STM32F105xx
STM32F107xx
Connectivity line, ARM®-based 32-bit MCU with 64/256 KB Flash, USB
OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces
Datasheet - production data
Features
FBGA
®
®
• Core: ARM 32-bit Cortex -M3 CPU
– 72 MHz maximum frequency, 1.25
DMIPS/MHz (Dhrystone 2.1) performance
at 0 wait state memory access
– Single-cycle multiplication and hardware division
• Memories
– 64 to 256 Kbytes of Flash memory
– 64 Kbytes of general-purpose SRAM
• Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os
– POR, PDR, and programmable voltage
detector (PVD)
– 3-to-25 MHz crystal oscillator
– Internal 8 MHz factory-trimmed RC
– Internal 40 kHz RC with calibration
– 32 kHz oscillator for RTC with calibration
• Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC and backup registers
• 2 × 12-bit, 1 µs A/D converters (16 channels)
– Conversion range: 0 to 3.6 V
– Sample and hold capability
– Temperature sensor
– up to 2 MSPS in interleaved mode
• 2 × 12-bit D/A converters
• DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
I2Ss, SPIs, I2Cs and USARTs
• Debug mode
– Serial wire debug (SWD) & JTAG interfaces
– Cortex®-M3 Embedded Trace Macrocell™
• Up to 80 fast I/O ports
– 51/80 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
• CRC calculation unit, 96-bit unique ID
March 2017
This is information on a product in full production.
LQFP100 14 × 14 mm
LQFP64 10 × 10 mm
LFBGA100 10 × 10 mm
• Up to 10 timers with pinout remap capability
– Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– 1 × 16-bit motor control PWM timer with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window)
– SysTick timer: a 24-bit downcounter
– 2 × 16-bit basic timers to drive the DAC
• Up to 14 communication interfaces with pinout
remap capability
– Up to 2 × I2C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control)
– Up to 3 SPIs (18 Mbit/s), 2 with a
multiplexed I2S interface that offers audio
class accuracy via advanced PLL schemes
– 2 × CAN interfaces (2.0B Active) with 512
bytes of dedicated SRAM
– USB 2.0 full-speed device/host/OTG controller
with on-chip PHY that supports HNP/SRP/ID
with 1.25 Kbytes of dedicated SRAM
– 10/100 Ethernet MAC with dedicated DMA
and SRAM (4 Kbytes): IEEE1588 hardware
support, MII/RMII available on all packages
Table 1. Device summary
Reference
Part number
STM32F105xx
STM32F105R8, STM32F105V8
STM32F105RB, STM32F105VB
STM32F105RC, STM32F105VC
STM32F107xx
STM32F107RB, STM32F107VB
STM32F107RC, STM32F107VC
DocID15274 Rev 10
1/108
www.st.com
Contents
STM32F105xx, STM32F107xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2/108
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1
ARM Cortex-M3 core with embedded Flash and SRAM . . . . . . . . . . . . 14
2.3.2
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 14
2.3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 14
2.3.6
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.8
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.9
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.11
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.12
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.13
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14
RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 17
2.3.15
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.17
Universal synchronous/asynchronous receiver transmitters (USARTs) . 19
2.3.18
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.19
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.20
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 20
2.3.21
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.22
Universal serial bus on-the-go full-speed (USB OTG FS) . . . . . . . . . . . 21
2.3.23
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.24
Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25
ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.28
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID15274 Rev 10
STM32F105xx, STM32F107xx
2.3.29
Contents
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 38
5.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.8
PLL, PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.11
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 56
5.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.15
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.16
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.18
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.19
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DocID15274 Rev 10
3/108
4
Contents
6
7
STM32F105xx, STM32F107xx
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1
LFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 92
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8
4/108
A.1
USB OTG FS interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3
Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.4
USB OTG FS interface + Ethernet/I2S interface solutions . . . . . . . . . . . 100
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DocID15274 Rev 10
STM32F105xx, STM32F107xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F105xx and STM32F107xx features and peripheral counts . . . . . . . . . . . . . . . . . . 10
STM32F105xx and STM32F107xx family versus STM32F103xx family . . . . . . . . . . . . . . 12
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Operating condition at power-up / power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 38
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 41
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 41
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
HSE 3-25 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID15274 Rev 10
5/108
6
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
6/108
STM32F105xx, STM32F107xx
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Dynamic characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
LFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . . 83
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . . 88
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Applicative current consumption in Run mode, code with data
processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DocID15274 Rev 10
STM32F105xx, STM32F107xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
STM32F105xx and STM32F107xx connectivity line block diagram . . . . . . . . . . . . . . . . . 13
STM32F105xx and STM32F107xx connectivity line BGA100 ballout top view . . . . . . . . . 24
STM32F105xx and STM32F107xx connectivity line LQFP100 pinout . . . . . . . . . . . . . . . . 25
STM32F105xx and STM32F107xx connectivity line LQFP64 pinout . . . . . . . . . . . . . . . . . 26
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Typical current consumption in Standby mode versus temperature at
different VDD values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 71
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 78
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 78
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DocID15274 Rev 10
7/108
8
List of figures
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
8/108
STM32F105xx, STM32F107xx
LFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline . . . . . . . . . . . . . . . 85
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 88
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . . 89
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
USB OTG FS device mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Host connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
OTG connection (any protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
RMII with a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
USB O44TG FS + Ethernet solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
USB OTG FS + I2S (Audio) solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID15274 Rev 10
STM32F105xx, STM32F107xx
1
Introduction
Introduction
This datasheet provides the description of the STM32F105xx and STM32F107xx
connectivity line microcontrollers. For more details on the whole STMicroelectronics
STM32F10xxx family, refer to Section 2.2: Full compatibility throughout the family.
The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory refer
to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex®-M3 core refer to the Cortex®-M3 Technical Reference
Manual, available from the www.arm.com website.
DocID15274 Rev 10
9/108
107
Description
2
STM32F105xx, STM32F107xx
Description
The STM32F105xx and STM32F107xx connectivity line family incorporates the highperformance ARM® Cortex®-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 256 Kbytes and SRAM 64 Kbytes), and
an extensive range of enhanced I/Os and peripherals connected to two APB buses. All
devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well
as standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2Ss,
five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx
only.
The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to
+105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving mode allows the design of low-power applications.
The STM32F105xx and STM32F107xx connectivity line family offers devices in three
different package types: from 64 pins to 100 pins. Depending on the device chosen,
different sets of peripherals are included, the description below gives an overview of the
complete range of peripherals proposed in this family.
These features make the STM32F105xx and STM32F107xx connectivity line
microcontroller family suitable for a wide range of applications such as motor drives and
application control, medical and handheld equipment, industrial applications, PLCs,
inverters, printers, and scanners, alarm systems, video intercom, HVAC and home audio
equipment.
2.1
Device overview
Figure 1 shows the general block diagram of the device family.
Table 2. STM32F105xx and STM32F107xx features and peripheral counts
Peripherals(1)
Flash memory in Kbytes
STM32F105Rx
64
128
STM32F107Rx
256
128
256
SRAM in Kbytes
Timers
10/108
64
STM32F107Vx
128
256
128
256
LQFP
100,
BGA
100
LQFP
100
LQFP
100
LQFP
100,
BGA
100
64
Package
LQFP
100
LQFP64
Ethernet
STM32F105Vx
No
Yes
No
Generalpurpose
4
Advancedcontrol
1
Basic
2
DocID15274 Rev 10
Yes
STM32F105xx, STM32F107xx
Description
Table 2. STM32F105xx and STM32F107xx features and peripheral counts (continued)
Peripherals(1)
2
SPI(I S)
(2)
I2C
Communicat
ion
USART
interfaces
USB OTG FS
STM32F105Rx
STM32F107Rx
STM32F105Vx
STM32F107Vx
3(2)
3(2)
3(2)
3(2)
2
1
2
1
5
Yes
CAN
GPIOs
2
51
80
12-bit ADC
Number of channels
2
16
12-bit DAC
Number of channels
2
2
CPU frequency
Operating voltage
Operating temperatures
72 MHz
2.0 to 3.6 V
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
1. Refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required by the
application.
2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I2S audio mode.
DocID15274 Rev 10
11/108
107
Description
2.2
STM32F105xx, STM32F107xx
Full compatibility throughout the family
The STM32F105xx and STM32F107xx constitute the connectivity line family whose
members are fully pin-to-pin, software and feature compatible.
The STM32F105xx and STM32F107xx are a drop-in replacement for the low-density
(STM32F103x4/6), medium-density (STM32F103x8/B) and high-density
(STM32F103xC/D/E) performance line devices, allowing the user to try different memory
densities and peripherals providing a greater degree of freedom during the development
cycle.
Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family(1)
STM32
Low-density
device STM32F103xx devices
Medium-density
STM32F103xx devices
High-density
STM32F103xx devices
STM32F105xx
STM32F107xx
Flash
size (KB)
16
32
32
64
128
256
384
512
64
128
256
128
256
RAM
size (KB)
6
10
10
20
20
48
64
64
64
64
64
64
64
144 pins
100 pins
5 × USARTs,
5 × USARTs
4 × 16-bit timers,
4 × 16-bit timers,
2 × basic timers,
3 × USARTs
2 × basic timers, 3 × SPIs, 3 × SPIs,
2
2 × USARTs 3 × 16-bit
2 × I Ss, 2 × I2Cs, USB, 2 × I2Ss,
timers
2 × 16-bit
CAN, 2 × PWM timers
2 × USARTs
2 × I2Cs,
2 × SPIs,
timers
3 × ADCs, 2 × DACs,
64 pins 2 × 16-bit timers
2
USB OTG FS,
2 × I Cs, USB, 1 × SDIO, FSMC (1001 × SPI,
1 × SPI, 1 × I2C, USB,
2 × CANs,
CAN,
(2)
1 × I2C,
and 144-pin packages ) 1 × PWM timer,
CAN,
USB, CAN, 1 × PWM timer
1 × PWM timer
2 × ADCs,
2 × ADCs
1 × PWM
2 × ADCs
2 × DACs
timer
2 × ADCs
48 pins
5 × USARTs,
4 × 16-bit timers,
2 × basic timers,
3 × SPIs,
2 × I2S,
1 × I2C,
USB OTG FS,
2 × CANs,
1 × PWM timer,
2 × ADCs,
2 × DACs,
Ethernet
36 pins
1. Refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required by the
application.
2. Ports F and G are not available in devices delivered in 100-pin packages.
12/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
2.3
Description
Overview
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram
TPIU
SW/JTAG
ETM
Trace/Trig
Ibus
Cortex-M3 CPU
GP DMA1
Ethernet MAC
10/100
DMA Ethernet
NRST
VDDA
VSSA
@VDD
XTAL osc
3-25 MHz
OSC_IN
OSC_OUT
C_O
IWDG
PCLK1
PCLK2
HCLK
FCLK
PLL3
Standby
interface
@V
VBAT =1.8 V to 3.6 V
BAT
AHB
XTAL 32kHz
Bac kup
register
RTC
AWU
OSC32_IN
OSC32_OUT
TAMPER-RTC/
ALARM/SECOND OUT
Backup interface
AHB to
APB2
AHB to
APB1
PD[15:0]
GPIO port D
PE[15:0]
GPIO port E
APB2 : F max = 72 MHz
GPIO port C
APB1 : Fmax = 36 MHz
EXT.IT
WKUP
PC[15:0]
TIM1
SPI1
WWDG
USART1
TIM2
4 Channels , ETR
as AF
TIM3
4 Channels , ETR
as AF
TIM4
4 Channels , ETR
as AF
TIM5
4 Channel s, ETR
as A F
RX,TX, CTS, RTS,
CK as AF
USART2
USART3
UART4
UART5
RX,TX, CTS, RTS,
CK as AF
RX,TX as AF
RX,TX as AF
SPI2
2x(8x16b
it)
/ I2S2(1)
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
SPI3
2x(8x16b
it)
/ I2S3
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
I2C1
SCL,SDA, SMBA
as AF
I2C2
SCL,SDA,SMBA
as AF
bx CAN1
CAN1_TX as AF
CAN1_RX as AF
SRAM 512B
Temp sensor
VREF–
VREF+
POR / PDR
USB OTG FS
GPIO
P port B
16 ADC12_INs
common to
ADC1 & ADC2
Supply
supervision
Int
@VDDA
DPRAM 2 KB DPRAM 2 KB
PB[ 15:0]
RX,TX, CTS, RTS,
CK as AF
POR
Reset
PLL2
Reset &
clock
control
VSS
PVD
PLL3
GP DMA2
GPIO
P port A
MOSI,MISO,
SCK,NSS as AF
RC HS
PLL
PA[ 15:0]
4 Channels
4 compl. Channels
BKIN, ETR input as AF
@VDDA
7 channels
SRAM 1.25 KB
80 AF
64 bit
RC LS
5 channels
VDD = 2 to 3.6 V
@VDD
Bus Matri x
NVIC
SOF
VBUS
ID
DM
DP
Flash 256 KB
SRAM
64 KB
System
MII_TXD[3:0]/RMII_TXD[1:0]
MII_TX_CLK/RMII_TX_CLK
MII_TX_EN/RMII_TX_EN
MII_RXD[3:0]/RMII_RXD[1:0]
MII_RX_ER/RMII_RX_ER
MII_RX_CLK/RMII_REF_CLK
MII_RX_DV/RMII_CRS_DV
MII_CRS
MII_COL/RMII_COL
MDC
MDIO
PPS_OUT
Voltage reg.
