO MSB DATO D15 D14 D13 D12 D11 D10 D9 Lch 15 16 Rch 31 LSB MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 LSB D0 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first Data word length: 16 bits – 28 – CXD1856Q/R Digital Audio Interface Output Formats 1) 24 bits/word Parity Channel status User data Validity flag 0 Sync preamble 3 4 LSB 27 28 29 30 31 MSB V U CP 2) 20 bits/word 0 Sync preamble 3 4 (0) data 7 8 LSB 27 28 29 30 31 MSB V U CP 3) 18 bits/word 0 Sync preamble 3 4 (0) data 9 10 LSB 27 28 29 30 31 MSB V U CP 4) 16 bits/word 0 Sync preamble 3 4 (0) data 11 12 LSB 27 28 29 30 31 MSB V U CP Data word length setting DOL1, 0 = 11: 24 bits DOL1, 0 = 10: 20 bits DOL1, 0 = 01: 18 bits DOL1, 0 = 00: 16 bits – 29 – CXD1856Q/R Package Outline Unit: mm 120PIN QFP (PLASTIC) 31.2 ± 0.2 28.0 ± 0.2 90 61 + 0.1 0.15 – 0.05 0.1 91 60 A 120 31 0.15 ± 0.1 1 0.8 0.35 ± 0.1 30 0.16 M 3.45 ± 0.25 0.15 ± 0.1 0° to 10° DETAIL A 0.8 ± 0.2 (29.6) PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SOLDER PLATING COPPER / 42 ALLOY 4.9g SONY CODE EIAJ CODE JEDEC CODE QFP-120P-L01 ∗QFP120-P-2828-A LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT 120PIN QFP (PLASTIC) 31.20 ± 0.20 28.00 ± 0.20 90 61 0.15 ± 0.05 0.10 91 60 A 120 31 1 0.80 0.35 ± 0.10 30 0.16 M 3.5 ± 0.2 0.15 ± 0.10 0.80 ± 0.20 0° to 10° DETAIL A SONY CODE EIAJ CODE JEDEC CODE QFP-120P-L022 QFP120-P-2828 PACKAGE STRUCTURE PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER PLATING 42 ALLOY 4.9 g – 30 – 29.6 ± 0.40 CXD1856Q/R Package Outline Unit: mm 120PIN LQFP (PLASTIC) 18.0 ± 0.2 16.0 ± 0.1 90 61 1.7 MAX 1.4 ± 0.1 S 0.1 S 91 60 B A 120 31 1 30 0.5 0.1 ± 0.05 0.6 ± 0.15 0.22 ± 0.05 0.1 M S 0.25 (17.0) 0.22 ± 0.05 (0.2) 0.145 ± 0.03 0° to 10° DETAIL A DETAIL B (0.125) (0.5) PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SOLDER PLATING COPPER ALLOY 0.8g SONY CODE EIAJ CODE JEDEC CODE LQFP-120P-L01 LQFP120-P-1616 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS – 31 –
CXD1856R 价格&库存

很抱歉,暂时无法提供与“CXD1856R”相匹配的价格&库存,您可以联系我们找货

免费人工找货