0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A5972D

A5972D

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8

  • 描述:

    IC REG BUCK ADJUSTABLE 1.5A 8SO

  • 数据手册
  • 价格&库存
A5972D 数据手册
A5972D Up to 1.5 A step-down switching regulator for automotive applications Datasheet - production data Applications  Dedicated to automotive applications Description SO-8 Features  Qualified following the AEC-Q100 requirements (see PPAP for more details)  1.5 A DC output current  Operating input voltage from 4 V to 36 V  3.3 V / (± 2%) reference voltage  Output voltage adjustable from 1.235 V to VIN  Low dropout operation: 100% duty cycle The A5972D is a step-down monolithic power switching regulator with a minimum switch current limit of 1.8 A so it is able to deliver up to 1.5 A DC current to the load depending on the application conditions. The output voltage can be set from 1.235 V to VIN. The device uses an internal P-channel DMOS transistor (with a typical RDS(on) of 250 mΩ) as a switching element to minimize the size of the external components. An internal oscillator fixes the switching frequency at 250 kHz. Having a minimum input voltage of 4 V only it fits the automotive applications requiring the device operation even in cold crank conditions. A pulse-by-pulse current limit with the internal frequency modulation offers an effective constant current short-circuit protection.  250 kHz internally fixed frequency  Voltage feedforward  Zero load current operation  Internal current limiting  Inhibit for zero current consumption  Protection against feedback disconnection  Thermal shutdown Figure 1. Application schematic November 2015 This is information on a product in full production. DocID13956 Rev 7 1/37 www.st.com Contents A5972D Contents 1 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Datasheet parameters over the temperature range . . . . . . . . . . . . . . . . 7 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 7 8 2/37 5.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.3 Current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.5 PWM comparator and power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Additional features and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1 Feedback disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 Output overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.3 Zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.1 Error amplifier and compensation network . . . . . . . . . . . . . . . . . . . . . . . . 14 7.2 LC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7.3 PWM comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.1 Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.2 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DocID13956 Rev 7 A5972D Contents 8.3 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.4 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.5 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.6 Positive buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.7 Negative buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.8 Compensation network with MLCC at the output . . . . . . . . . . . . . . . . . . . 30 9 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 11 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID13956 Rev 7 3/37 37 Pin settings A5972D 1 Pin settings 1.1 Pin connection Figure 2. Pin connection (top view) 1.2 Pin description Table 1. Pin description 4/37 No. Pin Description 1 OUT Regulator output. 2, 3, 6, 7 GND Ground. 4 COMP 5 FB 8 VCC E/A output for frequency compensation. Feedback input. Connecting directly to this pin results in an output voltage of 1.23 V. An external resistive divider is required for higher output voltages. Unregulated DC input voltage. DocID13956 Rev 7 A5972D Electrical data 2 Electrical data 2.1 Maximum ratings Table 2. Absolute maximum ratings Symbol Value Unit 40 V V V V8 Input voltage V1 OUT pin DC voltage OUT pin peak voltage at t = 0.1 s -1 to 40 -5 to 40 I1 Maximum output current Int. limit. V4, V5 Analog pins PTOT Power dissipation at TA 70 °C TJ TSTG 2.2 Parameter 4 V 1.2 W Operating junction temperature range -40 to 150 °C Storage temperature range -55 to 150 °C Value Unit 65(1) °C/W Thermal data Table 3. Thermal data Symbol RthJA Parameter Maximum thermal resistance junction ambient 1. Package mounted on evaluation board. DocID13956 Rev 7 5/37 37 Electrical characteristics 3 A5972D Electrical characteristics TJ = -40 °C to 125 °C, VCC = 12 V, unless otherwise specified. Table 4. Electrical characteristics Symbol VCC RDS(on) IL fSW Parameter Test condition Operating input voltage range Min. Max. Unit 36 V 0.250 0.5  1.8 2.5 3 2 2.5 3 212 250 280 kHz 100 % 1.272 V 