0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXD2309

CXD2309

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXD2309 - 10-bit 50MSPS RGB 3-channel D/A Converter - Sony Corporation

  • 数据手册
  • 价格&库存
CXD2309 数据手册
CXD2309Q 10-bit 85MSPS 3-Channel D/A Converter Description The CXD2309Q is a 10-bit high-speed D/A converter for video band, featuring RGB 3-channel input/output. This is ideal for use in high-definition TVs and high-resolution displays. Features • Resolution 10-bit • Maximum conversion speed 85MSPS • RGB 3-channel input/output • Differential linearity error ±0.5 LSB • Low power consumption 275 mW (200 Ω load for 2 Vp-p output) • Single +5 V power supply • Low glitch • 48-pin QFP package Structure Silicon gate CMOS IC 48 pin QFP (Plastic) Absolute Maximum Ratings (Ta=25 °C) • Supply voltage AVDD, DVDD 7 V • Input voltage (All pins) VIN VDD+0.5 to VSS–0.5 V • Output current IOUT 0 to 15 mA • Storage temperature Tstg –55 to +150 °C Recommended Operating Conditions • Supply voltage AVDD, AVSS 4.75 to 5.25 DVDD, DVSS 4.75 to 5.25 • Reference input voltage VREF 0.5 to 2.0 • Clock pulse width TPW1, TPW0 9 (min.) • Operating temperature Topr –20 to +85 V V V ns °C Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. —1— E94341B01 CXD2309Q Block Diagram (LSB) R0 R1 R2 R3 R4 R5 1 2 3 4 5 DECODER LATCHES 4LSB’S CURRENT CELLS 43 AVSS 42 RO 6 R6 7 R7 R8 6LSB’S CURRENT CELLS 8 9 DECODER CLOCK GENERATOR (MSB) R9 10 RCK 31 (LSB) G0 11 G1 12 G2 13 G3 14 G4 15 G5 16 G6 17 G7 18 G8 19 (MSB) G9 20 GCK 32 (LSB) B0 21 B1 22 B2 23 B3 24 B4 25 B5 26 B6 27 B7 28 B8 29 (MSB) B9 30 BCK 33 DVDD 48 BIAS VOLTAGE GENERATOR DECODER DECODER LATCHES DECODER DECODER LATCHES 4LSB’S CURRENT CELLS 45 AVSS 44 GO 6LSB’S CURRENT CELLS CLOCK GENERATOR 4LSB’S CURRENT CELLS 47 AVSS 46 BO 6LSB’S CURRENT CELLS 41 AVDD 40 AVDD 39 AVDD CLOCK GENERATOR 38 VG CURRENT CELLS (FOR FULL SCALE) 37 VREF 36 IREF VB 35 DVSS 34 —2— CXD2309Q DVSS IREF BCK VB B9 (MSB) Pin Configuration GCK RCK B5 26 B8 B7 36 VREF 37 VG 38 AVDD 39 AVDD 40 AVDD 41 RO 42 AVSS 43 GO 44 AVSS 45 BO 46 AVSS 47 35 34 33 32 31 30 29 28 27 B6 25 24 B3 23 B2 22 B1 21 B0 (LSB) 20 G9 (MSB) 19 G8 18 G7 17 G6 16 G5 15 G4 14 G3 13 G2 DVDD 48 1 (LSB) R0 2 R1 3 R2 4 R3 5 R4 6 R5 7 R6 8 R7 9 R8 10 11 12 (LSB) G0 (MSB) R9 G1 B4 1 to 35 , 48 Digital system 36 to 47 Analog system Pin Description and Equivalent Circuit Pin No. 1 to 10 Symbol R0 to R9 I/O Equivalent circuit Description Digital input. 1 pin R0 (LSB) to 10 pin R9 (MSB) 11 pin G0 (LSB) to 20 pin G9 (MSB) 21 pin B0 (LSB) to 30 pin B9 (MSB) 11 to 20 G0 to G9 21 to 30 31 32 33 34 B0 to B9 RCLK GCLK BCLK DVSS — DVDD I 1 to 33 DVSS Clock input. Digital ground. DVDD DVDD 35 VB O 35 Connect an approximately 0.1µF capacitor. DVSS —3— CXD2309Q Pin No. Symbol I/O Equivalent circuit Description Reference current output. Connect an “RIR” resistor which are 16 times the output resistance “ROUT”. 36 IREF O AVDD AVDD 36 AVDD AVDD AVSS 37 38 AVSS 37 VREF I Reference voltage input. Sets an output full-scale value. 38 VG O AVSS Connect an approximately 0.1µF capacitor. 39 to 41 42 AVDD RO — AVDD 42 44 Analog power supply. 