CXD3300R
10-bit 20MSPS Video A/D Converter
Description The CXD3300R is a 10-bit CMOS A/D converter for video applications. This IC is ideally suited for the A/D conversion of video signals in TVs, VCRs, camcorders, etc. Features • Resolution: 10 bits ± 1.0LSB (D.L.E.) • Maximum sampling frequency: 20MSPS • Low power consumption: 40mW (Except self-bias ) • Low input capacitance • Built-in self-bias circuit Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVDD DVDD • Reference voltage VRT, VRB • Input voltage VIN (analog) • Input voltage VIH, VIL (digital) • Output voltage VOH, VOL (digital) • Storage temperature Tstg 48 pin LQFP (Plastic)
Structure Silicon gate CMOS IC
AVSS – 0.5 to +4.5 DVSS – 0.5 to +4.5 AVDD + 0.5 to AVSS – 0.5 AVDD + 0.5 to AVSS – 0.5 AVDD + 0.5 to AVSS – 0.5 DVDD + 0.5 to DVSS – 0.5 –55 to +150
V V V V V V °C
Recommended Operating Conditions • Supply voltage AVDD, AVSS 3.0 ± 0.3 DVDD, DVSS 3.0 ± 0.3 | DVSS – AVSS | 0 to 100 • Reference input voltage VRB 0.3AVDD to 0.5AVDD VRT 0.6AVDD to 0.8AVDD • Analog input VIN 0.9Vp-p or more • Clock pulse width tPW1 25 (min.) tPW0 25 (min.) • Operating ambient temperature Topr –40 to +85
V V mV V V ns ns °C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E97310-PS
CXD3300R
Block Diagram
VIN 38
S/H Amp
+ –
×8 Coarse Correction & Latch
12
D9
VRT 28 VRTC 29
11 D8 10 9 8 D7 D6 D5
VRTS 27 DAC VRMC 30 BE 36 Coarse Comparate & Encode Calibration Unit VRB 32 Fine Comparate & Encode
5 4 Fine Latch 3 2 1
D4 D3 D2 D1 D0 (LSB)
VRBS 33
20 MINV 19 LINV 18 TESTMODE CAL
VRBC 31
CLK 22 OE 23 CE 24
Timing Gen. Auto Calibration Pulse Generator 42
15
RESET
VRMC
VRBC
VRTC
VRBS
AVDD
VRTS
AVDD
AVSS
VRB
36 35 34 33 32 31 30 29 28 27 26 25
TSTR 37 VIN 38
VRT
AVSS
Pin Configuration
BE
24 CE 23 OE
TS 39 AVDD 40 AVSS 41 CAL 42 AVDD 43 AT 44 AVDD 45 AVSS 46 DVDD 47 DVSS 48
22 CLK 21 AVDD 20 MINV
19 LINV 18 TESTMODE
17 AVDD 16 AVSS 15 RESET 14 TIN 13 TO
1
2
3
4
5
6
7
8
9 10 11 12
D1
D4
D5
D0
D3
DVDD
D2
DVSS
D6
D7
D8
–2–
D9
CXD3300R
Pin Description Pin No. Symbol
DVDD
Equivalent circuit
Description
1 to 5 8 to 12
D0 to D9
D0 (LSB) to D9 (MSB) output.
DVSS
6, 48 7, 47 13
DVSS DVDD TO
Digital VSS. Digital VDD. Test pin. High impedance when TS = High. Test signal input. Normally fixed to AVDD or AVSS.
AVDD
14
TIN
15
RESET
15
Calibration circuit reset and startup calibration restart.
AVSS
16, 25, 34, 41, 46
AVSS
Analog VSS. Analog VDD.
AVDD
17, 21, 26, 35, AVDD 40, 43, 45
18
TESTMODE
18
Test mode. High: Output state Low: Output fixed
AVSS AVDD
19
LINV
19
Output inversion. High: D0 to D8 are inverted and output. Low: D0 to D8 are normal output.