3.3 V to 1.8 V
Dbus
Fmax : 72 MHz
Power
VDD18
Interface
as AF
NJTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
as A F
Flashl obl
TRACECLK
TRACED[0:3]
bx CAN2
12bi t ADC1 IF
12bit ADC2
IF
CAN2_TX a
s AF
CAN2_RX as AF
TIM6
IF 12bit DAC1
IF
DAC_OUT1 as AF
TIM7
12bit DAC 2
DAC_OUT2 as AF
@VDDA
@VDDA
ai15411
1. TA = –40 °C to +85 °C (suffix 6, see Table 62) or –40 °C to +105 °C (suffix 7, see Table 62), junction temperature up to
105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
DocID15274 Rev 10
13/108
107
Description
2.3.1
STM32F105xx, STM32F107xx
ARM Cortex-M3 core with embedded Flash and SRAM
The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering
the high-performance expected from an ARM core in the memory size usually associated
with 8- and 16-bit devices.
With its embedded ARM core, STM32F105xx and STM32F107xx connectivity line family is
compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
2.3.2
Embedded Flash memory
64 to 256 Kbytes of embedded Flash is available for storing programs and data.
2.3.3
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
2.3.4
Embedded SRAM
64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.
2.3.5
Nested vectored interrupt controller (NVIC)
The STM32F105xx and STM32F107xx connectivity line embeds a nested vectored interrupt
controller able to handle up to 67 maskable interrupt channels (not including the 16 interrupt
lines of Cortex-M3) and 16 priority levels.
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail-chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
14/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
2.3.6
Description
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 20 edge detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected
to the 16 external interrupt lines.
2.3.7
Clocks and startup
System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG
FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency,
the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum
frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed
frequency of the low speed APB domain is 36 MHz. Refer to Figure 59: USB O44TG FS +
Ethernet solution on page 100.
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In order to achieve audio class performance, an audio crystal can be used. In this
case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to
96 kHz with less than 0.5% accuracy error. Refer to Figure 60: USB OTG FS + I2S (Audio)
solution on page 100.
To configure the PLLs, refer to Table 63 on page 101, which provides PLL configurations
according to the application type.
2.3.8
Boot modes
At startup, boot pins are used to select one of three boot options:
•
Boot from User Flash
•
Boot from System Memory
•
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART1, USART2 (remapped), CAN2 (remapped) or USB OTG FS in device mode
(DFU: device firmware upgrade). For remapped signals refer to Table 5: Pin definitions.
The USART peripheral operates with the internal 8 MHz oscillator (HSI), however the CAN
and USB OTG FS can only function if an external 8 MHz, 14.7456 MHz or 25 MHz clock
(HSE) is present.
For full details about the boot loader, refer to AN2606.
DocID15274 Rev 10
15/108
107
Description
2.3.9
2.3.10
STM32F105xx, STM32F107xx
Power supply schemes
•
VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
•
VSSA, VDDA = 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
Power supply supervisor
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is
always active, and ensures proper operation starting from/down to 2 V. The device remains
in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.3.11
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
•
MR is used in the nominal regulation mode (Run)
•
LPR is used in the Stop modes.
•
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.
2.3.12
Low-power modes
The STM32F105xx and STM32F107xx connectivity line supports three low-power modes to
achieve the best compromise between low power consumption, short startup time and
available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB
OTG FS wakeup.
16/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
•
Description
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
2.3.13
DMA
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-toperipheral transfers. The two DMA controllers support circular buffer management,
removing the need for user code intervention when the controller reaches the end of the
buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic
and advanced control timers TIMx, DAC, I2S and ADC.
In the STM32F107xx, there is a DMA controller dedicated for use with the Ethernet (see
Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support for
more information).
2.3.14
RTC (real-time clock) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either on
VDD supply when present or through the VBAT pin. The backup registers are forty-two 16-bit
registers used to store 84 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, and they are not reset when the device
wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with
suitable software to provide a clock calendar function, and provides an alarm interrupt and a
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the
internal low power RC oscillator or the high-speed external clock divided by 128. The
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features
a 32-bit programmable counter for long term measurement using the Compare register to
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default
configured to generate a time base of 1 second from a clock at 32.768 kHz.
For more information, refer to AN2604: “STM32F101xx and STM32F103xx RTC
calibration”, available from www.st.com.
DocID15274 Rev 10
17/108
107
Description
2.3.15
STM32F105xx, STM32F107xx
Timers and watchdogs
The STM32F105xx and STM32F107xx devices include an advanced-control timer, four
general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Table 4 compares the features of the general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA request Capture/compare Complementary
generation
channels
outputs
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
Yes
TIMx
(TIM2,
TIM3,
TIM4,
TIM5)
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
Advanced-control timer (TIM1)
The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes)
•
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same
architecture. The advanced control timer can therefore work together with the TIM timers via
the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded
in the STM32F105xx and STM32F107xx connectivity line devices. These timers are based
on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent
channels each for input capture/output compare, PWM or one pulse mode output. This
gives up to 16 input captures / output compares / PWMs on the largest packages. They can
work together with the Advanced Control timer via the Timer Link feature for synchronization
or event chaining.
The counter can be frozen in debug mode.
18/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Description
Any of the standard timers can be used to generate PWM outputs. Each of the timers has
independent DMA request generations.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
2.3.16
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A
hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.3.17
Universal synchronous/asynchronous receiver transmitters (USARTs)
The STM32F105xx and STM32F107xx connectivity line embeds three universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and
two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other
available interfaces communicate at up to 2.25 Mbit/s.
DocID15274 Rev 10
19/108
107
Description
STM32F105xx, STM32F107xx
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller except for UART5.
2.3.18
Serial peripheral interface (SPI)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC/SDHC(a) modes.
All SPIs can be served by the DMA controller.
2.3.19
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be
operated in master or slave mode. These interfaces can be configured to operate with 16/32
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to
96 kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency with less than 0.5% accuracy error owing to the advanced clock
controller (see Section 2.3.7: Clocks and startup).
Refer to the “Audio frequency precision” tables provided in the “Serial peripheral interface
(SPI)” section of the STM32F10xxx reference manual.
2.3.20
Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral not available on STM32F105xx devices.
The STM32F107xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard media-independent
interface (MII) or a reduced media-independent interface (RMII). The STM32F107xx
requires an external physical interface device (PHY) to connect to the physical LAN bus
(twisted-pair, fiber, etc.). the PHY is connected to the STM32F107xx MII port using as many
as 17 signals (MII) or 9 signals (RMII) and can be clocked using the 25 MHz (MII) or 50 MHz
(RMII) output from the STM32F107xx.
The STM32F107xx includes the following features:
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F105xx/STM32F107xx reference manual for
details)
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
a. SDHC = Secure digital high capacity.
20/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
2.3.21
Description
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 with
the timestamp comparator connected to the TIM2 trigger input
•
Triggers interrupt when system time becomes greater than target time
Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to
1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total)
are not shared with any other peripheral.
2.3.22
Universal serial bus on-the-go full-speed (USB OTG FS)
The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG fullspeed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG
FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0
specification. It has software-configurable endpoint setting and supports suspend/resume.
The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by
a PLL connected to the HSE oscillator. The major features are:
2.3.23
•
1.25 KB of SRAM used exclusively by the endpoints (not shared with any other
peripheral)
•
4 bidirectional endpoints
•
HNP/SNP/IP inside (no need for any external resistor)
•
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
•
the SOF output can be used to synchronize the external audio DAC clock in
isochronous mode
•
in accordance with the USB 2.0 Specification, the supported transfer speeds are:
–
in Host mode: full speed and low speed
–
in Device mode: full speed
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
DocID15274 Rev 10
21/108
107
Description
2.3.24
STM32F105xx, STM32F107xx
Remap capability
This feature allows the use of a maximum number of peripherals in a given application.
Indeed, alternate functions are available not only on the default pins but also on other
specific pins onto which they are remappable. This has the advantage of making board
design and port usage much more flexible.
For details refer to Table 5: Pin definitions; it shows the list of remappable alternate
functions and the pins onto which they can be remapped. See the STM32F10xxx reference
manual for software considerations.
2.3.25
ADCs (analog-to-digital converters)
Two 12-bit analog-to-digital converters are embedded into STM32F105xx and
STM32F107xx connectivity line devices and each ADC shares up to 16 external channels,
performing conversions in single-shot or scan modes. In scan mode, automatic conversion
is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
•
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the standard timers (TIMx) and the advanced-control timer (TIM1)
can be internally connected to the ADC start trigger and injection trigger, respectively, to
allow the application to synchronize A/D conversion and timers.
2.3.26
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
22/108
•
two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
external triggers for conversion
•
input voltage reference VREF+
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Description
Eight DAC trigger inputs are used in the STM32F105xx and STM32F107xx connectivity line
family. The DAC channels are triggered through the timer update outputs that are also
connected to different DMA channels.
2.3.27
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
2.3.28
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
2.3.29
Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F10xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer running debugger software. TPA
hardware is commercially available from common development tool vendors. It operates
with third party debugger software tools.
DocID15274 Rev 10
23/108
107
Pinouts and pin description
3
STM32F105xx, STM32F107xx
Pinouts and pin description
Figure 2. STM32F105xx and STM32F107xx connectivity line BGA100 ballout top view
1
2
3
4
5
6
7
8
9
10
A
PC14OSC32_IN
PC13TAMPERRTC
PE2
PB9
PB7
PB4
PB3
PA15
PA14
PA13
B
PC15OSC32_OUT
VBAT
PE3
PB8
PB6
PD5
PD2
PC11
PC10
PA12
C
OSC_IN
V
PE4
PE1
PB5
PD6
PD3
PC12
PA9
PA11
D
OSC_OUT
V
PE5
PE0
BOOT0
PD7
PD4
PD0
PA8
PA10
E
NRST
PC2
PE6
VSS_4
VSS_3
VSS_2
VSS_1
PD1
PC9
PC7
F
PC0
PC1
PC3
VDD_4
VDD_3
VDD_2
VDD_1
NC
PC8
PC6
G
VSSA
PA0-WKUP
PA4
PC4
PB2
PE10
PE14
PB15
PD11
PD15
H
VREF–
PA1
PA5
PC5
PE7
PE11
PE15
PB14
PD10
PD14
J
VREF+
PA2
PA6
PB0
PE8
PE12
PB10
PB13
PD9
PD13
K
VDDA
PA3
PA7
PB1
PE9
PE13
PB11
PB12
PD8
PD12
SS_5
DD_5
AI14601c
24/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Pinouts and pin description
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 3. STM32F105xx and STM32F107xx connectivity line LQFP100 pinout
,1&0
6$$?
633?
.#
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
633?
6$$?
0%
0%
0%
0%
0%
6"!4
0#
4!-0%2
24#
0#
/3#?).
0#
/3#?/54
633?
6$$?
/3#?).
/3#?/54
.234
0#
0#
0#
0#
633!
62%&
62%&
6$$!
0!
7+50
0!
0!
