0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CXD4017R

CXD4017R

  • 厂商:

    SONY(索尼)

  • 封装:

  • 描述:

    CXD4017R - Reception Digital Signal Processor IC for Infrared Spatial Digital Audio Communication - ...

  • 数据手册
  • 价格&库存
CXD4017R 数据手册
CXD4017R Reception Digital Signal Processor IC for Infrared Spatial Digital Audio Communication Description The CXD4017R is an IC that processes the received digital signals used for infrared spatial digital audio communication (based on the IEC61603-8-1 standard) in consumer products. This IC contains the analog-to-digital converter (ADC) for RF signal applications and a PLL circuit for audio applications. Features • Performs all the received digital signal processing on a single chip. • Supports the infrared spatial digital audio communication system formats for consumer uses. • Direct input of RF signals enabled by on-chip ADC. • External RAM and PLL circuit not required. Demodulator Block • Digital processing throughout enables the received RF signals in the infrared spatial digital audio communication system formats to be processed directly. • External analog circuit can be simplified by digital filter and on-chip ADC for RF signal applications. • Reproduction of subcarrier processed digitally. Error Corrector Block • Enables error correction for infrared spatial digital audio communication system formats. Output Interface Block • Digital-to-analog converter (DAC) for various audio applications can be connected directly. Controller Block • Simple pin setting mode • Serial interface provided by serial bus • Enables output of error correction state. PLL Block • On-chip PLL circuit for reproducing the clock signals required by the infrared spatial digital audio communication system formats. Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. 64 pin LQFP (Plastic) Structure Silicon gate CMOS IC Absolute Maximum Ratings • Supply voltage VDD1 –0.5 to +3.0 VDDE –0.5 to +3.0 • Input voltage VI –0.5 to VDDE + 0.5 (≤ 3 .0V) • Output voltage VO –0.5 to VDDE + 0.5 (≤ 3 .0V) • Storage temperature Tstg –55 to +125 Recommended Operating Conditions • Supply voltage VDDI 1.5 ± 0.1 2.5 ± 0.2 VDDE • A/D supply voltage VAD 2.5 ± 0.2 • PLL supply voltage VPLL 1.5 ± 0.1 • Operating temperature Topr –40 to +85 V V V V °C V V V V °C Input/Output Capacitance • Input capacitance CIN 16 (max.) pF • Output capacitance COUT 16 (max.) pF Note: Measurement conditions: Tj = 25°C, VDD = VI = 0V, f = 1MHz • Analog input capacitance 12 (typ.) pF CAD –1– E03970B49-PS CXD4017R Block Diagram APCPO PLVAR 18 PLREF 17 20 22 APVCI 23 APAVD OSCI 40 OSCO 43 PLL Clock Generator Clock Selector 24 APAVS 31 APX 28 VCOR 32 EXTCK ADVRH ADAVS ADAVD ADVRL 6 7 8 9 A/D Converter Demodulator Error Corrector Output I/F 54 BCK 59 LRCK 60 DAOUT 61 DTVALID ADVIN 10 62 EMPFS0 63 EMPFS1 13 XRST 14 DIFM0 15 DIFM1 29 CHNUM Buffer RAM 30 DIVCODE Controller 33 CSOD 34 SRDT 35 SWDT 36 XSCEN 37 SCLK 38 SCMODE 5 12 21 25 39 42 57 4 11 27 41 56 26 58 VSS VSS VSS VSS VSS VSS VSS VDDE VDDE VDDE VDDE VDDE VDDI ∗ Test pins not shown. –2– VDDI CXD4017R Pin Configuration SCMODE XSCEN TEST4 TEST3 TEST2 TEST1 TEST0 OSCO SWDT 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 TEST5 TEST6 TEST7 TEST8 TEST9 BCK TEST10 VDDE VSS VDDI LRCK DAOUT DTVALID EMPFS0 EMPFS1 TEST11 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 CSOD 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 SRDT SCLK OSCI VDDE VSS VSS EXTCK APX DIVCODE CHNUM VCOR VDDE VDDI VSS APAVS APAVD APCPO VSS APVCI TEST16 PLVAR PLREF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ADVRH ADVRL TEST12 TEST13 TEST14 ADAVS ADAVD ADVIN XRST VDDE VSS VDDE VSS DIFM0 DIFM1 –3– TEST15 CXD4017R Pin Description Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Symbol TEST12 TEST13 TEST14 VDDE VSS ADVRH ADAVS ADAVD ADVRL ADVIN VDDE VSS XRST DIFM0 DIFM1 TEST15 PLREF PLVAR TEST16 APVCI VSS APCPO APAVD APAVS VSS VDDI VDDE VCOR CHNUM DIVCODE APX EXTCK CSOD SRDT SWDT XSCEN SCLK I/O I I I — — I — — I I — — I I I I O O I I — O — — — — — I I I O I O O I I I Test pin, normally fixed at low Test pin, normally fixed at high Test pin, normally fixed at high Digital I/O power supply Digital GND RF ADC reference voltage input (high) RF ADC analog GND RF ADC analog power supply RF ADC reference voltage input (low) RF ADC input Digital I/O power supply Digital GND Reset (negative logic) Audio output format selection Test pin, normally fixed at low PLL reference output (fs) PLL frequency-divided output (APX output or VCOR input divided by 256) Test pin, normally fixed at low PLL VCO control voltage input Digital GND PLL charge pump output PLL VCO power supply PLL VCO GND Digital GND Digital internal power supply Digital I/O power supply Data output clock input Channel number selection (low: Ch0, high: Ch1) Full/half-band mode selection (low: full-band, high: half-band) PLL VCO output Data output clock selection (low: APX internal connection, high: VCOR pin input) Chapter start delay output Serial interface data read output Serial interface data write output Serial interface data enable input (negative logic) Serial interface data clock input –4– Description CXD4017R Pin No. 