0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AM49LV6408MB10I

AM49LV6408MB10I

  • 厂商:

    SPANSION

  • 封装:

  • 描述:

    AM49LV6408MB10I - Stacked Multi-chip Package (MCP) 64 Mbit (4 M x 16 bit) Flash Memory and 8 Mbit (5...

  • 数据手册
  • 价格&库存
AM49LV6408MB10I 数据手册
Am49LV6408M Data Sheet July 2003 The following document specifies Spansion memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu. Continuity of Specifications There is no change to this datasheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal datasheet improvement and are noted in the document revision summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary. Continuity of Ordering Part Numbers AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM”. To order these products, please use only the Ordering Part Numbers listed in this document. For More Information Please contact your local AMD or Fujitsu sales office for additional information about Spansion memory solutions. Publication Number 30918 Revision A Amendment 0 Issue Date November 5, 2003 THIS PAGE LEFT INTENTIONALLY BLANK. ADVANCE INFORMATION Am49LV6408M Stacked Multi-chip Package (MCP) 64 Mbit (4 M x 16 bit) Flash Memory and 8 Mbit (512K x 16-Bit) pseudo Static RAM DISTINCTIVE CHARACTERISTICS MCP Features ■ Power supply voltage of 2.7 to 3.3 volt ■ High Performance — Access time as fast as 100ns initial 5 ns page Flash 55 ns pSRAM ■ Package — 69-Ball FBGA — Look ahead pinout for simple migration — 8 x 10 x 1.2 mm ■ Operating Temperature — –40°C to +85°C — 4-word page read buffer — 16-word write buffer ■ Low power consumption (typical values at 3.0 V, 5 MHz) — 30 mA typical initial Page read current; 10 mA typical intra-Page read current — 50 mA typical erase/program current — 1 µA typical standby mode current SOFTWARE & HARDWARE FEATURES ■ Software features — Program Suspend & Resume: read other sectors before programming operation is completed — Erase Suspend & Resume: read/program other sectors before an erase operation is completed — Data# polling & toggle bits provide status — Unlock Bypass Program command reduces overall multiple-word programming time — CFI (Common Flash Interface) compliant: allows host system to identify and accommodate multiple flash devices ■ Hardware features — Sector Group Protection: hardware-level method of preventing write operations within a sector group — Temporary Sector Unprotect: VID-level method of changing code in locked sectors — WP#/ACC input: Write Protect input (WP#) protects top or bottom two sectors regardless of sector protection settings ACC (high voltage) accelerates programming time for higher throughput during system production — Hardware reset input (RESET#) resets device Flash Memory Features ARCHITECTURAL ADVANTAGES ■ Single power supply operation — 3 V for read, erase, and program operations ■ Manufactured on 0.23 µm MirrorBit process technology ■ SecSi™ (Secured Silicon) Sector region — 128-word sector for permanent, secure identification through an 8-word random Electronic Serial Number, accessible through a command sequence — May be programmed and locked at the factory or by the customer ■ Flexible sector architecture — One hundred twenty seven 32 Kword sectors — Eight 4 Kword boot sectors ■ Compatibility with JEDEC standards — Provides pinout and software compatibility for single-power supply flash, and superior inadvertent write protection ■ Minimum 100,000 erase cycle guarantee per sector ■ 20-year data retention at 125°C PERFORMANCE CHARACTERISTICS ■ High performance — 100 ns access time — 35 ns page read times — 0.5 s typical sector erase time — 22 µs typical write buffer word programming time: 16-word write buffer reduces overall programming time for multiple-word updates pSRAM Features ■ As fast as 55ns access time ■ Power dissipation — Operating: 23 mA maximum — Standby: 60 µA maximum at 3.0 V ■ CE1ps# and CE2ps Chip Select ■ Power down features using CE1ps# and CE2ps ■ Data retention supply voltage: 1.5 to 3.3 volt ■ Byte data control: LB#s (DQ7–DQ0), UB#s (DQ15–DQ8) This document contains information on a product under development at Advanced Micro Devices. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Publication# 30918 Rev: A Amendment/0 Issue Date: November 5, 2003 Refer to AMD’s Website (www.amd.com) for the latest information. ADVANCE INFORMATION GENERAL DESCRIPTION Am29LV640MH/L Features The Am29LV640MH/L is a 64 Mbit, 3.0 volt single power supply flash memory device organized as 4,194,304 words. The device has an 16-bit bus and can be programmed either in the host system or in standard EPROM programmers. Each device requires only a s ingle 3.0 volt power supply for both read and write functions. In addition to a V CC i nput, a high-voltage a ccelerated program (ACC) feature provides shorter programming times through increased current on the WP#/ACC input. This feature is intended to facilitate factory throughput during system production, but may also be used in the field if desired. The device is entirely command set compatible with the J EDEC single-power-supply Flash standard . Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations. The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory. Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) s tatus bits o r monitor the Ready/Busy# (RY/BY#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence overhead by requiring only two write cycles to program data instead of four. Hardware data protection m easures include a low V CC d etector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This can be achieved in-system or via programming equipment. The E rase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operation. The P rogram Suspend/Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the program operation. The hardware RESET# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device. 2 Am49LV6408M November 5, 2003 ADVANCE INFORMATION TABLE OF CONTENTS Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4 MCP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 4 Flash Memory Block Diagram. . . . . . . . . . . . . . . . 5 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 8 Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 9 Requirements for Reading Array Data ................................... 11 Page Mode Read ................................................................ 11 Writing Commands/Command Sequences ............................ 11 Write Buffer ......................................................................... 11 Accelerated Program Operation .......................................... 11 Autoselect Functions ........................................................... 11 Automatic Sleep Mode ........................................................... 12 RESET#: Hardware Reset Pin ............................................... 12 Output Disable Mode .............................................................. 12 Table 2. Am29LV640MT Top Boot Sector Architecture ..................12 Table 3. Am29LV640MB Bottom Boot Sector Architecture .............15 Figure 9. Toggle Bit Algorithm........................................................ 36 DQ2: Toggle Bit II ................................................................... 36 Reading Toggle Bits DQ6/DQ2 ............................................... 36 DQ5: Exceeded Timing Limits ................................................ 37 DQ3: Sector Erase Timer ....................................................... 37 DQ1: Write-to-Buffer Abort ..................................................... 37 Table 12. Write Operation Status ................................................... 37 Absolute Maximum Ratings . . . . . . . . . . . . . . . . 38 Figure 10. Maximum Negative Overshoot Waveform ................... 38 Figure 11. Maximum Positive Overshoot Waveform..................... 38 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Pseudo SRAM DC and Operating Characteristics . . . . . . . . . . . . . . . . . . Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 38 39 40 41 Figure 12. Test Setup.................................................................... 41 Table 13. Test Specifications ......................................................... 41 Key to Switching Waveforms. . . . . . . . . . . . . . . . 41 Figure 13. Input Waveforms and Measurement Levels ................. 41 Sector Group Protection and Unprotection ............................. 18 Table 4. Am29LV640MT Top Boot Sector Protection .....................18 Table 5. Am29LV640MB Bottom Boot Sector Protection ................18 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42 Flash Read-Only Operations ................................................. 42 Figure 14. Read Operation Timings ............................................... 42 Figure 15. Page Read Timings ...................................................... 43 Write Protect (WP#) ................................................................ 19 Temporary Sector Group Unprotect ....................................... 19 Figure 1. Temporary Sector Group Unprotect Operation................ 19 Figure 2. In-System Sector Group Protect/Unprotect Algorithms ... 20 Hardware Reset (RESET#) .................................................... 44 Figure 16. Reset Timings ............................................................... 44 SecSi (Secured Silicon) Sector Flash Memory Region .......... 21 Table 6. SecSi Sector Contents ......................................................21 Figure 3. SecSi Sector Protect Verify.............................................. 22 Erase and Program Operations .............................................. 45 Figure 17. Program Operation Timings.......................................... Figure 18. Accelerated Program Timing Diagram.......................... Figure 19. Chip/Sector Erase Operation Timings .......................... Figure 20. Data# Polling Timings (During Embedded Algorithms)...................................................... Figure 21. Toggle Bit Timings (During Embedded Algorithms)...... Figure 22. DQ2 vs. DQ6................................................................. 46 46 47 48 49 49 Hardware Data Protection ...................................................... 22 Low VCC Write Inhibit ......................................................... 22 Write Pulse “Glitch” Protection ............................................ 22 Logical Inhibit ...................................................................... 22 Power-Up Write Inhibit ......................................................... 22 Common Flash Memory Interface (CFI) . . . . . . . 22 Command Definitions . . . . . . . . . . . . . . . . . . . . . 25 Reading Array Data ................................................................ 25 Reset Command ..................................................................... 26 Autoselect Command Sequence ............................................ 26 Enter SecSi Sector/Exit SecSi Sector Command Sequence .. 26 Word Program Command Sequence ..................................... 26 Unlock Bypass Command Sequence .................................. 27 Write Buffer Programming ................................................... 27 Accelerated Program ........................................................... 28 Figure 4. Write Buffer Programming Operation............................... 29 Figure 5. Program Operation .......................................................... 30 Temporary Sector Unprotect .................................................. 