0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A6985F3V3

A6985F3V3

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP16

  • 描述:

    IC REG BUCK 3.3V 500MA 16HTSSOP

  • 数据手册
  • 价格&库存
A6985F3V3 数据手册
A6985F Automotive 38 V, 500 mA synchronous step-down switching regulator with 30 μA quiescent current Datasheet - production data Description HTSSOP16 (RTH = 40 °C/W) Features  AEC-Q100 qualified  0.5 A DC output current  4 V to 38 V operating input voltage  Low consumption mode or low noise mode  30 µA IQ at light-load (LCM VOUT = 3.3 V)  8 µA IQ-SHTDWN  Fixed output voltage (3.3 V and 5 V) or adjustable from 0.85 V to VIN  Adjustable fSW (250 kHz - 2 MHz)  Embedded output voltage supervisor  Synchronization  Adjustable soft-start time The A6985F automotive grade device is a stepdown monolithic switching regulator able to deliver up to 0.5 A DC. The output voltage adjustability ranges from 0.85 V to VIN. The 100% duty cycle capability and the wide input voltage range meet the cold crank and load dump specifications for automotive systems. The “Low Consumption Mode” (LCM) is designed for applications active during car parking, so it maximizes the efficiency at light-load with controlled output voltage ripple. The “Low Noise Mode” (LNM) makes the switching frequency constant and minimizes the output voltage ripple overload current range, meeting the low noise application specification like car audio. The output voltage supervisor manages the reset phase for any digital load (µC, FPGA). The RST open collector output can also implement output voltage sequencing during the power-up phase. The synchronous rectification, designed for high efficiency at medium - heavy load, and the high switching frequency capability make the size of the application compact. Pulse by pulse current sensing on both power elements implements an effective constant current protection.  Internal current limiting  Overvoltage protection  Output voltage sequencing  Peak current mode architecture  RDSON HS = 360 m, RDSON LS = 150 m  Thermal shutdown Applications  Designed for automotive systems  Battery powered applications  Car body applications (LCM)  Car audio and low noise applications (LNM) August 2020 This is information on a product in full production. DocID027738 Rev 7 1/83 www.st.com Contents A6985F Contents 1 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Datasheet parameters over the temperature range . . . . . . . . . . . . . . . 14 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 Soft-start and inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3.1 Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.2 Output voltage sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5 Output voltage line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.6 Output voltage load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.7 High-side switch resistance vs. input voltage . . . . . . . . . . . . . . . . . . . . . . 27 5.8 Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.9 5.10 5.8.1 Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.8.2 Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.8.3 Quiescent current in LCM with switchover . . . . . . . . . . . . . . . . . . . . . . . 34 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.9.1 LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.9.2 LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 OCP and switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2/83 DocID027738 Rev 7 A6985F 6 7 8 Contents 5.11 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.12 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.1 Internal voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3.2 External voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.5 Compensation network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.1 Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.3 MLF pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.4 Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.5 Synchronization (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.6 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.6.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.6.