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Symbol SCMODE VSS OSCI VDDE VSS OSCO TEST0 TEST1 TEST2 TEST3 TEST4 TEST5 TEST6 TEST7 TEST8 TEST9 BCK TEST10 VDDE VSS VDDI LRCK DAOUT DTVALID EMPFS0 EMPFS1 TEST11 I/O I — I — — O I I I I I I I I O O O O — — — O O O O O I Description Control mode selection (low: pin setting, high: serial setting) Digital GND Crystal oscillator circuit input (12.288MHz) Digital I/O power supply Digital GND Crystal oscillator circuit output (12.288MHz) Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally fixed at low Test pin, normally open Test pin, normally open Bit clock output Test pin, normally open Digital I/O power supply Digital GND Digital internal power supply Audio sample clock output Output data for audio DAC Data valid flag output (DTVALID, low: invalid, high: valid) Emphasis, fs information output Test pin, normally fixed at high –5– CXD4017R Electrical Characteristics 1. DC characteristics Item High level input voltage Low level input voltage High level output voltage Low level output voltage High level output current Low level output current Input leakage current Crystal connection pin Symbol VIH VIL VOH VOL IOH IOL IL VIL VPLL VCPO VVCI VAD VRH VRL VRW RRW VIA CAD VOFF VDDI = 1.5V VDDE = 2.5V VAD = 2.5V VPLL = 1.5V VRW = 2.0V IOH = –100µA IOL = 100µA VOH = VDDE – 0.4V VOL = 0.4V (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Conditions Min. 1.7 –0.3 VDD – 0.2 0 –4.0 –8.0 4.0 8.0 — 1.7 –0.3 1.4 0 0 2.3 1.0 0.0 1.0 140 VRL 2.5 2.0 — 2.0 280 — 12 20 7.5 3.2 6.7 0.5 7.2 14.3 mA VRH 1.5 Typ. — — — — — — — — — Max. VDDE + 0.3 0.7 VDDE 0.2 — — — — ±5 VDDE + 0.3 0.7 1.6 VPLL VPLL 2.7 VAD VAD – 1.0 2.1 µA V V V V V V V V ∗ 10 V Ω V pF mV ∗ 12 ∗ 13 ∗9 ∗6 ∗ 10 ∗ 11 mA V ∗ 2, 3, 4 ∗ 2, 3 ∗4 ∗ 2, 3 ∗4 ∗1 ∗5 ∗5 ∗6 ∗7 ∗8 ∗9 Unit Applicable pins ∗1 High level VIH Low level PLL supply voltage PLL charge pump output voltage PLL VCO control voltage ADC supply voltage ADC reference voltage (high) ADC reference voltage (low) ADC reference potential difference (1) ADC reference input resistance (2) ADC input voltage ADC input capacitance ADC offset Digital block supply current IDDI internal logic Digital block supply current IDDE I/O ADC block supply current PLL block supply current Reference voltage pin current of A/D block IAD IPLL IREF Note 1: VRW = VRH – VRL Note 2: A current of approximately 7.2mA (typ.), 14.3mA (max.) flows between the ADVRH pin and ADVRL pin (when VRW is 2.0V). Ensure that the drive capacity of the supply power concerned is adequate. –6– CXD4017R Applicable pins ∗ 1 XRST, DIFM0, DIFM1, VCOR, CHNUM, DIVCODE, EXTCK, SWDT, XSCEN, SCLK, SCMODE, TEST0 to TEST7, TEST11 to TEST16 ∗ 2 CSOD, LRCK, DAOUT, DTVALID, EMPFS0, EMPFS1, TEST8 ∗ 3 SRDT ∗ 4 PLREF, PLVAR, APX, BCK, TEST9, TEST10 ∗ 5 OSCI, OSCO ∗ 6 APAVD, APAVS ∗ 7 APCPO ∗ 8 APVCI ∗ 9 ADAVD, ADAVS ∗ 10 ADVRL, ADVRH ∗ 11 ADVIN ∗ 12 VDDI ∗ 13 VDDE –7– CXD4017R 2. AC characteristics (1) OSCI, OSCO pins (a) When using self-excited oscillation (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Item Oscillation frequency Symbol fSYS Min. — Typ. 12.288 Max. — Unit MHz (b) When inputting pulses to OSCI (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Item Pulse frequency High level pulse width Low level pulse width Rise time/fall time Symbol fSYS Min. — — — Typ. 12.288 40.69 40.69 Max. — — — 5 Unit MHz ns ns ns tWHX tWLX tR , tF tCX (1/fSYS) tWHX tWLX VIHX VIHX × 0.9 OSCI VDDE/2 VIHX × 0.1 VILX tR tF (2) VCOR pin Item Pulse frequency (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Symbol fCXR Min. 8.176 Typ. — — — Max. 12.31 Unit MHz ns ns High level pulse width Low level pulse width tWHXR tWLXR tCXR × 0.4 tCXR × 0.4 tCXR (1/fCXR) tCXR × 0.6 tCXR × 0.6 tWHXR tWLXR VIHX VIHX × 0.9 VCOR VDDE/2 VIHX × 0.1 VILX tR tF –8– CXD4017R (3) SCLK, XSCEN, SWDT, SRDT pins (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Item