0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CY28442ZXC-2T

CY28442ZXC-2T

  • 厂商:

    SPECTRALINEAR

  • 封装:

  • 描述:

    CY28442ZXC-2T - Clock Generator for Intel Alviso Chipset - SpectraLinear Inc

  • 详情介绍
  • 数据手册
  • 价格&库存
CY28442ZXC-2T 数据手册
CY28442-2 Clock Generator for Intel Alviso Chipset Features • Compliant to Intel CK410M • Supports Intel Pentium-M CPU • Selectable CPU frequencies • Differential CPU clock pairs • 100 MHz differential SRC clocks • 96 MHz differential dot clock • 48 MHz USB clocks • SRC clocks independently stoppable through CLKREQ#[A:B] CPU x2 / x3 SRC x5/6 PCI x6 REF x2 DOT96 x2 USB_48 x1 • 96 /100 MHz Spreadable differential clock. • 33 MHz PCI clock • Low-voltage frequency select input • I2C support with readback capabilities • Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction • 3.3V power supply • 56-pin TSSOP package Block Diagram Pin Configuration VDD_REF REF IREF VDD_CPU CPUT CPUC VDD_CPU CPUT_ITP/SRCT7 CPUC_ITP/SRCC7 VDD_SRC SRCT[1:5] CPUC[1:5] VDD_PCI PCI VDD_PCI PCIF PLL2 96MSS VDD_48MHz 96_100_SSCT 96_100_SSCC VDD_48MHz DOT96T DOT96C VDD_48 USB XIN XOUT PCI_STP# CPU_STP# CLKREQ[A:B]# FS_[C:A] 14.318MHz Crystal PLL Reference PLL1 CPU Divider Divider PLL3 FIXED VTTPWR_GD#/PD Divider VDD_REF VSS_REF PCI3 PCI4 PCI5 VSS_PCI VDD_PCI ITP_EN/PCIF0 **96_100_SEL/PCIF1 VTTPWRGD#/PD VDD_48 FS_A/48M_0 VSS_48 DOT96T DOT96C FS_B/TESTMODE 96_100_SSCT 96_100_SSCC SRCT1 SRCC1 VDD_SRC SRCT2 SRCC2 SRCT3 SRCC3 SRCT4_SATA SRCC4_SATA VDD_SRC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 PCI2/SEL_CLKREQ** PCI_STP# CPU_STP# FS_C(TEST_SEL)/REF0 REF1 VSSA2 XIN XOUT VDDA2 SDATA SCLK VSS_CPU CPUT0 CPUC0 VDD_CPU CPUT1 CPUC1 IREF VSSA VDDA CPU2T_ITP/SRCT7 CPU2C_ITP/SRCC7 VDD_SRC_ITP CLKREQA#/SRCT6 CLKREQB#/SRCC6 SRCT5 SRCC5 VSS_SRC SDATA SCLK I2C Logic 56 pin TSSOP/SSOP CY28442-2 Rev 1.0, November 21, 2006 2200 Laurelwood Road, Santa Clara, CA 95054 Tel:(408) 855-0555 Fax:(408) 855-0550 Page 1 of 19 www.SpectraLinear.com CY28442-2 Pin Definitions Pin No. 1 2 33,32 Name VDD_REF VSS_REF Type PWR GND 3.3V power supply for output Ground for outputs. Description CLKREQA#/SRCT6, I/O, PU 3.3V LVTTL input for enabling assigned SRC clock (active LOW) or 100-MHz CLKREQB#,SRCC6 Serial Reference Clock. Selectable through CLKREQA# defaults to enable/disable SRCT/C4, CLKREQB# defaults to enable/disable SRCT/C5. Assignment can be changed via SMBUS register Byte 8. VDD_PCI VSS_PCI PCI ITP_EN/PCIF0 PWR GND 3.3V power supply for outputs. Ground for outputs. 7 6 3,4,5 8 O, SE 33 MHz clock I/O, SE 3.3V LVTTL input to enable SRC7 or CPU2_ITP/33-MHz clock output. (sampled on the VTT_PWRGD# assertion). 1 = CPU2_ITP, 0 = SRC7 I/O, 33 MHz clock/3.3V-tolerant input for 96_100M frequency selection PD,SE (sampled on the VTT_PWRGD# assertion). 1 = 100 MHz, 0 = 96 MHz I, PU 3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A, FS_B, FS_C and ITP_EN, 96MSS_SRC_SEL inputs, SEL_CLKREQ. After VTT_PWRGD# (active LOW) assertion, this pin becomes a real-time input for asserting power-down (active HIGH). 3.3V power supply for outputs. 3.3V-tolerant input for CPU frequency selection/fixed 48-MHz clock output. Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. Ground for outputs. 3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when in test mode 0 = Tri-state, 1 = Ref/N Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications. 