AVSS
–3–
CXD3300R
Pin No.
Symbol
Equivalent circuit
AVDD
Description
20
MINV
20
Output inversion. High: D9 is inverted and output. Low: D9 is normal output.
AVSS
AVDD
22
CLK
22
Clock.
AVSS
AVDD
23
OE
23
D0 to D9 output enable. Low: Output state High: High impedance state
AVSS
AVDD
24
CE
24
Chip enable. Low: Active state High: Standby state
AVSS
–4–
CXD3300R
Pin No.
Symbol
AVDD
Equivalent circuit
Description
27
VRTS
27
Self-bias. (Reference top)
AVSS AVDD
28
VRT
28
Reference top.
AVSS AVDD
29
VRTC
29
Reference top output.
AVSS AVDD
30
VRMC
30
Reference middle output.
AVSS AVDD
31
VRBC
31
Reference bottom output.
AVSS AVDD
32
VRB
32
Reference bottom.
AVSS AVDD
33
VRBS
33 AVDD AVSS 36
Self-bias. (Reference bottom)
36
BE
AVSS
Bias enable.
–5–
CXD3300R
Pin No. 37
Symbol TSTR
Equivalent circuit
Description Test signal input. Normally fixed to AVDD or AVSS. Test signal input. High impedance when TS = High.
44
AT
AVDD
38
VIN
38
Analog input.
AVSS
AVDD
42
CAL
42
Calibration pulse input.
AVSS
39
TS
Test signal input. Normally fixed to AVDD.
–6–
CXD3300R
Digital Output The following table shows the correlation between the analog input voltage and the digital output code. (TESTMODE = 1, LINV, MINV = 0) Input signal voltage VRT Step 1023 512 511 VRB 0 Digital output code MSB LSB 1111111111 1000000000 0111111111 0000000000
The following table shows the output state for the combination of TESTMODE, LINV, and MINV states. TESTMODE 1 1 1 1 0 0 0 0 LINV 0 1 0 1 0 1 0 1 MINV 0 0 1 1 0 0 1 1 D0 P N P N 1 0 1 0 D1 P N P N 0 1 0 1 D2 P N P N 1 0 1 0 D3 P N P N 0 1 0 1 D4 P N P N 1 0 1 0 D5 P N P N 0 1 0 1 D6 P N P N 1 0 1 0 D7 P N P N 0 1 0 1 D8 P N P N 1 0 1 0 D9 P P N N 0 0 1 1
P: Forward-phase output N: Inverted output Timing Chart 1
tPW1 tPW0
Clock
1.5V
tSD N+1 Analog input N N+2 tDL N+3 N+4
Data output
N–3
N–2
N–1
N
1.5V
: Indicates point at which analog data is sampled
Timing Chart 2
1.5V Output enable (OE)
tPEZ
tPZE 1.5V
1.5V
Data output
Active
High Impedance
Active
–7–
CXD3300R
Electrical Characteristics Item Maximum conversion rate Minimum conversion rate Supply current Standby current Analog Digital Analog Digital
(Fc = 20MSPS, AVDD = 3V, DVDD = 3V, VRB = 1V, VRT = 2V, Ta = 25°C) Symbol Fc max Fc min IADD IDDD IAST IDST IRT1 IRB1 IRT2 VRTS, VRBS: Open Between VRT and VRB BE = AVDD Between VRTC and VRBC –1dB 87 –111 1.81 –2.33 97 97 2.04 –2.04 85 10 Between VRTS and VRT, VRT and VRB, VRB and VRBS Between VRTC and VRBC
BE = AVDD EOT1 = Theoretical value – Measured value EOB1 = Measured value – Theoretical value BE = AVSS EOT2 = Theoretical value – Measured value EOB2 = Measured value – Theoretical value
Conditions FIN = 1.0kHz sine wave input FIN = 1.0kHz sine wave input BE = High CE = AVDD
Min. 20
Typ.
Max.