Clock period Symbol Min. 800 400 400 170 0 400 350 350 — 162 — Typ. — — — — — — — — — — — Max. — — — — — — — — 345 — 80 Unit ns ns ns ns ns ns ns ns ns ns ns tCW Clock pulse width, high tCWH Clock pulse width, low tCWL Enable signal pulse width tCSWH Enable signal setup time tCSS Enable signal hold time tCSH Setup time tWSU Hold time tWHD Access time tAC Enable time tOLZ Disable time tOHZ tCW tCSS XSCEN tCWL tCWH tCSH tCSWH SCLK tWSU tWHD SWDT An Example of DATA READ Phase Hi-Z SRDT tAC tOLZ Valid tAC Valid tOHZ Hi-Z –9– CXD4017R (4) CSOD pin Item CSOD pulse width (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Symbol Min. 30 Typ. — Max. — Unit µs tCSOD CSOD tCSOD (5) XRST pin Item XRST pulse width (VDDE = 2.5 ± 0.2V, VDDI = 1.5 ± 0.1V, VSS = 0V, Topr = –40 to +85°C) Symbol Min. 10.0 Typ. — Max. — Unit ns tXRST XRST tXRST – 10 – CXD4017R Description of Functions 1. Description of clock generator (1) This LSI chip can generate the system clock pulse by connecting a 12.288MHz crystal oscillator to the OSCI pin and OSCO pin. (2) It functions as the system clock by inputting a 12.288MHz external oscillation clock pulse to the OSCI pin while keeping the OSCO pin open. 2. Description of PLL circuit (1) In addition to supplying the system clock pulse using the OSCI pin, this LSI requires the reproduction clock pulse which is provided by the PLL circuit. The PLL circuit provided on the LSI chip can be used for this purpose. (2) If the sampling frequency of the digital audio signals which contain the input RF signal is fs, then the reproduction clock pulse provided by the PLL circuit has a frequency of 256fs. (3) When the PLL circuit on the LSI is used, input a low level to the EXTCK pin and VCOR pin. Furthermore, an external lag-lead filter must be connected to the LSI between the charge pump output APCPO pin and the VCO control voltage input APVCI pin of the PLL circuit. Ensure that the wiring involved is kept as short as possible. (4) When the PLL circuit on the LSI is not used, the LSI chip must be provided with an external PLL circuit. Input a high level to the EXTCK pin and the reproduction clock pulse to the VCOR pin. The reference signal of the PLL circuit for generating the clock pulses is output to the PLREF pin, and its frequency is set to fs. At this time, the frequency of the clock pulse which has been input to the VCOR pin is divided by 256 inside the LSI, and the pulse with the resulting frequency is output to the PLVAR pin. – 11 – CXD4017R 3. Pin setting/serial setting mode The setting modes of this LSI can be broadly classified into two: the pin setting mode and the serial setting mode. Switching between these modes is achieved by the SCMODE pin. Pin SCMODE Signal level Low High Operation Pin setting mode Serial setting mode The pins of this LSI that become not significant in serial setting mode are listed below: DIVCODE pin, CHNUM pin, DIFM0 pin, DIFM1 pin In the serial setting mode, these pins can be set by serial setting. The rated values of the parameters which cannot be changed in pin setting mode (they can be changed in serial setting mode) are given below. Parameter CRCCK XMUTE Rated value 1 1 Operation CRC checked. Not muted CRCCK is valid only when crc_flag on Source_Info is set to "1", and when the CRC check is performed, the CRC errors affect the output data. (1) Pin setting mode In the pin setting mode (SCMODE = low), this LSI enables the various LSI operations to be changed by the DIVCODE pin, CHNUM pin, DIFM0 pin and DIFM1 pin. (2) Serial setting mode In serial setting mode (SCMODE = high), this LSI enables the various LSI operations to be changed by the serial interface. – 12 – CXD4017R 4. Description of serial interface (1) Serial interface timings This LSI enables the various LSI operations to be changed by the SCLK pin, SWDT pin, XSCEN pin and SRDT pin. The serial interface is divided into two code groups called the write code and read code. The interface timing chart for each code group is presented below. (2) XRST pin All the internal registers are initialized to "0" when reset by setting the XRST pin to low. (3) SRDT pin SRDT is the tri-state output pin. In order to use this pin as a quasi open drain output, the external pull-up supply voltage must be set to less than VDDE. Furthermore, the external pull-up resistance must be set to a value which is within the output drive capacity (IOL = 4mA). XSCEN SCLK SWDT A7 A6 A5 A4 A3 A2 A1 A0 Dn – 1 Dn – 2 Dn – 3 D2 D3 D2 D1 D0 Internal Registers Valid Write Code XSCEN SCLK SWDT