9 PCIF1/96_100_SEL 10 VTT_PWRGD#/PD 11 12 13 14,15 16 VDD_48 FS_A/48_M0 VSS_48 DOT96T, DOT96C FS_B/TEST_MODE PWR I/O GND I O, DIF Fixed 96 MHz clock output. 17,18 96_100_SSC O,DIF Differential 96 /100 MHz SS clock for flat-panel display O, DIF 100 MHz Differential serial reference clocks. PWR PWR 3.3V power supply for outputs. 3.3V power supply for outputs. 19,20,22,23, SRCT/C 24,25,30,31 21,28 34 26,27 29 36,35 VDD_SRC VDD_SRC_ITP SRC4_SATAT, SRC4_SATAC VSS_SRC O, DIF Differential serial reference clock. Recommended output for SATA. GND Ground for outputs. CPUT2_ITP/SRCT7, O, DIF Selectable differential CPU or SRC clock output. CPUC2_ITP/SRCC7 ITP_EN = 0 @ VTT_PWRGD# assertion = SRC7 ITP_EN = 1 @ VTT_PWRGD# assertion = CPU2 VDDA VSSA IREF VDD_CPU CPUT/C VSS_CPU SCLK SDATA PWR GND I PWR GND I I/O 3.3V power supply for PLL. Ground for PLL. A precision resistor is attached to this pin, which is connected to the internal current reference. 3.3V power supply for outputs. Ground for outputs. SMBus-compatible SCLOCK. SMBus-compatible SDATA. 37 38 39 42 44,43,41,40 45 46 47 O, DIF Differential CPU clock outputs. Rev 1.0, November 21, 2006 Page 2 of 19 CY28442-2 Pin Definitions (continued) Pin No. 48 49 50 51 52 53 VDDA2 XOUT XIN VSSA2 REF1 FS_C_TEST_SEL/ REF0 Name Type PWR I GND O I/O 3.3V power supply for PLL2 14.318 MHz crystal input. Ground for PLL2. Fixed 14.318 MHz clock output. 3.3V-tolerant input for CPU frequency selection/fixed 14.318 clock output. Selects test mode if pulled to greater than 1.8V when VTT_PWRGD# is asserted LOW. Refer to DC Electrical Specifications table for VIL_FS,VIH_FS specifications. 3.3V LVTTL input for CPU_STP# active LOW. 3.3V LVTTL input for PCI_STP# active LOW. O, SE 14.318 MHz crystal output. Description 54 55 56 CPU_STP# PCI_STP# I, PU I, PU PCI2/SEL_CLKREQ I/O, PD 3.3V-tolerant input for CLKREQ pin selection/fixed 33-MHz clock output. (sampled on the VTT_PWRGD# assertion). 1= pins 32,33 function as clk request pins, 0= pins 32,33 function as SRC outputs. Table 1. Frequency Select Table FS_A, FS_B, and FS_C FS_C 1 0 0 0 FS_B 0 0 1 1 FS_A 1 1 1 0 CPU 100 MHz 133 MHz 166 MHz 200 MHz SRC 100 MHz 100 MHz 100 MHz 100 MHz PCIF/PCI 33 MHz 33 MHz 33 MHz 33 MHz REF0 14.318 MHz 14.318 MHz 14.318 MHz 14.318 MHz DOT96 96 MHz 96 MHz 96 MHz 96 MHz USB 48 MHz 48 MHz 48 MHz 48 MHz Frequency Select Pins (FS_A, FS_B, and FS_C) Host clock frequency selection is achieved by applying the appropriate logic levels to FS_A, FS_B, FS_C inputs prior to VTT_PWRGD# assertion (as seen by the clock synthesizer). Upon VTT_PWRGD# being sampled LOW by the clock chip (indicating processor VTT voltage is stable), the clock chip samples the FS_A, FS_B, and FS_C input values. For all logic levels of FS_A, FS_B, and FS_C, VTT_PWRGD# employs a one-shot functionality in that once a valid LOW on VTT_PWRGD# has been sampled, all further VTT_PWRGD#, FS_A, FS_B, and FS_C transitions will be ignored, except in test mode. initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions. Data Protocol The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in Table 2. The block write and block read protocol is outlined in Table 3 while Table 4 outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h). Serial Data Interface To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled. The registers associated with the Serial Data Interface Table 2. Command Code Definition Bit 7 (6:0) Description 0 = Block read or block write operation, 1 = Byte read or byte write operation Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000' Rev 1.0, November 21, 2006 Page 3 of 19 CY28442-2 Table 3. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 9 10 18:11 19 27:20 28 36:29 37 45:38 46 .... .... .... .... Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Byte Count – 8 bits (Skip this step if I2C_EN bit set) Acknowledge from slave Data byte 1 – 8 bits Acknowledge from slave Data byte 2 – 8 bits Acknowledge from slave Data Byte /Slave Acknowledges Data Byte N – 8 bits Acknowledge from slave Stop Description Bit 1 8:2 9 10 18:11 19 20 27:21 28 29 37:30 38 46:39 47 55:48 56 .... .... .... .... Table 4. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 9 10 18:11 19 27:20 28 29 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Data byte – 8 bits Acknowledge from slave Stop Description Bit 1 8:2 9 10 18:11 19 20 27:21 28 29 37:30 38 39 Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Repeated start Slave address – 7 bits Read Acknowledge from slave Data from slave – 8 bits NOT Acknowledge Stop Byte Read Protocol Description Start Slave address – 7 bits Write Acknowledge from slave Command Code – 8 bits Acknowledge from slave Repeat start Slave address – 7 bits Read = 1 Acknowledge from slave Byte Count from slave – 8 bits Acknowledge Data byte 1 from slave – 8 bits Acknowledge Data byte 2 from slave – 8 bits Acknowledge Data bytes from slave / Acknowledge Data Byte N from slave – 8 bits NOT Acknowledge Stop Block Read Protocol Description Rev 1.0, November 21, 2006 Page 4 of 19 CY28442-2 Control Registers Byte 0: Control Register 0 Bit 7 6 5 4 3 2 1 0 @Pup 1 1 1 1 1 1 1 1 Name CPUT2_ITP/SRCT7 CPUC2_ITP/SRCC7 SRC[T/C]6 SRC[T/C]5 SRC[T/C]4 SRC[T/C]3 SRC[T/C]2 SRC[T/C]1 RESERVED Description CPU[T/C]2_ITP/SRC[T/C]7 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]6 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]5 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]4 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]3 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]2 Output Enable 0 = Disable (Tri-state), 1 = Enable SRC[T/C]1 Output Enable 0 = Disable (Tri-state), 1 = Enable RESERVED Byte 1: Control Register 1 Bit 7 6 5 4 3 2 1 0 @Pup 1 1 1 1 1 1 1 0 Name PCIF0 DOT_96T/C USB_48 REF0 REF1 CPU[T/C]1 CPU[T/C]0 CPU Description PCIF0 Output Enable 0 = Disabled, 1 = Enabled DOT_96 MHz Output Enable 0 = Disable (Tri-state), 1 = Enabled USB_48 MHz Output Enable 0 = Disabled, 1 = Enabled REF0 Output Enable 0 = Disabled, 1 = Enabled REF1 Output Enable 0 = Disabled, 1 = Enabled CPU[T/C]1 Output Enable 0 = Disable (Tri-state), 1 = Enabled CPU[T/C]0 Output Enable 0 = Disable (Tri-state), 1 = Enabled PLL1 (CPU PLL) Spread Spectrum Enable 0 = Spread off, 1 = Spread on Byte 2: Control Register 2 Bit 7 6 5 4 3 2 1 0 @Pup 1 1 1 1 1 1 1 1 Name PCI5 PCI4 PCI3 PCI2 Reserved Reserved Reserved PCIF1 Description PCI5 Output Enable 0 = Disabled, 1 = Enabled PCI4 Output Enable 0 = Disabled, 1 = Enabled PCI3 Output Enable 0 = Disabled, 1 = Enabled PCI2 Output Enable 0 = Disabled, 1 = Enabled Reserved, Set = 1 Reserved, Set = 1 Reserved, Set = 1 PCIF1 Output Enable 0 = Disabled, 1 = Enabled Rev 1.0, November 21, 2006 Page 5 of 19 CY28442-2 Byte 3: Control Register 3 Bit 7 6 5 4 3 2 1 0 @Pup 0 0 0 0 0 0 0 0 Name SRC7 SRC6 SRC5 SRC4 SRC3 SRC2 SRC1 RESERVED Description Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# RESERVED