4 MOSFET on resistance Maximum limiting current(1) Typ. VCC = 5 V VCC = 5 V, TJ = 25 °C Switching frequency Duty cycle 0 A Dynamic characteristics (see test circuit) V5 Voltage feedback 4.4 V < VCC < 36 V  Efficiency V0 = 5 V, VCC = 12 V 1.198 1.235 90 % DC characteristics Iqop Iq Total operating quiescent current Quiescent current 3 Duty cycle = 0; VFB= 1.5 V 5 mA 2.5 mA Error amplifier VOH High level output voltage VFB = 1 V VOL Low level output voltage VFB = 1.5 V Source output current VCOMP = 1.9 V; VFB = 1 V Io sink Sink output current VCOMP = 1.9 V; VFB = 1.5 V Ib Source bias current DC open loop gain gm Transconductance 0.4 RL = 300 A 1 1.5 mA 50 ICOMP = -0.1 mA to 0.1 mA; VCOMP = 1.9 V DocID13956 Rev 7 V 190 1. With TJ = 85 °C, Ilim_min = 2 A, assured by design, characterization and statistical correlation. 6/37 V 2.5 8 Io source 3.5 4 A 65 dB 2.3 mS A5972D 4 Datasheet parameters over the temperature range Datasheet parameters over the temperature range The 100% of the population in the production flow is tested at three different ambient temperatures (-40 C, +25 C, +125 C) to guarantee the datasheet parameters inside the junction temperature range (-40 C, +125 C). The device operation is so guaranteed when the junction temperature is inside the (-40 C, +150 C) temperature range. The designer can estimate the silicon temperature increase respect to the ambient temperature evaluating the internal power losses generated during the device operation (please refer to the Section 2.2). However the embedded thermal protection disables the switching activity to protect the device in case the junction temperature reaches the TSHTDWN (+150 C ± 10 C) temperature. All the datasheet parameters can be guaranteed to a maximum junction temperature of +125 C to avoid triggering the thermal shutdown protection during the testing phase because of self-heating. DocID13956 Rev 7 7/37 37 Functional description 5 A5972D Functional description The main internal blocks are shown in the device block diagram in Figure 3. They are:  A voltage monitor circuit which checks the input and the internal voltages.  A fully integrated sawtooth oscillator with a frequency of 250 kHz 15%, including also the voltage feedforward function and an input/output synchronization pin.  Two embedded current limitation circuits which control the current that flows through the power switch. The pulse-by-pulse current limit forces the power switch OFF cycleby-cycle if the current reaches an internal threshold, while the frequency shifter reduces the switching frequency in order to significantly reduce the duty cycle.  A transconductance error amplifier.  A pulse width modulator (PWM) comparator and the relative logic circuitry necessary to drive the internal power.  A high-side driver for the internal P-MOS switch.  A circuit to implement the thermal protection function. Figure 3. Block diagram 5.1 Power supply The internal regulator circuit (shown in Figure 4) consists of a start-up circuit, an internal voltage pre-regulator, the bandgap voltage reference and the bias block that provides current to all the blocks. The starter supplies the start-up currents to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground). The pre-regulator block supplies the bandgap cell with a pre-regulated voltage VREG that has a very low supply voltage noise sensitivity. 8/37 DocID13956 Rev 7 A5972D 5.2 Functional description Voltages monitor An internal block continuously senses the Vcc, Vref and Vbg. If the voltages go higher than their thresholds, the regulator begins operating. There is also a hysteresis on the VCC (UVLO). Figure 4. Internal circuit 5.3 Current protection The A5972D features two types of current limit protection: pulse-by-pulse and frequency foldback. The schematic of the current limitation circuitry for the pulse-by-pulse protection is shown in Figure 5. The output power PDMOS transistor is split into two parallel PDMOS transistors. The smallest one includes a resistor in series, RSENSE. The current is sensed through RSENSE and if it reaches the threshold, the mirror becomes unbalanced and the PDMOS is switched off until the next falling edge of the internal clock pulse. Due to this reduction of the ON time, the output voltage decreases. Since the minimum switch ON time necessary to sense the current in order to avoid a false overcurrent signal is too short to obtain a sufficiently low duty cycle at 250 kHz (see Section 8.4 on page 23), the output current in strong overcurrent or short-circuit conditions could be not properly limited. For this reason the switching frequency is also reduced, thus keeping the inductor current under its maximum threshold. The frequency shifter (Figure 