50 Figure 23. Temporary Sector Group Unprotect Timing Diagram ... 50 Figure 24. Sector Group Protect and Unprotect Timing Diagram .. 51 Alternate CE# Controlled Erase and Program Operations ..... 52 Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings.......................................................................... 53 Pseudo SRAM AC Characteristics . . . . . . . . . . . 54 Power Up Time ....................................................................... 54 Read Cycle ............................................................................. 54 Figure 26. Pseudo SRAM Read Cycle—Address Controlled......... 54 Figure 27. Pseudo SRAM Read Cycle........................................... 55 Write Cycle ............................................................................. 56 Figure 28. Pseudo SRAM Write Cycle—WE# Control ................... 56 Figure 29. Pseudo SRAM Write Cycle—CE1#s Control ................ 57 Program Suspend/Program Resume Command Sequence ... 30 Figure 6. Program Suspend/Program Resume............................... 31 Chip Erase Command Sequence ........................................... 31 Sector Erase Command Sequence ........................................ 31 Figure 7. Erase Operation............................................................... 32 Erase Suspend/Erase Resume Commands ........................... 32 Write Operation Status . . . . . . . . . . . . . . . . . . . . . 34 DQ7: Data# Polling ................................................................. 34 Figure 8. Data# Polling Algorithm ................................................... 34 Flash Erase And Programming Performance . . 58 Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 58 BGA Package Capacitance . . . . . . . . . . . . . . . . . 58 Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 60 TLB069—69-Ball Fine-pitch Ball Grid Array (FBGA) 8 x 10 mm Package ................................................................ 60 Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 61 DQ6: Toggle Bit I .................................................................... 35 November 5, 2003 Am49LV6408M 3 ADVANCE INFORMATION PRODUCT SELECTOR GUIDE Family Part Number Speed Option Max Access Time (ns) Max. CE# Access (ns) Max. Page Access Time (tPACC) OE# Access (ns) Standard Voltage Range: VCC = 2.7–3.3 V Am49LV6408M Flash Memory 10, 15 100 100 35 35 11 110 110 40 40 15 55 55 N/A 30 pSRAM 10, 11 70 70 N/A 35 Note: See “AC Characteristics” for full specifications. MCP BLOCK DIAGRAM VCCf A21 to A0 A21 to A0 WP#/ACC RESET# CE#f VSS RY/BY# 64 M Bit Flash Memory DQ15 to DQ0 DQ15 to DQ0 VCCs/VCCQ VSS/VSSQ A0 toto A0 A18 A19 LB#ps UB#ps WE# OE# CE1#ps CE2ps 8 M Bit pseudo Static RAM DQ15 to DQ0 4 Am49LV6408M November 5, 2003 ADVANCE INFORMATION FLASH MEMORY BLOCK DIAGRAM DQ15–DQ0 VCC VSS Erase Voltage Generator RESET#f WE# WP#/ACC Input/Output Buffers Sector Switches State Control Command Register PGM Voltage Generator Chip Enable Output Enable Logic STB Data Latch CE#f OE# STB VCC Detector Timer Address Latch Y-Decoder Y-Gating X-Decoder Cell Matrix A21–A0 November 5, 2003 Am49LV6408M 5 ADVANCE INFORMATION CONNECTION DIAGRAMS 69-ball Fine-pitch BGA Top View, Balls Facing Down Flash only A1 NC A5 NC A6 NC A10 NC pSRAM only B1 NC B3 A7 B4 C4 UB# B5 C5 D5 RY/BY# B6 C6 D6 A20 B7 A8 B8 A11 LB# WP#/ACC WE# Shared C2 A3 C3 A6 C7 A19 C8 A12 C9 A15 RESET# CE2ps D2 A2 D3 A5 D4 A18 D7 A9 D8 A13 D9 A21 E1 NC E2 A1 E3 A4 E4 A17 E7 A10 E8 A14 E9 NC E10 NC F1 NC F2 A0 F3 VSS F4 DQ1 F7 DQ6 F8 NC F9 A16 F10 NC G2 CE#f G3 OE# G4 DQ9 G5 DQ3 G6 DQ4 G7 DQ13 G8 DQ15 G9 NC H2 CE1#ps H3 DQ0 H4 DQ10 H5 VCCf H6 VCCs H7 DQ12 H8 DQ7 H9 VSS J3 DQ8 J4 DQ2 J5 DQ11 J6 NC J7 DQ5 J8 DQ14 K1 NC K5 NC K6 NC K10 NC SPECIAL PACKAGE HANDLING INSTRUCTIONS FOR FBGA PACKAGES Special handling is required for Flash Memory products in molded packages (BGA). The package and/or data integrity may be compromised if the package body is exposed to temperatures about 150°C for prolonged periods of time. 6 Am49LV6408M November 5, 2003 ADVANCE INFORMATION PIN DESCRIPTION A21–A0 = 22 Address inputs DQ15–DQ0 = 16 Data inputs/outputs CE#f = Chip Enable input (Flash) LOGIC SYMBOL 22 A21–A0 CE1#ps CE2ps OE# WE# WP#/ACC RESET#f UB#ps LB#ps RY/BY# DQ15–DQ0 16 CE1#ps, CE2ps= Chip Enable (pSRAM) OE# WE# WP#/ACC RESET#f VCCf = Output Enable input (Flash) = Write Enable input (Flash) = Hardware Write Protect input/Programming Acceleration input (Flash) = Hardware Reset Pin input (Flash) = Flash 3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances) = pSRAM Power Supply = Device Ground = Pin Not Connected Internally = Upper Byte Control (pSRAM) = Lower Byte Control (pSRAM) VCCps VSS NC UB#ps LB#ps November 5, 2003 Am49LV6408M 7 ADVANCE INFORMATION ORDERING INFORMATION The order number (Valid Combination) is formed by the following: Am49LV640 8 M T 10 I T TAPE AND REEL T = 7 inches S = 13 inches TEMPERATURE RANGE I = Industrial (–40°C to +85°C) SPEED OPTION See Product Selector Guide and Valid Combinations BOOT CODE SECTOR ARCHITECTURE T = Top sector B = Bottom sector PROCESS TECHNOLOGY M= 0.23 µm MirrorBit pSRAM DEVICE DENSITY 8 = 8 Mbits AMD DEVICE NUMBER/DESCRIPTION Am49LV6408M Stacked Multi-Chip Package (MCP) Flash Memory and pSRAM Am29LV640M 64 Megabit (4 M x 16-Bit) Flash Memory and 8 Mbit (512K x 16-Bit) pseudo Static RAM Valid Combinations Order Number Am49LV6408MT15I Am49LV6408MB15I Am49LV6408MT10I T Am49LV6408MB10I Am49LV6408MT11I Am49LV6408MB11I M49000002U M49000002V M49000002X Package Marking M49000003Z M49000004A M49000002T Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations 8 Am49LV6408M November 5, 2003 ADVANCE INFORMATION DEVICE BUS OPERATIONS This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail. November 5, 2003 Am49LV6408M 9 ADVANCE Table 1. Operation (Notes 1, 2) Read from Flash INFORMATION Device Bus Operations Addr. AIN AIN X X X X SADD, A6 = L, A1 = H, A0 = L SADD, A6 = H, A1 = H, A0 = L X LB#s UB#s RESET# X X H WP#/ACC (Note 4) L/H DQ7– DQ0 DOUT DIN High-Z DQ15– DQ8 DOUT DIN High-Z CE#f CE1#ps CE2ps OE# WE# L H X H X H X L H X H X L X L X L H X L X L X L X L H L H L L H Write to Flash L VCC ± 0.3 V L H L X X H VCC ± 0.3 V H (Note 4) Standby X H H X X H H X X L X X X X L X H Output Disable Flash Hardware Reset Sector Protect (Note 5) L/H High-Z High-Z X L L/H High-Z High-Z L X H X X VID L/H DIN X Sector Unprotect (Note 5) Temporary Sector Unprotect L X H X X X VID (Note 6) DIN X X X X X L X L L H L L H VID (Note 6) DIN DOUT High-Z DOUT DOUT High-Z DIN DIN High-Z Read from pSRAM H L H L H AIN H L L H X High-Z DOUT DIN Write to pSRAM H L H X L AIN H L H X High-Z DIN Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SADD = Flash Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out Notes: 1. Other operations except for those indicated in this column are inhibited. 2. Do not apply CE#f = VIL, CE1#ps = VIL and CE2ps = VIH at the same time. 3. Don’t care or open LB#ps or UB#ps. 4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC = VIH the boot sectors protection will be removed. If WP#/ACC = VACC (9V), the program time will be reduced by 40%. 5. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector Group Protection and Unprotection” section. 6. If WP#/ACC = VIL, the two outermost boot sectors remain protected. If WP#/ACC = VIH, the two outermost boot sector protection depends on whether they were last protected or unprotected using the method described in “Sector Group Protection and Unprotection”. If WP#/ACC = VHH, all sectors will be unprotected. 10 Am49LV6408M November 5, 2003 ADVANCE INFORMATION An erase operation can erase one sector, multiple sectors, or the entire device. Tables 3 and 2 indicates the address space that each sector occupies. Refer to the DC Characteristics table for the active current specification for the write mode. The AC Characteristics section contains timing specification tables and timing diagrams for write operations. Write Buffer Write Buffer Programming allows the system to write a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See “Write Buffer” for more information. Accelerated Program Operation The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC pin. This function is primarily intended to allow faster manufacturing throughput at the factory. If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin returns the device to normal operation. Note that the WP#/ACC pin must not be at VHH for operations other than accelerated programming, or device damage may result. In addition, no external pullup is necessary since the WP#/ACC pin has internal pullup to VCC. Autoselect Functions If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the Sector Group Protection and Unprotection and Autoselect Command Sequence sections for more information. Requirements for Reading Array Data To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH. The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered. See “Reading Array Data” for more information. Refer to the AC Flash Read-Only Operations table for timing specifications and to Figure 14 for the timing diagram. Refer to the DC Characteristics table for the active current specification on reading array data. Page Mode Read The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. The page size of the device is 4 words. The appropriate page is selected by the higher address bits A(max)–A2. Address bits A1–A0 determine the specific word within a page. This is an asynchronous operation; the microprocessor supplies the specific word location. The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted and reasserted for a subsequent access, the access time is t ACC o r t CE . Fast page mode accesses are obtained by keeping the “read-page addresses” constant and changing the “intra-read page” addresses. Writing Commands/Command Sequences To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH. The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The “Word Program Command Sequence” section has details on programming data to the device using both standard and Unlock Bypass command sequences. Standby Mode When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input. The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VCC ± 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within November 5, 2003 Am49LV6408M 11 ADVANCE INFORMATION SET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity. Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS±0.3 V, the standby current will be greater. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory. Refer to the AC Characteristics tables for RESET# parameters and to Figure 16 for the timing diagram. VCC ± 0.3 V, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time (t CE ) for read access when the device is in either of these standby modes, before it is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is completed. Refer to the DC Characteristics table for the standby current specification. Automatic Sleep Mode The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for t ACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. Refer to the DC Characteristics table for the automatic sleep mode current specification. Output Disable Mode When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state. RESET#: Hardware Reset Pin The RESET# pin provides a hardware method of resetting the device to reading array data. When the RETable 2. Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 Am29LV640MT Top Boot Sector Architecture Sector Size (Kwords) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 (x16) Address Range 00000h–07FFFh 08000h–0FFFFh 10000h–17FFFh 18000h–1FFFFh 20000h–27FFFh 28000h–2FFFFh 30000h–37FFFh 38000h–3FFFFh 40000h–47FFFh 48000h–4FFFFh 50000h–57FFFh 58000h–5FFFFh 60000h–67FFFh 68000h–6FFFFh 70000h–77FFFh 78000h–7FFFFh 80000h–87FFFh 88000h–8FFFFh 90000h–97FFFh 98000h–9FFFFh A0000h–A7FFFh A8000h–AFFFFh B0000h–B7FFFh B8000h–BFFFFh C0000h–C7FFFh Sector Address A21–A12 0000000xxx 0000001xxx 0000010xxx 0000011xxx 0000100xxx 0000101xxx 0000110xxx 0000111xxx 0001000xxx 0001001xxx 0001010xxx 0001011xxx 0001100xxx 0001101xxx 0001101xxx 0001111xxx 0010000xxx 0010001xxx 0010010xxx 0010011xxx 0010100xxx 0010101xxx 0010110xxx 0010111xxx 0011000xxx 12 Am49LV6408M November 5, 2003 ADVANCE Table 2. Sector SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 INFORMATION Am29LV640MT Top Boot Sector Architecture (Continued) Sector Size (Kwords) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 (x16) Address Range C8000h–CFFFFh D0000h–D7FFFh D8000h–DFFFFh E0000h–E7FFFh E8000h–EFFFFh F0000h–F7FFFh F8000h–FFFFFh F9000h–107FFFh 108000h–10FFFFh 110000h–117FFFh 118000h–11FFFFh 120000h–127FFFh 128000h–12FFFFh 130000h–137FFFh 138000h–13FFFFh 140000h–147FFFh 148000h–14FFFFh 150000h–157FFFh 158000h–15FFFFh 160000h–167FFFh 168000h–16FFFFh 170000h–177FFFh 178000h–17FFFFh 180000h–187FFFh 188000h–18FFFFh 190000h–197FFFh 198000h–19FFFFh 1A0000h–1A7FFFh 1A8000h–1AFFFFh 1B0000h–1B7FFFh 1B8000h–1BFFFFh 1C0000h–1C7FFFh 1C8000h–1CFFFFh 1D0000h–1D7FFFh 1D8000h–1DFFFFh 1E0000h–1E7FFFh 1E8000h–1EFFFFh 1F0000h–1F7FFFh 1F8000h–1FFFFFh 200000h–207FFFh 208000h–20FFFFh 210000h–217FFFh 218000h–21FFFFh 220000h–227FFFh 228000h–22FFFFh 230000h–237FFFh 238000h–23FFFFh 240000h–247FFFh 248000h–24FFFFh 250000h–257FFFh 258000h–25FFFFh 260000h–267FFFh 268000h–26FFFFh 270000h–277FFFh 278000h–27FFFFh Sector Address A21–A12 0011001xxx 0011010xxx 0011011xxx 0011000xxx 0011101xxx 0011110xxx 0011111xxx 0100000xxx 0100001xxx 0100010xxx 0101011xxx 0100100xxx 0100101xxx 0100110xxx 0100111xxx 0101000xxx 0101001xxx 0101010xxx 0101011xxx 0101100xxx 0101101xxx 0101110xxx 0101111xxx 0110000xxx 0110001xxx 0110010xxx 0110011xxx 0100100xxx 0110101xxx 0110110xxx 0110111xxx 0111000xxx 0111001xxx 0111010xxx 0111011xxx 0111100xxx 0111101xxx 0111110xxx 0111111xxx 1000000xxx 1000001xxx 1000010xxx 1000011xxx 1000100xxx 1000101xxx 1000110xxx 1000111xxx 1001000xxx 1001001xxx 1001010xxx 1001011xxx 1001100xxx 1001101xxx 1001110xxx 1001111xxx November 5, 2003 Am49LV6408M 13 ADVANCE Table 2. Sector SA80 SA81 SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 SA104 SA105 SA106 SA107 SA108 SA109 SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 SA121 SA122 SA123 SA124 SA125 SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134 INFORMATION Am29LV640MT Top Boot Sector Architecture (Continued) Sector Size (Kwords) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 4 4 4 4 (x16) Address Range 280000h–28FFFFh 288000h–28FFFFh 290000h–297FFFh 298000h–29FFFFh 2A0000h–2A7FFFh 2A8000h–2AFFFFh 2B0000h–2B7FFFh 2B8000h–2BFFFFh 2C0000h–2C7FFFh 2C8000h–2CFFFFh 2D0000h–2D7FFFh 2D8000h–2DFFFFh 2E0000h–2E7FFFh 2E8000h–2EFFFFh 2F0000h–2FFFFFh 2F8000h–2FFFFFh 300000h–307FFFh 308000h–30FFFFh 310000h–317FFFh 318000h–31FFFFh 320000h–327FFFh 328000h–32FFFFh 330000h–337FFFh 338000h–33FFFFh 340000h–347FFFh 348000h–34FFFFh 350000h–357FFFh 358000h–35FFFFh 360000h–367FFFh 368000h–36FFFFh 370000h–377FFFh 378000h–37FFFFh 380000h–387FFFh 388000h–38FFFFh 390000h–397FFFh 398000h–39FFFFh 3A0000h–3A7FFFh 3A8000h–3AFFFFh 3B0000h–3B7FFFh 3B8000h–3BFFFFh 3C0000h–3C7FFFh 3C8000h–3CFFFFh 3D0000h–3D7FFFh 3D8000h–3DFFFFh 3E0000h–3E7FFFh 3E8000h–3EFFFFh 3F0000h–3F7FFFh 3F8000h–3F8FFFh 3F9000h–3F9FFFh 3FA000h–3FAFFFh 3FB000h–3FBFFFh 3FC000h–3FCFFFh 3FD000h–3FDFFFh 3FE000h–3FEFFFh 3FF000h–3FFFFFh Sector Address A21–A12 1010000xxx 1010001xxx 1010010xxx 1010011xxx 1010100xxx 1010101xxx 1010110xxx 1010111xxx 1011000xxx 1011001xxx 1011010xxx 1011011xxx 1011100xxx 1011101xxx 1011110xxx 1011111xxx 1100000xxx 1100001xxx 1100010xxx 1100011xxx 1100100xxx 1100101xxx 1100110xxx 1100111xxx 1101000xxx 1101001xxx 1101010xxx 1101011xxx 1101100xxx 1101101xxx 1101110xxx 1101111xxx 1110000xxx 1110001xxx 1110010xxx 1110011xxx 1110100xxx 1110101xxx 1110110xxx 1110111xxx 1111000xxx 1111001xxx 1111010xxx 1111011xxx 1111100xxx 1111101xxx 1111110xxx 1111111000 1111111001 1111111010 1111111011 1111111100 1111111101 1111111110 1111111111 14 Am49LV6408M November 5, 2003 ADVANCE Table 3. Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 SA35 SA36 SA37 SA38 SA39 SA40 SA41 SA42 SA43 SA44 SA45 SA46 SA47 SA48 SA49 SA50 SA51 SA52 SA53 SA54 INFORMATION Am29LV640MB Bottom Boot Sector Architecture Sector Size (Kwords) 4 4 4 4 4 4 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 (x16) Address Range 00000h–00FFFh 01000h–01FFFh 02000h–02FFFh 03000h–03FFFh 04000h–04FFFh 05000h–05FFFh 06000h–06FFFh 07000h–07FFFh 08000h–0FFFFh 10000h–17FFFh 18000h–1FFFFh 20000h–27FFFh 28000h–2FFFFh 30000h–37FFFh 38000h–3FFFFh 40000h–47FFFh 48000h–4FFFFh 50000h–57FFFh 58000h–5FFFFh 60000h–67FFFh 68000h–6FFFFh 70000h–77FFFh 78000h–7FFFFh 80000h–87FFFh 88000h–8FFFFh 90000h–97FFFh 98000h–9FFFFh A0000h–A7FFFh A8000h–AFFFFh B0000h–B7FFFh B8000h–BFFFFh C0000h–C7FFFh C8000h–CFFFFh D0000h–D7FFFh D8000h–DFFFFh E0000h–E7FFFh E8000h–EFFFFh F0000h–F7FFFh F8000h–FFFFFh F9000h–107FFFh 108000h–10FFFFh 110000h–117FFFh 118000h–11FFFFh 120000h–127FFFh 128000h–12FFFFh 130000h–137FFFh 138000h–13FFFFh 140000h–147FFFh 148000h–14FFFFh 150000h–157FFFh 158000h–15FFFFh 160000h–167FFFh 168000h–16FFFFh 170000h–177FFFh 178000h–17FFFFh Sector Address A21–A12 0000000000 0000000001 0000000010 0000000011 0000000100 0000000101 0000000110 0000000111 0000001xxx 0000010xxx 0000011xxx 0000100xxx 0000101xxx 0000110xxx 0000111xxx 0001000xxx 0001001xxx 0001010xxx 0001011xxx 0001100xxx 0001101xxx 0001101xxx 0001111xxx 0010000xxx 0010001xxx 0010010xxx 0010011xxx 0010100xxx 0010101xxx 0010110xxx 0010111xxx 0011000xxx 0011001xxx 0011010xxx 0011011xxx 0011000xxx 0011101xxx 0011110xxx 0011111xxx 0100000xxx 0100001xxx 0100010xxx 0101011xxx 0100100xxx 0100101xxx 0100110xxx 0100111xxx 0101000xxx 0101001xxx 0101010xxx 0101011xxx 0101100xxx 0101101xxx 0101110xxx 0101111xxx November 5, 2003 Am49LV6408M 15 ADVANCE Table 3. Sector SA55 SA56 SA57 SA58 SA59 SA60 SA61 SA62 SA63 SA64 SA65 SA66 SA67 SA68 SA69 SA70 SA71 SA72 SA73 SA74 SA75 SA76 SA77 SA78 SA79 SA80 SA81 SA82 SA83 SA84 SA85 SA86 SA87 SA88 SA89 SA90 SA91 SA92 SA93 SA94 SA95 SA96 SA97 SA98 SA99 SA100 SA101 SA102 SA103 SA104 SA105 SA106 SA107 SA108 SA109 INFORMATION Am29LV640MB Bottom Boot Sector Architecture (Continued) Sector Address A21–A12 0110000xxx 0110001xxx 0110010xxx 0110011xxx 0100100xxx 0110101xxx 0110110xxx 0110111xxx 0111000xxx 0111001xxx 0111010xxx 0111011xxx 0111100xxx 0111101xxx 0111110xxx 0111111xxx 1000000xxx 1000001xxx 1000010xxx 1000011xxx 1000100xxx 1000101xxx 1000110xxx 1000111xxx 1001000xxx 1001001xxx 1001010xxx 1001011xxx 1001100xxx 1001101xxx 1001110xxx 1001111xxx 1010000xxx 1010001xxx 1010010xxx 1010011xxx 1010100xxx 1010101xxx 1010110xxx 1010111xxx 1011000xxx 1011001xxx 1011010xxx 1011011xxx 1011100xxx 1011101xxx 1011110xxx 1011111xxx 1100000xxx 1100001xxx 1100010xxx 1100011xxx 1100100xxx 1100101xxx 1100110xxx Sector Size (Kwords) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 (x16) Address Range 180000h–187FFFh 188000h–18FFFFh 190000h–197FFFh 198000h–19FFFFh 1A0000h–1A7FFFh 1A8000h–1AFFFFh 1B0000h–1B7FFFh 1B8000h–1BFFFFh 1C0000h–1C7FFFh 1C8000h–1CFFFFh 1D0000h–1D7FFFh 1D8000h–1DFFFFh 1E0000h–1E7FFFh 1E8000h–1EFFFFh 1F0000h–1F7FFFh 1F8000h–1FFFFFh 200000h–207FFFh 208000h–20FFFFh 210000h–217FFFh 218000h–21FFFFh 220000h–227FFFh 228000h–22FFFFh 230000h–237FFFh 238000h–23FFFFh 240000h–247FFFh 248000h–24FFFFh 250000h–257FFFh 258000h–25FFFFh 260000h–267FFFh 268000h–26FFFFh 270000h–277FFFh 278000h–27FFFFh 280000h–28FFFFh 288000h–28FFFFh 290000h–297FFFh 298000h–29FFFFh 2A0000h–2A7FFFh 2A8000h–2AFFFFh 2B0000h–2B7FFFh 2B8000h–2BFFFFh 2C0000h–2C7FFFh 2C8000h–2CFFFFh 2D0000h–2D7FFFh 2D8000h–2DFFFFh 2E0000h–2E7FFFh 2E8000h–2EFFFFh 2F0000h–2FFFFFh 2F8000h–2FFFFFh 300000h–307FFFh 308000h–30FFFFh 310000h–317FFFh 318000h–31FFFFh 320000h–327FFFh 328000h–32FFFFh 330000h–337FFFh 16 Am49LV6408M November 5, 2003 ADVANCE Table 3. Sector SA110 SA111 SA112 SA113 SA114 SA115 SA116 SA117 SA118 SA119 SA120 SA121 SA122 SA123 SA124 SA125 SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134 INFORMATION Am29LV640MB Bottom Boot Sector Architecture (Continued) Sector Address A21–A12 1100111xxx 1101000xxx 1101001xxx 1101010xxx 1101011xxx 1101100xxx 1101101xxx 1101110xxx 1101111xxx 1110000xxx 1110001xxx 1110010xxx 1110011xxx 1110100xxx 1110101xxx 1110110xxx 1110111xxx 1111000xxx 1111001xxx 1111010xxx 1111011xxx 1111100xxx 1111101xxx 1111110xxx 1111111000 Sector Size (Kwords) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 (x16) Address Range 338000h–33FFFFh 340000h–347FFFh 348000h–34FFFFh 350000h–357FFFh 358000h–35FFFFh 360000h–367FFFh 368000h–36FFFFh 370000h–377FFFh 378000h–37FFFFh 380000h–387FFFh 388000h–38FFFFh 390000h–397FFFh 398000h–39FFFFh 3A0000h–3A7FFFh 3A8000h–3AFFFFh 3B0000h–3B7FFFh 3B8000h–3BFFFFh 3C0000h–3C7FFFh 3C8000h–3CFFFFh 3D0000h–3D7FFFh 3D8000h–3DFFFFh 3E0000h–3E7FFFh 3E8000h–3EFFFFh 3F0000h–3F7FFFh 3F8000h–3FFFFFh November 5, 2003 Am49LV6408M 17 ADVANCE INFORMATION Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 192 (3x64) Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes Sector Group Protection and Unprotection The hardware sector group protection feature disables both program and erase operations in any sector group. In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Tables 4 and 5). The hardware sector group unprotection feature re-enables both program and erase operations in previously protected sector groups. Sector group protection/unprotection can be implemented via two methods. Sector protection/unprotection requires VID on the RESET# pin only, and can be implemented either in-system or via programming equipment. Figure 2 shows the algorithms and Figure 24 shows the timing diagram. This method uses standard microprocessor bus cycle timing. For sector group unprotect, all unprotected sector groups must first be protected prior to the first sector group unprotect write cycle. The device is shipped with all sector groups unprotected. AMD offers the option of programming and protecting sector groups at its factory prior to shipping the device through AMD’s ExpressFlash™ Service. Contact an AMD representative for details. It is possible to determine whether a sector group is protected or unprotected. See the Sector Group Protection and Unprotection section for details. Table 4. Am29LV640MT Top Boot Sector Protection A21–A12 00000XXXXX 00001XXXXX 00010XXXXX 00011XXXXX 00100XXXXX 00101XXXXX 00110XXXXX 00111XXXXX 01000XXXXX 01001XXXXX 01010XXXXX 01011XXXXX 01100XXXXX 01101XXXXX 01110XXXXX 01111XXXXX 10000XXXXX 10001XXXXX 10010XXXXX 10011XXXXX Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes Sector SA80-SA83 SA84-SA87 SA88-SA91 SA92-SA95 SA96-SA99 SA100-SA103 SA104-SA107 SA108-SA111 SA112-SA115 SA116-SA119 SA120-SA123 SA124-SA126 SA127 SA128 SA129 SA130 SA131 SA132 SA133 SA134 A21–A12 10100XXXXX 10101XXXXX 10110XXXXX 10111XXXXX 11000XXXXX 11001XXXXX 11010XXXXX 11011XXXXX 11100XXXXX 11101XXXXX 11110XXXXX 1111100XXX 1111101XXX 1111110XXX 1111111000 1111111001 1111111010 1111111011 1111111100 1111111101 1111111110 1111111111 Table 5. Am29LV640MB Bottom Boot Sector Protection A21–A12 0000000000 0000000001 