CXK5B16120J/TM -12
65536-word × 16-bit High Speed Bi-CMOS Static RAM For the availability of this product, please contact the sales office.
Description CXK5B16120J/TM is a high speed 1M bit BiCMOS static RAM organized as 65536 words by 16 bits. Operating on a single 3.3V supply this asynchronous IC is suitable for use in high speed and low power applications. Features • Single 3.3V Supply 3.3V±0.3V • Fast access time 12ns (Max.) • Low stand-by current: 10mA (Max.) • Low power operation 972mW (Max.) • Package line-up Dual Vcc/Vss CXK5B16120J 400mil 44pin SOJ Package CXK5B16120TM 400mil 44pin TSOP Package CXK5B16120J 44 pin SOJ (Plastic) CXK5B16120TM 44 pin TSOP (Plastic)
Function 65536-word × 16-bit static RAM Structure Silicon gate Bi-CMOS IC
Block Diagram
A14 A15 A9 A8 A12 A13 A11 A10 Buffer Row Decoder Memory Vcc Matrix 256 × 4096
Pin configuration (Top View)
A4 1 A3 2 A2 3 A1 4 A0 5 CE 6 GND I/O1 7 I/O2 8 I/O3 9 I/O4 1
0 Vcc 11 44 A5 43 A6 42 A7 41 OE 40 UB 39 LB 38 I/O16 37 I/O15 36 I/O14 35 I/O13 34 GND 33 Vcc 32 I/O12 31 I/O11 30 I/O10 29 I/O9 28 NC 27 A8 26 A9 25 A10 24 A11 23 NC
Pin Description Symbol Description
A0 to A15 Address input I/O1 to I/O8 Data input output (lower byte I/O)
I/O9 Data input output to I/O16 (upper byte I/O) CE WE OE LB UB Vcc GND NC Chip enable input Write enable input Output enable input Lower byte select input Upper byte select input +3.3V Power supply Ground No connection
A5 A4 A3 A0 A2 A1 A6 A7 UB LB WE OE CE I/O1 I/O16 I/O Buffer Buffer I/O Gate Column Decoder
GND 12 I/O5 13 I/O6 14 I/O7 15 I/O8 16 WE 17 A15 18 A14 19 A13 20 A12 21 NC 22
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E93605A57-PK
CXK5B16120J/TM
Absolute Maximum Ratings Item Supply voltage Input voltage Input and output voltage Allowable power dissipation Operating temperature Storage temperature Soldering temperature • time Symbol VCC VIN VI/O PD Topr Tstg Tsolder J TM
(Ta = 25°C, GND = 0V) Rating –0.5∗1 to +4.6 –0.5∗1 to VCC + 0.5 –0.5∗1 to VCC + 0.5 1.5∗2 0 to +70 –55 to +150 260 • 10 235 • 10 Unit V V V W °C °C °C • sec °C • sec
∗1 Vcc, VIN, VI/O = –2.0V Min. for pulse width less than 5ns ∗2 Air Flow ≥ 1m/s
Truth Table CE H OE × WE × LB × L L L H L H H L L × L L H L L H × H × × H UB × L H L H L H L × H Mode Not selected Read Read Read Not selected Write Write Write Output disable Not selected I/O1 to I/O8 High Z Data Out Data Out High Z High Z Data in Data in High Z High Z High Z I/O9 to I/O16 High Z Data out High Z Data out High Z Data in High Z Data in High Z High Z Current ISB1, ISB2 ICC ICC ICC ICC ICC ICC ICC ICC ICC
~ : “H” or “L”
Recommended Operating Conditions Item Supply voltage Input high voltage Input low voltage Symbol VCC VIH VIL Min. 3.0 2.0 –0.3∗
(Ta = 0 to +70°C, GND = 0V) Typ. 3.3 — — Max. 3.6 VCC + 0.3 0.8 Unit V V V
∗ VIL = –2.0V Min. for pulse width less than 5ns
–2–
CXK5B16120J/TM
Electrical Characteristics DC Characteristics Item Input leakage current Output leakage current Symbol ILI ILO (Vcc = 3.3V±0.3V, GND = 0V, Ta = 0 to +70°C) Typ.∗ Conditions Min. Max. Unit VIN = GND to Vcc CE = VIH or OE = VIH or WE = VIL or UB = VIH or LB = VIH VI/O = GND to Vcc Min. Cycle Duty =100% IOUT = 0mA, CE = VIL, VIN = VIH or VIL CE ≥ Vcc – 0.2V VIN ≥ Vcc – 0.2V or VIN ≤ 0.2V Min. Cycle Duty =100% CE = VIH, VIN = VIH or VIL IOH = –2.0mA IOL = 2.0mA –10 –10 — — +10 +10 µA µA
Average operating current
ICC
—
—
270
mA
ISB1 Standby current ISB2 Output high voltage Output low voltage * Vcc = 3.3V, Ta = 25°C VOH VOL
—
—
10
mA
— 2.4 —
— — —
100 — 0.4
mA V V
I/O Capacitance Item Input capacitance I/O capacitance Symbol CIN CI/O Conditions VIN = 0V VI/O = 0V Min. — —
(Ta = 25°C, f = 1MHz) Typ. — — Max. 5 7 Unit pF pF
Note) This parameter is sampled and is not 100% tested.