Unit MSPS
0.5 11 14 1.0 17 4 3.0 1.0 111 –87 2.33 1.81
mA mA µA µA
Reference pin current 1
Reference pin current 2 Analog input band Analog input capacitance Reference resistance value 1 Reference resistance value 2 Offset voltage1
IRB2 BW CIN RREF1 RREF2 EOT1 EOB1 EOT2 EOB2 VIH VIL AIH AIL IIH IIL IOH IOL IOZH IOZL
mA MHz pF
9k 430 –30 –30 –30 –20 0.7AVDD
10.3k 490 +5 +5 +5 +10
11.5k 550 +40 +40 +40 +40
Ω Ω mV
Offset voltage2
mV
Digital input voltage
AVDD = 2.7 to 3.3V VIN = 2V VIN = 1V AVDD = 3.3V VIH = AVDD VIL = AVSS
0.2AVDD 40 –55 48 –48 55 –40 5 5 1.0 1.0 1 1 6 3 8 5 ±1.0 ±0.5 10 7 ±3.0 ±1.0
V
Analog input current
µA
Digital input current
µA
Digital output current
OE = AVSS VOH = DVDD – 0.4V DVDD = 2.7V VOL = 0.4V OE = AVDD VOH = DVDD DVDD = 3.3V VOL = 0V Clock not synchronized for active → high impedance Clock not synchronized for high impedance → active
mA
Digital output current Tri-state output disable time Tri-state output enable time Integral nonlinearity error Differential nonlinearity error
µA ns ns LSB LSB
tPEZ tPZE
EL ED
–8–
CXD3300R
Item Differential gain error Differential phase error Output data delay Sampling delay
Symbol DG DP
Conditions NTSC 40 IRE mod ramp, Fc = 14.3MSPS CL = 3pF, Ta = –40 to +85°C
Min.
Typ. 1.0 0.3
Max.
Unit % deg
tDL tSD
6 6
9 7 50 50 50 50 45 44 52 52 52 52 49 50
18 8
ns ns
FIN = 100kHz FIN = 500kHz SNR FIN = 1MHz SNR FIN = 3MHz FIN = 7MHz FIN = 10MHz FIN = 100kHz FIN = 500kHz FIN = 1MHz SFDR SFDR FIN = 3MHz FIN = 7MHz FIN = 10MHz
dB
dB
–9–
CXD3300R
Application Circuit 1 When not using self-bias and the internal bias circuits, and supplying the reference voltage from an external source.
1V AVDD
2V
AVDD
AVSS 36 35 34 33 32 31 30 29 28 27 26 25
VRBC
AVSS
VRT
VRMC
VRBS
VRTS
BE
2.0V 1.0V Signal input
37 TSTR 38 VIN 39 TS 40 AVDD 41 AVSS 42 CAL Calibration pulse 43 AVDD 44 AT 45 AVDD 46 AVSS AVSS DVDD DVSS 47 DVDD
AVSS
AVDD
VRTC
AVDD
AVDD
VRB
CE 24 OE 23 CLK 22 Clock input
AVDD 21 MINV 20 LINV 19 TESTMODE 18 AVDD 17 AVSS 16 RESET 15 TIN 14 AVSS Reset pulse AVDD
DVSS
DVDD
48 DVSS
TO 13
D4
D7
D1
D3
D6
D0
D2
1
2
3
4
5
6
7
D5
8
9 10 11 12 : 0.1µF
DVSS DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 10 –
D8
D9
CXD3300R
Application Circuit 2 When not using self-bias circuit, using only the internal bias circuit, and supplying the reference voltage from an external source.