0000000010 0000000011 0000000100 0000000101 0000000110 0000000111 0000001XXX, 0000010XXX, 0000011XXX, 00001XXXXX 00010XXXXX 00011XXXXX 00100XXXXX 00101XXXXX 00110XXXXX 00111XXXXX 01000XXXXX 01001XXXXX 01010XXXXX 01011XXXXX Sector/ Sector Block Size 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 8 Kbytes 192 (3x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8–SA10 SA11–SA14 SA15–SA18 SA19–SA22 SA23–SA26 SA27-SA30 SA31-SA34 SA35-SA38 SA39-SA42 SA43-SA46 SA47-SA50 SA51-SA54 Sector SA0-SA3 SA4-SA7 SA8-SA11 SA12-SA15 SA16-SA19 SA20-SA23 SA24-SA27 SA28-SA31 SA32-SA35 SA36-SA39 SA40-SA43 SA44-SA47 SA48-SA51 SA52-SA55 SA56-SA59 SA60-SA63 SA64-SA67 SA68-SA71 SA72-SA75 SA76-SA79 18 Am49LV6408M November 5, 2003 ADVANCE Table 5. Am29LV640MB Bottom Boot Sector Protection (Continued) Sector SA55–SA58 SA59–SA62 SA63–SA66 SA67–SA70 SA71–SA74 SA75–SA78 SA79–SA82 SA83–SA86 SA87–SA90 SA91–SA94 SA95–SA98 SA99–SA102 SA103–SA106 SA107–SA110 SA111–SA114 SA115–SA118 SA119–SA122 SA123–SA126 SA127–SA130 SA131–SA134 A21–A12 01100XXXXX 01101XXXXX 01110XXXXX 01111XXXXX 10000XXXXX 10001XXXXX 10010XXXXX 10011XXXXX 10100XXXXX 10101XXXXX 10110XXXXX 10111XXXXX 11000XXXXX 11001XXXXX 11010XXXXX 11011XXXXX 11100XXXXX 11101XXXXX 11110XXXXX 11111XXXXX Sector/ Sector Block Size 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes 256 (4x64) Kbytes INFORMATION Temporary Sector Group Unprotect (Note: In this device, a sector group consists of four adjacent sectors that are protected or unprotected at the same time (see Table 5). This feature allows temporary unprotection of previously protected sector groups to change data in-system. The Sector Group Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sector groups can be programmed or erased by selecting the sector group addresses. Once VID is removed from the RESET# pin, all the previously protected sector groups are protected again. Figure 1 shows the algorithm, and Figure 23 shows the timing diagrams, for this feature. START RESET# = VID (Note 1) Perform Erase or Program Operations RESET# = VIH Write Protect (WP#) The Write Protect function provides a hardware method of protecting the top two or bottom two sectors without using V ID. WP# is one of two functions provided by the WP#/ACC input. If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the first or last sector independently of whether those sectors were protected or unprotected using the method described in “Sector Group Protection and Unprotection”. Note that if WP#/ACC is at VIL when the device is in the standby mode, the maximum input load current is increased. See the table in “DC Characteristics”. If the system asserts VIH on the WP#/ACC pin, the device reverts to whether the top or bottom two sectors were previously set to be protected or unprotected using the method described in “Sector Group Protection and Unprotection”. N ote: No external pullup is necessary since the WP#/ACC pin has internal pullup to VCC Temporary Sector Group Unprotect Completed (Note 2) Notes: 1. All protected sector groups unprotected (If WP# = VIL, the first or last sector will remain protected). 2. All previously protected sector groups are protected once again. Figure 1. Temporary Sector Group Unprotect Operation November 5, 2003 Am49LV6408M 19 ADVANCE INFORMATION START PLSCNT = 1 RESET# = VID Wait 1 µs Protect all sector groups: The indicated portion of the sector group protect algorithm must be performed for all unprotected sector groups prior to issuing the first sector group unprotect address START PLSCNT = 1 RESET# = VID Wait 1 µs Temporary Sector Group Unprotect Mode No First Write Cycle = 60h? First Write Cycle = 60h? No Temporary Sector Group Unprotect Mode Yes Set up sector group address No Yes All sector groups protected? Yes Set up first sector group address Sector Group Unprotect: Write 60h to sector group address with A6–A0 = 1xx0010 Reset PLSCNT = 1 Sector Group Protect: Write 60h to sector group address with A6–A0 = 0xx0010 Wait 150 µs Increment PLSCNT Verify Sector Group Protect: Write 40h to sector group address with A6–A0 = 0xx0010 Wait 15 ms Read from sector group address with A6–A0 = 0xx0010 No No PLSCNT = 25? Data = 01h? Increment PLSCNT Verify Sector Group Unprotect: Write 40h to sector group address with A6–A0 = 1xx0010 Yes Yes Protect another sector group? No Remove VID from RESET# Yes Read from sector group address with A6–A0 = 1xx0010 No Set up next sector group address Data = 00h? No PLSCNT = 1000? Yes Device failed Yes Device failed Write reset command Last sector group verified? Yes Remove VID from RESET# No Sector Group Protect Algorithm Sector Group Protect complete Sector Group Unprotect Algorithm Write reset command Sector Group Unprotect complete Figure 2. In-System Sector Group Protect/Unprotect Algorithms 20 Am49LV6408M November 5, 2003 ADVANCE INFORMATION Factory Locked: SecSi Sector Programmed and Protected At the Factory In devices with an ESN, the SecSi Sector is protected when the device is shipped from the factory. The SecSi Sector cannot be modified in any way. See Table 6 for SecSi Sector addressing. Customers may opt to have their code programmed by AMD through the AMD ExpressFlash service. The devices are then shipped from AMD’s factory with the SecSi Sector permanently locked. Contact an AMD representative for details on using AMD’s ExpressFlash service. Customer Lockable: SecSi Sector NOT Programmed or Protected At the Factory As an alternative to the factory-locked version, the device may be ordered such that the customer may program and protect the 128-word/256 bytes SecSi sector. The system may program the SecSi Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition to the standard programming command sequence. See Command Definitions. Programming and protecting the SecSi Sector must be used with caution since, once protected, there is no procedure available for unprotecting the SecSi Sector area and none of the bits in the SecSi Sector memory space can be modified in any way. The SecSi Sector area can be protected using one of the following procedures: ■ Write the three-cycle Enter SecSi Sector Region command sequence, and then follow the in-system sector protect algorithm as shown in Figure 2, except that RESET# may be at either VIH or VID. This allows in-system protection of the SecSi Sector without raising any device pin to a high voltage. Note that this method is only applicable to the SecSi Sector. ■ To verify the protect/unprotect status of the SecSi Sector, follow the algorithm shown in Figure 3. Once the SecSi Sector is programmed, locked and verified, the system must write the Exit SecSi Sector Region command sequence to return to reading and writing within the remainder of the array. SecSi (Secured Silicon) Sector Flash Memory Region The SecSi (Secured Silicon) Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The SecSi Sector is 128 words in length, and uses a SecSi Sector Indicator Bit (DQ7) to indicate whether or not the SecSi Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field. AMD offers the device with the SecSi Sector either fac t or y l ocke d or c u s t om e r l o ckabl e. T he fac tory-locked version is always protected when shipped from the factory, and has the SecSi (Secured Silicon) Sector Indicator Bit permanently set to a “1.” The customer-lockable version is shipped with the SecSi Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the SecSi Sector Indicator Bit permanently set to a “0.” Thus, the SecSi Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. The SecSi sector address space in this device is allocated as follows: Table 6. SecSi Sector Address Range x16 000000h– 000007h 000008h– 00007Fh SecSi Sector Contents Standard Factory Locked ESN Unavailable ExpressFlash Factory Locked ESN or determined by customer Determined by customer Customer Lockable Determined by customer The system accesses the SecSi Sector through a command sequence (see “Enter SecSi Sector/Exit SecSi Sector Command Sequence”). After the system has written the Enter SecSi Sector command sequence, it may read the SecSi Sector by using the addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit SecSi Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to sector SA0. Note that the ACC function and unlock bypass modes are not available when the SecSi Sector is enabled. November 5, 2003 Am49LV6408M 21 ADVANCE INFORMATION hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during VCC power-up and power-down transitions, or from system noise. START RESET# = VIH or VID Wait 1 µs Write 60h to any address If data = 00h, SecSi Sector is unprotected. If data = 01h, SecSi Sector is protected. Low VCC Write Inhibit When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional writes when V CC i s greater than VLKO. Write Pulse “Glitch” Protection Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle. Logical Inhibit Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one. Power-Up Write Inhibit If WE# = CE# = VIL and OE# = V IH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up. Remove VIH or VID from RESET# Write 40h to SecSi Sector address with A6 = 0, A1 = 1, A0 = 0 Read from SecSi Sector address with A6 = 0, A1 = 1, A0 = 0 Write reset command SecSi Sector Protect Verify complete Figure 3. SecSi Sector Protect Verify Hardware Data Protection The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (refer to Tables 11 and 12 for command definitions). In addition, the following COMMON FLASH MEMORY INTERFACE (CFI) The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility. This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables 7–10. To terminate reading CFI data, the system must write the reset command. The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 7–10. The system must write the reset command to return the device to reading array data. For further information, please refer to the CFI Specification and CFI Publication 100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alternatively, contact an AMD representative for copies of these documents. 22 Am49LV6408M November 5, 2003 ADVANCE Table 7. Addresses (x16) 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah Data 0051h 0052h 0059h 0002h 0000h 0040h 0000h 0000h 0000h 0000h 0000h INFORMATION CFI Query Identification String Description Query Unique ASCII string “QRY” Primary OEM Command Set Address for Primary Extended Table Alternate OEM Command Set (00h = none exists) Address for Alternate OEM Extended Table (00h = none exists) Table 8. Addresses (x16) 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h Data 0027h 0036h 0000h 0000h 0007h 0007h 000Ah 0000h 0001h 0005h 0004h 0000h System Interface String Description VCC Min. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VCC Max. (write/erase) D7–D4: volt, D3–D0: 100 millivolt VPP Min. voltage (00h = no VPP pin present) VPP Max. voltage (00h = no VPP pin present) Typical timeout per single byte/word write 2N µs Typical timeout for Min. size buffer write 2N µs (00h = not supported) Typical timeout per individual block erase 2N ms Typical timeout for full chip erase 2N ms (00h = not supported) Max. timeout for byte/word write 2N times typical Max. timeout for buffer write 2N times typical Max. timeout per individual block erase 2N times typical Max. timeout for full chip erase 2N times typical (00h = not supported) November 5, 2003 Am49LV6408M 23 ADVANCE Table 9. Addresses (x16) 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch Data 0017h 0002h 0000h 0005h 0000h 0002h 007Fh 0000h 0020h 0000h 007Eh 0000h 0000h 0001h 0000h 0000h 0000h 0000h 0000h 0000h 0000h 0000h Device Size = 2 byte N INFORMATION Device Geometry Definition Description Flash Device Interface description (refer to CFI publication 100) Max. number of byte in multi-byte write = 2N (00h = not supported) Number of Erase Block Regions within device (01h = uniform device, 02h = boot device) Erase Block Region 1 Information (refer to the CFI specification or CFI publication 100) Erase Block Region 2 Information (refer to CFI publication 100) Erase Block Region 3 Information (refer to CFI publication 100) Erase Block Region 4 Information (refer to CFI publication 100) 24 Am49LV6408M November 5, 2003 ADVANCE Table 10. Addresses (x16) 40h 41h 42h 43h 44h INFORMATION Primary Vendor-Specific Extended Query Data 0050h 0052h 0049h 0031h 0033h Query-unique ASCII string “PRI” Major version number, ASCII Minor version number, ASCII Address Sensitive Unlock (Bits 1-0) 0 = Required, 1 = Not Required Description 45h 0008h Process Technology (Bits 7-2) 0010b = 0.23 µm MirrorBit 46h 47h 48h 49h 4Ah 4Bh 4Ch 0002h 0001h 0001h 0004h 0000h 0000h 0001h Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write Sector Protect 0 = Not Supported, X = Number of sectors in per group Sector Temporary Unprotect 00 = Not Supported, 01 = Supported Sector Protect/Unprotect scheme 04 = 29LV800 mode Simultaneous Operation 00 = Not Supported, X = Number of Sectors in Bank Burst Mode Type 00 = Not Supported, 01 = Supported Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV Top/Bottom Boot Sector Flag 00h = Uniform Device without WP# protect, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors top WP# protect Program Suspend 00h = Not Supported, 01h = Supported 4Dh 00B5h 4Eh 00C5h 4Fh 0002h/ 0003h 50h 0001h COMMAND DEFINITIONS Writing specific address and data commands or sequences into the command register initiates device operations. Tables 11 and 12 define the valid register command sequences. W riting incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading array data. All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the AC Characteristics section for timing diagrams. Reading Array Data The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is ready to read array data after completing an Embedded Program or Embedded Erase algorithm. After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after which the system can read data from any 25 November 5, 2003 Am49LV6408M ADVANCE INFORMATION non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See the Erase Suspend/Erase Resume Commands section for more information. The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more information. See also Requirements for Reading Array Data in the Device Bus Operations section for more information. The Flash Read-Only Operations table provides the read parameters, and Figure 14 shows the timing diagram. Autoselect Command Sequence The autoselect command sequence allows the host system to read several identifier codes at specific addresses: Identifier Code Manufacturer ID Device ID, Cycle 1 Device ID, Cycle 2 Device ID, Cycle 3 SecSi Sector Factory Protect Sector Protect Verify A7:A0 (x16) 00h 01h 0Eh 0Fh 03h (SA)02h Note: The device ID is read over three cycles. SA = Sector Address Reset Command Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don’t cares for this command. The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend). Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset command sequence to reset the device for the next operation. Tables 11 and 12 show the address and data requirements. This method is an alternative to that shown in Table 4, which is intended for PROM programmers and requires VID on address pin A9. The autoselect command sequence may be written to an address that is either in the read or erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing. The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of times without initiating another autoselect command sequence. The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in Erase Suspend). Enter SecSi Sector/Exit SecSi Sector Command Sequence The SecSi Sector region provides a secured data area containing an 8-word random Electronic Serial Number (ESN). The system can access the SecSi Sector region by issuing the three-cycle Enter SecSi Sector command sequence. The device continues to access the SecSi Sector region until the system issues the four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command sequence returns the device to normal operation. Tables 11 and 12 show the address and data requirements for both command sequences. See also “SecSi (Secured Silicon) Sector Flash Memory Region” for further information. Word Program Command Sequence Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides 26 Am49LV6408M November 5, 2003 ADVANCE INFORMATION Write Buffer Programming Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming will occur. The fourth cycle writes the sector address and the number of word locations, minus one, to be programmed. For example, if the system will program 6 unique address locations, then 05h should be written to the device. This tells the device how many write buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation will abort. The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits A MAX–A 4 . All subsequent add r e s s / d a t a p a i r s m u s t fa l l w i t h i n t h e selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations may be loaded in any order. The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer pages. This also means that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation will abort. Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter will be decremented for every data load operation. The host s y s t e m m u s t t h e r e fo r e a c c o u n t fo r l o a d i n g a write-buffer location more than once. The counter decrements for each data load operation, not for each unique write-buffer-address location. Note also that if an address location is loaded more than once into the buffer, the final data loaded for that address will be programmed. Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming. internally generated program pulses and verifies the programmed cell margin. Tables 11 and 12 show the address and data requirements for the word program command sequence. Note that the autoselect and CFI functions are unavailable when a program operation is in progress. When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned to the read mode, to ensure data integrity. Programming is allowed in any sequence and across sector boundaries. A b it cannot be programmed from “0” back to a “1.” A ttempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read will show that the data is still “0.” Only erase operations can convert a “0” to a “1.” Unlock Bypass Command Sequence The unlock bypass feature allows the system to program words to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Tables 11 and 12 show the requirements for the command sequence. During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. The first cycle must contain the data 90h. The second cycle must contain the data 00h. The device then returns to the read mode. November 5, 2003 Am49LV6408M 27 ADVANCE INFORMATION command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required when using Write-Buffer-Programming features in Unlock Bypass mode. Accelerated Program The device offers accelerated program operations through the WP#/ACC pin. When the system asserts VHH on the WP#/ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP#/ACC pin to accelerate the operation. Note that the W P#/ACC pin must not be at V HH for operations other than accelerated programming, or device damage may result. In addition, no external pullup is necessary since the WP#/ACC pin has internal pullup to VCC. Figure 5 illustrates the algorithm for the program operation. Refer to the Erase and Program Operations table in the AC Characteristics section for parameters, and Figure 17 for timing diagrams. The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command. The Write Buffer Programming Sequence can be aborted in the following ways: ■ Load a value that is greater than the page buffer size during the Number of Locations to Program step. ■ Write to an address in a sector different than the one specified during the Write-Buffer-Load command. ■ Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer data loading stage of the operation. ■ Write data other than the Confirm Command after the specified number of data load cycles. The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset 28 Am49LV6408M November 5, 2003 ADVANCE INFORMATION Write “Write to Buffer” command and Sector Address Write number of addresses to program minus 1(WC) and Sector Address Part of “Write to Buffer” Command Sequence Write first address/data Yes WC = 0 ? No Abort Write to Buffer Operation? No Yes Write to buffer ABORTED. Must write “Write-to-buffer Abort Reset” command sequence to return to read mode. Write to a different sector address (Note 1) Write next address/data pair WC = WC - 1 Write program buffer to flash sector address Notes: 1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses must fall within the selected Write-Buffer Page. Read DQ7 - DQ0 at Last Loaded Address 2. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified. 3. If this flowchart location was reached because DQ5= “1”, then the device FAILED. If this flowchart location was reached because DQ1= “1”, then the Write to Buffer operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If DQ1=1, write the Write-Buffer-Programming-Abort-Reset command. if DQ5=1, write the Reset command. 4. See Table 12 for command sequences required for write buffer programming. DQ7 = Data? No No DQ1 = 1? Yes DQ5 = 1? Yes Read DQ7 - DQ0 with address = Last Loaded Address No Yes (Note 2) DQ7 = Data? No Yes (Note 3) FAIL or ABORT PASS Figure 4. Write Buffer Programming Operation November 5, 2003 Am49LV6408M 29 ADVANCE INFORMATION Program Suspend/Program Resume Command Sequence START Write Program Command Sequence Embedded Program algorithm in progress Data Poll from System The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15 µs maximum (5 µs typical) and updates the status bits. Addresses are not required when writing the Program Suspend command. After the programming operation has been suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the SecSi Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See Autoselect Command Sequence for more information. After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write Operation Status for more information. The system must write the Program Resume command (address bits are don’t care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming. Verify Data? No Yes No Increment Address Last Address? Yes Programming Completed Note: See Table 12 for program command sequence. Figure 5. Program Operation 30 Am49LV6408M November 5, 2003 ADVANCE INFORMATION When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to the Write Operation Status section for information on these status bits. Any commands written during the chip erase operation are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 7 illustrates the algorithm for the erase operation. Refer to the Erase and Program Operations tables in the AC Characteristics section for parameters, and Figure 19 section for timing diagrams. Program Operation or Write-to-Buffer Sequence in Progress Write address/data XXXh/B0h Write Program Suspend Command Sequence Command is also valid for Erase-suspended-program operations Wait 15 µs Read data as required Autoselect and SecSi Sector read operations are also allowed Data cannot be read from erase- or program-suspended sectors No Done reading? Yes Write address/data XXXh/30h Sector Erase Command Sequence Write Program Resume Command Sequence Device reverts to operation prior to Program Suspend Figure 6. Program Suspend/Program Resume Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command. Tables 11 and 12 shows the address and data requirements for the sector erase command sequence. Note that the autoselect and CFI functions are unavailable when an erase operation is in progress. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command other than S e ct o r E ra se o r E ra s e S u s p en d d u r i n g th e time-out period resets the device to the read mode. T he system must rewrite the command sequence and any additional addresses and commands. The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3: Sector Erase Timer.). The time-out begins from the ris- Chip Erase Command Sequence Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Tables 11 and 12 shows the address and data requirements for the chip erase command sequence. Note that the autoselect and CFI functions are unavailable when an erase operation is in progress. November 5, 2003 Am49LV6408M 31 ADVANCE INFORMATION ing edge of the final WE# pulse in the command sequence. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write Operation Status section for information on these status bits. Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity. Figure 7 illustrates the algorithm for the erase operation. Refer to the Erase and Program Operations tables in the AC Characteristics section for parameters, and Figure 19 section for timing diagrams. Erase Suspend/Erase Resume Commands The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 µs (maximum of 20 µs) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After the erase operation has been suspended, the device enters the erase-suspend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to the Write Operation Status section for information on these status bits. After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard word program operation. Refer to the Write Operation Status section for more information. In the erase-suspend-read mode, the system can also issue the autoselect command sequence. Refer to the Sector Group Protection and Unprotection and Autoselect Command Sequence sections for details. To resume the sector erase operation, the system must write the Erase Resume command. The address of the erase-suspended sector is required when writing this command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing. START Write Erase Command Sequence (Notes 1, 2) Data Poll to Erasing Bank from System Embedded Erase algorithm in progress No Data = FFh? Yes Erasure Completed Notes: 1. See Table 12 and Table 12 for erase command sequence. 2. See the section on DQ3 for information on the sector erase timer. Figure 7. Erase Operation 32 Am49LV6408M November 5, 2003 ADVANCE INFORMATION Command Definitions Table 11. Cycles Command Sequence (Notes) Read (Note 5) Reset (Note 6) Autoselect (Note 7) Manufacturer ID Device ID (Note 8) SecSi™ Sector Factory Protect (Note 9) Sector Group Protect Verify (Note 10) First Addr RA XXX 555 555 555 555 555 555 555 555 SA 555 555 XXX XXX 555 555 BA BA 55 Data RD F0 AA AA AA AA AA AA AA AA 29 AA AA A0 90 AA AA B0 30 98 2AA 2AA PA XXX 2AA 2AA 55 55 PD 00 55 55 555 555 80 80 555 555 AA AA 2AA 2AA 55 55 555 SA 10 30 555 555 F0 20 2AA 2AA 2AA 2AA 2AA 2AA 2AA 2AA 55 55 55 55 55 55 55 55 555 555 555 555 555 555 555 SA 90 90 90 90 88 90 A0 25 XXX PA SA 00 PD WC PA PD WBL PD X00 X01 X03 (SA)X02 0001 227E (Note 9) 00/01 X0E 2210 X0F 2200/ 2201 Command Definitions Bus Cycles (Notes 1–4) Second Third Addr Data Fourth Addr Data Fifth Addr Data Sixth Addr Data Addr Data 1 1 4 6 4 4 3 4 4 6 1 3 3 2 2 6 6 1 1 1 Enter SecSi Sector Region Exit SecSi Sector Region Program Write to Buffer (Note 11) Program Buffer to Flash Write to Buffer Abort Reset (Note 12) Unlock Bypass Unlock Bypass Program (Note 13) Unlock Bypass Reset (Note 14) Chip Erase Sector Erase Program/Erase Suspend (Note 15) Program/Erase Resume (Note 16) CFI Query (Note 17) Legend: X = Don’t care RA = Read Address of the memory location to be read. RD = Read Data read from location RA during read operation. PA = Program Address . Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later. PD = Program Data for location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first. Notes: 1. See Table 1 for description of bus operations. 2. All values are in hexadecimal. 3. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles. 4. During unlock cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except where BA is required) and data bits higher than DQ7 are don’t cares. 5. No unlock or command cycles required when device is in read mode. 6. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when the device is in the autoselect mode, or if DQ5 goes high while the device is providing status information. 7. The fourth cycle of the autoselect command sequence is a read cycle. Data bits DQ15–DQ8 are don’t care. Except RD, PD and WC. See the Autoselect Command Sequence section for more information. 8. The device ID must be read in three cycles. The data is 2201h for top boot and 2200h for bottom boot. 9. If WP# protects the top two address sectors, the data is 98h for factory locked and 18h for not factory locked. If WP# protects the SA = Sector Address of sector to be verified (in autoselect mode) or erased. Address bits A21–A15 uniquely select any sector. WBL = Write Buffer Location. Address must be within the same write buffer page as PA. WC = Word Count. Number of write buffer locations to load minus 1. bottom two address sectors, the data is 88h for factory locked and 08h for not factor locked. 10. The data is 00h for an unprotected sector group and 01h for a protected sector group. 11. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum number of cycles in the command sequence is 21. 12. Command sequence resets device for next command after aborted write-to-buffer operation. 13. The Unlock Bypass command is required prior to the Unlock Bypass Program command. 14. The Unlock Bypass Reset command is required to return to the read mode when the device is in the unlock bypass mode. 15. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation. 16. The Erase Resume command is valid only during the Erase Suspend mode. 17. Command is valid when device is ready to read array data or when device is in autoselect mode. November 5, 2003 Am49LV6408M 33 ADVANCE INFORMATION WRITE OPERATION STATUS The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 12 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or has been completed. valid data, the data outputs on DQ0–DQ6 may be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles. Table 12 shows the outputs for Data# Polling on DQ7. Figure 8 shows the Data# Polling algorithm. Figure 20 in the AC Characteristics section shows the Data# Polling timing diagram. DQ7: Data# Polling The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command sequence. During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to the read mode. During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7. After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may not be valid. Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has START Read DQ7–DQ0 Addr = VA DQ7 = Data? Yes No No DQ5 = 1? Yes Read DQ7–DQ0 Addr = VA DQ7 = Data? Yes No FAIL PASS Notes: 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address. 2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5. Figure 8. Data# Polling Algorithm 34 Am49LV6408M November 5, 2003 ADVANCE INFORMATION After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling). If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is written, then returns to reading array data. DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete. Table 12 shows the outputs for Toggle Bit I on DQ6. Figure 9 shows the toggle bit algorithm. Figure 21 in the “AC Characteristics” section shows the toggle bit timing diagrams. Figure 22 shows the differences between DQ2 and DQ6 in graphical form. See also the subsection on DQ2: Toggle Bit II. RY/BY#: Ready/Busy# The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC. If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode. Table 12 shows the outputs for RY/BY#. DQ6: Toggle Bit I Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out. During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling. November 5, 2003 Am49LV6408M 35 ADVANCE INFORMATION DQ2: Toggle Bit II START Read DQ7–DQ0 The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 12 to compare outputs for DQ2 and DQ6. Figure 9 shows the toggle bit algorithm in flowchart form, and the section “DQ2: Toggle Bit II” explains the algorithm. See also the RY/BY#: Ready/Busy# subsection. Figure 21 shows the toggle bit timing diagram. Figure 22 shows the differences between DQ2 and DQ6 in graphical form. Read DQ7–DQ0 Toggle Bit = Toggle? Yes No No DQ5 = 1? Yes Read DQ7–DQ0 Twice Reading Toggle Bits DQ6/DQ2 Refer to Figure 9 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data. The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform Toggle Bit = Toggle? No Yes Program/Erase Operation Not Complete, Write Reset Command Program/Erase Operation Complete Note: T he system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes to “1.” See the subsections on DQ6 and DQ2 for more information. Figure 9. Toggle Bit Algorithm 36 Am49LV6408M November 5, 2003 ADVANCE INFORMATION mand. When the time-out period is complete, DQ3 switches from a “0” to a “1.” If the time between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor DQ3. See also the Sector Erase Command Sequence section. After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is “1,” the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,” the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted. Table 12 shows the status of DQ3 relative to the other status bits. other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 9). DQ5: Exceeded Timing Limits DQ5 indic ates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1,” indicating that the program or erase cycle was not successfully completed. The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was previously programmed to “0.” O nly an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 produces a “1.” In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read if the device was previously in the erase-suspend-program mode). DQ3: Sector Erase Timer After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase com- DQ1: Write-to-Buffer Abort DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a “1”. The system must issue the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data. See Write Buffer Table 12. Status Embedded Program Algorithm Embedded Erase Algorithm Program-Suspended Program- Sector Suspend Non-Program Read Suspended Sector Erase-Suspended EraseSector Suspend Non-Erase Suspended Read Sector Erase-Suspend-Program (Embedded Program) Busy (Note 3) Abort (Note 4) Write Operation Status DQ6 Toggle Toggle DQ5 (Note 1) 0 0 DQ3 N/A 1 DQ2 (Note 2) No toggle Toggle DQ1 0 N/A RY/BY# 0 0 1 1 N/A Data Toggle N/A 1 1 N/A N/A N/A N/A N/A N/A N/A 0 1 0 0 0 Standard Mode Program Suspend Mode DQ7 (Note 2) DQ7# 0 Invalid (not allowed) Data 1 No toggle 0 Erase Suspend Mode DQ7# DQ7# DQ7# Toggle Toggle Toggle 0 0 0 Write-toBuffer Notes: 1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. Refer to the section on DQ5 for more information. 