CY28411-1
Clock Generator for Intel Alviso Chipset
Features
• Compliant to Intel CK410M • Supports Intel Pentium-M CPU • Selectable CPU frequencies • Differential CPU clock pairs • 100 MHz differential SRC clocks • 96 MHz differential dot clock • 48 MHz USB clocks CPU x2 / x3 SRC x7 / x8 PCI x6 REF x1 DOT96 x1 USB_48 x1 • 33 MHz PCI clock • Low-voltage frequency select input • I2C support with readback capabilities • Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction • 3.3V power supply • 56-pin SSOP and TSSOP packages
Block Diagram
XIN XOUT CPU_STP# PCI_STP# FS_[C:A] VTT_PWRGD# IREF
Pin Configuration
VDD_PCI VSS_PCI PCI3 VDD_CPU PCI4 CPUT[0:1], CPUC[0:1], CPU(T/C)2_ITP] PCI5 VDD_SRC VSS_PCI SRCT[0:6], SRCC[0:6] VDD_PCI PCIF0/ITP_EN PCIF1 VTT_PWRGD#/PD VDD_PCI VDD_48 PCI[2:5] USB_48/FS_A VDD_PCIF VSS_48 PCIF[0:1] DOT96T DOT96C VDD_48 MHz FS_B/TEST_MODE DOT96T SRCT0 DOT96C SRCC0 USB_48 SRCT1 SRCC1 VDD_SRC SRCT2 SRCC2 SRCT3 SRCC3 SRC4_SATAT SRC4_SATAC VDD_SRC
VDD_REF REF
XTAL OSC PLL1
PLL Ref Freq
Divider Network
PD
PLL2
SDATA SCLK
I2C Logic
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
PCI2 PCI_STP# CPU_STP# FS_C/TEST_SEL REF VSS_REF XIN XOUT VDD_REF SDATA SCLK VSS_CPU CPUT0 CPUC0 VDD_CPU CPUT1 CPUC1 IREF VSSA VDDA CPUT2_ITP/SRCT7 CPUC2_ITP/SRCC7 VDD_SRC SRCT6 SRCC6 SRCT5 SRCC5 VSS_SRC
56 SSOP/TSSOP
CY28411-1
Pin Definitions
Pin No. 54 44,43,41,40 CPUT/C Name CPU_STP# Type I, PU O, DIF Differential CPU clock outputs. Description 3.3V LVTTL input for CPU_STP# active low.
Rev 1.0, November 22, 2006
2200 Laurelwood Road, Santa Clara, CA 95054 Tel:(408) 855-0555 Fax:(408) 855-0550
Page 1 of 18
www.SpectraLinear.com
CY28411-1
Pin Definitions
Pin No. 36,35 Name CPUT2_ITP/SRCT7, CPUC2_ITP/SRCC7 DOT96T, DOT96C FS_A/USB_48 FS_B/TEST_MODE Type Description O, DIF Selectable differential CPU or SRC clock output. ITP_EN = 0 @ VTT_PWRGD# assertion = SRC7 ITP_EN = 1 @ VTT_PWRGD# assertion = CPU2 O, DIF Fixed 96-MHz clock output. I/O, SE 3.3V-tolerant input for CPU frequency selection/fixed 48-MHz clock output. Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. I 3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Hi-Z when in test mode 0 = Hi-Z, 1 = Ref/N Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. 3.3V-tolerant input for CPU frequency selection. Selects test mode if pulled to VIMFS_C when VTT_PWRGD# is asserted low. Refer to DC Electrical Specifications table for VILFS_C,VIMFS_C,VIHFS_C specifications. A precision resistor is attached to this pin, which is connected to the internal current reference. 3.3V LVTTL input for PCI_STP# active low.
14,15 12 16
53
FS_C/TEST_SEL
I
39 56,3,4,5 55 8 9 52 46 47 26,27
IREF PCI PCI_STP# PCIF0/ITP_EN PCIF1 REF SCLK SDATA SRC4_SATAT, SRC4_SATAC
I
O, SE 33-MHz clocks. I, PU I/O, SE 33-MHz clock/CPU2 select (sampled on the VTT_PWRGD# assertion). 1 = CPU2_ITP, 0 = SRC7 O, SE 33-MHz clocks. O, SE Reference clock. 3.3V 14.318-MHz clock output. I I/O SMBus-compatible SCLOCK. SMBus-compatible SDATA.