AI
DocID15274 Rev 10
25/108
107
Pinouts and pin description
STM32F105xx, STM32F107xx
sͺϯ
s^^ͺϯ
W ϵ
W ϴ
KK d Ϭ
W ϳ
W ϲ
W ϱ
W ϰ
W ϯ
WϮ
WϭϮ
Wϭϭ
WϭϬ
W ϭϱ
W ϭϰ
Figure 4. STM32F105xx and STM32F107xx connectivity line LQFP64 pinout
ϲϰ ϲϯ ϲϮ ϲϭ ϲϬ ϱϵ ϱϴ ϱϳ ϱϲ ϱϱ ϱϰ ϱϯ ϱϮ ϱϭ ϱϬ ϰϵ
ϰϴ
ϭ
ϰϳ
Ϯ
ϰϲ
ϯ
ϰϱ
ϰ
ϰϰ
ϱ
ϰϯ
ϲ
ϰϮ
ϳ
ϰϭ
ϴ
>Y&Wϲϰ
ϰϬ
ϵ
ϯϵ
ϭϬ
ϯϴ
ϭϭ
ϯϳ
ϭϮ
ϯϲ
ϭϯ
ϯϱ
ϭϰ
ϯϰ
ϭϱ
ϯϯ
ϭϲ
ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ Ϯϲ Ϯϳ Ϯϴ Ϯϵ ϯϬ ϯϭ ϯϮ
sͺϮ
s ^^ͺϮ
W ϭϯ
W ϭϮ
W ϭϭ
W ϭϬ
W ϵ
W ϴ
Wϵ
Wϴ
Wϳ
Wϲ
W ϭϱ
W ϭϰ
W ϭϯ
W ϭϮ
W ϯ
s ^^ͺϰ
sͺϰ
W ϰ
W ϱ
W ϲ
W ϳ
Wϰ
Wϱ
W Ϭ
W ϭ
W Ϯ
Wϭ Ϭ
Wϭ ϭ
s ^^ͺϭ
sͺϭ
sd
WϭϯͲdDWZͲZd
W ϭϰͲK ^ ϯϮͺ/E
W ϭϱͲK ^ ϯϮͺKh d
W ϬͲK^ ͺ/E
W ϭͲK^ ͺKhd
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s^^
s
W ϬͲt< hW
W ϭ
W Ϯ
DL
26/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Pinouts and pin description
Table 5. Pin definitions
Alternate functions(4)
BGA100
LQFP64
LQFP100
Pin name
Type(1)
I / O Level(2)
Pins
Main
function(3)
(after reset)
A3
-
1
PE2
I/O
FT
PE2
TRACECK
-
B3
-
2
PE3
I/O
FT
PE3
TRACED0
-
C3
-
3
PE4
I/O
FT
PE4
TRACED1
-
D3
-
4
PE5
I/O
FT
PE5
TRACED2
-
E3
-
5
PE6
I/O
FT
PE6
TRACED3
-
B2
1
6
VBAT
S
-
VBAT
-
-
A2
2
7
-
PC13(6)
TAMPER-RTC
-
A1
3
8
I/O
-
PC14(6)
OSC32_IN
-
B1
4
9
PC15I/O
OSC32_OUT(5)
-
PC15(6)
OSC32_OUT
-
C2
-
10
VSS_5
S
-
VSS_5
-
-
D2
-
11
VDD_5
S
-
VDD_5
-
-
C1
5
12
OSC_IN
I
-
OSC_IN
-
-
D1
6
13
OSC_OUT
O
-
OSC_OUT
-
-
E1
7
14
NRST
I/O
-
NRST
-
-
F1
8
15
PC0
I/O
-
PC0
ADC12_IN10
-
F2
9
16
PC1
I/O
-
PC1
ADC12_IN11/ ETH_MII_MDC/
ETH_RMII_MDC
-
E2 10
17
PC2
I/O
-
PC2
ADC12_IN12/ ETH_MII_TXD2
-
F3
11
18
PC3
I/O
-
PC3
ADC12_IN13/
ETH_MII_TX_CLK
-
G1 12
19
VSSA
S
-
VSSA
-
-
H1
-
20
VREF-
S
-
VREF-
-
-
J1
-
21
VREF+
S
-
VREF+
-
-
22
VDDA
S
-
VDDA
-
-
K1 13
PC13-TAMPERI/O
RTC(5)
PC14OSC32_IN(5)
Default
Remap
WKUP/USART2_CTS(7)
G2 14
23
PA0-WKUP
I/O
-
PA0
ADC12_IN0/TIM2_CH1_ETR
TIM5_CH1/
ETH_MII_CRS_WKUP
DocID15274 Rev 10
-
27/108
107
Pinouts and pin description
STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Alternate functions(4)
H2 15
J2
16
24
25
PA1
PA2
I/O
I/O
I / O Level(2)
Pin name
Type(1)
LQFP100
LQFP64
BGA100
Pins
-
-
Main
function(3)
(after reset)
Default
Remap
PA1
USART2_RTS(7)/ ADC12_IN1/
TIM5_CH2 /TIM2_CH2(7)/
ETH_MII_RX_CLK/
ETH_RMII_REF_CLK
-
PA2
USART2_TX(7)/
TIM5_CH3/ADC12_IN2/
TIM2_CH3 (7)/ ETH_MII_MDIO/
ETH_RMII_MDIO
-
-
K2 17
26
PA3
I/O
-
PA3
USART2_RX(7)/
TIM5_CH4/ADC12_IN3 /
TIM2_CH4(7)/ ETH_MII_COL
E4 18
27
VSS_4
S
-
VSS_4
-
-
F4 19
28
VDD_4
S
-
VDD_4
-
-
(7)/DAC_OUT1
G3 20
29
PA4
I/O
-
PA4
/
SPI1_NSS
USART2_CK(7) / ADC12_IN4
SPI3_NSS/I2S3_WS
H3 21
30
PA5
I/O
-
PA5
SPI1_SCK(7) /
DAC_OUT2 / ADC12_IN5
-
J3
31
PA6
I/O
-
PA6
SPI1_MISO(7)/ADC12_IN6 /
TIM3_CH1(7)
TIM1_BKIN
TIM1_CH1N
22
K3 23
32
PA7
I/O
-
PA7
SPI1_MOSI(7)/ADC12_IN7 /
TIM3_CH2(7)/
ETH_MII_RX_DV(8)/
ETH_RMII_CRS_DV
G4 24
33
PC4
I/O
-
PC4
ADC12_IN14/
ETH_MII_RXD0(8)/
ETH_RMII_RXD0
-
H4 25
34
PC5
I/O
-
PC5
ADC12_IN15/
ETH_MII_RXD1(8)/
ETH_RMII_RXD1
-
J4
26
35
PB0
I/O
-
PB0
ADC12_IN8/TIM3_CH3/
ETH_MII_RXD2(8)
TIM1_CH2N
K4 27
36
PB1
I/O
-
PB1
ADC12_IN9/TIM3_CH4(7)/
ETH_MII_RXD3(8)
TIM1_CH3N
G5 28
37
PB2
I/O FT
PB2/BOOT1
-
-
H5
-
38
PE7
I/O FT
PE7
-
TIM1_ETR
J5
-
39
PE8
I/O FT
PE8
-
TIM1_CH1N
28/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Pinouts and pin description
Table 5. Pin definitions (continued)
Alternate functions(4)
I / O Level(2)
Remap
PE9
-
TIM1_CH1
LQFP100
Default
LQFP64
Main
function(3)
(after reset)
BGA100
Type(1)
Pins
Pin name
K5
-
40
PE9
-
-
-
VSS_7
S
-
-
-
-
-
-
-
VDD_7
S
-
-
-
-
G6
-
41
PE10
I/O FT
PE10
-
TIM1_CH2N
H6
-
42
PE11
I/O FT
PE11
-
TIM1_CH2
J6
-
43
PE12
I/O FT
PE12
-
TIM1_CH3N
K6
-
44
PE13
I/O FT
PE13
-
TIM1_CH3
G7
-
45
PE14
I/O FT
PE14
-
TIM1_CH4
H7
-
46
PE15
I/O FT
PE15
-
TIM1_BKIN
J7
29
47
PB10
I/O FT
I/O FT
I/O FT
(8)/USART3_TX(7)/
PB10
I2C2_SCL
ETH_MII_RX_ER
TIM2_CH3
PB11
I2C2_SDA(8)/USART3_RX(7)/
ETH_MII_TX_EN/
ETH_RMII_TX_EN
TIM2_CH4
-
-
-
-
K7 30
48
PB11
E7 31
49
VSS_1
S
-
VSS_1
F7 32
50
VDD_1
S
-
VDD_1
(8)/I2S2_WS(8)/
K8 33
51
PB12
I/O FT
PB12
SPI2_NSS
I2C2_SMBA(8) /
USART3_CK(7)/ TIM1_BKIN(7) /
CAN2_RX/ ETH_MII_TXD0/
ETH_RMII_TXD0
-
-
34
52
PB13
I/O FT
PB13
SPI2_SCK(8) / I2S2_CK(8) /
USART3_CTS(7)/
TIM1_CH1N/CAN2_TX/
ETH_MII_TXD1/
ETH_RMII_TXD1
H8 35
53
PB14
I/O FT
PB14
SPI2_MISO(8) / TIM1_CH2N /
USART3_RTS(7)
-
G8 36
54
PB15
I/O FT
PB15
SPI2_MOSI(8) / I2S2_SD(8) /
TIM1_CH3N(7)
-
K9
55
PD8
I/O FT
PD8
-
USART3_TX/
ETH_MII_RX_DV/
ETH_RMII_CRS_DV
J8
-
DocID15274 Rev 10
29/108
107
Pinouts and pin description
STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Alternate functions(4)
I / O Level(2)
Remap
LQFP100
Default
LQFP64
Main
function(3)
(after reset)
BGA100
Type(1)
Pins
Pin name
J9
-
56
PD9
I/O FT
PD9
-
USART3_RX/
ETH_MII_RXD0/
ETH_RMII_RXD0
H9
-
57
PD10
I/O FT
PD10
-
USART3_CK/
ETH_MII_RXD1/
ETH_RMII_RXD1
G9
-
58
PD11
I/O FT
PD11
-
USART3_CTS/
ETH_MII_RXD2
K10
-
59
PD12
I/O FT
PD12
-
TIM4_CH1 /
USART3_RTS/
ETH_MII_RXD3
J10
-
60
PD13
I/O FT
PD13
-
TIM4_CH2
H10
-
61
PD14
I/O FT
PD14
-
TIM4_CH3
G10
-
62
PD15
I/O FT
PD15
-
TIM4_CH4
F10 37
63
PC6
I/O FT
PC6
I2S2_MCK/
TIM3_CH1
E10 38
64
PC7
I/O FT
PC7
I2S3_MCK
TIM3_CH2
F9 39
65
PC8
I/O FT
PC8
-
TIM3_CH3
E9 40
66
PC9
I/O FT
PC9
-
TIM3_CH4
D9 41
67
PA8
I/O FT
PA8
USART1_CK/OTG_FS_SOF /
TIM1_CH1(8)/MCO
-
C9 42
68
PA9
I/O FT
PA9
USART1_TX(7)/ TIM1_CH2(7)/
OTG_FS_VBUS
-
D10 43
69
PA10
I/O FT
PA10
USART1_RX(7)/
TIM1_CH3(7)/OTG_FS_ID
-
C10 44
70
PA11
I/O FT
PA11
USART1_CTS / CAN1_RX /
TIM1_CH4(7)/OTG_FS_DM
-
B10 45
71
PA12
I/O FT
PA12
USART1_RTS / OTG_FS_DP /
CAN1_TX(7) / TIM1_ETR(7)
-
A10 46
72
PA13
I/O FT JTMS-SWDIO
-
PA13
F8
-
73
Not connected
-
E6 47
74
VSS_2
S
-
VSS_2
-
-
F6 48
75
VDD_2
S
-
VDD_2
-
-
A9 49
76
PA14
-
PA14
30/108
I/O FT JTCK-SWCLK
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Pinouts and pin description
Table 5. Pin definitions (continued)
Alternate functions(4)
I / O Level(2)
Default
Remap
Pin name
A8 50
77
PA15
I/O FT
JTDI
SPI3_NSS / I2S3_WS
TIM2_CH1_ETR / PA15
SPI1_NSS
B9 51
78
PC10
I/O FT
PC10
UART4_TX
USART3_TX/
SPI3_SCK/I2S3_CK
B8 52
79
PC11
I/O FT
PC11
UART4_RX
USART3_RX/
SPI3_MISO
C8 53
80
PC12
I/O FT
PC12
UART5_TX
USART3_CK/
SPI3_MOSI/I2S3_SD
D8
-
81
PD0
I/O FT
PD0
-
OSC_IN(9)/CAN1_RX
E8
-
82
PD1
I/O FT
PD1
-
OSC_OUT(9)/CAN1_TX
B7 54
83
PD2
I/O FT
PD2
TIM3_ETR / UART5_RX
C7
-
84
PD3
I/O FT
PD3
-
USART2_CTS
D7
-
85
PD4
I/O FT
PD4
-
USART2_RTS
B6
-
86
PD5
I/O FT
PD5
-
USART2_TX
C6
-
87
PD6
I/O FT
PD6
-
USART2_RX
D6
-
88
PD7
I/O FT
PD7
-
USART2_CK
A7 55
89
PB3
I/O FT
JTDO
SPI3_SCK / I2S3_CK
PB3 / TRACESWO/
TIM2_CH2 / SPI1_SCK
A6 56
90
PB4
I/O FT
NJTRST
SPI3_MISO
PB4 / TIM3_CH1/
SPI1_MISO
C5 57
91
PB5
I/O
B5 58
92
PB6
I/O FT
PB6
I2C1_SCL(7)/TIM4_CH1(7)
USART1_TX/CAN2_TX
A5 59
93
PB7
I/O FT
PB7
I2C1_SDA(7)/TIM4_CH2(7)
USART1_RX
D5 60
94
BOOT0
-
-
BGA100
LQFP100
Main
function(3)
(after reset)
LQFP64
Type(1)
Pins
B4 61
95
PB8
I
-
-
I/O FT
PB5
I2C1_SMBA / SPI3_MOSI /
TIM3_CH2/SPI1_MOSI/
ETH_MII_PPS_OUT / I2S3_SD
CAN2_RX
ETH_RMII_PPS_OUT
BOOT0
PB8
TIM4_CH3(7)
/ ETH_MII_TXD3
I2C1_SCL/CAN1_RX
A4 62
96
PB9
I/O FT
PB9
TIM4_CH4(7)
D4
-
97
PE0
I/O FT
PE0
TIM4_ETR
-
C4
-
98
PE1
I/O FT
PE1
-
-
99
VSS_3
S
-
VSS_3
-
-
F5 64 100
VDD_3
S
-
VDD_3
-
-
E5 63
DocID15274 Rev 10
I2C1_SDA / CAN1_TX
31/108
107
Pinouts and pin description
STM32F105xx, STM32F107xx
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT = 5 V tolerant. All I/Os are VDD capable.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used
only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the
STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
from the STMicroelectronics website: www.st.com.
8. SPI2/I2S2 and I2C2 are not available when the Ethernet is being used.
9. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and BGA100 packages, PD0
and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and
debug configuration section in the STM32F10xxx reference manual.
32/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
4
Memory mapping
Memory mapping
The memory map is shown in Figure 5.