Byte 4: Control Register 4 Bit 7 6 5 4 3 2 1 0 @Pup 0 0 0 0 0 1 1 1 Name 96_100_SSC DOT96T/C RESERVED PCIF1 PCIF0 CPU[T/C]2 CPU[T/C]1 CPU[T/C]0 Description 96_100_SSC Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state DOT_PWRDWN Drive Mode 0 = Driven in PWRDWN, 1 = Tri-state RESERVED Allow control of PCIF1 with assertion of SW and HW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of PCIF0 with assertion of SW and HW PCI_STP# 0 = Free running, 1 = Stopped with PCI_STP# Allow control of CPU[T/C]2 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Allow control of CPU[T/C]1 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Allow control of CPU[T/C]0 with assertion of CPU_STP# 0 = Free running, 1 = Stopped with CPU_STP# Byte 5: Control Register 5 Bit 7 @Pup 0 Name SRC[T/C] Description SRC[T/C] Stop Drive Mode 0 = Driven when PCI_STP# asserted,1 = Tri-state when PCI_STP# asserted CPU[T/C]2 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP# asserted CPU[T/C]1 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP# asserted CPU[T/C]0 Stop Drive Mode 0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP# asserted SRC[T/C] PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Tri-state when PD asserted CPU[T/C]2 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Tri-state when PD asserted CPU[T/C]1 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Tri-state when PD asserted 6 0 CPU[T/C]2 5 0 CPU[T/C]1 4 0 CPU[T/C]0 3 2 1 0 0 0 SRC[T/C][7:1] CPU[T/C]2 CPU[T/C]1 Rev 1.0, November 21, 2006 Page 6 of 19 CY28442-2 Byte 5: Control Register 5 (continued) Bit 0 @Pup 0 Name CPU[T/C]0 Description CPU[T/C]0 PWRDWN Drive Mode 0 = Driven when PD asserted,1 = Tri-state when PD asserted Byte 6: Control Register 6 Bit 7 6 5 4 3 @Pup 0 0 0 1 1 REF/N or Tri-state Select 0 = Tri-state, 1 = REF/N Clock TEST_MODE Test Clock Mode Entry Control 0 = Normal operation, 1 = REF/N or Tri-state mode, RESERVED RESERVED REF REF Output Drive Strength 0 = Low, 1 = High PCI, PCIF and SRC clock SW PCI_STP Function outputs except those set 0=SW PCI_STP assert, 1= SW PCI_STP deassert When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will to free running be stopped in a synchronous manner with no short pulses. When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will resume in a synchronous manner with no short pulses. FS_C FS_C Reflects the value of the FS_C pin sampled on power-up 0 = FS_C was low during VTT_PWRGD# assertion FS_B FS_B Reflects the value of the FS_B pin sampled on power-up 0 = FS_B was low during VTT_PWRGD# assertion FS_A FS_A Reflects the value of the FS_A pin sampled on power-up 0 = FS_A was low during VTT_PWRGD# assertion Name TEST_SEL Description 2 1 0 HW HW HW Byte 7: Vendor ID Bit 7 6 5 4 3 2 1 0 @Pup 0 0 0 0 1 0 0 0 Name Revision Code Bit 3 Revision Code Bit 2 Revision Code Bit 1 Revision Code Bit 0 Vendor ID Bit 3 Vendor ID Bit 2 Vendor ID Bit 1 Vendor ID Bit 0 Description Revision Code Bit 3 Revision Code Bit 2 Revision Code Bit 1 Revision Code Bit 0 Vendor ID Bit 3 Vendor ID Bit 2 Vendor ID Bit 1 Vendor ID Bit 0 Byte 8: Control Register 8 Bit 7 @Pup 0 Name CLKREQ#B Description SRC[T/C]7CLKREQ#B control 1 = SRC[T/C]7 stoppable by CLKREQ#B pin 0 = SRC[T/C]7 not controlled by CLKREQ#B pin SRC[T/C]5 CLKREQ#B control 1 = SRC[T/C]5 stoppable by CLKREQ#B pin 0 = SRC[T/C]5 not controlled by CLKREQ#B pin SRC[T/C]3 CLKREQ#B control 1 = SRC[T/C]3 