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.6.3 Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.1 A6985F3V3 evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.2 A6985F5V evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.3 A6985F (VOUT = 6 V) evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10 EMC testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.1 12 HTSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID027738 Rev 7 3/83 83 Contents 13 4/83 A6985F Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DocID027738 Rev 7 A6985F 1 Application schematic Application schematic Figure 1. A6985F3V3 application schematic DocID027738 Rev 7 5/83 83 Pin settings A6985F 2 Pin settings 2.1 Pin connection Figure 2. Pin connection (top view) 2.2 Pin description Table 1. Pin description No. Pin Description 1 RST The RST open collector output is driven low when the output voltage is out of regulation. The RST is released after an adjustable time DELAY once the output voltage is over the active delay threshold. 2 VCC Connect a ceramic capacitor (≥ 470 nF) to filter internal voltage reference. This pin supplies the embedded analog circuitry. 3 SS/INH An open collector stage can disable the device clamping this pin to GND (INH mode). An internal current generator (4 A typ.) charges the external capacitor to implement the soft-start. 4 SYNCH/ ISKP The pin features Master / Slave synchronization in LNM (see Section 7.5 on page 52) and skips current level selection in LCM (see Section 5.8.2 on page 28). In LNM, leave this pin floating when not used. 5 FSW A pull up resistor (E24 series only) to VCC or pull down to GND selects the switching frequency. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 6 MLF A pull up resistor (E24 series only) to VCC or pull down to GND selects the low noise mode/low consumption mode and the active RST threshold. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 7 COMP Output of the error amplifier. The designed compensation network is connected at this pin. 8 DELAY An external capacitor connected at this pin sets the time DELAY to assert the rising edge of the RST o.c. after the output voltage is over the reset threshold. If this pin is left floating, RST is like a Power Good. 9 VOUT Output voltage sensing 10 SGND Signal GND 6/83 DocID027738 Rev 7 A6985F Pin settings Table 1. Pin description (continued) No. Pin 11 PGND Power GND 12 PGND Power GND 13 LX Switching node 14 LX Switching node 15 VIN DC input voltage 16 VBIAS Typically connected to the regulated output voltage. An external voltage reference can be used to supply part of the analog circuitry to increase the efficiency at light-load. Connect to GND if not used. - E. p. Exposed pad must be connected to SGND, PGND. 2.3 Description Maximum ratings Stressing the device above the rating listed in Table 2: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 2. Absolute maximum ratings Symbol Min. Max. Unit VIN -0.3 40 V DELAY -0.3 VCC + 0.3 V PGND SGND - 0.3 SGND + 0.3 V SGND - - V VCC -0.3 (VIN + 0.3) or (max. 4) V SS / INH -0.3 VIN + 0.3 V -0.3 VCC + 0.3 V -0.3 VCC + 0.3 V VOUT -0.3 10 V FSW -0.3 VCC + 0.3 V SYNCH -0.3 VIN + 0.3 V VBIAS -0.3 (VIN + 0.3) or (max. 6) V RST -0.3 VIN + 0.3 V LX -0.3 VIN + 0.3 V MLF COMP Description See Table 1 TJ Operating temperature range -40 150 °C TSTG Storage temperature range - -65 to 150 °C TLEAD Lead temperature (soldering 10 sec.) - 260 °C IHS, ILS High-side / low-side switch current - 2 A DocID027738 Rev 7 7/83 83 Pin settings 2.4 A6985F Thermal data Table 3. Thermal data Symbol 2.5 Parameter Value Unit Rth JA Thermal resistance junction ambient (device soldered on the STMicroelectronics® demonstration board) 40 °C/W Rth JC Thermal resistance junction to exposed pad for board design (not suggested to estimate TJ from power losses). 