Figure 5. Memory map
AHB
Reserved
0x5000 0400 - 0x5FFF FFFF
USB OTG FS
0x5000 0000 - 0x5003 FFFF
Reserved
0x4003 0000 - 0x4FFF FFFF
Ethernet
Reserved
0x4002 3400 - 0x4002 7FFF
CRC
0x4002 3000 - 0x4002 33FF
Reserved
0x4002 2400 - 0x4002 2FFF
Flash interface
0x4002 2000 - 0x4002 23FF
Reserved
RCC
Reserved
0x4002 1400 - 0x4002 1FFF
0x4002 1000 - 0x4002 13FF
0x4002 0800 - 0x4002 0FFF
0x4002 0400 - 0x4002 07FF
0x4002 0000 - 0x4002 03FF
DMA2
DMA1
Reserved
0xFFFF FFFF
0xE000 0000
0xDFFF FFFF
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
APB2
512-Mbyte
block 6
Not used
0xC000 0000
0xBFFF FFFF
512-Mbyte
block 5
Not used
0xB000 0000
0xAFFF FFFF
0x8000 0000
0x7FFF FFFF
APB1
512-Mbyte
block 3
Not used
0x6000 0000
0x5FFF FFFF
512-Mbyte
block 2
Peripherals
0x4000 0000
0x3FFF FFFF
512-Mbyte
block 1
SRAM
0x2000 0000
0x1FFF FFFF
512-Mbyte
block 0
Code
0x0000 0000
USART1
Reserved
SPI1
TIM1
ADC2
ADC1
Reserved
Port E
Port D
Port C
Port B
Port A
EXTI
AFIO
Reserved
DAC
PWR
512-Mbyte
block 4
Not used
Reserved
SRAM (aliased
by bit-banding)
Option bytes
System memory
Reserved
Flash
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
DocID15274 Rev 10
0x4002 8000 - 0x4002 9FFF
0x4001 3C00 - 0x4001 FFFF
0x4001 3800 - 0x4001 3BFF
0x4001 3400 - 0x4001 37FF
0x4001 3000 - 0x4001 33FF
0x4001 2C00 - 0x4001 2FFF
0x4001 2800 - 0x4001 2BFF
0x4001 2400 - 0x4001 27FF
0x4001 1C00 - 0x4001 23FF
0x4001 1800 - 0x4001 1BFF
0x4001 1400 - 0x4001 17FF
0x4001 1000 - 0x4001 13FF
0x4001 0C00 - 0x4001 0FFF
0x4001 0800 - 0x4001 0BFF
0x4001 0400 - 0x4001 07FF
0x4001 0000 - 0x4001 3FFF
0x4000 7800 - 0x4000 FFFF
0x4000 7400 - 0x4000 77FF
0x4000 7000 - 0x4000 73FF
BKP
0x4000 6C00 - 0x4000 6FFF
bxCAN2
0x4000 6800 - 0x4000 6BFF
bxCAN1
Reserved
0x4000 6400 - 0x4000 67FF
I2C2
0x4000 5800 - 0x4000 5BFF
0x4000 5C00 - 0x4000 63FF
I2C1
0x4000 5400 - 0x4000 57FF
UART5
UART4
0x4000 5000 - 0x4000 53FF
USART3
0x4000 4800 - 0x4000 4BFF
0x4000 4C00 - 0x4000 4FFF
USART2
0x4000 4400 - 0x4000 47FF
Reserved
0x4000 4000 - 0x4000 43FF
SPI3/I2S3
0x4000 3C00 - 0x4000 3FFF
SPI2/I2S2
0x4000 3800 - 0x4000 3BFF
Reserved
0x4000 3400 - 0x4000 37FF
IWDG
0x4000 3000 - 0x4000 33FF
WWDG
0x4000 2C00 - 0x4000 2FFF
RTC
0x4000 2800 - 0x4000 2BFF
Reserved
TIM7
0x4000 1800 - 0x4000 27FF
0x4000 1400 - 0x4000 17FF
TIM6
0x4000 1000 - 0x4000 13FF
TIM5
0x4000 0C00 - 0x4000 0FFF
TIM4
0x4000 0800 - 0x4000 0BFF
TIM3
0x4000 0400 - 0x4000 07FF
TIM2
0x4000 0000 - 0x4000 03FF
0x3FFF FFFF
0x2001 0000
0x2000 FFFF
0x2000 0000
0x1FFF F800 - 0x1FFF FFFF
0x1FFF B000 - 0x1FFF F7FF
0x1FFF AFFF
0x0804 0000
0x0803 FFFF
0x0800 0000
0x07FF FFFF
0x0004 0000
0x0003 FFFF
0x0000 0000
ai15412b
33/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
2 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 6.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 7.
Figure 6. Pin loading conditions
Figure 7. Pin input voltage
670)[[[SLQ
& S)
9,1
06Y9
34/108
670)[[[SLQ
DocID15274 Rev 10
06Y9
STM32F105xx, STM32F107xx
5.1.6
Electrical characteristics
Power supply scheme
Figure 8. Power supply scheme
9%$7
%DFNXSFLUFXLWU\26&.
57&%DFNXSUHJLVWHUV
:DNHXSORJLF
287
*3,2V
,1
/HYHOVKLIWHU
3RZHUVZLWFK
9
,2
/RJLF
.HUQHOORJLF
&38'LJLWDO
0HPRULHV
9''
9''
îQ)
î)
9''
9''$
95()
Q)
)
5HJXODWRU
966
Q)
)
95()
$'&
'$&
95()
$QDORJ
5&V
3//
966$
DLG
Caution:
In Figure 8, the 4.7 µF capacitor must be connected to VDD3.
5.1.7
Current consumption measurement
Figure 9. Current consumption measurement scheme
,''B9%$7
9%$7
,''
9''
9''$
DL
DocID15274 Rev 10
35/108
107
Electrical characteristics
5.2
STM32F105xx, STM32F107xx
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device
at these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 6. Voltage characteristics
Symbol
VDD–VSS
VIN(2)
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
Ratings
Min
Max
–0.3
4.0
Input voltage on five volt tolerant pin
VSS −0.3
VDD +4.0
Input voltage on any other pin
VSS − 0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
External main supply voltage (including VDDA
and VDD)(1)
Electrostatic discharge voltage (human body
model)
Unit
V
mV
see Section 5.3.11:
Absolute maximum ratings
(electrical sensitivity)
-
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum
allowed injected current values.
Table 7. Current characteristics
Symbol
IVDD
IVSS
IIO
IINJ(PIN)(2)
ΣIINJ(PIN)
Ratings
Max.
Total current into VDD/VDDA power lines (source)(1)
Total current out of VSS ground lines
150
(sink)(1)
150
Output current sunk by any I/O and control pin
25
Output current source by any I/Os and control pin
−25
Injected current on five volt tolerant pins(3)
Injected current on any other
mA
-5/+0
pin(4)
Total injected current (sum of all I/O and control pins)
Unit
±5
(5)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See Note: on page 76.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz.
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM
Max(1)
Symbol
Parameter
Conditions
IDD
Unit
TA = 85 °C
TA = 105 °C
72 MHz
65.5
66
48 MHz
45.4
46
36 MHz
35.5
36.1
24 MHz
25.2
25.6
16 MHz
18
18.5
8 MHz
10.5
11
72 MHz
31.4
31.9
48 MHz
27.8
28.2
External clock(2), all 36 MHz
peripherals disabled 24 MHz
17.6
18.3
13.1
13.8
16 MHz
10.2
10.9
8 MHz
6.1
7.8
External clock(2), all
peripherals enabled
Supply
current in
Run mode
fHCLK
1. Based on characterization, tested in production at VDD max, fHCLK max..
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
40/108
DocID15274 Rev 10
mA
STM32F105xx, STM32F107xx
Electrical characteristics
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM
Symbol
Parameter
Conditions
External clock(2), all
peripherals enabled
Supply current in
Sleep mode
IDD
External clock(2), all
peripherals disabled
fHCLK
Max(1)
TA = 85 °C
TA = 105 °C
72 MHz
48.4
49
48 MHz
33.9
34.4
36 MHz
26.7
27.2
24 MHz
19.3
19.8
16 MHz
14.2
14.8
8 MHz
8.7
9.1
72 MHz
10.1
10.6
48 MHz
8.3
8.75
36 MHz
7.5
8
24 MHz
6.6
7.1
16 MHz
6
6.5
8 MHz
2.5
3
Unit
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Typ(1)
Symbol
Parameter
Conditions
Regulator in Run mode, low-speed
and high-speed internal RC
oscillators and high-speed oscillator
Supply current OFF (no independent watchdog)
in Stop mode Regulator in Low Power mode, low-
IDD
speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog)
Low-speed internal RC oscillator and
independent watchdog ON
Supply current Low-speed internal RC oscillator
in Standby
ON, independent watchdog OFF
mode
Low-speed internal RC oscillator and
independent watchdog OFF, lowspeed oscillator and RTC OFF
Backup
IDD_VBAT domain supply Low-speed oscillator and RTC ON
current
Max
VDD/VBAT VDD/VBAT VDD/VBAT TA =
TA = Unit
= 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C
-
32
33
600
1300
-
25
26
590
1280
-
3
3.8
-
-
-
2.8
3.6
-
-
-
1.9
2.1
5(2)
6.5(2)
1.1
1.2
1.4
2.1(2)
2.3(2)
µA
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
DocID15274 Rev 10
41/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 10. Typical current consumption on VBAT with RTC on vs. temperature at
different VBAT values
Consumption (µA)
2.5
1.8 V
2V
2.4 V
3.3 V
3.6 V
2
1.5
1
0.5
0
–40 °C
25 °C
70 °C
85 °C
105 °C
Temperature (°C)
ai17329
Figure 11. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different VDD values
900.00
800.00
Consumption (µA)
700.00
600.00
500.00
3.6 V
400.00
3.3 V
300.00
3V
200.00
2.7 V
2.4 V
100.00
0.00
–40 °C
25 °C
85 °C
Temperature (°C)
42/108
DocID15274 Rev 10
105 °C
ai17122
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 12. Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different VDD values
900.00
Consumption (µA)
800.00
700.00
600.00
500.00
3.6 V
400.00
3.3 V
300.00
3V
200.00
2.7 V
2.4 V
100.00
0.00
–40 °C
25 °C
85 °C
105 °C
Temperature (°C)
ai17123
Figure 13. Typical current consumption in Standby mode versus temperature at
different VDD values
4.50
4.00
Consumption (µA)
3.50
3.00
2.50
3.6 V
2.00
3.3 V
1.50
3V
2.7 V
1.00
2.4 V
0.50
0.00
–40 °C
25 °C
85 °C
105 °C
Temperature (°C)
ai17124
Typical current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load).
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1
wait state from 24 to 48 MHz and 2 wait states above).
•
Ambient temperature and VDD supply voltage conditions summarized in Table 9.
•
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4
DocID15274 Rev 10
43/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash
Typ(1)
Symbol
Parameter
Conditions
External
IDD
clock(3)
Supply
current in
Run mode
Running on high
speed internal RC
(HSI), AHB
prescaler used to
reduce the
frequency
fHCLK
All peripherals All peripherals
disabled
enabled(2)
72 MHz
47.3
28.3
48 MHz
32
19.6
36 MHz
24.6
15.4
24 MHz
16.8
10.6
16 MHz
11.8
7.4
8 MHz
5.9
3.7
4 MHz
3.7
2.9
2 MHz
2.5
2
1 MHz
1.8
1.53
500 kHz
1.5
1.3
125 kHz
1.3
1.2
36 MHz
23.9
14.8
24 MHz
16.1
9.7
16 MHz
11.1
6.7
8 MHz
5.6
3.8
4 MHz
3.1
2.1
2 MHz
1.8
1.3
1 MHz
1.16
0.9
500 kHz
0.8
0.67
125 kHz
0.6
0.5
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
44/108
DocID15274 Rev 10
Unit
mA
mA
STM32F105xx, STM32F107xx
Electrical characteristics
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM
Typ(1)
Symbol Parameter
Conditions
All peripherals All peripherals
enabled(2)
disabled
72 MHz
28.2
6
48 MHz
19
4.2
36 MHz
14.7
3.4
24 MHz
10.1
2.5
16 MHz
6.7
2
8 MHz
3.2
1.3
4 MHz
2.3
1.2
2 MHz
1.7
1.16
1 MHz
1.5
1.1
500 kHz
1.3
1.05
125 kHz
1.2
1.05
36 MHz
13.7
2.6
24 MHz
9.3
1.8
16 MHz
Running on high
8 MHz
speed internal RC
(HSI), AHB prescaler 4 MHz
used to reduce the
2 MHz
frequency
1 MHz
6.3
1.3
2.7
0.6
1.6
0.5
1
0.46
0.8
0.44
500 kHz
0.6
0.43
125 kHz
0.5
0.42
External
IDD
fHCLK
clock(3)
Supply
current in
Sleep mode
Unit
mA
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed
under the following conditions:
•
all I/O pins are in input mode with a static value at VDD or VSS (no load)
•
all peripherals are disabled unless otherwise mentioned
•
the given value is calculated by measuring the current consumption
•
–
with all peripherals clocked off
–
with one peripheral clocked on (with only the clock applied)
ambient operating temperature and VDD supply voltage conditions summarized in
Table 6
DocID15274 Rev 10
45/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 19. Peripheral current consumption
Peripheral
AHB (up to 72 MHz)
Typical consumption at 25 °C
DMA1
14.03
DMA2
9.31
OTG_fs
111.11
ETH-MAC
56.25
CRC
(1)
15.97
APB1-Bridge
9.72
TIM2
33.61
TIM3
33.06
TIM4
32.50
TIM5
31.94
TIM6
6.11
TIM7
6.11
(2)
7.50
SPI3/I2S3(2)
7.50
USART2
10.83
USART3
11.11
UART4
10.83
UART5
10.56
I2C1
11.39
I2C2
11.11
CAN1
19.44
CAN2
18.33
SPI2/I2S2
(3)
46/108
µA/MHz
1.11
BusMatrix
APB1(up to 36MHz)
Unit
DAC
8.61
WWDG
3.33
PWR
2.22
BKP
0.83
IWDG
3.89
DocID15274 Rev 10
µA/MHz
STM32F105xx, STM32F107xx
Electrical characteristics
Table 19. Peripheral current consumption (continued)
Peripheral
APB2 (up to 72 MHz)
Typical consumption at 25 °C
APB2-Bridge
3.47
GPIOA
6.39
GPIOB
6.39
GPIOC
6.11
GPIOD
6.39
GPIOE
6.11
SPI1
3.61
USART1
12.08
TIM1
23.47
ADC1
(4)
Unit
µA/MHz
18.21
1. The BusMatrix is automatically active when at least one master is ON.(CPU, ETH-MAC, DMA1 or DMA2).
2. When I2S is enabled we have a consumption add equal to 0, 02 mA.
3. When DAC_OUT1 or DAC_OUT2 is enabled we have a consumption add equal to 0, 3 mA.
4. Specific conditions for measuring ADC current consumption: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 =
fHCLK, fADCCLK = fAPB2/4. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of
analog part equal to 0.6 mA must be added.