5) functions based on the feedback voltage. As the feedback voltage decreases (due to the reduced duty cycle), the switching frequency decreases also. DocID13956 Rev 7 9/37 37 Functional description A5972D Figure 5. Current limitation circuitry 5.4 Error amplifier The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.235 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage. The output (COMP) is connected to the external compensation network. The uncompensated error amplifier has the following characteristics: Table 5. Uncompensated error amplifier characteristics Description Values Transconductance 2300 µS Low frequency gain 65 dB Minimum sink/source voltage 1500 µA/300 µA Output voltage swing 0.4 V/3.65 V Input bias current 2.5 µA The error amplifier output is compared to the oscillator sawtooth to perform PWM control. 5.5 PWM comparator and power stage This block compares the oscillator sawtooth and the error amplifier output signals to generate the PWM signal for the driving stage. The power stage is a highly critical block, as it functions to guarantee a correct turn ON and turn OFF of the PDMOS. The turn ON of the power element, or more accurately, the rise time of the current at turn ON, is a very critical parameter. At a first approach, it appears that the faster the rise time, the lower the turn ON losses. However, there is a limit introduced by the recovery time of the recirculation diode. In fact, when the current of the power element is equal to the inductor current, the diode turns OFF and the drain of the power is able to go high. But during its recovery time, the 10/37 DocID13956 Rev 7 A5972D Functional description diode can be considered a high value capacitor and this produces a very high peak current, responsible for numerous problems:  Spikes on the device supply voltage that cause oscillations (and thus noise) due to the board parasites.  Turn ON overcurrent leads to a decrease in the efficiency and system reliability.  Major EMI problems.  Shorter freewheeling diode life. The fall time of the current during turn OFF is also critical, as it produces voltage spikes (due to the parasites elements of the board) that increase the voltage drop across the PDMOS. In order to minimize these problems, a new driving circuit topology has been used and the block diagram is shown in Figure 6. The basic idea is to change the current levels used to turn the power switch ON and OFF, based on the PDMOS and the gate clamp status. This circuitry allows the power switch to be turned OFF and ON quickly and addresses the freewheeling diode recovery time problem. The gate clamp is necessary to ensure that VGS of the internal switch does not go higher than VGSmax. The ON/OFF control block protects against any cross conduction between the supply line and ground. Figure 6. Driving circuitry 5.6 Thermal shutdown The shutdown block generates a signal that turns OFF the power stage if the temperature of the chip goes higher than a fixed internal threshold (150 ± 10 °C). The sensing element of the chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A hysteresis of approximately 20 °C keeps the device from turning ON and OFF continuously. DocID13956 Rev 7 11/37 37 Additional features and protection A5972D 6 Additional features and protection 6.1 Feedback disconnection If the feedback is disconnected, the duty cycle increases towards the maximum allowed value, bringing the output voltage close to the input supply. This condition could destroy the load. To avoid this hazardous condition, the device is turned OFF if the feedback pin is left floating. 6.2 Output overvoltage protection Overvoltage protection, or OVP, is achieved by using an internal comparator connected to the feedback, which turns OFF the power stage when the OVP threshold is reached. This threshold is typically 30% higher than the feedback voltage. When a voltage divider is required to adjust the output voltage (Figure 13), the OVP intervention will be set at: Equation 1 R1 + R2 V OVP = 1.3  --------------------  V FB R2 Where R1 is the resistor connected between the output voltage and the feedback pin, and R2 is between the feedback pin and ground. 