2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details. 3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location. 4. DQ1 switches to ‘1’ when tthe device has aborted the write-to-buffer operation. November 5, 2003 Am49LV6408M 37 ADVANCE INFORMATION ABSOLUTE MAXIMUM RATINGS Storage Temperature Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C Ambient Temperature with Power Applied. . . . . . . . . . . . . . –65°C to +125°C Voltage with Respect to Ground VCCf/VCCs (Note 1) . . . . . . . . . . . .–0.3 V to +4.0 V RESET#f (Note 2) . . . . . . . . . . . . –0.5 V to +12.5 V WP#/ACC . . . . . . . . . . . . . . . . . . –0.5 V to +10.5 V All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V Output Short Circuit Current (Note 3) . . . . . . 200 mA Notes: 1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V SS t o –2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is VCC +0.5 V. See Figure 10. During voltage transitions, input or I/O pins may overshoot to V CC +2.0 V for periods up to 20 ns. See Figure 11. 2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During voltage transitions, A9, OE#, ACC, and RESET# may overshoot V SS t o –2.0 V for periods of up to 20 ns. See Figure 10. Maximum DC input voltage on pin A9, OE#, ACC, and RESET# is +12.5 V which may overshoot to +14.0 V for periods up to 20 ns. 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability. +0.8 V –0.5 V –2.0 V 20 ns 20 ns 20 ns Figure 10. Maximum Negative Overshoot Waveform 20 ns VCC +2.0 V VCC +0.5 V 2.0 V 20 ns 20 ns Figure 11. Maximum Positive Overshoot Waveform OPERATING RANGES Industrial (I) Devices Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C Supply Voltages VCCf/VCCs for full voltage range . . . . . . . . . . 2.7–3.3 V Note: Operating ranges define those limits between which the functionality of the device is guaranteed. 38 Am49LV6408M November 5, 2003 ADVANCE INFORMATION DC Characteristics CMOS Compatible Parameter Symbol Parameter Description (Notes) Test Conditions Min Typ Max Unit ILI ILIT ILR ILO ICC1 ICC2 ICC3 ICC4 ICC5 ICC6 ICC7 VIL1 VIH1 VIL2 VIH2 VHH VID VOL VOH1 VOH2 VLKO Input Load Current (1) A9, ACC Input Load Current Reset Leakage Current Output Leakage Current VIN = VSS to VCC, VCC = VCC max VCC = VCC max; A9 = 12.5 V VCC = VCC max; RESET# = 12.5 V VOUT = VSS to VCC, VCC = VCC max 5 MHz 15 15 30 10 50 1 1 1 –0.5 1.9 –0.5 1.9 VCC = 2.7 –3.6 V VCC = 2.7 –3.6 V IOL = 4.0 mA, VCC = VCC min = VIO IOH = –2.0 mA, VCC = VCC min = VIO IOH = –100 µA, VCC = VCC min = VIO 0.85 VIO VIO–0.4 2.3 11.5 11.5 CE# = VIL, OE# = VIH, CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE# = VIL, OE# = VIH CE#, RESET# = VCC ± 0.3 V, WP# = VIH RESET# = VSS ± 0.3 V, WP# = VIH VIH = VCC ± 0.3 V; VIL = VSS ± 0.3 V, WP# = VIH ±1.0 35 35 ±1.0 20 µA µA µA µA VCC Active Read Current (2, 3) VCC Initial Page Read Current (2, 3) VCC Intra-Page Read Current (2, 3) VCC Active Write Current (3, 4) VCC Standby Current (3) VCC Reset Current (3) Automatic Sleep Mode (3, 5) Input Low Voltage 1(6, 7) Input High Voltage 1 (6, 7) Input Low Voltage 2 (6, 8) Input High Voltage 2 (6, 8) Voltage for ACC Program Acceleration Voltage for Autoselect and Temporary Sector Unprotect Output Low Voltage (9) Output High Voltage Low VCC Lock-Out Voltage (10) mA 1 MHz 20 50 20 60 5 5 5 0.8 VCC + 0.5 0.3 x VIO VIO + 0.5 12.5 12.5 0.15 x VIO mA mA mA µA µA µA V V V V V V V V V 2.5 V Notes: 1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 5.0 µA. 2. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. 3. Maximum ICC specifications are tested with VCC = VCCmax. 4. ICC active while Embedded Erase or Embedded Program is in progress. 5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. 6. If VIO < VCC, maximum VIL for CE# and DQ I/Os is 0.3 VIO. If VIO < VCC, minimum VIH for CE# and DQ I/Os is 0.7 VIO. Maximum VIH for these connections is VIO + 0.3 V. 7. VCC voltage requirements. 8. VIO voltage requirements. 9. Includes RY/BY# 10. Not 100% tested. November 5, 2003 Am49LV6408M 39 ADVANCE INFORMATION PSEUDO SRAM DC AND OPERATING CHARACTERISTICS Parameter Symbol ILI ILO Parameter Description Input Leakage Current Output Leakage Current Test Conditions VIN = VSS to VCC CE1#s = VIH, CE2s = VIL or OE# = VIH or WE# = VIL, VIO= VSS to VCC Cycle time = 1 µs, 100% duty, IIO = 0 mA, CE1#s ≤ 0.2 V, CE2 ≥ VCC – 0.2 V, VIN ≤ 0.2 V or VIN ≥ VCC – 0.2 V Cycle time = Min., IIO = 0 mA, 100% duty, CE1#s = VIL, CE2s = VIH, VIN = VIL = or VIH –0.2 (Note 3) 2.2 IOL = 2.0 mA IOH = –1.0 mA CE1#s = VIH, CE2 = VIL, Other inputs = VIH or VIL CE1#s=VIH, CE2= VIL: Other inputs = VIH or VIL: tA = 85°C, VCC = 3.0 V CE1#s=VIH, CE2= VIL: Other inputs = VIH or VIL: tA = 85°C, VCC = 3.3 V 2.2 0.3 Min –1.0 –1.0 Typ Max 1.0 1.0 Unit µA µA ICC1s Average Operating Current 3 5 mA ICC2s Average Operating Current 12 25 mA VIL VIH VOL VOH ISB Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage Standby Current (TTL) 0.4 VCC+0.2 (Note 2) 0.4 V V V V mA ISB1 Standby Current (CMOS) 60 µA ISB2 Standby Current (CMOS) 85 µA Notes: 1. TA= –40° to 85°C, otherwise specified. 2. 3. 4. 5. Overshoot: VCC+1.0V if pulse width ≤ 20 ns. Undershoot: –1.0V if pulse width ≤ 20 ns. Overshoot and undershoot are sampled, not 100% tested. Stable power supply required 200 µs before device operation. 40 Am49LV6408M November 5, 2003 ADVANCE INFORMATION TEST CONDITIONS Table 13. 3.3 V 2.7 kΩ Test Condition Output Load Output Load Capacitance, CL (including jig capacitance) CL 6.2 kΩ Input Rise and Fall Times Input Pulse Levels Input timing measurement reference levels Note: Diodes are IN3064 or equivalent Output timing measurement reference levels Test Specifications All Speeds 1 TTL gate 30 5 0.0–3.0 1.5 1.5 pF ns V V V Unit Device Under Test Figure 12. Test Setup KEY TO SWITCHING WAVEFORMS WAVEFORM INPUTS Steady Changing from H to L Changing from L to H Don’t Care, Any Change Permitted Does Not Apply Changing, State Unknown Center Line is High Impedance State (High Z) OUTPUTS 3.0 V 0.0 V Input 1.5 V Measurement Level 1.5 V Output Figure 13. Input Waveforms and Measurement Levels November 5, 2003 Am49LV6408M 41 ADVANCE INFORMATION AC CHARACTERISTICS Flash Read-Only Operations Parameter JEDEC tAVAV tAVQV tELQV Std. Description tRC tACC tCE Read Cycle Time (Note 1) Address to Output Delay Chip Enable to Output Delay CE#, OE# = VIL OE# = VIL Test Setup Min Max Max Max Max Max Max Min Min Min 10, 15 100 100 100 35 35 16 16 0 0 10 Speed 11 110 110 110 40 40 Unit ns ns ns ns ns ns ns ns ns ns tPACC Page Access Time tGLQV tEHQZ tGHQZ tAXQX tOE tDF tDF tOH Output Enable to Output Delay Chip Enable to Output High Z (Note 1) Output Enable to Output High Z (Note 1) Output Hold Time From Addresses, CE# or OE#, Whichever Occurs First Read tOEH Output Enable Hold Time (Note 1) Toggle and Data# Polling Notes: 1. Not 100% tested. 2. See Figure 12 and Table 12 for test specifications. tRC Addresses CE#f tRH tRH OE# tOEH WE# HIGH Z Outputs RESET#f Output Valid tCE tOH HIGH Z tOE tDF Addresses Stable tACC RY/BY# 0V Figure 14. Read Operation Timings 42 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC CHARACTERISTICS A21-A2 Same Page A1-A0 Aa tACC Ab tPACC Ac tPACC tPACC Ad Data Bus CE#f OE# Qa Qb Qc Qd Figure 15. Page Read Timings November 5, 2003 Am49LV6408M 43 ADVANCE INFORMATION AC Characteristics Hardware Reset (RESET#) Parameter JEDEC Std. tReady tReady tRP tRH tRPD tRB Notes: 1. Not 100% tested. 2. AC Specifications listed are tested with VIO = VCC. Contact AMD for information on AC operation with VIO ¼ VCC. Description RESET# Pin Low (During Embedded Algorithms) to Read Mode (See Note) RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note) RESET# Pulse Width Reset High Time Before Read (See Note) RESET# Input Low to Standby Mode RY/BY# Output High to CE#, OE# pin Low Max Max Min Min Min Min All Speed Options 20 500 500 50 20 0 Unit ms ns ns ns µs ns CE#f, OE# tRH RESET# tRP tReady Reset Timings NOT during Embedded Algorithms Reset Timings during Embedded Algorithms CE#f, OE# RESET# tRP Figure 16. Reset Timings 44 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC Characteristics Erase and Program Operations Parameter JEDEC tAVAV tAVWL tWLAX Std. tWC tAS tASO tAH tAHT tDVWH tWHDX tDS tDH tOEPH tGHWL tELWL tWHEH tWLWH tWHDL tGHWL tCS tCH tWP tWPH Description Write Cycle Time (Note 1) Address Setup Time Address Setup Time to OE# low during toggle bit polling Address Hold Time Address Hold Time From CE# or OE# high during toggle bit polling Data Setup Time Data Hold Time Output Enable High during toggle bit polling Read Recovery Time Before Write (OE# High to WE# Low) CE# Setup Time CE# Hold Time Write Pulse Width Write Pulse Width High Write Buffer Program Operation (Notes 2, 3) Effective Write Buffer Program Operation (Notes 2, 4) tWHWH1 tWHWH1 Accelerated Effective Write Buffer Program Operation (Notes 2, 4) Single Word/Byte Program Operation (Note 2, 5) Single Word/Byte Accelerated Programming Operation (Note 2, 5) tWHWH2 tWHWH2 tVHH tVCS tBUSY Notes: 1. Not 100% tested. 2. See the “Erase and Programming Performance” section for more information. 3. For 1–16 words programmed. 4. Effective write buffer specification is based upon a 16-word write buffer operation. 5. Word programming specification is based upon a single word programming operation not utilizing the write buffer. Speed Options 10, 15 Min Min Min Min Min Min Min Min Min Min Min Min Min Typ Per Word Per Word Word Word Typ Typ Typ Typ Typ Min Min Min 100 100 0 15 45 0 45 0 20 0 0 0 35 30 352 22 17.6 100 90 0.5 250 50 110 µs sec ns µs ns 11 110 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns µs µs µs Sector Erase Operation (Note 2) VHH Rise and Fall Time (Note 1) VCC Setup Time (Note 1) WE# High to RY/BY# Low November 5, 2003 Am49LV6408M 45 ADVANCE INFORMATION AC Characteristics Program Command Sequence (last two cycles) tWC Addresses 555h tAS PA tAH CE#f OE# tWP WE# tCS tDS Data tDH PD Status DOUT tWPH tWHWH1 PA PA Read Status Data (last two cycles) tCH A0h VCC tVCS Notes: 1. PA = program address, PD = program data, DOUT is the true data at the program address. Illustration shows device in word mode. Figure 17. VHH Program Operation Timings ACC VIL or VIH tVHH tVHH VIL or VIH Figure 18. Accelerated Program Timing Diagram 46 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC Characteristics Erase Command Sequence (last two cycles) tWC Addresses 2AAh tAS SA 555h for chip erase Read Status Data VA tAH VA CE#f OE# tWP WE# tCS tDS tCH tWPH tWHWH2 tDH Data tVCS VCC 55h 30h 10 for Chip Erase In Progress Complete Notes: 1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”. 