stoppable by CLKREQ#B pin 0 = SRC[T/C]3 not controlled by CLKREQ#B pin SRC[T/C]1 CLKREQ#B control 1 = SRC[T/C]1 stoppable by CLKREQ#B pin 0 = SRC[T/C]1 not controlled by CLKREQ#B pin RESERVED SRC[T/C]4 CLKREQ#A control 1 = SRC[T/C]4 stoppable by CLKREQ#A pin 0 = SRC[T/C]4 not controlled by CLKREQ#A pin 6 1 CLKREQ#B 5 0 CLKREQ#B 4 0 CLKREQ#B 3 2 0 1 RESERVED CLKREQ#A Rev 1.0, November 21, 2006 Page 7 of 19 CY28442-2 Byte 8: Control Register 8 (continued) Bit 1 @Pup 0 Name CLKREQ#A Description SRC[T/C]2 CLKREQ#A control 1 = SRC[T/C]2 stoppable by CLKREQ#A pin 0 = SRC[T/C]2 not controlled by CLKREQ#A pin RESERVED 0 0 RESERVED Byte 9: Control Register 9 Bit 7 6 5 4 @Pup 0 0 0 0 Name S3 S2 S1 S0 Description 96_100_SSC Spread Spectrum Selection table: S[3:0] SS% ‘0000’ = –0.8%(Default value) ‘0001’ = –1.0% ‘0010’ = –1.25% ‘0011’ = –1.5% ‘0100’ = –1.75% ‘0101’ = –2.0% ‘0110’ = –2.5% ‘0111’ = –0.5% ‘1000’ = ±0.25% ‘1001’ = ±0.4% ‘1010’ = ±0.5% ‘1011’ = ±0.6% ‘1100’ = ±0.8% ‘1101’ = ±1.0% ‘1110’ = ±1.25% ‘1111’ = ±1.5% Software select 96_100_SSC output frequency, 0 = 96 MHz, 1 = 100 MHz. 96_100_SSC Enable, 0 = Disable, 1 = Enable. 96_100_SSC Spread spectrum enable. 0 = Disable, 1 = Enable. Select output frequency of 96_100_SSC via software or hardware 0 = Hardware, 1 = Software. 3 2 1 0 1 1 1 0 96_100 SEL 96_100 Enable 96_100 SS Enable 96_100 SW HW Byte 10: Control Register 10 Bit 7 6 @Pup 0 0 Name RESERVED CLKREQ#B Description RESERVED SRC[T/C]4 CLKREQ#B control 1 = SRC[T/C]4 stoppable by CLKREQ#B pin 0 = SRC[T/C]4not controlled by CLKREQ#B pin SRC[T/C]2 CLKREQ#B control 1 = SRC[T/C]2 stoppable by CLKREQ#B pin 0 = SRC[T/C]2 not controlled by CLKREQ#B pin RESERVED SRC[T/C]7CLKREQ#A control 1 = SRC[T/C]7 stoppable by CLKREQ#A pin 0 = SRC[T/C]7 not controlled by CLKREQ#A pin SRC[T/C]5 CLKREQ#A control 1 = SRC[T/C]5 stoppable by CLKREQ#A pin 0 = SRC[T/C]5 not controlled by CLKREQ#A pin SRC[T/C]3 CLKREQ#A control 1 = SRC[T/C]3 stoppable by CLKREQ#A pin 0 = SRC[T/C]3 not controlled by CLKREQ#A pin SRC[T/C]1 CLKREQ#A control 1 = SRC[T/C]1 stoppable by CLKREQ#A pin 0 = SRC[T/C]1 not controlled by CLKREQ#A pin 5 0 CLKREQ#B 4 3 0 0 RESERVED CLKREQ#A 2 0 CLKREQ#A 1 0 CLKREQ#A 0 0 CLKREQ#A Rev 1.0, November 21, 2006 Page 8 of 19 CY28442-2 Table 5. Crystal Recommendations Frequency (Fund) 14.31818 MHz Cut AT Loading Load Cap Parallel 20 pF Drive (max.) 0.1 mW . Shunt Cap (max.) 5 pF Motional (max.) 0.016 pF Tolerance (max.) 35 ppm Stability (max.) 30 ppm Aging (max.) 5 ppm The CY28442-2 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the CY28442-2 to operate at the wrong frequency and violate the ppm specification. For most applications there is a 300-ppm frequency shift between series and parallel crystals due to incorrect loading. Clock Chip Ci1 Ci2 Pin 3 to 6p Crystal Loading Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL). Figure 1 shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the crystal not parallel. It’s a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true. X2 Cs1 X1 Cs2 Trace 2.8pF XTAL Ce1 Ce2 Trim 33pF Figure 2. Crystal Loading Example As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This mean the total capacitance on each side of the crystal must be twice the specified load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitance loading on both sides. Figure 1. Crystal Capacitive Clarification Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2. Load