A7 A6 A5 A4 A3 A2 A1 A0 Hi-Z SRDT Dn – 1 Dn – 2 D1 D2 D3 D2 D1 D0 Hi-Z Read Code – 13 – CXD4017R (4) Serial setting command table Address [A7 to A0] Code Command bit width Name [Dn – 1 to D0] DIVCODE CHNUM 0000_0000 (00h) Write 8 XMUTE CRCCK∗ 1 DIFM res. 1000_0110 (86h) Read 8 CORNUM∗ 2 Bit width 1 1 1 1 3 1 8 — Value 0 1 0 1 0 1 0 1 — Effect Full-band mode Half-band mode Lower band Higher band Muted Not muted CRC not checked CRC checked DAOUT output format selected Reserved Number of corrections in chapter ∗ 1 CRCCK is valid only when crc_flag on Source_Info is set to "1", and when the CRC check is performed, the CRC errors affect the output data. ∗ 2 This is the number of corrections in one chapter obtained from ECC. – 14 – CXD4017R 5. Description of audio DAC interface (1) In this LSI, the audio DAC can be directly coupled. If the on-chip PLL circuit is used, a 256fs clock pulse is output to the APX pin. DAOUT: DAC data BCK: DAC bit clock pulse LRCK: DAC sample clock pulse DTVALID: Data valid flag (low: invalid, high: valid) (2) The emphasis and sampling frequency information is output to the EMPFS0 pin and EMPFS1 pin. EMPFS1 Low Low High High EMPFS0 Low High Low High Emphasis Not provided Provided Provided Provided Sampling frequency No information 44.1kHz 48kHz 32kHz (3) The data valid flag DTVALID indicates the valid_flag contained in the Source_Info and the errors in communication. When this pin is low, it indicates that the valid_flag is "0" or that some kind of error, including any errors in the input signals at the transmission end, has occurred at some point after these signals were input. (4) Sixty-four BCK cycles are contained in one LRCK cycle. (5) The DAOUT output format can be changed by the DIFM register (3 bits) with address 00h when SCMODE is high (serial setting mode) and by the DIFM1 pin and DIFM0 pin when SCMODE is low (pin setting mode). SCMODE = High DIFM 000 001 010 011 100 101 110 111 No settings possible SCMODE = Low DIFM1 Low Low High High DIFM0 Low High Low High Output mode Mode-0 Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 – 15 – CXD4017R Output mode Mode-0 Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 Data output format Full-band MSB first, Left Justified I 2S MSB first, 16 bits, Right Justified MSB first, 24 bits, Right Justified MSB first, 20 bits, Right Justified LSB first, Right Justified —∗ 1 —∗ 1 Half-band MSB first, Left Justified I2S MSB first, 16 bits, Right Justified MSB first, 16 bits + 8 bits (zero data), Right Justified MSB first, 16 bits + 4 bits (zero data), Right Justified LSB first, Right Justified LSB first, Right Justified ∗ 1 Connection cannot be made to the DAC since these are special formats. ∗ 2 In modes 0 to 5, the data is output only when pcm_id on the Source_Info is output. Timing charts covering what has been described above are presented below. Audio DAC interface timing charts LRCK BCK DAOUT MSB Left Channel LSB Full-band, Mode-0 LRCK BCK DAOUT MSB LSB Left Channel Full-band, Mode-1 LRCK BCK DAOUT MSB LSB Left Channel Full-band, Mode-2 LRCK BCK DAOUT MSB LSB Left Channel Full-band, Mode-3 – 16 – CXD4017R LRCK BCK DAOUT Left Channel MSB LSB Full-band, Mode-4 LRCK BCK DAOUT LSB Left Channel MSB Full-band, Mode-5 LRCK BCK DAOUT free_field LSB Left Channel MSB Full-band, Mode-6 LRCK BCK DAOUT free_field LSB Left Channel MSB V U C P Full-band, Mode-7 LRCK BCK DAOUT MSB Left Channel LSB Half-band, Mode-0 LRCK BCK DAOUT MSB Left Channel LSB Half-band, Mode-1 LRCK BCK DAOUT Left Channel MSB LSB Half-band, Mode-2 – 17 – CXD4017R LRCK BCK DAOUT MSB Left Channel LSB Half-band, Mode-3 LRCK BCK DAOUT Left Channel MSB LSB Half-band, Mode-4 LRCK BCK DAOUT Left Channel LSB MSB Half-band, Mode-5, 6, 7 – 18 – CXD4017R 6. Description of other functions (1) Mute conditions The conditions under which muting occurs are more or less as listed below. • When the RF signal cannot be received due to cutoff or some other such reason In this case, the signal is muted as soon as it could not be received. • When many errors have occurred due to poor reception In this case, the signal is muted as soon as it is deemed that a high number of errors have occurred. • When the prescribed time has not elapsed after the signal was muted due to cutoff or some other such reason In this case, the muting is released after the prescribed time has elapsed since it was deemed that the RF signal received is problem-free. • When the PLL lock was not applied The muting is released after the prescribed time has elapsed since the PLL