5.3.6
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 20 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 9.
Table 20. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
8
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
5
-
-
-
-
20
-
-
5
-
pF
-
45
-
55
%
VSS ≤VIN ≤VDD
-
-
±1
µA
tw(HSE)
tw(HSE)
OSC_IN high or low
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1)
Cin(HSE)
-
time(1)
ns
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
1. Guaranteed by design, not tested in production.
DocID15274 Rev 10
47/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Low-speed external user clock generated from an external source
The characteristics given in Table 21 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 9.
Table 21. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSE)
tw(LSE)
OSC32_IN high or low time(1)
Min
0.7VDD
Typ
Max
Unit
32.768
1000
kHz
-
VDD
V
-
VSS
-
0.3VDD
450
-
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall
time(1)
-
-
-
-
5
-
30
-
70
%
VSS ≤VIN ≤VDD
-
-
±1
µA
OSC32_IN input capacitance(1)
Cin(LSE)
DuCy(LSE) Duty cycle
OSC32_IN Input leakage current
IL
50
pF
1. Guaranteed by design, not tested in production.
Figure 14. High-speed external clock source AC timing diagram
9+6(+
9+6(/
WU+6(
W:+6(
W:+6(
W
7+6(
([WHUQDOFORFNVRXUFH
I+6(BH[W
,/
26&B,1
670)[[[
DLF
48/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 15. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
t
tW(LSE)
TLSE
External
clock source
fLSE_ext
STM32F10xxx
ai14140c
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 3 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 22. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 22. HSE 3-25 MHz oscillator characteristics(1) (2)
Symbol
Conditions
Min
Oscillator frequency
-
3
RF
Feedback resistor
-
-
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 Ω
i2
HSE driving current
gm
Oscillator transconductance
fOSC_IN
Parameter
Max
Unit
25
MHz
200
-
kΩ
-
30
-
pF
VDD = 3.3 V, VIN = VSS
with 30 pF load
-
-
1
mA
Startup
25
-
-
mA/V
VDD is stabilized
-
2
-
ms
tSU(HSE(4) Startup time
Typ
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
DocID15274 Rev 10
49/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
0+ ]
UHVRQDWRU
&/
I+6(
26&B,1
5(;7
5)
%LDV
FRQWUROOHG
JDLQ
670)[[[
26&B28 7
DLE
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 23. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
RF
Feedback resistor
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
I2
LSE driving current
gm
Oscillator Transconductance
50/108
Conditions
Min
Typ
Max
Unit
-
-
5
-
MΩ
RS = 30 kΩ
-
-
15
pF
VDD = 3.3 V, VIN = VSS
-
-
1.4
µA
-
5
-
-
µA/V
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) (continued)
Symbol
tSU(LSE)
(4)
Parameter
Conditions
Startup time
VDD is stabilized
Min
Typ
Max
TA = 50 °C
-
1.5
-
TA = 25 °C
-
2.5
-
TA = 10 °C
-
4
-
TA = 0 °C
-
6
-
TA = -10 °C
-
10
-
TA = -20 °C
-
17
-
TA = -30 °C
-
32
-
TA = -40 °C
-
60
-
Unit
s
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for
example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 17). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 17. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
.+ ]
UHVRQDWRU
&/
I/6(
26&B,1
5)
%LDV
FRQWUROOHG
JDLQ
26&B28 7
670)[[[
DLE
DocID15274 Rev 10
51/108
107
Electrical characteristics
5.3.7
STM32F105xx, STM32F107xx
Internal clock source characteristics
The parameters given in Table 24 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 9.
High-speed internal (HSI) RC oscillator
Table 24. HSI oscillator characteristics (1)
Symbol
Parameter
Conditions
Min
Typ
Frequency
-
-
8
DuCy(HSI) Duty cycle
-
45
-
55
%
-
-
1(3)
%
TA = –40 to 105 °C
–2
-
2.5
%
TA = –10 to 85 °C
–1.5
-
2.2
%
TA = 0 to 70 °C
–1.3
-
2
%
TA = 25 °C
–1.1
-
1.8
%
fHSI
User-trimmed with the RCC_CR
register(2)
Accuracy of the HSI
oscillator
Factorycalibrated(4)
ACCHSI
Max
Unit
MHz
tsu(HSI)(4)
HSI oscillator
startup time
-
1
-
2
µs
IDD(HSI)(4)
HSI oscillator
power consumption
-
-
80
100
µA
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 25. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)(3)
IDD(LSI)
(3)
Parameter
Min
Typ
Max
Unit
30
40
60
kHz
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.65
1.2
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Wakeup time from low-power mode
The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
52/108
•
Stop or Standby mode: the clock source is the RC oscillator
•
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 9.
Table 26. Low-power mode wakeup timings
Symbol
tWUSLEEP(1)
tWUSTOP(1)
tWUSTDBY(1)
Parameter
Typ
Unit
Wakeup from Sleep mode
1.8
µs
Wakeup from Stop mode (regulator in run mode)
3.6
Wakeup from Stop mode (regulator in low power mode)
5.4
Wakeup from Standby mode
50
µs
µs
1. The wakeup times are measured from the wakeup event to the point in which the user application code
reads the first instruction.
5.3.8
PLL, PLL2 and PLL3 characteristics
The parameters given in Table 27 and Table 28 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 9.
Table 27. PLL characteristics
Min(1)
Max(1)
Unit
PLL input clock(2)
3
12
MHz
Pulse width at high level
30
-
ns
fPLL_OUT
PLL multiplier output clock
18
72
MHz
fVCO_OUT
PLL VCO output
36
144
MHz
Symbol
fPLL_IN
Parameter
tLOCK
PLL lock time
-
350
µs
Jitter
Cycle-to-cycle jitter
-
300
ps
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
Table 28. PLL2 and PLL3 characteristics
Min(1)
Max(1)
Unit
3
5
MHz
Pulse width at high level
30
-
ns
fPLL_OUT
PLL multiplier output clock
40
74
MHz
fVCO_OUT
PLL VCO output
80
148
MHz
Symbol
fPLL_IN
Parameter
PLL input clock
(2)
tLOCK
PLL lock time
-
350
µs
Jitter
Cycle-to-cycle jitter
-
400
ps
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
DocID15274 Rev 10
53/108
107
Electrical characteristics
5.3.9
STM32F105xx, STM32F107xx
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 29. Flash memory characteristics
Symbol
tprog
tERASE
tME
IDD
Vprog
Min(1)
Typ
Max(1)
Unit
16-bit programming time TA = –40 to +105 °C
40
52.5
70
µs
Page (1 KB) erase time
TA = –40 to +105 °C
20
-
40
ms
Mass erase time
TA = –40 to +105 °C
20
-
40
ms
Read mode
fHCLK = 72 MHz with 2 wait
states, VDD = 3.3 V
-
-
20
mA
Write / Erase modes
fHCLK = 72 MHz, VDD = 3.3 V
-
-
5
mA
Power-down mode / Halt,
VDD = 3.0 to 3.6 V
-
-
50
µA
2
-
3.6
V
Parameter
Conditions
Supply current
Programming voltage
-
1. Guaranteed by design, not tested in production.
Table 30. Flash memory endurance and data retention
Symbol
NEND
tRET
Conditions
Min(1)
Typ
Max(1)
Unit
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
-
-
Kcycles
1 kcycle(2) at TA = 85 °C
30
-
-
10
-
-
20
-
-
Parameter
Endurance
Data retention
1 kcycle
(2)
at TA = 105 °C
10 kcycles(2) at TA = 55 °C
Years
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.
5.3.10
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
54/108
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
A device reset allows normal operations to be resumed.
The test results are given in Table 31. They are based on the EMS levels and classes
defined in application note AN1709.
Table 31. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA =
Voltage limits to be applied on any I/O pin to
+25 °C, fHCLK = 72 MHz, conforms
induce a functional disturbance
to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA =
+25 °C, fHCLK = 72 MHz, conforms
to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC61967-2 standard which specifies the test board and the pin loading.
DocID15274 Rev 10
55/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 32. EMI characteristics
Symbol
SEMI
5.3.11
Parameter
Peak level
Max vs. [fHSE/fHCLK]
Monitored
frequency band
Conditions
VDD = 3.3 V, TA = 25 °C,
LQFP100 package
compliant with IEC61967-2
8/48 MHz
8/72 MHz
0.1 to 30 MHz
9
9
30 to 130 MHz
26
13
130 MHz to 1GHz
25
31
EMI Level
4
4
Unit
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 33. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C conforming to
JESD22-A114
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C conforming to
JESD22-C101
II
500
Unit
V
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 34. Electrical sensitivities
Symbol
LU
5.3.12
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
56/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 35
Table 35. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
5.3.13
Description
Negative
injection
Positive
injection
Injected current on OSC_IN32,
OSC_OUT32, PA4, PA5, PC13
-0
+0
Injected current on all FT pins
-5
+0
Injected current on any other pin
-5
+5
Unit
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 36 are derived from tests
performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL
compliant.
Table 36. I/O static characteristics
Symbol
VIL
VIH
Vhys
Parameter
Conditions
Min
Typ
Max
Unit
Standard IO input low
level voltage
-
–0.3
-
0.28*(VDD-2 V)+0.8 V
V
IO FT(1) input low level
voltage
-
–0.3
-
0.32*(VDD-2V)+0.75 V
V
Standard IO input high
level voltage
-
0.41*(VDD-2 V)+1.3 V
-
VDD+0.3
V
0.42*(VDD-2 V)+1 V
-
IO FT(1) input high level
voltage
VDD > 2 V
VDD ≤ 2 V
5.5
5.2
V
Standard IO Schmitt
trigger voltage
hysteresis(2)
-
200
-
-
mV
IO FT Schmitt trigger
voltage hysteresis(2)
-
5% VDD(3)
-
-
mV
DocID15274 Rev 10
57/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 36. I/O static characteristics (continued)
Symbol
Ilkg
Parameter
Input leakage current
Weak pullup
equivalent
resistor(5)
RPU
Weak pulldown
equivalent
resistor(5)
RPD
(4)
All pins
except for
PA10
Conditions
Min
Typ
Max
VSS ≤VIN ≤VDD
Standard I/Os
-
-
±1
VIN= 5 V, I/O FT
-
-
3
30
40
50
8
11
15
30
40
50
8
11
15
-
5
-
VIN = VSS
PA10
All pins
except for
PA10
VIN = VDD
PA10
I/O pin capacitance
CIO
-
Unit
µA
kΩ
kΩ
pF
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 18 and Figure 19 for standard I/Os, and
in Figure 20 and Figure 21 for 5 V tolerant I/Os.
Figure 18. Standard I/O input characteristics - CMOS port
6)(6),6
6 $$
MENT6 )(
QUIRE
NDARDRE
-/3STA
#
7)(MIN
7),MAX
6
6 )( $$
6 $$
IREMENT6 ),
RDREQU
#-/3STANDA
)NPUTRANGE
NOTGUARANTEED
6
6), $$
6$$6
AIB
58/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 19. Standard I/O input characteristics - TTL port
6)(6),6
7)(MIN
44,REQUIREMENTS 6)( 6
6
6 )( $$
7),MAX
)NPUTRANGE
NOTGUARANTEED
6 ),6 $$
44,REQUIREMENTS 6),6
6$$6
AI
Figure 20. 5 V tolerant I/O input characteristics - CMOS port
6)(6),6
6 $
6 $
IREMENTS )(
REQU
TANDARD
#-/3S
)NPUTRANGE
NOTGUARANTEED
6 ),6 $$
6 $$
QUIRMENT6 ),
3STANDARDRE
6 )(6 $$
#-/
6$$6
6$$
AIB
Figure 21. 5 V tolerant I/O input characteristics - TTL port
6)(6),6
44,REQUIREMENT6 )(6
6
6 )(
$$
7)(MIN
7),MAX
)NPUTRANGE
NOTGUARANTEED
6 ),
6 $$
44,REQUIREMENTS6 ),6
6$$6
AI
DocID15274 Rev 10
59/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/-20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 7).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 7).
Output voltage levels
Unless otherwise specified, the parameters given in Table 37 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 9. All I/Os are CMOS and TTL compliant.
Table 37. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL (1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH (2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(3)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(3)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(2)(3)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Conditions
Min
Max
TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
Unit
V
V
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
3. Based on characterization data, not tested in production.
60/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 22 and
Table 38, respectively.
Unless otherwise specified, the parameters given in Table 38 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
Table 38. I/O AC characteristics(1)
MODEx[1:0]
Symbol
bit value(1)
Parameter
Conditions
Min
Max
Unit
-
2
MHz
-
125(3)
-
125(3)
-
10
-
25(3)
-
25(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
50
MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
30
MHz
CL = 50 pF, VDD = 2 V to 2.7 V
-
20
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
10
-
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V
10
tf(IO)out
Output high to low
level fall time
tr(IO)out
Output low to high
level rise time
CL = 50 pF, VDD = 2 V to 3.6 V
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V
01
tf(IO)out
Output high to low
level fall time
tr(IO)out
Output low to high
level rise time
Fmax(IO)out Maximum
11
tf(IO)out
tr(IO)out
-
tEXTIpw
frequency(2)
Output high to low
level fall time
Output low to high
level rise time
ns
CL = 50 pF, VDD = 2 V to 3.6 V
Pulse width of external
signals detected by
the EXTI controller
-
MHz
ns
ns
ns
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 22.
3. Guaranteed by design, not tested in production.
DocID15274 Rev 10
61/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 22. I/O AC characteristics definition
10%
90%
50%
50%
90%
10%
EXTERNAL tr(I O)out
OUTPUT
ON 50 pF
tf(I O)out
T
Maximum frequency is achieved if (t r + t f ) < (2/3)T and if the duty cycle is (45-55%)
when loaded by 50 pF
ai14131
5.3.14
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 36).