O, DIF Differential serial reference clock. Recommended output for SATA. O, DIF Differential serial reference clocks.
24,25,22,23, SRCT/C 19,20,17,18, 33,32,31,30 11 42 1,7 48 21,28,34 37 13 45 2,6 51 29 38 10 VDD_48 VDD_CPU VDD_PCI VDD_REF VDD_SRC VDDA VSS_48 VSS_CPU VSS_PCI VSS_REF VSS_SRC VSSA VTT_PWRGD#/PD
PWR PWR PWR PWR PWR PWR GND GND GND GND GND GND I, PU
3.3V power supply for outputs. 3.3V power supply for outputs. 3.3V power supply for outputs. 3.3V power supply for outputs. 3.3V power supply for outputs. 3.3V power supply for PLL. Ground for outputs. Ground for outputs. Ground for outputs. Ground for outputs. Ground for outputs. Ground for PLL. 3.3V LVTTL input is a level sensitive strobe used to latch the USB_48/FS_A, FS_B, FS_C/TEST_SEL and PCIF0/ITP_EN inputs. After VTT_PWRGD# (active low) assertion, this pin becomes a real-time input for asserting power down (active high). 14.318-MHz crystal input.
50 49
XIN XOUT
I
O, SE 14.318-MHz crystal output.
Rev 1.0, November 22, 2006
Page 2 of 18
CY28411-1
Frequency Select Pins (FS_A, FS_B and FS_C)
Host clock frequency selection is achieved by applying the appropriate logic levels to FS_A, FS_B, FS_C inputs prior to VTT_PWRGD# assertion (as seen by the clock synthesizer). Upon VTT_PWRGD# being sampled low by the clock chip (indicating processor VTT voltage is stable), the clock chip samples the FS_A, FS_B and FS_C input values. For all logic levels of FS_A, FS_B and FS_C, VTT_PWRGD# employs a one-shot functionality in that once a valid low on VTT_PWRGD# has been sampled, all further VTT_PWRGD#, FS_A, FS_B and FS_C transitions will be ignored, except in test mode. Table 1. Frequency Select Table FS_A, FS_B and FS_C FS_C MID 0 0 0 0 MID MID MID 1 1 1 FS_B 0 0 1 1 0 0 1 1 0 1 1 FS_A 1 1 1 0 0 0 0 1 x 0 1 Hi-Z REF/2 REF/2 Hi-Z REF/8 REF/8 Hi-Z REF/24 REF/24 Hi-Z REF REF Hi-Z REF REF Hi-Z REF REF 200 MHz 266 MHz 100 MHz 100 MHz CPU 100 MHz 133 MHz SRC 100 MHz 100 MHz PCIF/PCI 33 MHz 33 MHz 33 MHz 33 MHz REF0 14.318 MHz 14.318 MHz 14.318 MHz 14.318 MHz DOT96 96 MHz 96 MHz 96 MHz 96 MHz USB 48 MHz 48 MHz 48 MHz 48 MHz
RESERVED
RESERVED
Serial Data Interface
To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface initializes to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions.
Data Protocol
The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in Table 2. The block write and block read protocol is outlined in Table 3 while Table 4 outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h).