Capacitance (each side) Ce = 2 * CL – (Cs + Ci) Total Capacitance (as seen by the crystal) CLe Calculating Load Capacitors In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This means the total capacitance on each side of the crystal must be twice the specified crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors (Ce1,Ce2) should be calculated to provide equal capacitive loading on both sides. = 1 1 ( Ce1 + Cs1 + Ci1 + 1 Ce2 + Cs2 + Ci2 ) CL....................................................Crystal load capacitance CLe......................................... Actual loading seen by crystal using standard value trim capacitors Ce..................................................... External trim capacitors Cs .............................................. Stray capacitance (terraced) Ci ...........................................................Internal capacitance (lead frame, bond wires etc.) CLK_REQ[0:1]# Description The CLKREQ#[A:B] signals are active LOW inputs used for clean enabling and disabling selected SRC outputs. The outputs controlled by CLKREQ#[A:B] are determined by the settings in register byte 8. The CLKREQ# signal is a de-bounced signal in that it’s state must remain unchanged during two consecutive rising edges of SRCC to be recognized as a valid assertion or deassertion. (The assertion and deassertion of this signal is absolutely asynchronous). Rev 1.0, November 21, 2006 Page 9 of 19 CY28442-2 CLKREQ#X SRCT(free running) SRCC(free running) SRCT(stoppable) SRCT(stoppable) Figure 3. CLK_REQ#[A:B] Deassertion/Assertion Waveform CLK_REQ[A:B]# Assertion (CLKREQ# -> LOW) All differential outputs that were stopped are to resume normal operation in a glitch-free manner. The maximum latency from the assertion to active outputs is between 2 and 6 SRC clock periods (2 clocks are shown) with all SRC outputs resuming simultaneously. All stopped SRC outputs must be driven high within 10 ns of CLKREQ#[1:0] deassertion to a voltage greater than 200 mV. CLK_REQ[A:B]# Deassertion (CLKREQ# -> HIGH) The impact of deasserting the CLKREQ#[A:B] pins is that all SRC outputs that are set in the control registers to stoppable via deassertion of CLKREQ#[A:B] are to be stopped after their next transition. The final state of all stopped DIF signals is LOW, both SRCT clock and SRCC clock outputs will not be driven. PD (Power-down) Clarification The VTT_PWRGD# /PD pin is a dual-function pin. During initial power-up, the pin functions as VTT_PWRGD#. Once VTT_PWRGD# has been sampled LOW by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active HIGH input used to shut off all clocks cleanly prior to shutting off power to the device. This signal is synchronized PD CPUT, 133MHz CPUC, 133MHz SRCT 100MHz SRCC 100MHz USB, 48MHz DOT96T DOT96C internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted HIGH, all clocks need to be driven to a LOW value and held prior to turning off the VCOs and the crystal oscillator. PD (Power-down) Assertion When PD is sampled HIGH by two consecutive rising edges of CPUC, all single-ended outputs will be held LOW on their next HIGH-to-LOW transition and differential clocks must held high or tri-stated (depending on the state of the control register drive mode bit) on the next diff clock# HIGH-to-LOW transition within 4 clock periods. When the SMBus PD drive mode bit corresponding to the differential (CPU, SRC, and DOT) clock output of interest