lock was applied. • When the XMUTE pin was set to "0" at address 00h In this case, the signal is instantly muted immediately after the setting. The muting is instantly released immediately after the XMUTE pin is set to "1". (2) CSOD The read parameters of the Read Code based on the serial interface are updated on a chapter by chapter basis in the infrared spatial digital audio communication system format. The CSOD pin output indicates a break in the chapter in response to the issue of this command. Access the Read Code within 3ms after the CSOD pin has changed from high to low. (3) CORNUM Feed forward errors are corrected in the infrared spatial digital audio communication system format. At the reception end, the errors are corrected using this parity. The number of symbols (bytes) whose errors have been corrected this way can be counted up. The number obtained by the countup for each chapter is output as the CORNUM. CORNUM takes the following values. Name CORNUM Min. 0 Value Max. 165 (4) DTVALID This signal, which is the data valid flag, is set to high when all of the following conditions have been met. • The number of times errors cannot be corrected in a chapter in the error correction circuit must not exceed 2. • No CRC errors must have occurred. (Operation can be changed by serial interface address 00h and CRCCK.) • The SYNC pattern of the received signals must have been detected properly. • The digital audio sample frequency must be locked. • The header signals among the received signals must coincide in multiple ways. • The synchronization timing in the output interface block must be locked to the start of the chapter of the received signals. • The XMUTE internal signal described above must be set to "1" (XMUTE is "1" when SCMODE is at low, and its setting can be changed by the serial interface when SCMODE is at high). – 19 – CXD4017R 7. Application Circuit X'tal 12.288MHz 2.5VD 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 TEST4 XSCEN OSCO 49 SCMODE TEST3 TEST2 TEST1 TEST0 SWDT TEST5 50 TEST6 51 TEST7 52 TEST8 53 TEST9 54 BCK 55 TEST10 56 VDDE 1.5VD 57 VSS 58 VDDI 59 LRCK 60 DAOUT 61 DTVALID 62 EMPFS0 63 EMPFS1 CXD4017R SRDT CSOD VDDE SCLK OSCI VSS VSS 32 EXTCK APX 31 DIVCODE 30 CHNUM 29 VCOR 28 VDDE 27 VDDI 26 VSS 25 APAVS 24 APAVD 23 APCPO 22 VSS 21 APVCI 20 TEST16 19 PLVAR 18 PLREF 17 1.5VA 1.5VD TEST12 TEST13 TEST14 ADVRH ADAVD ADAVS ADVRL ADVIN VDDE Audio D/A Convertor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DIFM0 XRST VDDE 64 15 Lch 2.0VA (Reference Voltage) Rch 2.5VA Reset Circuit CXA3504M I/V Converter BPF AGC Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 20 – DIFM1 TEST15 TEST11 VSS VSS 16 CXD4017R Notes on Operation • The loop filter portion of the PLL block is important for the characteristics. Therefore, the loop filter should be located as close to the IC pin as possible and surrounded by AGND. In addition, temperature compensation parts should be used for the loop filter capacitor and resistor. • The CXD4017R generates a delay during reception. Labeling the sampling frequency as fs, the delay time is 384/fs [s] in full-band mode. For example, when fs = 48kHz, the delay time is 8ms. In addition, in half-band mode the delay time is 768/fs [s]. In this case for example, when fs = 48kHz, the delay time is 16ms. Note that a delay is also generated during transmission by the transmission side IC CXD4016R. See the CXD4016R data sheet for details. CXD4017R Evaluation Board Description The CXD4017R evaluation board is a dedicated board designed to allow easy evaluation of the CXD4017R which was developed for reception of infrared spatial digital audio communication. An infrared spatial digital audio communication system format RF signal which is input from a SMB connecter is demodulated to a digital audio signal, and is converted to an analog audio signal by an internal audio DAC, then is output as pin jack or headphone output. The number of corrections can be displayed on the LED, so the receiving state can be confirmed visually. Features • Supply voltage: ±5V power supply • Displays the number of corrections on the LED • 2 audio outputs; pin jack and headphone output Operating Conditions • Supply voltage: ±5V (typ.) • Current consumption: +5V: 180mA (typ.), –5V: 10mA (typ.) Operation Method The CXD4017R evaluation board allows easy evaluation simply by providing the power supply and inputting an infrared spatial digital audio communication system format RF signal. The evaluation procedure is as follows. (1) Connect the