Table 2. Command Code Definition Bit 7 (6:0) Description 0 = Block read or block write operation, 1 = Byte read or byte write operation Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'
Table 3. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 9 10 18:11 19 27:20 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Byte Count – 8 bits (Skip this step if I2C_EN bit set) Description Bit 1 8:2 9 10 18:11 19 20 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Repeat start Block Read Protocol Description
Rev 1.0, November 22, 2006
Page 3 of 18
CY28411-1
Table 3. Block Read and Block Write Protocol (continued) Block Write Protocol Bit 28 36:29 37 45:38 46 .... .... .... .... Description Acknowledge from slave Data byte 1 – 8 bits Acknowledge from slave Data byte 2 – 8 bits Acknowledge from slave Data Byte /Slave Acknowledges Data Byte N –8 bits Acknowledge from slave Stop Bit 27:21 28 29 37:30 38 46:39 47 55:48 56 .... .... .... .... Table 4. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 9 10 18:11 19 27:20 28 29 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Data byte – 8 bits Acknowledge from slave Stop Description Bit 1 8:2 9 10 18:11 19 20 27:21 28 29 37:30 38 39 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Repeated start Slave address – 7 bits Read Acknowledge from slave Data from slave – 8 bits NOT Acknowledge Stop Byte Read Protocol Description Read = 1 Acknowledge from slave Byte Count from slave – 8 bits Acknowledge Data byte 1 from slave – 8 bits Acknowledge Data byte 2 from slave – 8 bits Acknowledge Data bytes from slave / Acknowledge Data Byte N from slave – 8 bits NOT Acknowledge Stop Block Read Protocol Description Slave address – 7 bits
Control Registers
Byte 0:Control Register 0 Bit 7 6 5 4 3 @Pup 1 1 1 1 1 Name CPUT2_ITP/SRCT7 CPUC2_ITP/SRCC7 SRC[T/C]6 SRC[T/C]5 SRC[T/C]4 SRC[T/C]3 Description CPU[T/C]2_ITP/SRC[T/C]7 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]6 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]5 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]4 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]3 Output Enable 0 = Disable (Hi-Z), 1 = Enable
Rev 1.0, November 22, 2006
Page 4 of 18
CY28411-1
Byte 0:Control Register 0 (continued) Bit 2 1 0 @Pup 1 1 1 Name SRC[T/C]2 SRC[T/C]1 SRC[T/C]0 SRC[T/C]2 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]1 Output Enable 0 = Disable (Hi-Z), 1 = Enable SRC[T/C]0 Output Enable 0 = Disable (Hi-Z), 1 = Enable Description
Byte 1: Control Register 1 Bit 7 6 5 4 3 2 1 0 @Pup 1 1 1 1 0 1 1 0 Name PCIF0 DOT_96T/C USB_48 REF Reserved CPU[T/C]1 CPU[T/C]0 CPUT/C SRCT/C PCIF PCI PCIF0 Output Enable 0 = Disabled, 1 = Enabled DOT_96 MHz Output Enable 0 = Disable (Hi-Z), 1 = Enabled USB_48 MHz Output Enable 0 = Disabled, 1 = Enabled REF Output Enable 0 = Disabled, 1 = Enabled Reserved CPU[T/C]1 Output Enable 0 = Disable (Hi-Z), 1 = Enabled CPU[T/C]0 Output Enable 0 = Disable (Hi-Z), 1 = Enabled Spread Spectrum Enable 0 = Spread off, 1 = Spread on Description
Byte 2: Control Register 2 Bit 7 6 5 4 3 2 1 0 @Pup 1 1 1 1 1 1 1 1 Name PCI5 PCI4 PCI3 PCI2 Reserved Reserved Reserved PCIF1 PCI5 Output Enable 0 = Disabled, 1 = Enabled PCI4 Output Enable 0 = Disabled, 1 = Enabled PCI3 Output Enable 0 = Disabled, 1 = Enabled PCI2 Output Enable 0 = Disabled, 1 = Enabled Reserved, Set = 1 Reserved, Set = 1 Reserved, Set = 1 PCIF1 Output Enable 0 = Disabled, 1 = Enabled Description
Byte 3: Control Register 3 Bit 7 6 5 @Pup 0 0 0 Name SRC7 SRC6 SRC5 Description Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
Rev 1.0, November 22, 2006
Page 5 of 18
CY28411-1
Byte 3: Control Register 3 (continued) Bit 4 3 2 1 0 @Pup 0 0 0 0 0 Name SRC4 SRC3 SRC2 SRC1 SRC0 Description Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]0 with assertion of PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP#
Byte 4: Control Register 4 Bit 7 6 5 4 3 2 1 0 @Pup 0 0 0 0 0 1 1 1 Name Reserved DOT96T/C Reserved PCIF1 PCIF0 CPU[T/C]2 CPU[T/C]1 CPU[T/C]0 Reserved, Set = 0 DOT_PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Hi-Z Reserved, Set = 0 Allow control of PCIF1 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of PCIF0 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of CPU[T/C]2 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Allow control of CPU[T/C]1 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Allow control of CPU[T/C]0 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Description