is programmed to ‘0’, the clock output are held with “Diff clock” pin driven HIGH at 2 x Iref, and “Diff clock#” tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to “1”, then both the “Diff clock” and the “Diff clock#” are tri-state. Note the example below shows CPUT = 133 MHz and PD drive mode = ‘1’ for all differential outputs. This diagram and description is applicable to valid CPU frequencies 100, 133, 166, 200, 266, 333, and 400 MHz. In the event that PD mode is desired as the initial power-on state, PD must be asserted HIGH in less than 10 s after asserting Vtt_PwrGd#. PCI, 33 MHz REF Figure 4. Power-down Assertion Timing Waveform Rev 1.0, November 21, 2006 Page 10 of 19 CY28442-2 PD Deassertion The power-up latency is less than 1.8 ms. This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are output from the clock chip. All differential outputs stopped in a three-state condition resulting from power down will be driven high in less than 300 s of PD deassertion to a voltage greater than 200 mV. After the clock chip’s internal PLL is powered up and locked, all outputs will be enabled within a few clock cycles of each other. Below is an example showing the relationship of clocks coming up. CPU_STP# Assertion The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are set with the SMBus configuration to be stoppable via assertion of CPU_STP# will be stopped within two–six CPU clock periods after being sampled by two rising edges of the internal CPUC clock. The final states of the stopped CPU signals are CPUT = HIGH and CPUC = LOW. There is no change to the output drive current values during the stopped state. The CPUT is driven HIGH with a current value equal to 6 x (Iref), and the CPUC signal will be tri-stated. Tstable 200mV Figure 7. CPU_STP# Deassertion Waveform 1.8mS CPU_STOP# PD CPUT(Free Running CPUC(Free Running CPUT(Stoppable) CPUC(Stoppable) DOT96T DOT96C Figure 8. CPU_STP#= Driven, CPU_PD = Driven, DOT_PD = Driven 1.8mS CPU_STOP# PD CPUT(Free Running) CPUC(Free Running) CPUT(Stoppable) CPUC(Stoppable) DOT96T DOT96C Figure 9. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state Rev 1.0, November 21, 2006 Page 12 of 19 CY28442-2 PCI_STP# Assertion The PCI_STP# signal is an active LOW input used for synchronous stopping and starting the PCI outputs while the rest of the clock generator continues to function. The set-up time for capturing PCI_STP# going LOW is 10 ns (tSU). (See Figure 10.) The PCIF clocks will not be affected by this pin if their corresponding control bit in the SMBus register is set to allow them to be free-running. PCI_STP# Deassertion The deassertion of the PCI_STP# signal will cause all PCI and stoppable PCIF clocks to resume running in a synchronous manner within two PCI clock periods after PCI_STP# transitions to a high level. Tsu PCI_STP# PCI_F PCI SRC 100MHz Figure 10. PCI_STP# Assertion Waveform Tsu Tdrive_SRC PCI_STP# PCI_F PCI SRC 100MHz Figure 11. PCI_STP# Deassertion Waveform FS_A, FS_B,FS_C VTT_PW RGD# PW RGD_VRM VDD Clock Gen Clock State State 0 0.2-0.3mS Delay State 1 W ait for VTT_PW RGD# Sample Sels State 2 State 3 Device is not affected, VTT_PW RGD# is ignored Clock Outputs Off On Clock VCO Off On Figure 12. VTT_PWRGD# Timing Diagram Rev 1.0, November 21, 2006 Page 13 of 19 CY28442-2 S1 S2 VTT_PWRGD# = Low Delay >0.25mS VDD_A = 2.0V Sample Inputs straps Wait for
CY28442ZXC-2T
### 物料型号 - 型号:CY28442-2 - 封装:56-pin TSSOP