Unless otherwise specified, the parameters given in Table 39 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 9.
Table 39. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL(NRST)(1)
NRST Input low level voltage
-
–0.5
-
0.8
VIH(NRST)(1)
NRST Input high level voltage
-
2
-
VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
-
200
-
mV
VIN = VSS
30
40
50
kΩ
-
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
(1)
NRST Input filtered pulse
VNF(NRST)(1) NRST Input not filtered pulse
V
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
62/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 23. Recommended NRST pin protection
VDD
External
reset circuit(1)
RPU
NRST(2)
Internal Reset
Filter
0.1 µF
STM32F10xxx
ai14132d
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 39. Otherwise the reset will not be taken into account by the device.
5.3.15
TIM timer characteristics
The parameters given in Table 40 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
Table 40. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 72 MHz
13.9
-
ns
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 72 MHz
0
fTIMxCLK/2
MHz
0
36
MHz
Timer resolution
-
16
bit
65536
tTIMxCLK
910
µs
Timer resolution time
-
16-bit counter clock period
1
when internal clock is
fTIMxCLK = 72 MHz 0.0139
selected
tMAX_COUNT Maximum possible count
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 72 MHz
-
59.6
s
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4 and TIM5 timers.
DocID15274 Rev 10
63/108
107
Electrical characteristics
5.3.16
STM32F105xx, STM32F107xx
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 41 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 9.
The STM32F105xx and STM32F107xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 41. Refer also to Section 5.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 41. I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0(3)
-
0(4)
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20 + 0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve the fast mode I2C frequencies and it must be a mulitple of 10 MHz in order to reach I2C fast mode
maximum clock 400 kHz.
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
64/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 24. I2C bus AC waveforms and measurement circuit
VDD
4 .7 kΩ
VDD
4 .7 kΩ
100 Ω
100 Ω
I²C bus
STM32F10x
SDA
SCL
Start repeated
Start
Start
tsu(STA)
SDA
tf(SDA)
tr(SDA)
th(STA)
tsu(SDA)
tw(SCLL)
th(SDA)
tsu(STO:STA)
Stop
SCL
tw(SCLH)
tr(SCL)
tf(SCL)
tsu(STO)
ai14133d
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 42. SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x801E
300
0x8028
200
0x803C
100
0x00B4
50
0x0168
20
0x0384
2
1. RP = External pull-up resistance, fSCL = I C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
DocID15274 Rev 10
65/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 43 for SPI or in Table 44 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 9.
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK,
SD for I2S).
Table 43. SPI characteristics
Symbol
fSCK
1/tc(SCK)
Conditions
SPI clock frequency
Min
Max
Master mode
-
18
Slave mode
-
18
-
8
ns
%
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
70
tsu(NSS)
NSS setup time
Slave mode
4 tPCLK
-
th(NSS)
NSS hold time
Slave mode
2 tPCLK
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
50
60
Master mode
4
-
Slave mode
5
-
Master mode
5
-
Slave mode
5
-
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)
Data output access
time
Slave mode, fPCLK = 20 MHz
-
3*tPCLK
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
34
tv(MO)
Data output valid time
Master mode (after enable edge)
-
8
Slave mode (after enable edge)
32
-
Master mode (after enable edge)
10
-
th(SO)
th(MO)
66/108
Parameter
Data output hold time
DocID15274 Rev 10
Unit
MHz
ns
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 25. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$
&32/
WK166
WF6&.
WZ6&.+
WZ6&./
&3+$
&32/
W962
WD62
0,62
287387
WU6&.
WI6&.
WK62
06%287
%,7287
06%,1
%,7,1
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID15274 Rev 10
67/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 27. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$
&32/
6&.2XWSXW
WF6&.
&3+$
&32/
&3+$
&32/
&3+$
&32/
WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
06%,1
WU6&.
WI6&.
%,7,1
/6%,1
WK0,
026,
287387
06%287
% , 7287
WY02
/6%287
WK02
DLF
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
68/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Table 44. I2S characteristics
Symbol
fCK
1/tc(CK)
tr(CK)
tf(CK)
tw(CKH)(1)
Parameter
I2S clock frequency
I2S clock rise and fall time
I2S clock high time
Conditions
Min
Max
1.52
1.54
Slave
0
6.5
capacitive load CL = 50 pF
-
8
317
320
333
336
3
-
I2S2
0
-
I2S3
0
-
I2S2
4
-
I2S3
9
-
Master data: 16 bits, audio
freq = 48 K
tw(CKL)(1)
I S clock low time
Master fPCLK = 16 MHz,
audio freq = 48 K
tv(WS) (1)
WS valid time
Master mode
th(WS)
(1)
2
WS hold time
Master mode
WS setup time
Slave mode
WS hold time
Slave mode
0
-
I2S slave input clock duty
cycle
Slave mode
30
70
I2S2
8
-
I2S3
10
-
I2S2
3
-
I2S3
8
-
I2S2
2
-
I2S3
4
-
I2S2
2
-
I2S3
4
-
Data output valid time
Slave transmitter
(after enable edge)
I2S2
23
-
I2S3
33
-
th(SD_ST) (1)
Data output hold time
Slave transmitter
(after enable edge)
I2S2
29
-
I2S3
27
-
tv(SD_MT) (1)
Data output valid time
Master transmitter
(after enable edge)
I2S2
-
5
I2S3
-
2
th(SD_MT) (1)
Data output hold time
Master transmitter
(after enable edge)
I2S2
11
-
I2S3
4
-
tsu(WS) (1)
th(WS)
(1)
DuCy(SCK)
tsu(SD_MR) (1)
Master receiver
Data input setup time
tsu(SD_SR) (1)
Slave receiver
th(SD_MR)(1)
Master receiver
Data input hold time
th(SD_SR) (1)
tv(SD_ST)
(1)(3)
Slave receiver
Unit
MHz
ns
%
ns
1. Based on design simulation and/or characterization results, not tested in production.
DocID15274 Rev 10
69/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Figure 28. I2S slave timing diagram (Philips protocol)(1)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 29. I2S master timing diagram (Philips protocol)(1)
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
70/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed).
Table 45. USB OTG FS startup time
Symbol
Parameter
tSTARTUP(1)
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 46. USB OTG FS DC electrical characteristics
Symbol
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
-
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USBDP, USBDM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
-
1.3
-
2.0
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(4)
-
0.3
VOH
Static output level high
RL of 15 kΩ to VSS(4)
2.8
-
3.6
17
21
24
0.65
1.1
2.0
VDD
Input
levels
Parameter
Output
levels
RPD
RPU
Pull-down resistance on
PA11, PA12
Pull-down resistance on
PA9
V
V
V
VIN = VDD
Pull-up resistance on PA12
VIN = VSS
1.5
1.8
2.1
Pull-up resistance on PA9
VIN = VSS
0.25
0.37
0.55
kΩ
1. All the voltages are measured from the local ground potential.
2. The STM32F105xx and STM32F107xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers
Figure 30. USB OTG FS timings: definition of data signal rise and fall time
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WI
WU
DLE
DocID15274 Rev 10
71/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 47. USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
tr
Rise time(2)
CL = 50 pF
4
20
ns
tf
Fall time(2)
CL = 50 pF
4
20
ns
tr/tf
90
110
%
-
1.3
2.0
V
trfm
Rise/ fall time matching
VCRS
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification Chapter 7 (version 2.0).
Ethernet characteristics
Table 48 showns the Ethernet operating voltage.
Table 48. Ethernet DC electrical characteristics
Symbol
Input level
Parameter
VDD
Ethernet operating voltage
Min.(1)
Max.(1)
Unit
3.0
3.6
V
1. All the voltages are measured from the local ground potential.
Table 49 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 31 shows the corresponding timing diagram.
Figure 31. Ethernet SMI timing diagram
T-$#
%4(?-$#
TD-$)/
%4(?-$)//
TSU-$)/
TH-$)/
%4(?-$)/)
AIC
Table 49. Dynamic characteristics: Ethernet MAC signals for SMI
Symbol
Rating
Min
Typ
Max
Unit
tMDC
MDC cycle time (1.71 MHz, AHB = 72 MHz)
583
583.5
584
ns
13.5
14.5
15.5
ns
tsu(MDIO) Read data setup time
35
-
-
ns
th(MDIO) Read data hold time
0
-
-
ns
td(MDIO) MDIO write data valid time
72/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Table 50 gives the list of Ethernet MAC signals for the RMII and Figure 32 shows the
corresponding timing diagram.
Figure 32. Ethernet RMII timing diagram
2-))?2%&?#,+
TD48%.
TD48$
2-))?48?%.
2-))?48$;=
TSU28$
TSU#23
TIH28$
TIH#23
2-))?28$;=
2-))?#23?$6
AI
Table 50. Dynamic characteristics: Ethernet MAC signals for RMII
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
4
-
-
ns
tih(RXD)
Receive data hold time
2
-
-
ns
tsu(DV)
Carrier sense set-up time
4
-
-
ns
tih(DV)
Carrier sense hold time
2
-
-
ns
td(TXEN)
Transmit enable valid delay time
8
10
16
ns
td(TXD)
Transmit data valid delay time
7
10
16
ns
Table 51 gives the list of Ethernet MAC signals for MII and Figure 32 shows the
corresponding timing diagram.
Figure 33. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
DocID15274 Rev 10
73/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 51. Dynamic characteristics: Ethernet MAC signals for MII
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
10
-
-
ns
tih(RXD)
Receive data hold time
10
-
-
ns
tsu(DV)
Data valid setup time
10
-
-
ns
tih(DV)
Data valid hold time
10
-
-
ns
tsu(ER)
Error setup time
10
-
-
ns
tih(ER)
Error hold time
10
-
-
ns
td(TXEN)
Transmit enable valid delay time
14
16
18
ns
td(TXD)
Transmit data valid delay time
13
16
20
ns
CAN (controller area network) interface
Refer to Section 5.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (CANTX and CANRX).
5.3.17
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 9.
Note:
It is recommended to perform a calibration after each power-up.
Table 52. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Power supply
-
2.4
-
3.6
V
VREF+
Positive reference voltage
-
2.4
-
VDDA
V
IVREF
Current on the VREF input pin
-
-
160(1)
220(1)
µA
fADC
ADC clock frequency
-
0.6
-
14
MHz
fS(2)
Sampling rate
-
0.05
-
1
MHz
fADC = 14 MHz
-
-
823
kHz
-
-
-
17
1/fADC
-
0 (VSSA or VREFtied to ground)
-
VREF+
V
See Equation 1 and
Table 53 for details
-
-
50
kΩ
-
-
-
1
kΩ
-
-
-
8
pF
fTRIG(2) External trigger frequency
VAIN
Conversion voltage range(3)
RAIN(2) External input impedance
RADC(2) Sampling switch resistance
CADC
(2)
tCAL(2)
74/108
Internal sample and hold capacitor
Calibration time
fADC = 14 MHz
5.9
µs
-
83
1/fADC
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Table 52. ADC characteristics (continued)
Symbol
Parameter
tlat(2)
Injection trigger conversion latency
tlatr(2)
Regular trigger conversion latency
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time (including
sampling time)
Conditions
Min
Typ
Max
Unit
fADC = 14 MHz
-
-
0.214
µs
1/fADC
-
-
-
3(4)
fADC = 14 MHz
-
-
0.143
µs
-
-
-
2(4)
1/fADC
fADC = 14 MHz
0.107
-
17.1
µs
-
1.5
-
239.5
1/fADC
-
0
0
1
µs
fADC = 14 MHz
1
-
18
µs
14 to 252 (tS for sampling +12.5 for
successive approximation)
-
1/fADC
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 52.
Equation 1: RAIN max formula
TS
- – R ADC
R AIN < --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 53. RAIN max for fADC = 14 MHz(1)
Ts (cycles)
tS (µs)
RAIN max (kΩ)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Based on characterization, not tested in production.
DocID15274 Rev 10
75/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 54. ADC accuracy - limited test conditions(1)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
Test conditions
Typ
Max(2)
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 3 V to 3.6 V
TA = 25 °C
Measurements made after
ADC calibration
±1.3
±2
±1
±1.5
±0.5
±1.5
±0.7
±1
±0.8
±1.5
Typ
Max(3)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Based on characterization, not tested in production.
Table 55. ADC accuracy(1) (2)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 56 MHz,
fADC = 14 MHz, RAIN < 10 kΩ,
VDDA = 2.4 V to 3.6 V
Measurements made after
ADC calibration
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
3. Based on characterization, not tested in production.
Note:
76/108
ADC accuracy vs. negative injection current: Injecting a negative current on any of the
standard (non-robust) analog input pins should be avoided as this significantly reduces the
accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.12 does not affect the ADC accuracy.
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Electrical characteristics
Figure 34. ADC accuracy characteristics
6 2%&
6 $$!
;,3" )$%!,
ORDEPENDINGONPACKAGE =
%'
%4
%/
%,
%$
, 3" )$%!,
6 33!
6 $$!