6.3 Zero load Due to the fact that the internal power is a PDMOS, no boostrap capacitor is required and so the device works properly even with no load at the output. In this case it works in burst mode, with a random burst repetition rate. 12/37 DocID13956 Rev 7 A5972D 7 Closing the loop Closing the loop Figure 7. Block diagram of the loop DocID13956 Rev 7 13/37 37 Closing the loop 7.1 A5972D Error amplifier and compensation network The output L-C filter of a step-down converter contributes with 180 degrees phase shift in the control loop. For this reason a compensation network between the COMP pin and GROUND is added. The simplest compensation network together with the equivalent circuit of the error amplifier are shown in Figure 8. RC and CC introduce a pole and a zero in the open loop gain. CP does not significantly affect system stability but it is useful to reduce the noise of the COMP pin. The transfer function of the error amplifier and its compensation network is: Equation 2 A V0   1 + s  R c  C c  A 0  s  = --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 s  R0   C0 + Cp   Rc  Cc + s   R0  Cc + R0   C0 + Cp  + Rc  Cc  + 1 Where Avo = Gm · Ro Figure 8. Error amplifier equivalent circuit and compensation network The poles of this transfer function are (if Cc >> C0 + CP): Equation 3 1 F P1 = ------------------------------------2    R0  Cc Equation 4 1 F P2 = -------------------------------------------------------2    Rc   C0 + Cp  14/37 DocID13956 Rev 7 A5972D Closing the loop whereas the zero is defined as: Equation 5 1 F Z1 = ------------------------------------2    Rc  Cc FP1 is the low frequency which sets the bandwidth, while the zero FZ1 is usually put near to the frequency of the double pole of the L-C filter (see Section 7.2: LC filter). FP2 is usually at a very high frequency. 7.2 LC filter The transfer function of the L-C filter is given by: Equation 6 R LOAD   1 + ESR  C OUT  s  A LC  s  = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 s  L  C OUT   ESR + R LOAD  + s   ESR  C OUT  R LOAD + L  + R LOAD where RLOAD is defined as the ratio between VOUT and IOUT. If RLOAD >> ESR, the previous expression of ALC can be simplified and becomes: Equation 7 1 + ESR  C OUT  s A LC  s  = --------------------------------------------------------------------------------------------2 L  C OUT  s + ESR  C OUT  s + 1 The zero of this transfer function is given by: Equation 8 1 F O = ---------------------------------------------------2    ESR  C OUT F0 is the zero introduced by the ESR of the output capacitor and it is very important to increase the phase margin of the loop. The poles of the transfer function can be calculated through the following expression: Equation 9 2 – ESR  C OUT   ESR  C OUT  – 4  L  C OUT F PLC1 2 = -----------------------------------------------------------------------------------------------------------------------------------------2  L  C OUT In the denominator of ALC the typical second order system equation can be recognized: Equation 10 2 s + 2    n  s +  2 n If the damping coefficient  is very close to zero, the roots of the equation become a double root whose value is n. DocID13956 Rev 7 15/37 37 Closing the loop A5972D Similarly for ALC the poles can usually be defined as a double pole whose value is: Equation 11 1 F PLC = ---------------------------------------------2    L  C OUT 7.3 PWM comparator The PWM gain is given by the following formula: Equation 12 V cc G PWM  s  = ------------------------------------------------------------ V OSCMAX – V OSCMIN  where VOSCMAX is the maximum value of a sawtooth waveform and VOSCMIN is the minimum value. A voltage feedforward is implemented to ensure a constant GPWM. This is obtained by generating a sawtooth waveform directly proportional to the input voltage VCC. Equation 13 V OSCMAX – V OSCMIN = K  V CC Where K is equal to 0.076. Therefore the PWM gain is also equal to: Equation 14 1 G PWM  s  = ---- = const K This means that even if the input voltage changes, the error amplifier does not change its value to keep the loop in regulation, thus ensuring a better line regulation and line transient response. In summary, the open loop gain can be expressed as: Equation 15 R2 G  s  = G PWM  s   --------------------  A O  s   A LC  s  R1 + R2 Example 1 Considering RC = 4.7 k, CC = 22 nF and CP = 220 pF, the poles and zeroes of A0 are: FP1 = 9 Hz FP2 = 150 kHz FZ1 = 1.5 kHz If L = 33 µH, COUT = 100 µF and ESR = 80 m, the poles and zeroes of ALC become: FPLC = 3.3 kHz FZESR = 19.89 kHz Finally R1 = 5.6 k and R2 = 3.3 k. 16/37 DocID13956 Rev 7 A5972D Closing the loop The gain and phase bode diagrams are plotted respectively in Figure 9 and Figure 10. Figure 9. Module plot Figure 10. Phase plot The cut-off frequency and the phase margin are: Equation 16 F C = 33KHz phase margin = 46° DocID13956 Rev 7 17/37 37 Application information A5972D 8 Application information 8.1 Component selection  Input capacitor The input capacitor must be able to support the maximum input operating voltage and the maximum RMS input current. Since step-down converters draw current from the input in pulses, the input current is squared and the height of each pulse is equal to the output current. The input capacitor has to absorb all