### 器件简介 CY28442-2是一款时钟发生器,专为Intel Alviso芯片组设计。它支持Intel Pentium-M CPU,提供多种CPU频率选择,并具备差分时钟对和多种参考时钟输出。

### 引脚分配 | 引脚编号 | 引脚名称 | 类型 | 描述 | | --- | --- | --- | --- | | 1 | VDD_REF | PWR | 3.3V电源输出 | | 2 | VSS_REF | GND | 输出地 | | 3-32, 34-37 | 多个引脚 | 包括差分时钟输出、电源、地、输入输出引脚等 | 具体功能见引脚配置图 | | 33, 32 | CLKREQA#/SRCT6, CLKREQB#/SRCT5 | I/O, PU 3.3V LVTTL输入 | 用于启用分配的SRC时钟( active LOW)或100-MHz 串行参考时钟 |

### 参数特性 - 支持Intel CK410M - 支持Intel Pentium-M CPU - 可选择的CPU频率 - 差分CPU时钟对 - 100 MHz差分SRC时钟 - 96 MHz差分点时钟 - 48 MHz USB时钟 - 通过CLKREQ#[A:B]独立可停止的SRC时钟

### 功能详解 CY28442-2具备多种功能,包括: - 可选择的CPU频率设置 - 差分时钟输出 - 通过I²C支持读取能力的电源管理 - 用于降低电磁干扰(EMI)的理想Lexmark展宽频谱特性 - 3.3V电源供应 - 56引脚TSSOP封装

### 应用信息 CY28442-2适用于需要精确时钟发生和电源管理的应用,特别是在与Intel Alviso芯片组配合使用时。

### 封装信息 - 封装类型:56-pin TSSOP - 尺寸:6 mm x 12 mm
CY28442ZXC-2T 价格&库存

很抱歉,暂时无法提供与“CY28442ZXC-2T”相匹配的价格&库存,您可以联系我们找货

免费人工找货