Byte 5: Control Register 5 Bit 7 6 5 4 3 2 1 0 @Pup 0 0 0 0 0 0 0 0 Name SRC[T/C][7:0] CPU[T/C]2 CPU[T/C]1 CPU[T/C]0 SRC[T/C][7:0] CPU[T/C]2 CPU[T/C]1 CPU[T/C]0 Description SRC[T/C] Stop Drive Mode 0 = Driven when PCI_STP# asserted,1 = Hi-Z when PCI_STP# asserted CPU[T/C]2 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Hi-Z when CPU_STP# asserted CPU[T/C]1 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Hi-Z when CPU_STP# asserted CPU[T/C]0 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Hi-Z when CPU_STP# asserted SRC[T/C] PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Hi-Z when PD asserted CPU[T/C]2 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Hi-Z when PD asserted CPU[T/C]1 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Hi-Z when PD asserted CPU[T/C]0 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Hi-Z when PD asserted
Rev 1.0, November 22, 2006
Page 6 of 18
CY28411-1
Byte 6: Control Register 6 Bit 7 6 5 4 3 @Pup 0 0 0 1 1 Reserved REF PCIF, SRC, PCI Name REF/N or Hi-Z Select 0 = Hi-Z, 1 = REF/N Clock Test Clock Mode Entry Control 0 = Normal operation, 1 = REF/N or Hi-Z mode, Reserved, Set = 0 REF Output Drive Strength 0 = Low, 1 = High SW PCI_STP Function 0=SW PCI_STP assert, 1= SW PCI_STP deassert When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will be stopped in a synchronous manner with no short pulses. When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will resume in a synchronous manner with no short pulses. FS_C Reflects the value of the FS_C pin sampled on power up 0 = FS_C was low during VTT_PWRGD# assertion FS_B Reflects the value of the FS_B pin sampled on power up 0 = FS_B was low during VTT_PWRGD# assertion FS_A Reflects the value of the FS_A pin sampled on power up 0 = FS_A was low during VTT_PWRGD# assertion Description
2 1 0
Externally selected Externally selected Externally selected
CPUT/C CPUT/C CPUT/C
Byte 7: Vendor ID Bit 7 6 5 4 3 2 1 0 @Pup 0 0 1 0 1 0 0 0 Name Revision Code Bit 3 Revision Code Bit 2 Revision Code Bit 1 Revision Code Bit 0 Vendor ID Bit 3 Vendor ID Bit 2 Vendor ID Bit 1 Vendor ID Bit 0 Revision Code Bit 3 Revision Code Bit 2 Revision Code Bit 1 Revision Code Bit 0 Vendor ID Bit 3 Vendor ID Bit 2 Vendor ID Bit 1 Vendor ID Bit 0 Description
Crystal Recommendations
The CY28411-1 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the CY28411-1 to operate at the wrong frequency and violate the ppm specification. For most applications there is a 300-ppm frequency shift between series and parallel crystals due to incorrect loading.
Crystal Loading
Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL). The following diagram shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the crystal not parallel. It’s a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true.
Table 5. Crystal Recommendations Frequency (Fund) 14.31818 MHz Cut AT Loading Load Cap Parallel 20 pF Drive (max.) 0.1 mW Shunt Cap (max.) 5 pF Motional (max.) 0.016 pF Tolerance (max.) 35 ppm Stability (max.) 30 ppm Aging (max.) 5 ppm
Rev 1.0, November 22, 2006
Page 7 of 18
CY28411-1
Figure 1. Crystal Capacitive Clarification
Calculating Load Capacitors
In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the
Clock Chip
crystal. This means the total capacitance on each side of the crystal must be twice the specified crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitive loading on both sides.
Ci1
Ci2 Pin 3 to 6p
Cs1
X1
X2
Cs2 Trace 2.8pF
XTAL Ce1
Ce2
Trim 33pF
Figure 2. Crystal Loading Example As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This mean the total capacitance on each side of the crystal must be twice the specified load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitance loading on both sides. Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2. Load Capacitance (each side) Ce = 2 * CL – (Cs + Ci) Total Capacitance (as seen by the crystal) CLe CL....................................................Crystal load capacitance CLe......................................... Actual loading seen by crystal using standard value trim capacitors Ce..................................................... External trim capacitors Cs .............................................. Stray capacitance (terraced) Ci ...........................................................Internal capacitance (lead frame, bond wires etc.) CL....................................................Crystal load capacitance CLe......................................... Actual loading seen by crystal using standard value trim capacitors Ce..................................................... External trim capacitors Cs .............................................. Stray capacitance (terraced) Ci ...........................................................Internal capacitance (lead frame, bond wires etc.)