power supply to the power supply connection pin J6. (2) SW1 is the manual reset switch. A reset is applied automatically during power-on, but this switch is used to perform reset manually. (3) The DIVCODE pin can be set by DIP switch S1-1. The DIVCODE pin is set low when this switch is OFF, and high when ON. (4) The CHNUM pin can be set by DIP switch S1-2. The CHNUM pin is set low when this switch is OFF, and high when ON. (5) The SCMODE pin can be set by DIP switch S1-3. The SCMODE pin is set low when this switch is OFF, and high when ON (6) The DIFM2 pin can be set by DIP switch S1-4. The DIFM2 pin is set low when this switch is OFF, and high when ON (7) The DIFM1 pin can be set by DIP switch S1-5. The DIFM1 pin is set low when this switch is OFF, and high when ON (8) The DIFM0 pin can be set by DIP switch S1-6. The DIFM0 pin is set low when this switch is OFF, and high when ON – 21 – CXD4017R (9) Always set DIP switches other than noted above to OFF. The above contents are listed in the tables below for reference. S1 1 2 3 4 5 6 7 8 Mode OFF: DIVCODE = L, ON: DIVCODE = H OFF: CHNUM = L, ON: CHNUM = H OFF: SCMODE = L, ON: SCMODE = H OFF: DIFM2 = L, ON: DIFM2 = H OFF: DIFM1 = L, ON: DIFM1 = H OFF: DIFM0 = L, ON: DIFM0 = H Always OFF Always OFF S2 1 2 3 4 5 6 7 8 Mode Always OFF Always OFF Always OFF Always OFF Always OFF Always OFF Always OFF Always OFF (10) Light emitting diode D1 is off when DIVCODE is low, and lighted when DIVCODE is high. (11) Light emitting diode D2 is off when CHNUM is low, and lighted when CHNUM is high. (12) Light emitting diodes D3 and D4 indicate the sampling frequency of the audio signal. This relationship is shown in the table below. D3, D4 Off, off Off, lighted Lighted, lighted Flashing, flashing Sampling frequency 44.1kHz 48kHz 32kHz Unlock (13) Light emitting diodes D5 to D8 are not used. – 22 – CXD4017R (14) Light emitting diodes D9 to D15 display the number of error corrections. This is the total error correction numbers during time for 48 chapters. The relationship between lighting of light emitting diodes and the number of error corrections is shown in the table below. D9 D10 D11 D12 D13 D14 D15 Lighted with 1 error correction or more Lighted with 3 error corrections or more Lighted with 9 error corrections or more Lighted with 27 error corrections or more Lighted with 81 error corrections or more Lighted with 243 error corrections or more Lighted with 729 error corrections or more (15) Light emitting diode D16 is off when DTVALID is high, and lighted when DTVALID is low. (16) Connection pins J3,J4, J7 and J9 are not used. (17) Audio signal outputs LINE OUT and Headphone OUT are available. For headphone OUT, the output level can be adjusted by RV1. CXD4017R EVB Semiconductor Parts List Parts No. U1, 5 U2, 4 U3 U6 U7 U8 U9, 10, 11 U12, 13 U14 Q1 D1, 2, 9, 10 D3, 4, 11, 12 D5, 6, 13, 14 D7, 8, 15, 16 D17 to 22 Product name NJM5532M TC74HCT541F AK4393VF EP1K100QI208-2 EPC2LI20 CXD4017R LM317T TL7705CP TC74LCX541F 2SC2223L TLG124 TLY124 TLO124 TLR124 1S1588 Toshiba Asahi Kasei Microsystems ALTERA ALTERA SONY National Semiconductor Texas Instruments Toshiba NEC Toshiba Toshiba Toshiba Toshiba Toshiba Manufacturer New Japan Radio FPGA Operation (1) Accumulates the number of error corrections, and displays. (2) Detects the sampling frequency. – 23 – Circuit Diagram RF DIVCODE MAIN2 DTVALID ADVIN ADVIN CLK EMPFS0 EMPFS1 MAIN1 DIVCODE DTVALID CLK EMPFS0 EMPFS1 SWDT XSCEN SCLK SRDT CSOD SWDT XSCEN SCLK SRDT CSOD LRCK0 BCK0 DAOUT0 LRCK1 BCK1 DAOUT1 LRCK1 BCK1 DAOUT1 AUDIO – 24 – POWER LRCK0 BCK0 DAOUT0 APX0 SWDIF0 PWXRST SWDIF1 DTSEL XRSTPW2 XRSTPW2 SCMODE SWCHNUM SWDIVCODE APX0 SWDIF0 SWDIF1 DTSEL SCMODE SWCHNUM SWDIVCODE APX1 APX1 DIF0 DIF1 DIF2 DEM0 DEM1 SMUTE DIF0 DIF1 DIF2 DEM0 DEM1 SMUTE DFS PDX XRSTPW2 XRSTPW1 XRSTPW1 DFS PDX CXD4017R CXD4017R EVB Circuit Diagram (TOP) R1 470 +A5V J1 RCA JACK 2P 3 2 Rch (RED) Lch (WHITE) 1 C1 470µ/10V R2 470 R3 1k R5 1k C4 3300p R4 1k C2 0.1µ C3 1000p +D5V C5 0.1µ U2 APX1 PDX BCK1 DAOUT1 D2.5V 1 2 3 4 5 6 7 8 9 10 G1 VCC G2 A1 Y1 A2 Y2 A3 Y3 A4 Y4 A5 Y5 A6 Y6 A7 Y7 A8 GND Y8 74HCT541F C9 0.1µ R13 4.7k R14 4.7k R15 4.7k U4 LRCK1 SMUTE DFS DEM0 DEM1 DIF0 DIF1 DIF2 R19 4.7k R20 4.7k R21 4.7k 1 2 3 4 5 6 7 8 9 10 G1 VCC G2 A1 Y1 A2 Y2 A3 Y3 A4 Y4 A5 Y5 A6 Y6 A7 Y7 A8 GND Y8 74HCT541F 20 19 18 17 16 15 14 13 12 11 C12 0.1µ +D5V +A5V U3 C11 10µ/16V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DVSS DVDD MCLK PD BICK SDATA LRCK SMUTE DFS DEM0 DEM1 DIF0 DIF1 DIF2 CKS2 CKS1 CKS0 P/S VCOM AOUTL+ AOUTL– AOUTR+ AOUTR– AVSS AVDD VREFH VREFL BVSS 28 27 26 25 24 23 22 21 20 19 18 17 16 15 C13 0.1µ C14 10µ/16V 20 19 18 17 16 15 14 13 12 11 R6 1k 8 3 3 2 RV1A 20k 1 R11 47k C8 470µ/10V –A5V R12 4.7k C10 10µ/16V J2 3 2 1 4 R7 1k R10 1k 1 2 R8 47k 8 5 7 6 R9 100 C6 1000p U1A NJM5532M C7 0.1µ U1B NJM5532M 4 8 3 8 4 6 5 RV1B 20k 4 R27 47k C22 0.1µ R28 4.7k C24 10µ/16V –A5V 4 – 25 – PHONEJACK STEREO +A5V R16 1k C15 0.1µ C16 10µ/16V C20 3300p R18 1k R17 1k C18 1000p C17 0.1µ AK4393VF R22 1k R23 1k R26 1k 1 2 R24 47k C19 470µ/10V 5 7 6 R25 100 C21 1000p U5A NJM5532M U5B NJM5532M C23 470µ/10V CXD4017R EVB Circuit Diagram (AUDIO) CXD4017R J3 IFdata10 IFdata9 IFdata8 10 9 8 7 6 5 4 3 2 1 GND A9 GND A7 GND A5 GND A3 GND A1 IFdata10 IFdata5 IFdata4 IFdata3 IFdata2 IFdata9 IFdata8 IFdata7 IFdata6 CLK IFdata1 IFdata7 D2.5V IFdata6 1 2 3 4 5 6 7 8 9 TH1 TH C25 0.1µ TH2 TH C26 0.1µ TH3 TH TH4 TH C27 0.1µ C28 0.1µ TH5 TH6 TH TH IFdata5 ALT3.3V ALT3.3V IFdata4 IFdata3 RA1 M9-1-103J 10 9 8 7 6 5 4 3 2 1 COM R1 R2 R3 R4 R5 R6 R7 R8 IL-10P-S3EN2 J4 GND A9 GND A7 GND A5 GND A3 GND A1 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 R29 10k R30 1k IFdata2 IFdata1 nCS CS nWS IFdata10 nRS IFdata9 I_O VCCINT IFdata8 I_O IFdata7 I_O IFdata6 I_O VCCIO I_O I_O I_O I_O I_O GND I_O I_O VCCINT Ded_Input CLK Ded_Input GND I_O I_O VCCIO I_O I_O I_O IFdata5 I_O IFdata4 GND IFdata3 I_O IFdata2 IFdata1 I_O VCCIO I_O I_O I_O I_O I_O I_O I_O I_O 1 2 3 4 5 6 7 8 9 TP4 LC-2S-Y SCLK 1 TP1 LC-2S-Y SCMODE C29 0.1µ 1 EMPFS1 EMPFS0 DTVALID DAOUT0 LRCK0 BCK0 SCMODE SCLK TP3 LC-2S-Y SWDT 1 1 R32 R34 R45 R44 C33 0.1µ R42 R43 C35 0.1µ 1 TH7 TH R38 R33 TP2 LC-2S-Y XSCEN 1 100 C32 0.1µ 100 XSCEN SWDT SRDT CSOD R35 R36 100 100 C34 0.1µ SWDIVCODE TP8 LC-2S-Y DTSEL 1 R48 100 C36 0.1µ C38 0.1µ TH8 TH TH10 TH C40 0.1µ TH11 TH SWCHNUM DTSEL SWDIF1 SWDIF0 DIVCODE R47 R46 R37 R41 R40 100 100 100 100 100 DSW1_1 DSW1_2 100 LED1 100 LED2 100 LED3 100 LED4 100 LED5 100 LED6 100 LED7 100 LED8 I_O I_O DSW1_3 DSW1_4 DSW1_5 DSW1_6 GND DSW1_7 DSW1_8 LOCK DSW2_1 I_O DSW2_2 VCCIO DSW2_3 DSW2_4 DSW2_5 DSW2_6 RMCK VCCINT I_O I_O I_O GND VCC_CKLK XRSTPW2 GlobalCLK1 Ded_Input GND_CLK GND DSW2_7 VCCIO DSW2_8 I_O LED9 LED10 I_O LED11 VCCINT LED12 I_O LED13 I_O LED14 LED15 VCCIO I_O LED16 I_O LED1 I_O LED2 C42 0.1µ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 TCK CONF_DONE nCEO TDO VCCIO GND EMPFS1 I_O EMPFS0 I_O DTVALID I_O DAOUT0 I_O LRCK0 BCK0 SCMODE SCLK INIT_DONE GND VCCINT VCCIO GND XSCEN I_O SWDT SRDT CSOD I_O I_O SWDIVCODE GND VCCINT VCCIO GND SWCHNUM DTSEL I_O SWDIF0 I_O SWDIF1 VCCIO GND DIVCODE DSW1_1 I_O DSW1_2 VCCINT GND TMS TRST nSTATUS U6 EP1K100QI208-2_1 DATA0 DCLK nCE TDI VCCINT GND APX1 PDX BCK1 I_O VCCIO GND DAOUT1 LRCK1 I_O I_O SMUTE DFS VCCIO GND I_O I_O DEM0 I_O DEM1 I_O VCCINT GND DIF0 I_O DIF1 DIF2 VCCINT GND LED8 I_O LED7 I_O VCCIO GND LED6 LED5 I_O LED4 I_O LED3 VCCIO GND MSEL0 MSEL1 VCCINT nCONFIG 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 TP5 LC-2S-Y APX1 C30 0.1µ 1 TP9 LC-2S-Y BCK1 1 RA2 M9-1-103J APX1 PDX BCK1 R31 R49 R39 22 100 100 C31 0.1µ TP6 LC-2S-Y DAOUT1 100 100 100 100 TP7 LC-2S-Y LRCK1 DAOUT1 LRCK1 SMUTE DFS 100 100 DEM0 DEM1 R50 R51 R52 100 100 100 DIF0 DIF1 DIF2 C37 0.1µ LED8 LED7 TH TH9 LED6 LED5 LED4 LED3 TP10 LC-2S-BK DGND TP11 LC-2S-BK DGND C39 0.1µ 1 COM R1 R2 R3 R4 R5 R6 R7 R8 IL-10P-S3EN2 C41 0.1µ C43 0.1µ XRSTPW1 R53 R54 R55 R56 R57 R58 R59 R60 D5 D6 D7 D1 D2 D3 D4 D8 3 2 1 20 19 ALT3.3V TH13 TH C49 0.1µ C45 0.1µ C46 0.1µ C47 0.1µ C48 0.1µ TH15 TH U7 R61 10k COM R1 R2 R3 R4 TH12 TH TH14 TH C44 0.1µ 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 RA3 M5-1-102J ALT3.3V FULL/HALF TLG124A CHNM TLG124A STA_5 TLO124 STA_6 TLO124 STA_7 TLR124 Fs_1 TLY124 D2.5V Fs_0 TLY124 STA_8 TLR124 LED10 LED11 LED12 LED13 LED14 LED15 LED16 4 5 DCLK 6 VCCSEL 7 NC 8 NC OE TCK DATA TDO VCC TMS 18 VPP 17 NC 16 NC 15 NC 14 VppSel C51 0.1µ R70 1k 1 2 3 4 5 ALT3.3V R62 R63 D10 R64 D11 R65 D12 R66 D13 R67 D14 R68 D15 R69 D16 RA4 R8 R7 R6 R5 R4 R3 R2 R1 COM 9 8 7 6 5 4 3 2 1 DSW1_8 DSW1_7 DSW1_6 DSW1_5 DSW1_4 DSW1_3 DSW1_2 DSW1_1 8 7 6 5 4 3 2 1 ON S1 9 10 11 12 13 14 15 16 A6E-8104 D2.5V XRSTPW2 APX0 RA5 R8 R7 R6 R5 R4 R3 R2 R1 COM 9 8 7 6 5 4 3 2 1 DSW2_8 DSW2_7 DSW2_6 DSW2_5 DSW2_4 DSW2_3 DSW2_2 DSW2_1 8 7 6 5 4 3 2 1 ON S2 D2.5V 9 10 11 12 13 14 15 16 EPC2LI20 STA_9 TLG124A D9 STA_11 TLY124 STA_12 TLY124 STA_13 TLO124 STA_14 TLO124 STA_15 TLR124 STA_16 TLR124 D2.5V STA_10 TLG124A 9 10 nCS 11 GND 12 TDI 13 nCASC nInt_Conf LED9 LED9 LED10 LED11 LED12 LED13 LED14 LED15 DSW1_3 DSW1_4 DSW1_5 