AIC
Figure 35. Typical connection diagram using the ADC
670)[[[
9''
5$,1
9$,1
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
$,1[
&SDUDVLWLF
97
9
,/$
ELW
FRQYHUWHU
&$'&
DLG
1. Refer to Table 52 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
DocID15274 Rev 10
77/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F10xxx
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai14380c
1. VREF+ and VREF– inputs are available only on 100-pin packages.
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F10xxx
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai14381c
1. VREF+ and VREF– inputs are available only on 100-pin packages.
78/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
5.3.18
Electrical characteristics
DAC electrical specifications
Table 56. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
VDDA
Analog supply voltage
2.4
-
3.6
V
-
VREF+
Reference supply voltage
2.4
-
3.6
V
VREF+ must always be below VDDA
VSSA
Ground
0
-
0
V
-
Resistive load with buffer ON
5
-
-
kΩ
-
RLOAD
(1)
Impedance output with buffer
OFF
-
-
15
When the buffer is OFF, the
Minimum resistive load between
kΩ
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
with buffer ON
max(1)
-
-
VDDA – 0.2
V
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer OFF
-
0.5
-
mV
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(1)
-
-
VREF+ – 1LSB
V
DAC DC current
IDDVREF+ consumption in quiescent
mode (Standby mode)
-
-
220
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
380
µA
With no load, middle code (0x800)
on the inputs
-
-
480
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration.
-
-
±2
LSB
Given for the DAC in 12-bit
configuration.
-
-
±1
LSB
Given for the DAC in 10-bit
configuration.
-
-
±4
LSB
Given for the DAC in 12-bit
configuration.
RO(1)
CLOAD(1)
IDDA
DNL(2)
INL(2)
DAC DC current
consumption in quiescent
mode (Standby mode)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
DocID15274 Rev 10
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x155) to (0xEAB) at
VREF+ = 2.4 V
It gives the maximum output
excursion of the DAC.
79/108
107
Electrical characteristics
STM32F105xx, STM32F107xx
Table 56. DAC characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
Offset(2)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-
-
±10
mV
Given for the DAC in 12-bit
configuration
-
-
±3
LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain error
-
-
±0.5
%
Given for the DAC in 12bit
configuration
Settling time (full scale: for a
10-bit input code transition
(2) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±1LSB
-
3
4
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Wakeup time from off state
tWAKEUP(2) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
Power supply rejection ratio
PSRR+ (1) (to VDDA) (static DC
measurement
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Gain
error(2)
Update
rate(2)
Comments
1. Guaranteed by design, not tested in production.
2. Guaranteed by characterization, not tested in production.
Figure 38. 12-bit buffered /non-buffered DAC
%XIIHUHGQRQEXIIHUHG'$&
%XIIHU
5/2$'
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
'$&[B287
&/2$'
DLG
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
80/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
5.3.19
Electrical characteristics
Temperature sensor characteristics
Table 57. TS characteristics
Symbol
TL(1)
Parameter
Min
Typ
Max
Unit
-
±1
±2
°C
4.0
4.3
4.6
mV/°C
1.34
1.43
1.52
V
Startup time
4
-
10
µs
ADC sampling time when reading the
temperature
-
-
17.1
µs
VSENSE linearity with temperature
Avg_Slope(1) Average slope
V25(1)
tSTART(2)
TS_temp(3)(2)
Voltage at 25 °C
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
DocID15274 Rev 10
81/108
107
Package information
6
STM32F105xx, STM32F107xx
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1
LFBGA100 package information
Figure 39. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline
= 6HDWLQJSODQH
GGG =
$ $
$ $
(
H
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
;
(
$
)
'
'
H
<
.
%277209,(:
82/108
EEDOOV
HHH 0 = < ;
III 0 =
DocID15274 Rev 10
7239,(:
+B0(B9
STM32F105xx, STM32F107xx
Package information
Figure 40. LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Typ
Min
Max
A
-
-
1.700
-
-
0.0669
A1
0.270
-
-
0.0106
-
-
A2
-
0.300
-
-
0.0118
-
A4
-
-
0.800
-
-
0.0315
b
0.450
0.500
0.550
0.0177
0.0197
0.0217
D
9.850
10.000
10.150
0.3878
0.3937
0.3996
D1
-
7.200
-
-
0.2835
-
E
9.850
10.000
10.150
0.3878
0.3937
0.3996
E1
-
7.200
-
-
0.2835
-
e
-
0.800
-
-
0.0315
-
F
-
1.400
-
-
0.0551
-
ddd
-
-
0.120
-
-
0.0047
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 41. LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package recommended footprint
'SDG
'VP
+B)3B9
Table 58. LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Dimension
Recommended values
Pitch
0.8
Dpad
0.500 mm
Dsm
0.570 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.500 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.120 mm
DocID15274 Rev 10
83/108
107
Package information
STM32F105xx, STM32F107xx
Device marking for LFBGA100
The following figure shows the device marking for the LQFP100 package.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 42. LFBGA100 marking example (package top view)
$GGLWLRQDOLQIRUPDWLRQ
3URGXFWLGHQWLILFDWLRQ
^dDϯϮ&ϭϬϱ
s,ϲ
'DWHFRGH
z tt
3LQLGHQWLILHU
069
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST
charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
84/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
LQFP100 package information
Figure 43. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline
MM
C
!
!
3%!4).'0,!.%
#
!
'!5'%0,!.%
$
!
+
CCC #
,
$
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
6.2
Package information
E
,?-%?6
1. Drawing is not to scale. Dimension are in millimeter.
Table 59. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
DocID15274 Rev 10
85/108
107
Package information
STM32F105xx, STM32F107xx
Table 59. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
AIC
86/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Package information
Device marking for LQFP100
The following figure shows the device marking for the LQFP100 package.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 45.LQFP100 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
2SWLRQDOJDWH
PDUN
^dDϯϮ&ϭϬϱ
5HYLVLRQFRGH
sϴdϲ
'DWHFRGH
z tt
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID15274 Rev 10
87/108
107
Package information
6.3
STM32F105xx, STM32F107xx
LQFP64 package information
Figure 46.LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not in scale.
Table 60.LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
88/108
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
E3
-
7.500
-
-
0.2953
-
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Package information
Table 60.LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
e
-
0.500
-
-
0.0197
-
θ
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 47.LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
AIC
1. Dimensions are in millimeters.
DocID15274 Rev 10
89/108
107
Package information
STM32F105xx, STM32F107xx
Device marking for LQFP64
The following figure shows the device marking for the LQFP64 package.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48.LQFP64 marking example (package top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
^dDϯϮ&ϭϬϱ
Zϴdϲ
z tt
3LQLGHQWLILHU
'DWHFRGH
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
90/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
6.4
Package information
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 37.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
•
TA max is the maximum ambient temperature in ° C,
•
ΘJA is the package junction-to-ambient thermal resistance, in ° C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 61. Package thermal characteristics
Symbol
ΘJA
ΘJA
6.4.1
Parameter
Value
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
LFBGA100 - 10 × 10 mm / 0.8 mm pitch
40
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Unit
°C/W
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
DocID15274 Rev 10
91/108
107
Package information
6.4.2
STM32F105xx, STM32F107xx
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 62: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 61 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 62: Ordering information scheme).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
92/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Package information
Using the values obtained in Table 61 TJmax is calculated as follows:
–
For LQFP100, 46 °C/W
TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 62: Ordering information scheme).
Figure 49. LQFP100 PD max vs. TA
ϳϬϬ
ϲϬϬ
W;ŵtͿ
ϱϬϬ
^ƵĨĨŝdžϲ
^ƵĨĨŝdžϳ
ϰϬϬ
ϯϬϬ
ϮϬϬ
ϭϬϬ
Ϭ
ϲϱ
ϳϱ
ϴϱ
ϵϱ
ϭϬϱ
d;ΣͿ
DocID15274 Rev 10
ϭϭϱ
ϭϮϱ
ϭϯϱ
D^ϯϯϯϱϴsϭ
93/108
107
Part numbering
7
STM32F105xx, STM32F107xx
Part numbering
Table 62. Ordering information scheme
Example:
STM32
F 105 R C
T
6
V
xxx TR
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
105 = connectivity, USB OTG FS
107 = connectivity, USB OTG FS & Ethernet
Pin count
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = BGA
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Software option
Internal code or Blank
Options
xxx = programmed parts
Packing
Blank = tray
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, contact your nearest ST sales office.
94/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Appendix A
Application block diagrams
USB OTG FS interface solutions
Figure 50. USB OTG FS device mode
34-&XX34-&XX
/4'0(9
$0
53"
&ULL
SPEED
TRANSCEIVER
53"
/4'
&ULL
SPEED
CORE
$-
(.0
6 "53
633
)$
53"-ICRO
"CONNECTOR
4OHOST
$0
$6"53
633
320
6$$
6TO6$$
2EGULATOR
AIB
1. Use a regulator if you want to build a bus-powered device.
Figure 51. Host connection
34-&XX34-&XX
/4'0(9
$0
53"
FULL
SPEED
LOW
SPEED
TRANSCEIVER
53"
/4'
&ULL
SPEED
CORE
$-
(.0
6 "53
633
)$
53"3TD
!CONNECTOR
A.1
Application block diagrams
6$$
320
'0)/
'0)/)21
#URRENT
LIMITED
POWERDISTRIBUTION 6
SWITCH
/62#2
34-03342
FLAG
%.
AIB
1. STMPS2141STR needed only if the application has to support bus-powered devices.
DocID15274 Rev 10
95/108
107
Application block diagrams
STM32F105xx, STM32F107xx
Figure 52. OTG connection (any protocol)
STM32F105xx/STM32F107xx
OTG PHY
DM
ID
USB
OTG
Full-speed
core
HNP
V BUS
VSS
ID
USB Micro-AB connector
DP
USB
full-speed/
low-speed
transceiver
VDD
SRP
GPIO
GPIO + IRQ
Current-limited
power distribution 5 V
switch
OVRCR
STMPS2141STR(1)
flag
EN
ai15655b
1. STMPS2141STR needed only if the application has to support bus-powered devices.
96/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
A.2
Application block diagrams
Ethernet interface solutions
Figure 53. MII mode using a 25 MHz crystal
STM32F107xx
MCU
Ethernet
MAC 10/100
HCLK(1)
MII_TX_CLK
MII_TX_EN
MII_TXD[3:0]
MII_CRS
MII_COL
Ethernet
PHY 10/100
MII
= 15 pins
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
IEEE1588 PTP
Timer
input
trigger Timestamp
TIM2
comparator
MII + MDC
= 17 pins
MDIO
MDC
PPS_OUT(2)
XTAL
25 MHz
OSC
HCLK
PLL
PHY_CLK 25 MHz
XT1
ai15656
1. HCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP, optional signal.
Figure 54. RMII with a 50 MHz oscillator
Ethernet
PHY 10/100
STM32F107xx
MCU
Ethernet
MAC 10/100
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK(1)
RMII_CRX_DV
RMII
= 7 pins
RMII + MDC
= 9 pins
RMII_REF_CLK
IEEE1588 PTP
Timer
input
trigger Timestamp
TIM2
comparator
MDIO
MDC
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
OSC
50 MHz
PLL
HCLK
PHY_CLK
50 MHz
XT1
50 MHz
ai15657
1. HCLK must be greater than 25 MHz.
DocID15274 Rev 10
97/108
107
Application block diagrams
STM32F105xx, STM32F107xx
Figure 55. RMII with a 25 MHz crystal and PHY with PLL
STM32F107xx
MCU
Ethernet
PHY 10/100
RMII_TX_EN
Ethernet
MAC 10/100
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK(1)
RMII
= 7 pins
RMII_CRX_DV
REF_CLK
RMII_REF_CLK
IEEE1588 PTP
MDIO
Timer
input
trigger Timestamp
TIM2
comparator
RMII + MDC
= 9 pins
MDC
/2 or /20
2.5 or 25 MHz synchronous 50 MHz
XTAL
25 MHz
OSC
PLL
PLL
HCLK
XT1
PHY_CLK 25 MHz
ai15658
1. HCLK must be greater than 25 MHz.
Figure 56. RMII with a 25 MHz crystal
STM32F107xx
MCU
RMII_TX_EN
Ethernet
MAC 10/100
RMII_TXD[1:0]
RMII_RXD[1:0]
HCLK
RMII_CRX_DV
IEEE1588 PTP 50 MHz
Timer
input
trigger Time stamp
TIM2
comparator
XTAL
25 MHz
Ethernet
PHY 10/100
RMII_REF_CLK
RMII
= 7 pins
50 MHz
MDIO
RMII + MDC
= 9 pins
MDC
50 MHz
OSC
PLLS
XT1/XT2
NS DP83848(1)
ai15659b
1. The NS DP83848 is recommended as the input jitter requirement of this PHY. It is compliant with the output
jitter specification of the MCU.
98/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
A.3
Application block diagrams
Complete audio player solutions
Two solutions are offered, illustrated in Figure 57 and Figure 58.
Figure 57 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 57. Complete audio player solution 1
STM32F105/STM32F107
XTAL
14.7456 MHz
Cortex-M3 core
72 MHz
SPI
LCD
touch
screen
GPIO
Control
buttons
Program memory
OTG
(host
mode) +
PHY
USB
Mass-storage
device
File
System
DAC +
Audio
ampli
I2S
Audio
CODEC
User
application
MMC/
SDCard
SPI
ai15660
Figure 58 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 58. Complete audio player solution 2
STM32F105/STM32F107
XTAL
14.7456 MHz
Cortex-M3 core
72 MHz
SPI
LCD
touch
screen
GPIO
Control
buttons
Program memory
USB
Mass-storage
device
SOF
MMC/
SDCard
OTG
+
PHY
File
System
I2S
User
application
SPI
Audio
CODEC
Audio
ampli
SOF synchronization of input/output
audio streaming
ai15661
DocID15274 Rev 10
99/108
107
Application block diagrams
A.4
STM32F105xx, STM32F107xx
USB OTG FS interface + Ethernet/I2S interface solutions
With the clock tree implemented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the Ethernet (MII/RMII) interfaces. Figure 59
illustrate the solution.