=
1 1 ( Ce1 + Cs1 + Ci1 + 1 Ce2 + Cs2 + Ci2
)
Rev 1.0, November 22, 2006
Page 8 of 18
CY28411-1
PD (Power-down) Clarification The VTT_PWRGD# /PD pin is a dual function pin. During initial power-up, the pin functions as VTT_PWRGD#. Once VTT_PWRGD# has been sampled low by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active high input used to shut off all clocks cleanly prior to shutting off power to the device. This signal is synchronized internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted high, all clocks need to be driven to a low value and held prior to turning off the VCOs and the crystal oscillator. PD (Power-down) – Assertion When PD is sampled high by two consecutive rising edges of CPUC, all single-ended outputs will be held low on their next
PD CPUT, 133MHz CPUC, 133MHz SRCT 100MHz SRCC 100MHz USB, 48MHz DOT96T DOT96C
high to low transition and differential clocks must held high or Hi-Zd (depending on the state of the control register drive mode bit) on the next diff clock# high to low transition within four clock periods. When the SMBus PD drive mode bit corresponding to the differential (CPU, SRC, and DOT) clock output of interest is programmed to ‘0’, the clock output are held with “Diff clock” pin driven high at 2 x Iref, and “Diff clock#” tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to “1”, then both the “Diff clock” and the “Diff clock#” are tristate. Note the example below shows CPUT = 133 MHz and PD drive mode = ‘1’ for all differential outputs. This diagram and description is applicable to valid CPU frequencies 100,133,166,200,266,333 and 400MHz. In the event that PD mode is desired as the initial power-on state, PD must be asserted high in less than 10 uS after asserting Vtt_PwrGd#.
PCI, 33 MHz REF
Figure 3. Power-down Assertion Timing Waveform PD Deassertion The power-up latency is less than 1.8 ms. This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are output from the clock chip. All differential outputs stopped in a three-state
Tstable 200mV
Figure 6. CPU_STP# Deassertion Waveform
1.8mS CPU_STOP# PD CPUT(Free Running CPUC(Free Running CPUT(Stoppable) CPUC(Stoppable)
DOT96T DOT96C
Figure 7. CPU_STP#= Driven, CPU_PD = Driven, DOT_PD = Driven
Rev 1.0, November 22, 2006
Page 10 of 18
CY28411-1
1.8mS CPU_STOP# PD CPUT(Free Running) CPUC(Free Running) CPUT(Stoppable) CPUC(Stoppable)
DOT96T DOT96C
Figure 8. CPU_STP# = Hi-Z, CPU_PD = Hi-Z, DOT_PD = tHi-Z PCI_STP# Assertion[1] The PCI_STP# signal is an active LOW input used for synchronous stopping and starting the PCI outputs while the rest of the clock generator continues to function. The set-up
Tsu
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See Figure 9.) The PCIF clocks will not be affected by this pin if their corresponding control bit in the SMBus register is set to allow them to be free running.
PCI_STP# PCI_F
PCI SRC 100MHz
Figure 9. PCI_STP# Assertion Waveform PCI_STP# Deassertion The deassertion of the PCI_STP# signal will cause all PCI and stoppable PCIF clocks to resume running in a synchronous manner within two PCI clock periods after PCI_STP# transitions to a high level.
Tsu Tdrive_SRC
PCI_STP# PCI_F
PCI SRC 100MHz
Figure 10. PCI_STP# Deassertion Waveform
Note: 1. The PCI STOP function is controlled by two inputs. One is the device PCI_STP# pin number 34 and the other is SMBus byte 0 bit 3. These two inputs are logically OR’ed. If either the external pin or the internal SMBus register bit is set low then the stoppable PCI clocks will be stopped in a logic low state. Reading SMBus Byte 0 Bit 3 will return a 0 value if either of these control bits are set LOW thereby indicating the device’s stoppable PCI clocks are not running.
Rev 1.0, November 22, 2006
Page 11 of 18
CY28411-1
FS_A, FS_B,FS_C VTT_PW RGD# PW RGD_VRM
VDD Clock Gen Clock State State 0
0.2-0.3mS Delay State 1
W ait for VTT_PW RGD#
Sample Sels State 2 State 3
Device is not affected, VTT_PW RGD# is ignored
Clock Outputs
Off
On
Clock VCO
Off
On
Figure 11. VTT_PWRGD# Timing Diagram
S1
S2 VTT_PWRGD# = Low
Delay >0.25mS
VDD_A = 2.0V
Sample Inputs straps
Wait for