DSW1_6 DSW1_7 DSW1_8 DSW2_1 DSW2_2 DSW2_3 DSW2_4 DSW2_5 DSW2_6 DSW2_7 DSW2_8 LED16 1 3 5 7 9 100 100 100 100 100 100 100 100 TCK GND 2 TDO Vcc 4 TMS NC 6 NC NC 8 TDI GND 10 J5 XG4C-1031 1 LED1 LED2 – 26 – C50 0.1µ CXD4017R A6E-8104 M9-1-103J M9-1-103J CXD4017R EVB Circuit Diagram (PLD) TP42 LC-2S-Y TXOUT/RINFO 1 TP12 TP13 LC-2S-Y LC-2S-Y SYMCLK BMPFS0 1 1 TP14 TP15 TP16 LC-2S-Y LC-2S-Y LC-2S-Y BMPFS1 DTVALID DAOUT0 1 1 1 TP17 LC-2S-Y LRCK0 1 TP18 LC-2S-Y BCK0 1 TP19 LC-2S-Y CLK 1 R71 R72 100 100 R73 100 R74 100 R75 100 R76 100 R77 22 EMPFS0 EMPFS1 DTVALID DAOUT0 LRCK0 BCK0 CLK TP20 LC-2S-BK DGND 1 TP21 TP22 TP23 LC-2S-BK LC-2S-BK LC-2S-BK DGND DGND DGND 1 1 1 D2.5V D1.5V C52 0.1µ C53 0.1µ A2.5V 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 TEST10 TEST9 TEST8 TEST7 TEST6 DTVALID TEST11 EMPFS1 EMPFS0 DAOUT 2 3 VR1 100 TP24 LC-2S-Y ADVRH 1 TEST5 LRCK VDDE BCK VDDI VSS R78 27 1 2 3 4 C55 0.1µ C56 10µ/16V A2.5V 5 6 7 8 C58 0.1µ ADVIN 9 10 11 12 XRSTPW2 SWDIF0 SWDIF1 DTSEL 13 14 15 C54 0.1µ TEST12 TEST13 TEST14 VDDE VSS ADVRH ADAVS ADAVD ADVRL ADVIN VDDE VSS XRST DIFM0 TEST4 TEST3 TEST2 TEST1 TEST0 OSCO VSS 48 D2.5V 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 R80 100 TP25 LC-2S-Y SRDT 1 1 R79 10k Surface mount C57 8p U8 CXD4017R Direct mount VDDE OSCI VSS SCMODE SCLK XSCEN SWDT SRDT 30 DIVCODE 31 APX 28 VCOR 29 CHNUM X1 12.288MHz TEST16 APCPO APAVD 24 APAVS 25 VSS 32 EXTCK PLVAR PLREF APVCI 26 VDDI 27 VDDE VSS 17 18 19 20 22 21 23 1 1 1 C64 0.1µ Surface mount 1 – 27 – C59 8p SCMODE SCLK XSCEN SWDT TP26 LC-2S-Y CSOD DIFM1 16 TEST15 CSOD C60 0.1µ SRDT CSOD R81 100 TP27 LC-2S-Y PLREF TP28 LC-2S-Y PLVAR C61 0.1µ C62 0.1µ A1.5V R82 10k C63 0.1µ R83 1k C65 1µ/35V T MSVA1V105M Surface mount R84 22 TP29 LC-2S-Y APX0 APX0 CXD4017R SWCHNUM SWDIVCODE CXD4017R EVB Circuit Diagram (MAIN) D17 1S1588 U9 3 TP30 LC-2S-Y 2 LM317 ADJ 1 L1 SN3-200 ALT3.3V VIN VOUT TP31 LC-2S-Y L2 SN3-200 1 +D5V R85 240 D18 1S1588 C68 47µ/16V C74 10µ/16V C69 0.1µ C66 0.1µ C67 47µ/16V 2 3 1 J6 1 2 3 4 IL-4P-S3EN2 C70 10µ/16V C71 0.1µ JP3 C72 0.1µ C73 47µ/16V C75 10µ/16V C76 0.1µ L3 SN3-200 +A5V D19 1S1588 U10 3 1 R86 270 R87 100 VR2 50 TP32 LC-2S-Y 2 LM317 ADJ 1 L4 SN3-200 D2.5V C77 0.1µ C78 47µ/16V VIN VOUT R88 240 TP33 LC-2S-BK AGND 1 TP34 LC-2S-Y 2 D20 1S1588 C81 47µ/16V C83 10µ/16V C82 0.1µ C79 0.1µ L5 SN3-200 C80 47µ/16V A2.5V 3 1 R90 330 J7 1 2 D21 1S1588 U11 3 1 C86 0.1µ C87 47µ/16V 1 1 ADJ 1 3 1 1 CXD4017R EVB Circuit Diagram (POWER) 1 – 28 – L6 SN3-200 –A5V R89 560 VR3 200 C84 0.1µ C85 47µ/16V IL-2P-S3EN2 TP35 LC-2S-Y 2 JP1 TP36 LC-2S-Y LM317 JP2 D22 1S1588 L7 SN3-200 A1.5V VIN VOUT R91 240 C90 47µ/16V C91 0.1µ C88 0.1µ C89 47µ/16V TP37 LC-2S-BK AGND R92 220 2 VR4 200 R93 33 C92 10µ/16V L8 SN3-200 D1.5V C93 0.1µ C94 47µ/16V CXD4017R +D5V R94 10k 1 2 3 4 C97 4.7µ/16V T C98 0.1µ +D5V +D5V +D5V +D5V U12 Vref RESIN Ct GND VCC VsSENSE RESET RESET 8 7 6 5 R97 10k C95 0.1µ U13 R95 10k 1 2 3 4 C100 0.1µ VCC VsSENSE RESET RESET TL7705CP Vref RESIN Ct GND 8 7 6 5 R98 10k C96 0.1µ R96 10k SW1 AB-15AH 1 2 3 TL7705CP C99 4.7µ/16V T td = 60ms td = 60ms C101 0.1µ U14 1 2 3 4 5 6 7 8 9 10 G1 VCC A1 G2 A2 Y1 A3 Y2 A4 Y3 A5 Y4 A6 Y5 A7 Y6 A8 Y7 GND Y8 20 19 18 17 16 15 14 13 12 11 XRSTPW2 XRSTPW1 TP38 TP39 LC-2S-Y LC-2S-Y 1 R99 100 1 – 29 – D2.5V XRSTPW1 XRSTPW2 R100 100 TC74LCX541F CXD4017R EVB Circuit Diagram (RESET) CXD4017R A2.5V +A5V +A5V R101 4.7k 3 C102 0.1µ C103 10µ/16V TP40 LC-2S-Y ADVIN 1 C104 0.1µ R102 4.7k J8 SMB C106 0.1µ VR5 5k 2 1 C105 0.1µ Q1 2SC2223L ADVIN R103 4.7k TP41 LC-2S-BK AGND 1 – 30 – +A5V J9 1 2 3 IL-3P-S3EN2 R104 10k R105 1k DIVCODE CXD4017R EVB Circuit Diagram (RFIN) CXD4017R CXD4017R Pattern Diagram CXD4017R EVB A Side Pattern Diagram CXD4017R EVB B Side Pattern Diagram – 31 – CXD4017R CXD4017R EVB GND Layer Pattern Diagram CXD4017R EVB Power Supply Layer Pattern Diagram – 32 – CXD4017R CXD4017R EVB A Side Silk Diagram CXD4017R EVB B Side Silk Diagram – 33 – CXD4017R Package Outline Unit: mm 64PIN LQFP (PLASTIC) 12.0 ± 0.2 10.0 ± 0.1 + 0.2 1.5 – 0.1 48 33 49 32 A 64 17 1 0.5 16 b 0.08 M 0.08 S S 0.25 0.1 ± 0.1 0.5 ± 0.2 0.6 ± 0.15 0.20 ± 0.05 0.145 ± 0.055 0˚ to 8˚ DETAIL A DETAIL B PACKAGE STRUCTURE PACKAGE MATERIAL SONY CODE JEITA CODE JEDEC CODE LQFP-64P-L023 P-LQFP64-10X10-0.5 TERMINAL TREATMENT TERMINAL MATERIAL PACKAGE MASS EPOXY RESIN SOLDER PLATING 42 ALLOY 0.32g LEAD PLATING SPECIFICATIONS ITEM LEAD MATERIAL SOLDER COMPOSITION PLATING THICKNESS SPEC. 42 ALLOY Sn-2%Bi 5-20µm – 34 – Sony Corporation
CXD4017R 价格&库存

很抱歉,暂时无法提供与“CXD4017R”相匹配的价格&库存,您可以联系我们找货

免费人工找货