44 GO O 46 AVSS Current output. Output can be obtained by connecting a resistor (200 Ω typ.). AVSS 46 43, 45, 47 48 BO AVSS DVDD — — Analog ground. Digital power supply. —4— CXD2309Q Electrical Characteristics Item Resolution Conversion speed Integral non-linearity error Differential non-linearity error Precision guaranteed output voltage range Output full-scale voltage Output full-scale ratio ∗1 Output full-scale current Output offset voltage Glitch energy Crosstalk SN ratio Supply current Analog input resistance Input capacitance Output capacitance Digital input voltage Digital input current Setup time Hold time Propagation delay time Rise time Fall time ∗1 (fCLK=85 MHz, AVDD=DVDD=5 V, ROUT=200 Ω, VREF=2.0 V, RIR=3.3 kΩ, Ta=25°C) Symbol n fCLK EL ED VOC VFS FSR IFS VOS GE CT SNR IDD RIN CI CO VIH VIL IIH IIL ts th tPD tr tf Measurement conditions AVDD=DVDD=4.75 to 5.25 V Ta=–20 to +85 °C Endpoint Min. Typ. 10 Max. Unit bit MSPS LSB LSB V V % mA mV pV•s dB dB 58 mA MΩ pF pF V µA ns ns ns ns ns 0 –2.0 –0.5 1.8 1.8 0 9.0 1.92 1.92 9.6 50 42 40 55 50 48 55 85 2.0 0.5 2.0 2.0 3 10 1 When “0000000000” data input ROUT=100 Ω, 1 Vp-p output When 10 MHz FCLK=50 MHz sin wave input FCLK=85 MHz When 1 MHz FCLK=50 MHz sin wave input FCLK=85 MHz When 10 MHz FCLK=50 MHz sin wave output FCLK=85 MHz VREF 40 50 1 9 125 AVDD=DVDD=4.75 to 5.25 V Ta=–20 to +75 °C AVDD=DVDD=4.75 to 5.25 V Ta=–20 to +75 °C 2.15 0.85 –5 4 1 14 26.5 26.0 × 100 (%) 5 Full-scale output ratio = Full-scale voltage of channel –1 Average of the full-scale voltage of the channels Electrical Characteristics Measurement Circuit Analog Input Resistance Measurement Circuit Digital Input Current } +5.25V AVDD, DVDD A CXD2309Q V AVSS, DVSS —5— CXD2309Q Conversion Rate Measurement Circuit R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 GO 44 21 to 30 35 VB 0.1µ DVSS CLK 50MHz SQUARE WAVE 31 RCK 32 GCK 33 BCK AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ AVSS 45 BO 46 10bit COUNTER with LATCH 200 AVSS OSCILLOSCOPE 200 AVSS 200 AVSS AVDD Setup Time Hold Time Glitch Energy } Measurement Circuit 10bit COUNTER with LATCH 35 DELAY CONTROLLER 0.1µ DVSS R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 21 to 30 GO 44 VB AVSS 45 BO 46 31 RCK AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ 200 AVSS OSCILLOSCOPE 200 AVSS 200 AVSS AVDD CLK 50MHz SQUARE WAVE 32 DELAY CONTROLLER GCK 33 BCK Crosstalk Measurement Circuit DVDD DIGITAL WAVEFORM GENERATOR 35 0.1µ DVSS 31 RCK CLK 50MHz SQUARE WAVE 32 GCK 33 BCK R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 21 to 30 GO 44 VB AVSS 45 BO 46 AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ 200 AVSS 200 AVSS 200 AVSS AVDD SPECTRUM ANALYZER —6— CXD2309Q DC Characteristics Measurement Circuit R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 GO 44 21 to 30 35 VB 0.1µ DVSS CLK 50MHz SQUARE WAVE 31 RCK 32 GCK AVSS 45 BO 46 AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ 200 AVSS DVM 200 AVSS 200 AVSS AVDD CONTROLLER 33 BCK Propagation Delay Time Measurement Circuit 10bit COUNTER with LATCH R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 GO 44 21 to 30 35 VB 0.1µ DELAY CONTROLLER CLK 50MHz SQUARE WAVE DVSS 31 RCK 32 DELAY CONTROLLER GCK AVSS 45 BO 46 AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ 200 AVSS OSCILLOSCOPE 200 AVSS 200 AVSS AVDD 33 BCK SNR