5 °C/W Value Unit HBM 2 kV MM 200 V CDM non-corner pins 500 V CDM corner pins 750 V ESD protection Table 4. ESD protection Symbol ESD 8/83 Test condition DocID027738 Rev 7 A6985F 3 Electrical characteristics Electrical characteristics TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Note Min. Typ. Max. VIN Operating input voltage range - - 4 - 38 VINH VCC UVLO rising threshold - - 2.7 - 3.5 VINL VCC UVLO falling threshold - - 2.4 - 3.5 Duty cycle < 20% - 0.8 - - Duty cycle = 100% closed loop operation - 0.65 - - IPK IVY Peak current limit V A - 0.9 - - LCM, VSYNCH = GND (1) 0.15 0.35 0.5 LCM, VSYNCH = VCC (2) - 0.1 - - LNM or VOUT overvoltage - 0.5 1 2 - RDSON HS High-side RDSON ISW = 0.5 A - - 0.36 0.72 RDSON LS Low-side RDSON ISW = 0.5 A - - 0.15 0.30 ISKIP IVY_SNK Valley current limit Unit Skip current limit Reverse current limit fSW Selected switching frequency FSW pinstrapping before SS - IFSW FSW biasing current SS ended - MLF pinstrapping before SS - Low noise mode / LCM/LNM Low consumption mode selection IMLF D TON MIN MLF biasing current SS ended  See Table 6: fSW selection - 0 500 nA See Table 7 on page 12,Table 8 on page 13, Table 9 on page 13 - - 0 500 nA 0 - 100 % ns Duty cycle - (2) Minimum On time - - - 80 - VBIAS = GND (no switchover) - 2.9 3.3 3.6 VBIAS = 5 V (switchover) - 2.9 3.3 3.6 Switch internal supply from VIN to VBIAS - 2.85 - 3.2 Switch internal supply from VBIAS to VIN - 2.78 - 3.15 VCC regulator VCC SWO LDO output voltage VBIAS threshold (3 V< VBIAS < 5.5 V) DocID027738 Rev 7 V 9/83 83 Electrical characteristics A6985F Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit A Power consumption ISHTDWN Shutdown current from VIN VSS/INH = GND LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V IQ OPVIN Quiescent current from VIN IQ OPVBIAS Quiescent current from VBIAS LCM - NO SWO VREF < VFB < VOVP (SLEEP) VBIAS = GND - 4 8 15 (3) 4 10 15 A (3) 35 70 120 LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V - 0.5 1.5 5 LNM - NO SWO VFB = GND (NO SLEEP) VBIAS = GND - 2 2.8 6 (3) 25 50 115 A - 0.5 1.2 5 mA - 200 460 700 - - 100 140 (2) - 1 - LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V mA Soft-start VINH VSS threshold SS rising VINH HYST VSS hysteresis ISS CH CSS charging current VSS < VINH OR t < TSS SETUP OR VEA+ > VFB t > TSS SETUP AND VEA+ < VFB VSS START SSGAIN mV A (2) - 4 - Start of internal error amplifier ramp - 0.995 1.1 1.150 V SS/INH to internal error amplifier gain - - - 3 - - 3.3 V (A6985F3V3) - 3.25 3.3 3.35 5 V (A6985F5V) - 4.925 5.0 5.075 A6985F - 0.841 0.85 0.859 3.3 V (A6985F3V3) - 4 6 8.5 5 V (A6985F5V) - 7.5 10 13.5 A6985F - - 50 500 Error amplifier VOUT IVOUT 10/83 Voltage feedback VOUT biasing current DocID027738 Rev 7 V A nA A6985F Electrical characteristics Table 5. Electrical characteristics (continued) Symbol AV ICOMP Parameter Test condition Note Min. Typ. Max. Unit dB - (2) - 100 - - - ±6 ±12 ±25 - (4) ±4 - - Current sense transconductance (VCOMP to inductor current gain) IPK = 0.5 A (2) - 1.67 - A/V Slope compensation - (5) 0.2 0.3 0.4 A Error amplifier gain EA output current capability A Inner current loop gCS V PP  g CS Overvoltage protection VOVP Overvoltage trip (VOVP/VREF) - - 1.15 1.2 1.25 - VOVP Overvoltage hysteresis - - 0.5 2 5 % HYST Synchronization (fan out: 6 slave devices typ.) fSYN MIN VSYN TH ISYN VSYN OUT Synchronization frequency LNM; fSW = VCC - 266.5 - - kHz SYNCH input threshold LNM, SYNCH rising - 0.70 - 1.2 V SYNCH pulldown current LNM, VSYN = 1.2 V - - 0.7 - mA High level output LNM, 5 mA sinking load - 1.40 - - Low level output LNM, 0.7 mA sourcing load - - - 0.6 Selected RST threshold MLF pinstrapping before SS - V Reset VTHR (2) - 2 - VIN > VINH AND VFB < VTH 4 mA sinking load - - - 0.4 2 < VIN < VINH 4 mA sinking load - - VTHR HYST RST hysteresis VRST RST open collector output See Table 7,Table 8, Table 9 % V - 0.8 Delay VTHD RST open collector released as soon as VDELAY > VTHD VFB > VTHR - 1.19 ID CH CDELAY charging current VFB > VTHR - 1 2 3 - (2) - 165 - - (2) - 30 - 1.234 1.258 V A Thermal shutdown TSHDWN THYS Thermal shutdown temperature Thermal shutdown hysteresis °C 1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition. 2. Not tested in production. 3. LCM enables SLEEP mode at light-load. 4. TJ = -40°C. 5. Measured at fsw = 250 kHz. DocID027738 Rev 7 11/83 83 Electrical characteristics A6985F TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 6. fSW selection Symbol fSW RVCC (E24 series) RGND (E24 series) 0 Tj fSW min. fSW typ. fSW max. NC 225 250 275 1.8 k NC - 285 - 3.3 k NC - 330 - 5.6 k NC - 380 - 10 k NC - 435 - NC 0 450 500 550 18 k NC - 575 - 33 k NC - 660 - 56 k NC - 755 - NC 1.8 k - 870 - NC 3.3 k 900 1000 1100 NC 5.6 k - 1150 - NC 10 k - 1310 - - 1500(2) 1925 2200 (1) (1) (1) 18 k NC NC 33 k 1575 1750(2) NC 56 k 1800 2000(2) Unit kHz 1. Not tested in production. 