this switching current, which can be up to the load current divided by two (worst case, with duty cycle of 50%). For this reason, the quality of these capacitors has to be very high to minimize the power dissipation generated by the internal ESR, thereby improving system reliability and efficiency. The critical parameter is usually the RMS current rating, which must be higher than the RMS input current. The maximum RMS input current (flowing through the input capacitor) is: Equation 17 2 2 2D D I RMS = I O  D – ---------------- + ------2  Where  is the expected system efficiency, D is the duty cycle and IO is the output DC current. This function reaches its maximum value at D = 0.5 and the equivalent RMS current is equal to IO divided by 2 (considering  = 1). The maximum and minimum duty cycles are: Equation 18 V OUT + V F D MAX = ------------------------------------V INMIN – V SW and Equation 19 V OUT + V F D MIN = -------------------------------------V INMAX – V SW Where VF is the freewheeling diode forward voltage and VSW the voltage drop across the internal PDMOS. Considering the range DMIN to DMAX, it is possible to determine the max. IRMS going through the input capacitor. 18/37 DocID13956 Rev 7 A5972D Application information Capacitors that can be considered are: Electrolytic capacitors: These are widely used due to their low price and their availability in a wide range of RMS current ratings. The only drawback is that, considering ripple current rating requirements, they are physically larger than other capacitors. Ceramic capacitors: If available for the required value and voltage rating, these capacitors usually have a higher RMS current rating for a given physical dimension (due to very low ESR). The drawback is the considerably high cost. Tantalum capacitors: Very good, small tantalum capacitors with very low ESR are becoming more available. However, they can occasionally burn if subjected to very high current during charge. Therefore, it is better to avoid this type of capacitor for the input filter of the device. They can, however, be subjected to high surge current when connected to the power supply. Table 6. List of ceramic capacitors for the A5972D Manufacturer Series Capacitor value (µF) Rated voltage (V) TAIYO YUDEN UMK325BJ106MM-T 10 50 MURATA GRM42-2 X7R 475K 50 4.7 50 High dv/dt voltage spikes on the input side can be critical for DC/DC converters. A good power layout and input voltage filtering help to minimize this issue. In addition to the above considerations, a 1 µF/50 V ceramic capacitor as close as possible to the VCC and GND pins is always suggested to adequately filter VCC spikes.  Output capacitor The output capacitor is very important to meet the output voltage ripple requirement. Using a small inductor value is useful to reduce the size of the choke but it increases the current ripple. So, to reduce the output voltage ripple, a low ESR capacitor is required. Nevertheless, the ESR of the output capacitor introduces a zero in the open loop gain, which helps to increase the phase margin of the system. If the zero goes to a very high frequency, its effect is negligible. For this reason, ceramic capacitors and very low ESR capacitors in general should be avoided. Tantalum and electrolytic capacitors are usually a good choice for this purpose. A list of some tantalum capacitor manufacturers is provided in Table 7. Table 7. Output capacitor selection Manufacturer Series Cap value (µF) Rated voltage (V) ESR (m) Sanyo POSCAP(1) TAE 100 to 470 4 to 16 25 to 35 THB/C/E 100 to 470 4 to 16 25 to 55 AVX TPS 100 to 470 4 to 35 50 to 200 KEMET T494/5 100 to 470 4 to 20 30 to 200 Sprague 595D 220 to 390 4 to 20 160 to 650 1. POSCAP capacitors have some characteristics which are very similar to tantalum. DocID13956 Rev 7 19/37 37 Application information  A5972D Inductor The inductor value is very important as it fixes the ripple current flowing through the output capacitor. The ripple current is usually fixed at 20 - 40% of Iomax, which is 0.3 - 0.6 A with IOmax = 1.5 A. The approximate inductor value is obtained using the following formula: Equation 20  V IN – V OUT  L = ----------------------------------  T ON I where TON is the ON time of the internal switch, given by D · T. For example, with VOUT = 3.3 V, VIN = 12 V and IO = 0.45 A, the inductor value is about 22 µH. The peak current through the inductor is given by: Equation 21 I I PK = I O + ----2 and it can be observed that if the inductor value decreases, the peak current (which must be lower than the current limit of the device) increases. So, when the peak current is fixed, a higher inductor value allows a higher value for the output current. In Table 8 some inductor manufacturers