AC Characteristics • AC test condition Item Input pulse high level Input pulse low level Input rise time Input fall time
(Vcc = 3.3V±0.3V, Ta = 0 to +70°C) Condition VIH = 3.0V VIL = 0.0V
I/O
Output load (1) Zo=50Ω RL=50Ω VL=1.4V Output load (2)*1 3.3V 1179Ω
tr = 2ns tf = 2ns
1.4V Fig. 1
Input and output reference level Output load conditions
I/O 5pF*2
868Ω
*1. For tLZ, tOLZ, tLBLZ, tUBLZ, tHZ, tOHZ, tLBHZ, tUBHZ, tOW, tWHZ *2. Including scope and jig capacitances.
Fig. 1 –3–
CXK5B16120J/TM
• Read cycle Item Read cycle time Address access time Chip enable access time Output enable to output valid Byte select to output valid Output data hold time Chip enable to output in low Z (CE) Output enable to output in low Z (OE) Byte select to output in low Z (LB, UB) Chip disable to output in high Z (CE) Output disable to output in high Z (OE) Byte select to output in high Z (LB, UB) Symbol -12 Min. 12 — — — — 3 3 0 0 0 0 0 Max. — 12 12 6 6 — — — — 6 6 6 Unit ns ns ns ns ns ns ns ns ns ns ns ns
tRC tAA tCO tOE tLBC tUB tOH tLZ∗ tOLZ∗ tLBLZ, tUBLZ∗ tHZ∗ tOHZ∗ tLBHZ, tUBHZ∗
∗ Transition is measured ±200mV from steady voltage with specified loading in Fig. 1-(2). This parameter is sampled and is not 100% tested.
• Write cycle Item Write cycle time Address valid to end of write Chip enable to end of write Byte select to end of write Data valid to end to write Data hold from end of write Write pulse width Address set up time Write recovery time Output active from end of write Write to output in high Z Symbol -12 Min. 12 10 10 10 8 0 10 0 0 4 0 Max. — — — — — — — — — — 6 Unit ns ns ns ns ns ns ns ns ns ns ns
tWC tAW tCW tLBW, tUBW tDW tDH tWP tAS tWR tOW* tWHZ*
∗ Transition is measured ±200mV from steady voltage with specified loading in Fig. 1-(2). This parameter is sampled and is not 100% tested.
–4–
CXK5B16120J/TM
Timing Waveform • Read cycle (1) : CE = OE = VIL, WE = VIH
tRC Address tAA tOH Data out Previous data valid Data valid
• Read cycle (2) : WE = VIH
tRC Address tAA CE tLZ tCO
tHZ
OE tO E tOLZ
tOHZ
LB, UB tLB tU tLBL tUBL
Z Z B
tLBH tUBH
Z Z
Data out High impedance
Data valid
–5–
CXK5B16120J/TM
• Write cycle (1) : WE control
tWC Address tA CE
W tCW
tWR
LB, UB
tLBW, tUBW
tAS WE tWP
tDW Data in tWHZ Data valid
tDH
tOW Data out High impedance
• Write cycle (2) : CE control
tWC Address tA tAS CE
W
tWR tCW
tLBW, tUBW LB, UB
tWP WE
tD
W
tD
H
Data in
Data valid
tLZ Data out
tWHZ
High impedance
∗ Do not apply the data input voltage of the opposite phase to the output while I/O pin is in output condition. –6–
CXK5B16120J/TM
• Write cycle (3) : LB, UB control
tWC Address tA
W
tCW CE tAS tLBW, tUBW LB, UB tWR
tWP WE
tD
W
tD
H
Data in tLBLZ tUBLZ Data out
Data valid
tWHZ
High impedance
∗ Do not apply the data input voltage of the opposite phase to the output while I/O pin is in output condition.