Measurement Circuit DIGITAL WAVEFORM GENERATOR ALL “1” ALL “1” R0 to R9 RO 42 1 to 10 G0 to G9 11 to 20 AVSS 43 B0 to B9 GO 44 21 to 30 35 VB 0.1µ AVSS 45 BO 46 31 RCK AVSS 47 VG 38 VREF 37 2V IREF 36 3.3k AVSS 0.1µ 200 AVSS 200 AVSS 200 AVSS AVDD SPECTRUM ANALYZER DVSS CLK 50MHz SQUARE WAVE 32 GCK 33 BCK —7— CXD2309Q Description of Operation Timing Chart tPW1 tPW0 CLK 1.5V ts th ts th ts th DATA 1.5V 100% 90% D/A OUT tPD tr tf 50% 10% 0% I/O Correspondence Table (output full-scale voltage: 2.00 V) Input code Output voltage MSB LSB 1111111111 2.0 V : 1000000000 1.0 V : 0000000000 0V —8— CXD2309Q Notes on Operation • Selecting the Output Resistance CXD2309Q is a current output type D/A converter. The output voltage can be obtained by connecting the resistor ROUT to the current output pins RO, GO and BO. Specifications: Output full-scale voltage VFS = 1.8 to 2.0 [V] Output full-scale current IFS = 9.0 to 10.0 [mA] Calculate the output resistance from VFS = IFS × ROUT. Connect a resistance sixteen times the output resistance to the reference current output pin IREF. In some cases, as this value may not exist, a similar value can be used instead. Note that the VFS will be the following. VFS = VREF × 16ROUT/RIR VREF is the voltage set at the reference voltage input pin VREF, ROUT is the resistor to be connected to the current output pins RO, GO, BO and RIR is the resistor to be connected to the IREF. Power consumption can be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data setting time. Set the best values according to the purpose of use. • Correlation between Data and Clock For CXD2309Q to display the desired performance as a D/A converter, the data transmitted from outside and the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in “Electrical Characteristics”. • Power supply, ground Separate the analog and digital signals around the device to reduce noise effects. Bypass the power supply pin to each ground with a 0.1 µF ceramics capacitor as near as possible to the pin for both the digital and analog signals. • Latch up Analog and digital power supplies must be able to share the same power supply of the board. This is to prevent latch up caused by potential difference between the two pins when the power is turned on. • IREF The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component not to attach to this pin because its output may become unstable. • VG pin It is recommended to use a 1 µF capacitor to improve the AC characteristics though the typical capacitance value externally connected to the VG pin is 0.1 µF. • Output full-scale voltage For the applications using the RGB signal, the color balance may be broken up when the RO, GO and BO output full-scale voltages are used with not adjustment. —9— CXD2309Q Application Circuit C C R2 Clock input 36 R3 37 R4 C C C 38 39 40 41 42 R1 43 44 R1 45 46 R1 47 48 35 34 33 32 31 30 MSB 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 G ch input LSB MSB B ch input 1 LSB 2 3 4 5 6 7 8 9 10 11 12 R ch input AVDD DVDD AVSS DVSS • • • • • • When the power supply (AVDD and DVDD) is 5.0 V. R1=200 Ω R2=3.3 kΩ R3=3.0 kΩ R4=2.0 kΩ C=0.1 µF Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. —10— MSB LSB CXD2309Q Latch Up Prevention The CX2309Q