2. Illustration shows device in word mode. Figure 19. Chip/Sector Erase Operation Timings November 5, 2003 Am49LV6408M 47 ADVANCE INFORMATION AC Characteristics tRC Addresses VA tACC tCE CE#f tCH OE# tOEH WE# tOH DQ7 High Z VA VA tOE tDF Complement Complement True Valid Data High Z DQ0–DQ6 Status Data Status Data True Valid Data Notes:Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle. Figure 20. Data# Polling Timings (During Embedded Algorithms) 48 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC Characteristics tAHT Addresses tAHT tASO CE#f tOEH WE# tOEPH OE# tDH DQ6/DQ2 Valid Data Valid Status tAS tCEPH tOE Valid Status Valid Status Valid Data (first read) (second read) (stops toggling) Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle. Figure 21. Enter Embedded Erasing WE# Erase Suspend Erase Toggle Bit Timings (During Embedded Algorithms) Enter Erase Suspend Program Erase Suspend Program Erase Resume Erase Suspend Read Erase Erase Complete Erase Suspend Read DQ6 DQ2 Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6. Figure 22. DQ2 vs. DQ6 November 5, 2003 Am49LV6408M 49 ADVANCE INFORMATION AC CHARACTERISTICS Temporary Sector Unprotect Parameter JEDEC Std tVIDR tRSP Description VID Rise and Fall Time (See Note) RESET# Setup Time for Temporary Sector Unprotect Min Min All Speed Options 500 4 Unit ns µs Note: Not 100% tested. VID RESET# VSS, VIL, or VIH tVIDR Program or Erase Command Sequence CE#f tVIDR VID VSS, VIL, or VIH WE# tRSP Figure 23. Temporary Sector Group Unprotect Timing Diagram 50 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC Characteristics VID VIH RESET# SA, A6, A3, A2, A1, A0 Data 60h Valid* Sector Group Protect or Unprotect 60h Sector Group Protect: 150 µs, Sector Group Unprotect: 15 ms Valid* Verify 40h Valid* Status 1 µs CE# WE# OE# Note: For sector group protect, A6:A0 = 0xx0010. For sector group unprotect, A6:A0 = 1xx0010. Figure 24. Sector Group Protect and Unprotect Timing Diagram November 5, 2003 Am49LV6408M 51 ADVANCE INFORMATION AC Characteristics Alternate CE# Controlled Erase and Program Operations Parameter JEDEC tAVAV tAVWL tELAX tDVEH tEHDX tGHEL tWLEL tEHWH tELEH tEHEL Std. tWC tAS tAH tDS tDH tGHEL tWS tWH tCP tCPH Description Write Cycle Time (Note 1) Address Setup Time Address Hold Time Data Setup Time Data Hold Time Read Recovery Time Before Write (OE# High to WE# Low) WE# Setup Time WE# Hold Time CE# Pulse Width CE# Pulse Width High Write Buffer Program Operation (Notes 2, 3) Effective Write Buffer Program Operation (Notes 2, 4) tWHWH1 tWHWH1 Accelerated Effective Write Buffer Program Operation (Notes 2, 4) Single Word/Byte Program Operation (Note 2, 5) Single Word/Byte Accelerated Programming Operation (Note 2, 5) tWHWH2 tWHWH2 tRH Notes: 1. Not 100% tested. 2. See the “Erase and Programming Performance” section for more information. 3. For 1–16 words programmed. 4. Effective write buffer specification is based upon a 16-word write buffer operation. 5. Word programming specification is based upon a single word programming operation not utilizing the write buffer. Speed Options 10, 15 Min Min Min Min Min Min Min Min Min Min Typ Per Word Per Word Word Word Typ Typ Typ Typ Typ Min 100 0 45 45 0 0 0 0 45 30 352 22 17.6 100 90 0.5 50 µs sec ns 11 110 Unit ns ns ns ns ns ns ns ns ns ns µs µs µs Sector Erase Operation (Note 2) RESET# High Time Before Write 52 Am49LV6408M November 5, 2003 ADVANCE INFORMATION AC CHARACTERISTICS 555 for program 2AA for erase PA for program SA for sector erase 555 for chip erase Data# Polling PA Addresses tWC tWH WE# tGHEL OE# tCP CE#f tWS tCPH tDS tDH Data tRH A0 for program 55 for erase PD for program 30 for sector erase 10 for chip erase tAS tAH tWHWH1 or 2 tBUSY DQ7# DOUT RESET# Notes: 1. Figure indicates last two bus cycles of a program or erase operation. 2. PA = program address, SA = sector address, PD = program data. 3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device. Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings November 5, 2003 Am49LV6408M 53 ADVANCE INFORMATION PSEUDO SRAM AC CHARACTERISTICS Power Up Time When powering up the pSRAM, maintain VCCs for 100 µs minimum with CE#1ps at VIH. Read Cycle Parameter Symbol tRC tAA tCO1, tCO2 tOE tBA tLZ1, tLZ2 tBLZ tOLZ tHZ1, tHZ2 tBHZ tOHZ tOH Speed Description 15 Read Cycle Time Address Access Time Chip Enable to Output Output Enable Access Time LB#ps, UB#ps to Access Time Chip Enable (CE1#ps Low and CE2ps High) to Low-Z Output UB#ps, LB#ps Enable to Low-Z Output Output Enable to Low-Z Output Chip Disable to High-Z Output UB#ps, LB#ps Disable to High-Z Output Output Disable to High-Z Output Output Data Hold from Address Change Min Max Max Max Max Min Min Min Max Max Max Min 20 20 20 10 55 55 55 30 55 5 5 5 25 25 25 10, 11 70 70 70 35 70 ns ns ns ns ns ns ns ns ns ns ns ns Unit tRC Address tOH Data Out Previous Data Valid tAA Data Valid Notes: 1. CE1#ps = OE# = VIL, CE2ps = WE# = VIH, UB#ps and/or LB#ps = VIL 2. Do not access device with cycle timing shorter than tRC for continuous periods < 10 µs. Figure 26. Pseudo SRAM Read Cycle—Address Controlled 54 Am49LV6408M November 5, 2003 ADVANCE INFORMATION PSEUDO SRAM AC CHARACTERISTICS Read Cycle tRC Address tAA tCO1 tOH CE#1s CE2s UB#s, LB#s tCO2 tBA tOE tOLZ tBLZ tLZ tOHZ Data Valid tHZ tBHZ OE# Data Out High-Z Notes: 1. WE# = VIH. 2. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 3. At any given temperature and voltage condition, tHZ (Max.) is less than tLZ (Min.) both for a given device and from device to device interconnection. 4. Do not access device with cycle timing shorter than tRC for continuous periods < 10 µs. Figure 27. Pseudo SRAM Read Cycle November 5, 2003 Am49LV6408M 55 ADVANCE INFORMATION PSEUDO SRAM AC CHARACTERISTICS Write Cycle Parameter Symbol tWC tCw tAS tAW tBW tWP tWR tWHZ tDW tDH tOW Speed Description 55 Write Cycle Time Chip Enable to End of Write Address Setup Time Address Valid to End of Write UB#s, LB#s to End of Write Write Pulse Time Write Recovery Time Write to Output High-Z Max Data to Write Time Overlap Data Hold from Write Time End Write to Output Low-Z Min Min Min 25 40 0 5 ns ns ns Min Min Min Min Min Min Min Min 45 45 45 0 0 ns 55 45 0 55 55 55 70 70 55 ns ns ns ns ns ns ns Unit tWC Address tCW (See Note 1) tAW CE2s tCW (See Note 1) tWP (See Note 4) tAS (See Note 3) High-Z tWHZ Data Out Data Undefined tDW Data Valid tWR CE1#s WE# tDH High-Z tOW Data In Notes: 1. WE# controlled. 2. tCW is measured from CE1#s going low to the end of write. 3. tWR is measured from the end of write to the address change. tWR applied in case a write ends as CE1#s or WE# going high. 4. tAS is measured from the address valid to the beginning of write. 5. A write occurs during the overlap (tWP) of low CE#1 and low WE#. A write begins when CE1#s goes low and WE# goes low when asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation. A write ends at the earliest transition when CE1#s goes high and WE# goes high. The tWP is measured from the beginning of write to the end of write. Figure 28. Pseudo SRAM Write Cycle—WE# Control 56 Am49LV6408M November 5, 2003 ADVANCE INFORMATION PSEUDO SRAM AC CHARACTERISTICS tWC Address tAS (See Note 2 ) tCW (See Note 3) CE1#s tAW CE2s tBW tWP (See Note 5) WE# tDW Data In tDH tWR (See Note 4) UB#s, LB#s Data Valid Data Out High-Z High-Z Notes: 1. CE1#s controlled. 2. tCW is measured from CE1#s going low to the end of write. 3. tWR is measured from the end of write to the address change. tWR applied in case a write ends as CE1#s or WE# going high. 4. tAS is measured from the address valid to the beginning of write. 5. A write occurs during the overlap (tWP) of low CE1#s and low WE#. A write begins when CE1#s goes low and WE# goes low when asserting UB#s or LB#s for a single byte operation or simultaneously asserting UB#s and LB#s for a double byte operation. A write ends at the earliest transition when CE1#s goes high and WE# goes high. The tWP is measured from the beginning of write to the end of write. Figure 29. Pseudo SRAM Write Cycle—CE1#s Control November 5, 2003 Am49LV6408M 57 ADVANCE INFORMATION FLASH ERASE AND PROGRAMMING PERFORMANCE Parameter Sector Erase Time Chip Erase Time Single Word Program Time (Note 3) Accelerated Single Word Program Time (Note 3) Total Write Buffer Program Time (Note 4) Effective Write Buffer Program Time (Note 5) Total Accelerated Effective Write Buffer Program Time (Note 4) Effective Accelerated Write Buffer PRogram Word Time (Note 4) Chip Program Time Per Word Word Word Typ (Note 1) 0.5 32 100 90 352 22 282 17.6 92 15 128 Max (Note 2) Unit sec sec µs µs µs µs µs µs sec Comments Notes: 1. Typical program and erase times assume the following conditions: 25×C, 3.0 V VCC. Programming specifications assume that all bits are programmed to 00h. 2. Maximum values are measured at VCC = 3.0 V, worst case temperature. Maximum values are valid up to and including 100,000 program/erase cycles. 3. Word programming specification is based upon a single word programming operation not utilizing the write buffer. 4. For 1-16 words programmed in a single write buffer programming operation. 5. Effective write buffer specification is calculated on a per-word basis for a 16-word write buffer operation. 6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure. 7. System-level overhead is the time required to execute the command sequence(s) for the program command. See Tables 12 and 11 for further information on command definitions. 8. The device has a minimum erase and program cycle endurance of 100,000 cycles. LATCHUP CHARACTERISTICS Description Input voltage with respect to VSS on all pins except I/O pins (including A9, OE#, and RESET#) Input voltage with respect to VSS on all I/O pins VCC Current Min –1.0 V –1.0 V –100 mA Max 12.5 V VCC + 1.0 V +100 mA Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time. BGA PACKAGE CAPACITANCE Parameter Symbol CIN COUT CIN2 Parameter Description Input Capacitance Output Capacitance Control Pin Capacitance Test Setup VIN = 0 VOUT = 0 VIN = 0 Fine-pitch BGA Fine-pitch BGA Fine-pitch BGA Typ 4.2 5.4 3.9 Max 5.0 6.5 4.7 Unit pF pF pF Notes: 1. Sampled, not 100% tested. 2. Test conditions TA = 25°C, f = 1.0 MHz. 58 Am49LV6408M November 5, 2003 ADVANCE INFORMATION DATA RETENTION Parameter Description Minimum Pattern Data Retention Time Test Conditions 150°C 125°C Min 10 20 Unit Years Years November 5, 2003 Am49LV6408M 59 ADVANCE INFORMATION PHYSICAL DIMENSIONS TLB069—69-Ball Fine-pitch Ball Grid Array (FBGA) 8 x 10 mm Package D 0.15 C (2X) 10 9 8 7 A D1 eD SE 7 E1 E eE 6 5 4 3 2 1 J H G F E D CB A INDEX MARK PIN A1 CORNER 10 K B 7 TOP VIEW 0.15 C (2X) SD PIN A1 CORNER BOTTOM VIEW A A2 A1 6 0.20 C C 0.08 C SIDE VIEW b M CAB MC 69X 0.15 0.08 NOTES: PACKAGE JEDEC TLB 069 N/A 10.00 mm X 8.00 mm PACKAGE SYMBOL A A1 A2 D E D1 E1 MD ME n Ob eE eD SD/SE 0.33 MIN. --0.20 0.81 NOM. ------10.00 BSC 8.00 BSC 7.20 BSC 7.20 BSC 10 10 69 --0.80 BSC 0.80 BSC 0.40 BSC A2,A3,A4,A7,A8,A9,B2,B9,B10 C1,C10,D1,D10,E5,E6,F5,F6 G1,G10,H1,H10 J1,J2,J9,J10,K2,K3,K4,K7,K8,K9 0.43 MAX. 1.20 --0.97 PROFILE BALL HEIGHT BODY THICKNESS BODY SIZE BODY SIZE MATRIX FOOTPRINT MATRIX FOOTPRINT MATRIX SIZE D DIRECTION MATRIX SIZE E DIRECTION BALL COUNT BALL DIAMETER BALL PITCH BALL PITCH SOLDER BALL PLACEMENT DEPOPULATED SOLDER BALLS 9. 8. 7. 6. NOTE 2. 3. 4. 5. 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994. ALL DIMENSIONS ARE IN MILLIMETERS. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010. e REPRESENTS THE SOLDER BALL GRID PITCH. SYMBOL "MD" IS THE BALL MATRIX IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX IN THE "E" DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0.000. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = E/2 "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS. NOT USED. 10. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS. w052903-163814C 60 Am49LV6408M November 5, 2003 ADVANCE INFORMATION REVISION SUMMARY Revision A (November 5, 2003) Initial release. Trademarks Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc. ExpressFlash is a trademark of Advanced Micro Devices, Inc. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. November 5, 2003 Am49LV6408M 61
AM49LV6408MB10I 价格&库存

很抱歉,暂时无法提供与“AM49LV6408MB10I”相匹配的价格&库存,您可以联系我们找货

免费人工找货