are listed. Table 8. Inductor selection 8.2 Manufacturer Series Inductor value (µH) Saturation current (A) Coilcraft DO3316T 15 to 33 2.0 to 3.0 Coiltronics UP1B 22 to 33 2.0 to 2.4 BI HM76-3 15 to 33 2.5 to 3.3 Epcos B82476 15 to 33 2 to 3 Wurth Elektronik 74456115 15 to 33 2.5 to 3 Layout considerations The layout of switching DC-DC converters is very important to minimize noise and interference. Power-generating portions of the layout are the main cause of noise and so high switching current loop areas should be kept as small as possible and lead lengths as short as possible. High impedance paths (in particular the feedback connections) are susceptible to interference, so they should be as far as possible from the high current paths. A layout example is provided in Figure 11. The input and output loops are minimized to avoid radiation and high frequency resonance problems. The feedback pin connections to the external divider are very close to the device to avoid pickup noise. 20/37 DocID13956 Rev 7 A5972D Application information Figure 11. Layout example A5972D 8.3 Thermal considerations The dissipated power of the device is tied to three different sources:  Conduction losses due to the not insignificant RDSON, which are equal to: Equation 22 2 P ON = R DSON   I OUT   D Where D is the duty cycle of the application. Note that the duty cycle is theoretically given by the ratio between VOUT and VIN, but in practice it is substantially higher than this value to compensate for the losses in the overall application. For this reason, the switching losses related to the RDSON increase compared to an ideal case.  Switching losses due to turning ON and OFF. These are derived using the following equation: Equation 23  T ON + T OFF  P SW = V IN  I OUT  ------------------------------------  F SW = V IN  I OUT  T SW  F SW 2 Where TRISE and TFALL represent the switching times of the power element that cause the switching losses when driving an inductive load (see Figure 12). TSW is the equivalent switching time. DocID13956 Rev 7 21/37 37 Application information A5972D Figure 12. Switching losses  Quiescent current losses. Equation 24 P Q = V IN  I Q Where IQ is the quiescent current. Example 2  VIN = 12 V  VOUT = 3.3 V  IOUT = 1.5 A RDS(on) has a typical value of 0.25 at 25 °C and increases up to a maximum value of 0.5. at 150 °C. We can consider a value of 0.4 . TSW is approximately 70 ns. IQ has a typical value of 2.5 mA at VIN = 12 V. The overall losses are: Equation 25 2 P TOT = R DSON   I OUT   D + V IN  I OUT  T SW  F SW + V IN  I Q = 2 = 0.4  1.5  0.3 + 12  1.5  70  10 –9 3  250  10 + 12  2.5  10 –3  0.615W The junction temperature of device will be: Equation 26 T J = T A + Rth J – A  P TOT Where TA is the ambient temperature and RthJ-A is the thermal resistance junction to ambient. 22/37 DocID13956 Rev 7 A5972D Application information Considering that the device is mounted on the board with a good ground plane, that it has a thermal resistance junction to ambient (RthJ-A) of about 65 °C/W, and an ambient temperature of about 70 °C: Equation 27 T J = 70 + 0.615  65  110C 8.4 Short-circuit protection In overcurrent protection mode, when the peak current reaches the current limit, the device reduces the TON down to its minimum value (approximately 250 nsec) and the switching frequency to approximately one third of its nominal value even when synchronized to an external signal (see Section 5.3: Current protection on page 9). In these conditions, the duty cycle is strongly reduced and, in most applications, this is enough to limit the current to ILIM. In any event, in case of heavy short-circuit at the output (VO = 0 V) and depending on the application conditions (VCC value and parasitic effect of external components) the current peak could reach values higher than ILIM. This can be understood considering the inductor current ripple during the ON and OFF phases:  ON phase Equation 28 V IN – V out –  DCR L + R DSON   I I L TON = ------------------------------------------------------------------------------------  T ON  L  OFF phase Equation 29 –  V D + V out + DCR L  I  I L TOFF = ---------------------------------------------------------------  T OFF  L where VD is the voltage drop across the diode, DCRL is the series resistance of the inductor. In short-circuit conditions VOUT is negligible so during TOFF the voltage across the inductor is very small as equal to the voltage drop across parasitic components (typically the DCR of the inductor and the VFW of the freewheeling diode) while during TON the voltage applied the inductor is instead maximized as approximately equal to VIN. So Equation 28 and Equation 29 in overcurrent conditions can be simplified