2. No synchronization as slave in LNM. TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 7. LNM / LCM selection (A6985F3V3) Symbol VRST 12/83 RVCC RGND (E24 1%) (E24 1%) VRST VRST VRST min. typ. max. 0 NC 93% 3.008 3.069 3.130 8.2 k NC 80% 2.587 2.640 2.693 18 k NC 87% 2.814 2.871 2.928 39 k NC 96% 3.105 3.168 3.231 NC 0 93% 3.008 3.069 3.130 NC 8.2 k 80% 2.587 2.640 2.693 NC 18 k 87% 2.814 2.871 2.928 NC 39 k 96% 3.105 3.168 3.231 Operating VRST/VOUT mode (tgt. value) LCM LNM DocID027738 Rev 7 Unit V A6985F Electrical characteristics TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 8. LNM / LCM selection (A6985F5V) Symbol VRST RVCC RGND (E24 1%) (E24 1%) 0 NC 8.2 k NC 18 k NC 39 k Operating VRST/VOUT mode (tgt. value) VRST VRST VRST min. typ. max. 93% 4.557 4.650 4.743 80% 3.920 4.000 4.080 87% 4.263 4.350 4.437 NC 96% 4.704 4.800 4.896 NC 0 93% 4.557 4.650 4.743 NC 8.2 k 80% 3.920 4.000 4.080 NC 18 k 87% 4.263 4.350 4.437 NC 39 k 96% 4.704 4.800 4.896 VRST VRST VRST min. typ. max. 93% 0.779 0.791 0.802 80% 0.670 0.680 0.690 87% 0.728 0.740 0.751 LCM LNM Unit V TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 9. LNM / LCM selection table (A6985F) Symbol VRST RVCC RGND Operating VRST/VOUT mode (tgt. value) (E24 1%) (E24 1%) 0 NC 8.2 k NC 18 k NC 39 k NC 96% 0.804 0.816 0.828 NC 0 93% 0.779 0.791 0.802 NC 8.2 k 80% 0.670 0.680 0.690 NC 18 k 87% 0.728 0.740 0.751 NC 39 k 96% 0.804 0.816 0.828 LCM LNM DocID027738 Rev 7 Unit V 13/83 83 Datasheet parameters over the temperature range 4 A6985F Datasheet parameters over the temperature range The 100% of the population in the production flow is tested at three different ambient temperatures (-40 °C, +25 °C, +135 °C) to guarantee the datasheet parameters inside the junction temperature range (-40 °C, +135 °C). The device operation is guaranteed when the junction temperature is inside the (-40 °C, +150 °C) temperature range. The designer can estimate the silicon temperature increase respect to the ambient temperature evaluating the internal power losses generated during the device operation. However the embedded thermal protection disables the switching activity to protect the device in case the junction temperature reaches the TSHTDWN (+165 °C typ.) temperature. All the datasheet parameters can be guaranteed to a maximum junction temperature of +135 °C to avoid triggering the thermal shutdown protection during the testing phase because of self-heating. 14/83 DocID027738 Rev 7 A6985F 5 Functional description Functional description The A6985F device is based on a “peak current mode”, constant frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the power switch. The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to increase the efficiency at light-load. The main internal blocks shown in the block diagram in Figure 3 are:  Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low dropout operation  A fully integrated sawtooth oscillator with adjustable frequency  A transconductance error amplifier  An internal feedback divider GDIV INT  The high-side current sense amplifier to sense the inductor current  A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at power-up. The SS/INH pin inhibits the device when driven low.  The switchover capability of the internal regulator to supply a portion of the quiescent current when the VBIAS pin is connected to an external output voltage  The synchronization circuitry to manage master / slave operation and the synchronization to an external clock  The current limitation circuit to implement the constant current protection, sensing pulse by pulse high-side / low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the stress of the external components  A circuit to implement the thermal protection function  The OVP circuitry to discharge the output capacitor in case of overvoltage event  MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator  FSW pinstrapping sets the switching frequency  The RST open collector output DocID027738 Rev 7 15/83 83 Functional description A6985F Figure 3. Internal block diagram 5.1 Power supply and voltage reference The internal regulator block consists of a start-up circuit, the voltage pre-regulator that provides current to all the blocks and the bandgap voltage reference. The starter supplies the startup current when the input voltage goes high and the device is enabled (SS/INH pin over the inhibits threshold). The pre-regulator block supplies the bandgap cell and the rest of the circuitry with a regulated voltage that has a very low supply voltage noise sensitivity. Switchover feature The switchover scheme of the pre-regulator block features to derive the main contribution of the supply current for the internal circuitry from an external voltage (3 V < VBIAS < 5.5 V is typically connected to the regulated output voltage). This helps to decrease the equivalent quiescent current seen at VIN. (please refer to Section 5.9: Switchover feature on page 36). 