1V AVDD AVSS
2V
AVDD
AVSS 36 35 34 33 32 31 30 29 28 27 26 25
VRBC
AVSS
VRT
VRMC
VRBS
VRTS
BE
2.0V 1.0V Signal input
37 TSTR 38 VIN 39 TS 40 AVDD 41 AVSS 42 CAL Calibration pulse 43 AVDD 44 AT 45 AVDD 46 AVSS AVSS DVDD DVSS 47 DVDD
AVSS
AVDD
VRTC
AVDD
AVDD
VRB
CE 24 OE 23 CLK 22 Clock input
AVDD 21 MINV 20 LINV 19 TESTMODE 18 AVDD 17 AVSS 16 RESET 15 TIN 14 AVSS Reset pulse AVDD
DVSS
DVDD
48 DVSS
TO 13
D4
D7
D1
D3
D6
D0
D2
1
2
3
4
5
6
7
D5
8
9 10 11 12 : 0.1µF
DVSS DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 11 –
D8
D9
CXD3300R
Application Circuit 3 When using the self-bias and internal bias circuits, and supplying the reference voltage.
AVDD AVDD AVSS 36 35 34 33 32 31 30 29 28 27 26 25
AVSS
VRBC
AVSS
VRT
VRMC
VRBS
VRTS
BE
2.0V 1.0V Signal input
37 TSTR 38 VIN 39 TS 40 AVDD 41 AVSS 42 CAL Calibration pulse 43 AVDD 44 AT 45 AVDD 46 AVSS AVSS DVDD DVSS 47 DVDD
AVSS
AVDD
VRTC
AVDD
AVDD
VRB
CE 24 OE 23 CLK 22 Clock input
AVDD 21 MINV 20 LINV 19 TESTMODE 18 AVDD 17 AVSS 16 RESET 15 TIN 14 AVSS Reset pulse AVDD
DVSS
DVDD
48 DVSS
TO 13
D4
D7
D1
D3
D6
D0
D2
1
2
3
4
5
6
7
D5
8
9 10 11 12 : 0.1µF
DVSS DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 12 –
D8
D9
CXD3300R
1. Calibration function 1) Activating startup calibration To achieve superior linearity, the CXD3300R has a built-in calibration circuit. When using this IC, therefore, startup calibration must be activated when the power supply and reference voltage have risen and stabilized. Care should be taken as only the upper five bits may be output in the worst case if startup calibration is not activated. Startup calibration can be activated either at the rise of the RESET pin (Pin 15) or at the fall of the CE pin (Pin 24). The startup calibration activation method for each case is shown in Fig. 1.
a) When using RESET [V] 3 AVDD [V] 3 b) When using CE AVDD
VRT
VRT
VRB
VRB
0
[t]
0
[t]
RESET
H L H L
RESET
H L H L
CE Startup calibration
CE Startup calibration
33,000 CLK
33,000 CLK
Fig. 1. Startup Calibration Activation Methods As shown in the figure above, startup calibration must be activated after the supply voltage has risen and stabilized (full scale of 90% or more). After activation, startup calibration is performed for an interval of about 33,000 clocks. Therefore, care should be taken as the output data during this interval (about 2.3ms at 14.3MHz) cannot be used. 2) Calibration pulse supply The IC's operating status with changes due to fluctuations in the supply voltage and ambient temperature during use can be constantly monitored and then compensated appropriately by inputting a pulse at regular intervals to the CAL pin (Pin 41). Fig. 2 shows the timing chart.
10ns or more 7 clocks CLK 1 clock or more
CAL D0 to D9
N–3 N–2
N–1
N
N+5
Fig. 2. Calibration Timing Chart – 13 –
CXD3300R
Calibration starts when the fall of the pulse input to the CAL pin (Pin 41) is detected at the clock rise. At this time, the comparator is used in an exclusive manner for a four clock interval. So, the output data holds the immediately previous data for a four clock interval after seven clocks from the rise of the clock where the fall of the calibration pulse was detected, and then the data during this interval is missing. Therefore, the effects of this function can be avoided by inputting a sync or other signal as the calibration pulse so that calibration is performed outside of the interval of the actually used video signal. An input example is shown below. [1] Input every H sync
Input CLK CAL
[2] Input every V sync
Input CLK RESET CAL
2. Latch-up Ensure that the AVDD and DVDD pins share the same power supply on a board to prevent latch-up which may be caused by power-ON time lag.