to: Equation 30 V IN –  DCR L + R DSON   I V IN I L TON = ----------------------------------------------------------------  T ON MIN   ---------  250ns  L L considering TON that has been already reduced to its minimum. Equation 31 –  V D + V out + DCR L  I  –  V D + V out + DCR L  I  I L TOFF = ---------------------------------------------------------------  3  T SW   ---------------------------------------------------------------  12s  L L considering that fSW has been already reduced to one third of the nominal. DocID13956 Rev 7 23/37 37 Application information A5972D In case a short-circuit at the output is applied and VIN = 12 V the inductor current is controlled in most of the applications (see Figure 13). When the application must sustain the short-circuit condition for an extended period, the external components (mainly the inductor and diode) must be selected based on this value. In case the VIN is very high, it could occur that the ripple current during TOFF (Equation 31) does not compensate the current increase during TON (Equation 30). Figure 15 shows an example of a power-up phase with VIN = VIN MAX = 36 V whereIL TON > IL TOFF, so the current escalates and the balance between Equation 30 and Equation 31 occurs at a current slightly higher than the current limit. This must be taken into account in particular to avoid the risk of an abrupt inductor saturation. Figure 13. Short-circuit current VIN = 12 V Figure 14. Short-circuit current VIN = 24 V 24/37 DocID13956 Rev 7 A5972D Application information Figure 15. Short-circuit current VIN = 36 V 8.5 Application circuit Figure 16 shows the evaluation board application circuit, where the input supply voltage, VCC, can range from 4 V to 36 V and the output voltage is adjustable from 1.235 V to 6.3 V due to the voltage rating of the output capacitor,. Figure 16. Evaluation board application circuit L1 33uH A5972D DocID13956 Rev 7 25/37 37 Application information A5972D Table 9. Component list 26/37 Reference Part number Description Manufacturer C1 GRM42-2 X7R 475K 50 4.7 µF, 50 V Murata C2 POSCAP 6TAE330ML 330 µF, 6.3 V Sanyo C3 C1206C470J5GAC 47 pF, 5%, 50 V KEMET C4 C1206C223K5RAC 22 nF, 10%, 50 V KEMET R1 5.6 k, 1%, 0.1 W 0603 Neohm R2 3.3 k, 1%, 0.1 W 0603 Neohm R3 22 k, 1%, 0.1 W 0603 Neohm D1 STPS3L40U 2 A, 40 V STMicroelectronics L1 DO3316T-333MLD 33 µH, 2.1 A Coilcraft DocID13956 Rev 7 A5972D Application information Figure 17. PCB layout (component side) Figure 18. PCB layout (bottom side) Figure 19. PCB layout (front side) DocID13956 Rev 7 27/37 37 Application information 8.6 A5972D Positive buck-boost regulator The device can be used to implement a step-up/down converter with a positive output voltage. The output voltage is given by: Equation 32 D V OUT = V IN  ------------1–D where the ideal duty cycle D for the buck boost converter is: Equation 33 V OUT D = -----------------------------V IN + V OUT However, due to power losses in the passive elements, the real duty cycle is always higher than this. The real value (that can be measured in the application) should be used in the following formulas. The peak current flowing in the embedded switch is: Equation 34 I LOAD I RIPPLE I LOAD V IN D I SW = --------------- + -------------------- = --------------- + -----------  --------1–D 2 1 – D 2  L f SW while its average current is equal to: Equation 35 I LOAD I SW = --------------1–D This is due to the fact that the current flowing through the internal power switch is delivered to the output only during the OFF phase. The switch peak current must be lower than the minimum current limit of the overcurrent protection (see Table 4 on page 6 for details) while the average current must be lower than the rated DC current of the device. As a consequence, the maximum output current is: Equation 36 I OUT MAX  I SW MAX   1 – D  where ISW MAX represents the rated current of the device. The current capability is reduced by the term (1 - D) and so, for example, with a duty cycle of 0.5, and considering an average current through the switch of 1.5 A, the maximum output current deliverable to the load is 0.75 A. 28/37 DocID13956 Rev 7 A5972D Application information Figure 20 shows the schematic circuit of this topology for a 12 V output voltage and 5 V input. Figure 20. Positive buck-boost regulator 8.7 Negative buck-boost regulator In Figure 21 the schematic circuit for a standard buck-boost topology is shown. The output voltage is: Equation 37 D V OUT = – V IN  ------------1–D where the ideal duty cycle D for the buck boost converter is: Equation 38 – V OUT D = -----------------------------V IN – V OUT The considerations given in Section 8.6 for the real duty cycle are still valid here. Also the Equation 