Figure 59. USB O44TG FS + Ethernet solution
34-&-#5
$IV
BY
/3#
-(Z
84!,
0,,-5,
X
393#,+
5PTO-(Z
0,,6#/
X0,,#,+
$IV
BY
/4'
$IV
BY
0,,-5,
X
53"
0(9
-(Z
3EL
%THERNET
0(9
0,,-5,
X
-#/
)3
5PTO-(Z
ACCURACY
3EL
-36
With the clock tree implem1ented on the STM32F107xx, only one crystal is required to work
with both the USB (host/device/OTG) and the I2S (Audio) interfaces. Figure 60 illustrate the
solution.
Figure 60. USB OTG FS + I2S (Audio) solution
34-&34-&-#5
/3#
-(Z
84!,
$IV
BY
0,,-5,
X
5PTO-(Z
393#,+
0,,6#/
X0,,#,+
$IV
BY
0,,-5,
X
3EL
%THERNET
0(9
-#/
0,,-5,
X
$IV
BY
/4'
-(Z
53"
0(9
ACCURACY
0,,6#/
X0,,#,+
-#,+
)3
5PTO-(Z
3#,+
,ESSTHANACCURACY
ON-#,+AND3#,+
-36
100/108
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Application block diagrams
Table 63. PLL configurations
Crystal
value in
PREDIV2 PLL2MUL
MHz
(XT1)
Application
PLLSRC
PREDIV1
PLLMUL
USB
I2Sn MCO (main
prescaler
clock
PLL3MUL clock
(PLLVCO
output)
input
output)
Ethernet only
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
NA
PLL3ON
x10
NA
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
/3
PLL3ON
x10
NA
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ basic audio
25
/5
PLL2ON
x8
PLL2
/5
PLLON x9
/3
PLL3ON
x10
PLL
XT1 (MII)
PLL3 (RMII)
Ethernet + OTG
+ Audio class 14.7456
I2S(1)
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
/3
PLL3ON
x20
PLL3
VCO
Out
NA
ETH PHY
must use its
own crystal
OTG only
8
NA
PLL2OFF
XT1
/1
PLLON x9
/3
PLL3OFF
NA
NA
OTG + basic
audio
8
NA
PLL2OFF
XT1
/1
PLLON x9
/3
PLL3OFF
PLL
NA
OTG + Audio
class I2S(1)
14.7456
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
/3
PLL3ON
x20
PLL3
VCO
Out
NA
Audio class I2S
14.7456
only(1)
/4
PLL2ON
x12
PLL2
/4
PLLON
x6.5
NA
PLL3ON
x20
PLL3
VCO
out
NA
1. SYSCLK is set to be at 72 MHz except in this case where SYSCLK is at 71.88 MHz.
Table 64 give the IDD run mode values that correspond to the conditions specified in
Table 63.
DocID15274 Rev 10
101/108
107
Application block diagrams
STM32F105xx, STM32F107xx
Table 64. Applicative current consumption in Run mode, code with data
processing running from Flash
Symbol
IDD
parameter
Conditions(1)
Max(2)
85 °C
105 °C
External clock, all peripherals enabled
except ethernet,
HSE = 8 MHz, fHCLK = 72 MHz, no
MCO
57
63
64
External clock, all peripherals enabled
except ethernet,
HSE = 14.74 MHz, fHCLK = 72 MHz, no
MCO
60.5
67
68
External clock, all peripherals enabled
except OTG,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 25 MHz
53
60.7
61
60.5
65.5
66
External clock, all peripherals enabled,
HSE = 25 MHz, fHCLK = 72 MHz, MCO
= 50 MHz
64
69.7
70
External clock, all peripherals enabled,
HSE = 50 MHz(3), fHCLK = 72 MHz, no
MCO
62.5
67.5
68
External clock, only OTG enabled,
HSE = 8 MHz, fHCLK = 48 MHz, no
MCO
26.7
None
None
External clock, only ethernet enabled,
HSE = 25 MHz, fHCLK = 25 MHz, MCO
= 25 MHz
14.3
None
None
External clock, all peripherals enabled,
Supply current HSE = 25 MHz, f
HCLK = 72 MHz, MCO
in run mode
= 25 MHz
1. VDD = 3.3 V.
2. Based on characterization, not tested in production.
3. External oscillator.
102/108
Typ(2)
DocID15274 Rev 10
Unit
mA
STM32F105xx, STM32F107xx
8
Revision history
Revision history
Table 65. Document revision history
Date
Revision
18-Dec-2008
1
Initial release.
2
I/O information clarified on page 1. Figure 4: STM32F105xxx and
STM32F107xxx connectivity line BGA100 ballout top view corrected.
Section 2.3.8: Boot modes updated.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default
column to Remap column, plus small additional changes in Table 5:
Pin definitions.
Consumption values modified in Section 5.3.5: Supply current
characteristics.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15:
Maximum current consumption in Sleep mode, code running from
Flash or RAM.
Table 20: High-speed external user clock characteristics and
Table 21: Low-speed external user clock characteristics modified.
Table 27: PLL characteristics modified and Table 28: PLL2 and PLL3
characteristics added.
20-Feb-2009
Changes
DocID15274 Rev 10
103/108
107
Revision history
STM32F105xx, STM32F107xx
Table 65. Document revision history (continued)
Date
19-Jun-2009
104/108
Revision
Changes
3
Section 2.3.8: Boot modes and Section 2.3.20: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support updated.
Section 2.3.24: Remap capability added.
Figure 1: STM32F105xx and STM32F107xx connectivity line block
diagram and Figure 5: Memory map updated.
In Table 5: Pin definitions:
– I2S3_WS, I2S3_CK and I2S3_SD default alternate functions
added
– small changes in signal names
– Note 6 modified
– ETH_MII_PPS_OUT and ETH_RMII_PPS_OUT replaced by
ETH_PPS_OUT
– ETH_MII_MDIO and ETH_RMII_MDIO replaced by ETH_MDIO
– ETH_MII_MDC and ETH_RMII_MDC replaced by ETH_MDC
Figures: Typical current consumption in Run mode versus frequency
(at 3.6 V) - code with data processing running from RAM, peripherals
enabled and Typical current consumption in Run mode versus
frequency (at 3.6 V) - code with data processing running from RAM,
peripherals disabled removed.
Table 13: Maximum current consumption in Run mode, code with
data processing running from Flash, Table 14: Maximum current
consumption in Run mode, code with data processing running from
RAM and Table 15: Maximum current consumption in Sleep mode,
code running from Flash or RAM are to be determined.
Figure 12 and Figure 13 show typical curves. PLL1 renamed to PLL.
IDD supply current in Stop mode modified in Table 16: Typical and
maximum current consumptions in Stop and Standby modes.
Figure 11: Typical current consumption in Stop mode with regulator
in Run mode versus temperature at different VDD values, Figure 13:
Typical current consumption in Standby mode versus temperature at
different VDD values and Figure 13: Typical current consumption in
Standby mode versus temperature at different VDD values updated.
Table 17: Typical current consumption in Run mode, code with data
processing running from Flash, Table 18: Typical current
consumption in Sleep mode, code running from Flash or RAM and
Table 19: Peripheral current consumption updated.
fHSE_ext modified in Table 20: High-speed external user clock
characteristics.
Min PLL input clock (fPLL_IN), fPLL_OUT min and fPLL_VCO min
modified in Table 27: PLL characteristics.
ACCHSI max values modified in Table 24: HSI oscillator
characteristics. Table 31: EMS characteristics and Table 32: EMI
characteristics updated. Table 43: SPI characteristics updated.
Modified: Figure 28: I2S slave timing diagram (Philips protocol)(1),
Figure 29: I2S master timing diagram (Philips protocol)(1) and
Figure 31: Ethernet SMI timing diagram.
BGA100 package removed.
Section 6.4: Thermal characteristics added. Small text changes.
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Revision history
Table 65. Document revision history (continued)
Date
14-Sep-2009
Revision
Changes
4
Document status promoted from Preliminary data to full datasheet.
Number of DACs corrected in Table 3: STM32F105xx and
STM32F107xx family versus STM32F103xx family.
Note 5 added in Table 5: Pin definitions.
VRERINT and TCoeff added to Table 12: Embedded internal reference
voltage.
Values added to Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash, Table 14:
Maximum current consumption in Run mode, code with data
processing running from RAM and Table 15: Maximum current
consumption in Sleep mode, code running from Flash or RAM.
Typical IDD_VBAT value added in Table 16: Typical and maximum
current consumptions in Stop and Standby modes.
Figure 10: Typical current consumption on VBAT with RTC on vs.
temperature at different VBAT values added.
Values modified in Table 17: Typical current consumption in Run
mode, code with data processing running from Flash and Table 18:
Typical current consumption in Sleep mode, code running from Flash
or RAM.
fHSE_ext min modified in Table 20: High-speed external user clock
characteristics.
CL1 and CL2 replaced by C in Table 22: HSE 3-25 MHz oscillator
characteristics and Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Note 1
modified below Figure 16: Typical application with an 8 MHz crystal.
Conditions removed from Table 26: Low-power mode wakeup
timings.
Standards modified in Section 5.3.10: EMC characteristics on
page 54, conditions modified in Table 31: EMS characteristics.
Jitter maximum values added to Table 27: PLL characteristics and
Table 28: PLL2 and PLL3 characteristics.
RPU and RPD modified in Table 36: I/O static characteristics.
Condition added for VNF(NRST) parameter in Table 39: NRST pin
characteristics. Note removed and RPD, RPU values added in
Table 46: USB OTG FS DC electrical characteristics.
Table 48: Ethernet DC electrical characteristics added.
Parameter values added to Table 49: Dynamic characteristics:
Ethernet MAC signals for SMI, Table 50: Dynamic characteristics:
Ethernet MAC signals for RMII and Table 51: Dynamic
characteristics: Ethernet MAC signals for MII.
CADC and RAIN parameters modified in Table 52: ADC
characteristics. RAIN max values modified in Table 53: RAIN max for
fADC = 14 MHz.
Table 56: DAC characteristics modified. Figure 38: 12-bit buffered
/non-buffered DAC added.
Table 64: Applicative current consumption in Run mode, code with
data processing running from Flash added.
Small text changes.
DocID15274 Rev 10
105/108
107
Revision history
STM32F105xx, STM32F107xx
Table 65. Document revision history (continued)
Date
11-May-2010
01-Aug-2011
06-Mar-2014
106/108
Revision
Changes
5
Added BGA package.
Table 5: Pin definitions:
ETH_RMII_RXD0 and ETH_RMII_RXD1 added in remap column for
PD9 and PD10, respectively.
Note added to ETH_MII_RX_DV, ETH_MII_RXD0, ETH_MII_RXD1,
ETH_MII_RXD2 and ETH_MII_RXD3
Updated Table 36: I/O static characteristics on page 57
Added Figure 18: Standard I/O input characteristics - CMOS port
to Figure 21: 5 V tolerant I/O input characteristics - TTL port
Updated Table 43: SPI characteristics on page 66.
Updated Table 44: I2S characteristics on page 69.
Updated Table 48: Ethernet DC electrical characteristics on page 72.
Updated Table 49: Dynamic characteristics: Ethernet MAC signals
for SMI on page 72.
Updated Table 50: Dynamic characteristics: Ethernet MAC signals
for RMII on page 73
Updated Figure 59: USB O44TG FS + Ethernet solution on
page 100.
Updated Figure 60: USB OTG FS + I2S (Audio) solution on
page 100
6
Changed SRAM size to 64 KB on all parts.
Updated PD0 and PD1 description in Table 5: Pin definitions on
page 27
Updated footnotes below Table 6: Voltage characteristics on page 36
and Table 7: Current characteristics on page 36
Updated tw min in Table 20: High-speed external user clock
characteristics on page 47
Updated startup time in Table 23: LSE oscillator characteristics (fLSE
= 32.768 kHz) on page 50
Added Section 5.3.12: I/O current injection characteristics on
page 56
Updated Table 36: I/O static characteristics on page 57
Add Interna code V to Table 62: Ordering information scheme on
page 94
7
Added a “Packing” entry to Table 62: Ordering information scheme
including “Blank = tray” and “TR = Tape and reel”.
Referenced 4 Figures: Figure 41, Figure 49, Figure 59 and
Figure 60.
Updated the “Package” line with “BGA100” in Table 2:
STM32F105xx and STM32F107xx features and peripheral counts.
DocID15274 Rev 10
STM32F105xx, STM32F107xx
Revision history
Table 65. Document revision history (continued)
Date
06-Mar-2015
3-Sept-2015
22-Mar-2017
Revision
Changes
8
Updated Table 40: LFBGA100 – 100-ball low profile fine pitch ball
grid array, 10 x 10 mm, 0.8 mm pitch, package mechanical data,
Table 59: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat
package mechanical data and Table 60: LQFP64 – 10 x 10 mm 64
pin low-profile quad flat package mechanical data
Updated Figure 14: High-speed external clock source AC timing
diagram; Figure 39: LFBGA100 - 10 x 10 mm low profile fine pitch
ball grid array package outline, Figure 43: LQFP100 – 14 x 14 mm
100 pin low-profile quad flat package outline, Figure 44: LQFP100 100-pin, 14 x 14 mm low-profile quad flat recommended footprint,
Figure 46: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat
package outline and Figure 47: LQFP64 - 64-pin, 10 x 10 mm lowprofile quad flat recommended footprint
Added Figure 45: LQFP100 marking example (package top view),
Figure 48: LQFP64 marking example (package top view)
9
Updated:
– Table 19: Peripheral current consumption
– Figure 44: LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
– Table 58: LFBGA100 recommended PCB design rules (0.8 mm
pitch BGA)
10
Updated:
– Table 5: Pin definitions
– Section 6: Package information
Added:
– Figure 42: LFBGA100 marking example (package top view)
DocID15274 Rev 10
107/108
107
STM32F105xx, STM32F107xx
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved
108/108
DocID15274 Rev 10