–7–
CXK5B16120J/TM
Example of Representative Characteristics
Supply current vs. Supply voltage
1.4 1.4
Supply current vs. Ambient temperature
ICC – Supply current [Normalized]
1.2
ICC – Supply current [Normalized]
1.2
1.0
1.0
0.8 Ta = 25°C
0.8 VCC =3.3V
0.6 3.0
0.6 3.15 3.3 3.45 VCC – Supply voltage [V] 3.6 0 20 40 60 Ta – Ambient temperature [°C] 80
Supply current vs. Frequency
12ns 1.0 1.8
Access time vs. Load capacitance
tOE
tAA, tCO, tOE – Access time [Normalized]
ICC – Supply current [Normalized]
0.75
1.6
0.5
1.4 tCO, tAA
0.25
1.2
Ta = 25°C VCC =3.3V
0 0 25 50 75 Frequency (1 /tRC, 1 /tWC) [MHz] 100
1.0 0 40 80 120 CL – Load capacitance [pF] 160
Access time vs. Supply voltage
1.4 1.4
Access time vs. Load capacitance
tAA, tCO, tOE – Access time [Normalized]
tAA, tCO, tOE – Access time [Normalized]
1.2
1.2 tCO tAA tOE 1.0
1.0
tAA tCO tOE
0.8 Ta = 25°C
0.8 VCC =3.3V
0.6 3.0
0.6 3.15 3.3 3.45 VCC – Supply voltage [V] 3.6 0 20 40 60 Ta – Ambient temperature [°C] 80
–8–
CXK5B16120J/TM
Standby current vs. Supply voltage
1.4 ISB2 1.4
Standby current vs. Ambient temperature
ISB1, ISB2 – Standby current [Normalized]
1.2 ISB1
ISB1 – Standby current [Normalized]
1.2
1.0
1.0
0.8 Ta = 25°C
0.8 VCC = 3.3V
0.6 3.0
0.6 3.15 3.3 3.45 VCC – Supply voltage [V] 3.6 0 20 40 60 Ta – Ambient temperature[°C] 80
Input voltage level vs. Supply voltage
1.2 1.4
Standby current vs. Ambient temperature
VIL, VIH – Input voltage [Normalized]
1.1
ISB2 – Standby current [Normalized]
VIH VIL
1.2
1.0
1.0
0.9 Ta = 25°C
0.8 VCC = 3.3V
0.8 3.0
0.6 3.15 3.3 3.45 VCC – Supply voltage [V] 3.6 0 20 40 60 Ta – Ambient temperature[°C] 80
Output high current vs. Output high voltage
4.0
Output low current vs. Output low voltage
1.8
IOH – Output high current [Normalized]
3.0
IOL – Output low current [Normalized]
1.4
2.0
1.0
1.0 VCC = 3.3V
0.6 VCC = 3.3V
0.0 0.0
0.2 1.0 2.0 3.0 VOH – Output high voltage [V] 4.0 0 0.2 0.4 0.6 VOL – Output low voltage [V] 0.8
–9–
CXK5B16120J/TM
Package Outline
Unit: mm
CXK5B16120J
44PIN SOJ (PLASTIC) 400mil
+ 0.4 28.58 – 0.1
44
23
+ 0.3 10.16 – 0.12
11.05 ± 0.12
+ 0.1 0.2 – 0.05
R0
.25
4
1
+ 0.08 0.73 – 0.07
22 1.27
+ 0.2 2.2 – 0.11 0.1
+ 0.075 0.43 – 0.045
0.178 M
1.15 MAX
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE SOJ-44P-01 ∗SOJ044-P-0400-A LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT EPOXY RESIN SOLDER PLATING COPPER ALLOY
0.635 MIN
+ 0.25 3.5 – 0.2
1.9g
CXK5B16120TM
44PIN TSOP (II) (PLASTIC) 400mil
1.2 MAX ∗18.41 ± 0.1 44 23 0.1
∗10.16 ± 0.1
11.76 ± 0.2
A
1 0.8 B 0.3 ± 0.1
22 0.13 M
+ 0.05 0.125 – 0.02
+ 0.1 0.1 – 0.05
0.32 ± 0.08 (0.3)
0.145 ± 0.055
(0.125)
0° to 10° DETAIL A DETAIL B NOTE: Dimension “∗” does not include mold protrusion.
PACKAGE STRUCTURE
MOLDING COMPOUND SONY CODE EIAJ CODE JEDEC CODE TSOP (II) -44P-L01 TSOP (II) 044-P-0400-A LEAD TREATMENT LEAD MATERIAL PACKAGE WEIGHT EPOXY / PHENOL RESIN SOLDER PLATING 42 ALLOY 0.5g
– 10 –
0.5 ± 0.1
9.33 ± 0.18