34 till Equation 36 can be used to calculate the maximum output current. So, as an example, considering the conversion VIN = 12 V to VOUT = -5 V, ILOAD = 0.2 A: Equation 39 5 D = ---------------- = 0.706 5 + 12 Equation 40 I LOAD 0.2 I SW = --------------- = ------------------------ = 0.7A 1–D 1 – 0.706 An important thing to take into account is that the ground pin of the device is connected to the negative output voltage. Therefore, the device is subjected to a voltage equal to VIN - VO, which must be lower than 36 V (the maximum operating input voltage). DocID13956 Rev 7 29/37 37 Application information A5972D Figure 21. Negative buck-boost regulator 8.8 Compensation network with MLCC at the output MLCCs (multiple layer ceramic capacitor) with values in the range of 10 µF - 22 µF and rated voltages in the range of 10 V - 25 V are available today at relatively low cost from many manufacturers. These capacitors have very low ESR values (a few m) and thus are occasionally used for the output filter in order to reduce the voltage ripple and the overall size of the application. However, a very low ESR value affects the compensation of the loop (see Section 7 on page 13) and in order to keep the system stable, a more complicated compensation network may be required. However, due to the architecture of the internal error amplifier the bandwidth with this compensation is limited. That is why output capacitors with a not negligible ESR are suggested. The selection of the output capacitor have to guarantee that the zero introduced by this component is inside the designed system bandwidth and close to the frequency of the double pole introduced by the LC filter. A general rule for the selection of this compound for the system stability is provided in Equation 41. Equation 41 1 f Z ESR = ------------------------------------------------  bandwidth 2    ESR  C OUT f LC  f Z ESR  10  f LC 30/37 DocID13956 Rev 7 A5972D Application information Figure 22 shows an example of a compensation network stabilizing the system with ceramic capacitors at the output (the optimum component value depends on the application). Figure 22. MLCC compensation network example DocID13956 Rev 7 31/37 37 Typical characteristics 9 A5972D Typical characteristics Figure 23. Line regulation Figure 24. Load regulation Vo (V) 3.312 Vcc = 12V Vo = 3.3V 3.308 3.304 Tj = 25°C 3.3 3.296 3.292 3.288 3.284 Tj = 125°C 3.28 3.276 0 0.5 1 1.5 Io (A) Figure 25. Output voltage vs. junction temperature Figure 26. Switching frequency vs. junction temperature Figure 27. Quiescent current vs. junction temperature Figure 28. Shutdown current vs. junction temperature 32/37 DocID13956 Rev 7 A5972D Typical characteristics Figure 29. Junction temperature vs. output current - VIN = 5 V Figure 30. Junction temperature vs. output current - VIN = 12 V Figure 31. Efficiency vs output current VIN = 5 V Figure 32. Efficiency vs output current VIN = 12 V DocID13956 Rev 7 33/37 37 Package information 10 A5972D Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10.1 SO-8 package information Figure 33. SO-8 package outline 34/37 DocID13956 Rev 7 A5972D Package information Table 10. SO-8 package mechanical data Dimensions Symbol mm Min. Typ. inch Max. Min. Typ. Max. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D(1) 4.80 5.00 0.189 0.197 E 3.80 4.00 0.15 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 0° (min.), 8° (max.) 0.10 0.004 1. Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm (0.006 inch) in total (both sides). DocID13956 Rev 7 35/37 37 Order codes 11 A5972D Order codes Table 11. Ordering information Order code Package A5972D Tube SO-8 A5972D013TR 12 Packaging Tape and reel Revision history Table 12. Document revision history 36/37 Date Revision Changes 06-Aug-2007 1 Initial release 5-Nov-2007 2 Updated: Table 4 on page 6. 2-May-2008 3 Updated: Cover page, Table 4 on page 6. 21-Aug-2008 4 Updated: Coverpage and Table 4 on page 6. 02-Nov-2009 5 Updated coverpage, Table 4 on page 6 and added Figure 23 on page 32. 01-Apr-2014 6 Updated Section 8.1: Component selection on page 18 (updated units in “Capacitor value” - header of Table 6, added text below Table 6). Updated titles from Figure 29 to Figure 32 (added values of “VIN”). Updated Section 10: Package information on page 34 (reversed order of Figure 33 and Table 10, updated titles, minor modifications). Updated cross-references throughout document. Minor modifications throughout document. 04-Nov-2015 7 Added Section 11: Order codes on page 36. Minor modifications throughout document. DocID13956 Rev 7 A5972D IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID13956 Rev 7 37/37 37
A5972D 价格&库存

很抱歉,暂时无法提供与“A5972D”相匹配的价格&库存,您可以联系我们找货

免费人工找货