is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AVDD (Pin 39, 40 and 41) and DVDD (Pin 48), when power supply is ON. 1. Correct usage a. When analog and digital supplies are from different sources DVDD AVDD 39 40 AVDD +5V +5V C CXD2309Q C DIGITAL IC 41 48 DVDD AVSS 43 AVSS 45 47 DVSS 34 b. When analog and digital supplies are from a common source (i) DVDD 39 40 AVDD 41 48 DVDD +5V C CXD2309Q C DIGITAL IC AVSS 43 AVSS 45 47 DVSS 34 (ii) DVDD 39 40 AVDD 41 48 DVDD +5V C CXD2309Q C DIGITAL IC AVSS 43 AVSS 45 33 47 DVSS 34 31 —11— CXD2309Q 2. Example when latch up easily occurs a. When analog and digital supplies are from different sources DVDD AVDD 39 40 AVDD +5V +5V C CXD2309Q C DIGITAL IC 41 48 DVDD AVSS 43 AVSS 45 47 DVSS 34 b. When analog and digital supplies are from common source (i) DVDD AVDD 39 40 AVDD +5V C CXD2309Q C DIGITAL IC 41 48 DVDD AVSS 43 AVSS 45 47 DVSS 34 (ii) DVDD AVDD 39 40 AVDD +5V CXD2309Q C DIGITAL IC 41 48 DVDD AVSS 43 AVSS 45 47 DVSS 34 —12— CXD2309Q Example of Representative Characteristics Output full-scale voltage VFS [V] 2.0 1.0 Glitch energy GE [pV•s] 0 1.0 2.0 100 50 0 100 200 Reference voltage VREF [V] Fig. 1. Reference voltage vs. Output full-scale voltage Output resistance ROUT [Ω] Fig. 2. Output resistance vs. Glitch energy 70 Output full-scale voltage VFS [V] 1.95 Supply current IDD [mA] sin wave output 60 1.90 50 ∆V=0.02mV/°C 0 40 –25 0 25 50 75 12 5 10 20 30 40 42 Ambient temperature Ta [°C] Fig. 3. Ambient temperature vs. Output full-scale voltage Output frequency Fo [MHz] Fig. 4. Output frequency vs. Supply current Standard Measurement Conditions • AVDD=DVDD=5.0 V • VREF=2.0 V • FCLK=85 MHZ • ROUT=200 Ω • RIR=3.3 kΩ • Ta=25 °C —13— CXD2309Q 60 fout=1MHz sin wave 60 fout=10MHz sin wave IDD Supply current IDD [mA] 50 IDD 40 IA [Analog] 30 20 10 20 ID [Digital] 50 85 Supply current IDD [mA] 50 40 IA [Analog] 30 20 ID [Digital] 10 20 50 85 Clock frequency FCLK [MHz] Fig. 5. Clock frequency vs. Supply current Clock frequency FCLK [MHz] Fig. 6. Clock frequency vs. Supply current 60 Cross talk CT [dB] 40 30 20 10 0 1 2 5 10 20 42 Output level [dBm] 50 sin wave output 0 –10 –20 0 1 2 5 10 20 50 Output frequency Fo [MHz] Fig. 7. Output frequency vs. Cross talk Output frequency Fo [MHz] Fig. 8. Output frequency vs. Output level (Including primary hold characteristics sinx/x) Standard Measurement Conditions • AVDD=DVDD=5.0 V • VREF=2.0 V • FCLK=85 MHZ • ROUT=200 Ω • RIR=3.3 kΩ • Ta=25 °C —14— CXD2309Q 50 1000 40 Input current [µA] SNR [dB] 500 30 0 1 2 5 10 20 50 –1 0 1 5 6 Output frequency Fo [MHz] Fig. 9. Output frequency vs. SNR 500 Input voltage [V] 1000 Fig. 10. Input terminal V-I characteristics Standard Measurement Conditions • AVDD=DVDD=5.0 V • VREF=2.0 V • FCLK=85 MHZ • ROUT=200 Ω • RIR=3.3 kΩ • Ta=25 °C —15— CXD2309Q Package Outline Unit : mm 48PIN QFP (PLASTIC) 15.3 ± 0.4 + 0.4 12.0 – 0.1 + 0.1 0.15 – 0.05 0.15 36 25 37 24 48 13 + 0.2 0.1 – 0.1 1 + 0.15 0.3 – 0.1 12 0.8 0.24 M + 0.35 2.2 – 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE QFP-48P-L04 QFP048-P-1212 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER / PALLADIUM PLATING 42/COPPER ALLOY 0.7g —16— 0.9 ± 0.2 13.5
CXD2309 价格&库存

很抱歉,暂时无法提供与“CXD2309”相匹配的价格&库存,您可以联系我们找货

免费人工找货