3. Board To obtain full-expected performance from this IC, be sure that the mounting board has a large ground pattern for lower impedance. It is recommended that the IC be mounted on a board without using a socket to evaluate its characteristics adequately.
– 14 –
CXD3300R
Example of Representative Characteristics
Supply current vs. Ambient temperature
20 38 AVDD = 3.0V DVDD = 3.0V Fc = 20MHz fIN = 1kHz sine wave
Maximum operating frequency vs. Ambient temperature
AVDD = 3.0V DVDD = 3.0V Fc = 20MHz fIN = 1kHz sine wave 36
18
16
Maximum operating frequency [MHz]
85
Supply current [mA]
34
14 –40 0 25 50 Ambient temperature [°C]
32 –40 0 25 50 85 Ambient temperature [°C]
Output data delay vs. Ambient temperature
11 8
Sampling delay vs. Ambient temperature
Output data delay [ns]
10
Sampling delay [ns]
AVDD = 3.0V DVDD = 3.0V Fc = 2MHz CL = 30pF
6
9
4 AVDD = 3.0V DVDD = 3.0V Fc = 2MHz 2
8 –40 0 25 50 85 Ambient temperature [°C]
–40
0
25
50
85
Ambient temperature [°C]
VRTC vs. Ambient temperature
2.0 AVDD = 3.0V DVDD = 3.0V Fc = 20MHz fIN = 1kHz sine wave 1.95 1.15 1.20
VRBC vs. Ambient temperature
VRTC [V]
1.90
VRBC [V]
1.10 AVDD = 3.0V DVDD = 3.0V Fc = 20MHz fIN = 1kHz sine wave 1.85 –40 1.05 0 25 50 85 –40 0 25 50 85 Ambient temperature [°C] Ambient temperature [°C]
– 15 –
CXD3300R
SNR vs. Analog input frequency
70 AVDD = 3.0V DVDD = 3.0V Fc = 20MHz VIN = 1Vp-p Ta = 25°C 60 60 70
SFDR vs. Analog input frequency
AVDD = 3.0V DVDD = 3.0V Fc = 20MHz VIN = 1Vp-p Ta = 25°C
50
SFDR [dB]
50 40 100k 1M Analog input frequency [Hz] 100M 40 100k
SNR [dB]
1M Analog input frequency [Hz]
100M
Effective bit vs. Analog input frequency
1 8
Analog input band
0
Output level [dB]
Effective bit [bit]
–1
7
AVDD = 3.0V DVDD = 3.0V Fc = 20MHz VIN = 1Vp-p Ta = 25°C 6 100k 1M Analog input frequency [Hz] 100M
–2
AVDD = 3.0V DVDD = 3.0V Fc = 20MHz VIN = 1Vp-p Ta = 25°C
–3 5M 10M 50M 75M 85M 100M
Analog input frequency [Hz]
– 16 –
CXD3300R
Package Outline
Unit: mm
48PIN LQFP (PLASTIC)
9.0 ± 0.2 ∗ 36 37 7.0 ± 0.1 25 24 S
(8.0)
A 48 1 0.5 + 0.08 0.18 – 0.03 + 0.2 1.5 – 0.1 12 13
B
(0.22)
+ 0.05 0.127 – 0.02 0.13 M
0.1 0.1 ± 0.1
0.5 ± 0.2
S
(0.127) +0.05 0.127 – 0.02
(0.18)
0.18 ± 0.03
0° to 10°
0.5 ± 0.2
DETAIL B:SOLDER DETAIL A
DETAIL B:PALLADIUM
NOTE: Dimension “∗” does not include mold protrusion.
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE LQFP-48P-L01 LQFP048-P-0707 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER/PALLADIUM PLATING 42/COPPER ALLOY 0.2g
– 17 –
0.127 ± 0.04
+ 0.08 0.18 – 0.03