5.2 Voltages monitor An internal block continuously senses the VCC, VBIAS and VBG. If the monitored voltages are good, the regulator starts operating. There is also a hysteresis on the VCC (UVLO). 16/83 DocID027738 Rev 7 A6985F Functional description Figure 4. Internal circuit 9&& 67$57(5 35(5(*8/$725 95(* %$1'*$3 ,&%,$6 95() ',1 5.3 Soft-start and inhibit The soft-start and inhibit features are multiplexed on the same pin. An internal current source charges the external soft-start capacitor to implement a voltage ramp on the SS/INH pin. The device is inhibited as long as the SS/INH pin voltage is lower than the VINH threshold and the soft-start takes place when SS/INH pin crosses VSS START. (See Figure 5). The internal current generator sources 1 A typ. current when the voltage of the VCC pin crosses the UVLO threshold. The current increases to 4 A typ. as soon as the SS/INH voltage is higher than the VINH threshold. This feature helps to decrease the current consumption in the inhibit mode. An external open collector can be used to set the inhibit operation clamping the SS/INH voltage below the VINH threshold. The startup feature minimizes the inrush current and decreases the stress of the power components during the power-up phase. The ramp implemented on the reference of the error amplifier has a gain three times higher (SSGAIN) than the external ramp present at the SS/INH pin. DocID027738 Rev 7 17/83 83 Functional description A6985F Figure 5. Soft-start phase The CSS is dimensioned accordingly with Equation 1: Equation 1 I SSCH  T SS 4A  TSS C SS = SS GAIN  -------------------------------- = 3  --------------------------V FB 0.85V where TSS is the soft-start time, ISS CH the charging current and VFB the reference of the error amplifier. The soft-start block supports the precharged output capacitor. 18/83 DocID027738 Rev 7 A6985F Functional description Figure 6. Soft-start phase with precharged COUT During the normal operation a new soft-start cycle takes place in case of:  Thermal shutdown event  UVLO event  The device is driven in INH mode The soft-start capacitor is discharged with a 0.6 mA typ. current capability for 1 msec time max. For complete and proper capacitor discharge in case of fault condition, a maximum CSS = 67 nF value is suggested. The application example in Figure 7 shows how to enable the A6985F and perform the softstart phase driven by an external voltage step, for example the signal from the ignition switch in automotive applications. Figure 7. Enable the device with external voltage step DocID027738 Rev 7 19/83 83 Functional description A6985F The maximum capacitor value has to be limited to guarantee the device can discharge it in case of thermal shutdown and UVLO events (see Section 5.3.1), so restart the switching activity ramping the error amplifier reference voltage. Equation 2 – 1 msec C SS  ------------------------------------------------------------------------------------------V SS_FINAL – 0.9 V R SS_EQ  ln  1 – ----------------------------------------------  600 A – R SS_EQ where: Equation 3 R UP  R DWN R SS_EQ = --------------------------------R UP + R DWN R DWN V SS_FINAL =  V STEP – V DIODE   ---------------------------------R UP + R DWN The optional diode prevents to disable the device if the external source drops to ground. RUP value is selected in order to make the capacitor charge at first approximation independent from the internal current generator (4 A typ. current capability, see Table 5 on page 9), so: Equation 4 V STEP – V DIODE – V SS END ----------------------------------------------------------------------- » I SS CHARGE  4 A R UP where: Equation 5 V FB V SS END = V SS START + --------------------SS GAIN represents the SS/INH voltage correspondent to the end of the ramp on the error amplifier (see Figure 5); refer to Table 5 for VSS START, VFB and SSGAIN parameters. As a consequence the voltage across the soft-start capacitor can be written as: Equation 6 1 v SS  t  = V SS_FINAL  ----------------------------------------t 1–e – --------------------------------C SS  R SS_EQ RSS_DOWN is selected to guarantee the device stays in inhibit mode when the internal generator sources 1 A typ. out of the SS/INH pin and VSTEP is not present: Equation 7 R DWN  I SS INHIBIT  R DWN  1 A « V INH  200 mV so: Equation 8 R DWN  100 k 20/83 DocID027738 Rev 7 A6985F Functional description RUP and RDWN are selected to guarantee: Equation 9 V SS_FINAL  2 V  V SS_END The time to ramp the internal voltage reference can be calculated from Equation 10: Equation 10 V SS_FINAL – V SS START T SS = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS END  that is the equivalent soft-start time to ramp the output voltage. Figure 8 shows the soft-start phase with the following component selection: RUP = 180 k, RDWN = 33 k, CSS = 200 nF, the 1N4148 is a small signal diode and VSTEP = 13 V. Figure 8. External soft-start network VSTEP driven The circuit in Figure 7 introduces a time delay between VSTEP and the switching activity that can be calculated as: Equation 11 V SS_FINAL T SS DELAY = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS START DocID027738 Rev 7 21/83 83 Functional description A6985F Figure 9 shows how the device discharges the soft-start capacitor after an UVLO or thermal shutdown event in order to restart the switching activity ramping the error amplifier reference voltage. Figure 9. External soft-start after UVLO or thermal shutdown 22/83 DocID027738 Rev 7 A6985F 5.3.1 Functional description Ratiometric startup The ratiometric startup is implemented sharing the same soft-start capacitor for a set of the A6985F devices. Figure 10. Ratiometric startup 9 9287 9287 9287 W $0 As a consequence all the internal current generators charge in parallel the external capacitor. The capacitor value is dimensioned accordingly with Equation 12: Equation 12 I SSCH  T SS 4A  T SS C SS = n A6985F  SS GAIN  -------------------------------- = n A6985F  3  --------------------------V FB 0.85V where nA6985Frepresents the number of devices connected in parallel. For better tracking of the different output voltages the synchronization of the set of regulators is suggested. DocID027738 Rev 7 23/83 83 Functional description A6985F Figure 11. Ratiometric startup operation 24/83 DocID027738 Rev 7 A6985F 5.3.2 Functional description Output voltage sequencing The A6985F device implements sequencing connecting the RST pin of the master device to the SS/INH of the slave. The slave is inhibited as long as the master output voltage is outside regulation so implementing the sequencing (see Figure 12). Figure 12. Output voltage sequencing 9 9287 9287 9287 W W'(/$ 50% or limit the peak current capability (see IPK parameter in Table 5 on page 9) since the internal slope compensation signal may be saturated. In order to guarantee the synchronization as a slave over distribution, temperature and the output load, the external clock frequency must be lower than 1.4 MHz. 7.6 Design of the power components 7.6.1 Input capacitor selection The input capacitor voltage rating must be higher than the maximum input operating voltage of the application. During the switching activity a pulsed current flows into the input capacitor and so its RMS current capability must be selected accordingly with the application conditions. Internal losses of the input filter depends on the ESR value so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On the other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher conversion efficiency. The maximum RMS input current flowing through the capacitor can be calculated as: Equation 44 D D I RMS = I OUT   1 – ----  ---   Where IOUT is the maximum DC output current, D is the duty cycles,  is the efficiency. This function has a maximum at D = 0.5 and, considering  = 1, it is equal to IOUT/2. In a specific application the range of possible duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and minimum duty cycles can be calculated as: Equation 45 V OUT + V LOWSIDE D MAX = -----------------------------------------------------------------------------------------------V INMIN + V LOWSIDE – V HIGHSIDE Equation 46 V OUT + V LOWSIDE D MIN = -------------------------------------------------------------------------------------------------V INMAX + V LOWSIDE – V HIGHSIDE Where VHIGH_SIDE and VLOW_SIDE are the voltage drops across the embedded switches. DocID027738 Rev 7 57/83 83 Application notes A6985F The peak-to-peak voltage across the input filter can be calculated as: Equation 47 I OUT D D V PP = -------------------------   1 – ----  ---- + ESR   I OUT + I L  C IN  f SW    In case of negligible ESR (MLCC capacitor) the equation of CIN as a function of the target VPP can be written as follows: Equation 48 I OUT D D C IN = --------------------------   1 – ----  ---V PP  f SW    Considering  = 1 this function has its maximum in D = 0.5: Equation 49 I OUT C INMIN = ---------------------------------------------4  V PPMAX  f SW Typically CIN is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of 5% VIN_MAX. Table 14. Input capacitors Manufacturer TDK Taiyo Yuden 7.6.2 Series Size Cap value (F) Rated voltage (V) C3225X7S1H106M 1210 10 50 C3216X5R1H106M 1206 - - UMK325BJ106MM-T 1210 - - Inductor selection The inductor current ripple flowing into the output capacitor determines the output voltage ripple (please refer to Section 7.6.3). Usually the inductor value is selected in order to keep the current ripple lower than 20% - 40% of the output current over the input voltage range. The inductance value can be calculated by Equation 50: Equation 50 V IN – V OUT V OUT I L = ------------------------------  T ON = --------------  T OFF L L Where TON and TOFF are the on and off time of the internal power switch. The maximum current ripple, at fixed VOUT, is obtained at maximum TOFF that is at minimum duty cycle (see Section 7.6.1: Input capacitor selection to calculate minimum duty). 58/83 DocID027738 Rev 7 A6985F Application notes So fixing IL = 20% to 40% of the maximum output current, the minimum inductance value can be calculated: Equation 51 V OUT 1 – D MIN L MIN = -------------------  ----------------------F SW I LMAX where fSW is the switching frequency 1/(TON + TOFF). For example for VOUT = 3.3 V, VIN = 12 V, IOUT = 0.5 A and FSW = 2 MHz the minimum inductance value to have IL = 30% of IOUT is about 8.2 µH. The peak current through the inductor is given by: Equation 52 I L I L PK = I OUT + -------2 So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device) increases. The higher is the inductor value, the higher is the average output current that can be delivered, without reaching the current limit. In Table 15 some inductor part numbers are listed. Table 15. Inductors 7.6.3 Manufacturer Series Inductor value (H) Saturation current (A) Coilcraft XAL40xx 2.2 to 15 5.6 to 2.8 - XAL50xx 2.2 to 22 9.2 to 3.6 - XFL40xx 2.2 to 4.7 3.7 to 2.7 Output capacitor selection The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). As a consequence the output capacitor has to be selected in order to have a voltage ripple compliant with the application requirements. The voltage ripple equation can be calculated as: Equation 53 I LMAX V OUT = ESR   I LMAX + --------------------------------------8  C OUT  f SW Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi layer ceramic capacitor (MLCC). The output capacitor is important also for loop stability: it determines the main pole and the zero due to its ESR. (see Section 6: Closing the loop on page 43 to consider its effect in the system stability). DocID027738 Rev 7 59/83 83 Application notes A6985F For example with VOUT = 3.3 V, VIN = 12 V, IL = 0.25 A, fSW = 2 MHz (resulting by the inductor value) and COUT = 10 F MLCC: Equation 54 0 ꞏ 25 V OUT I LMAX  1  1 ꞏ 6mV 1 ------------------  --------------  ------------------------------ =  --------  ---------------------------------------------- = ------------------- = 0.05% V OUT V OUT C OUT  f SW 3.3 8  10F  2MHz 3.3   The output capacitor value has a key role to sustain the output voltage during a steep load transient. When the load transient slew rate exceeds the system bandwidth, the output capacitor provides the current to the load. In case the final application specifies high slew rate load transient, the system bandwidth must be maximized and the output capacitor has to sustain the output voltage for time response shorter than the loop response time. In Table 16 some capacitor series are listed. Table 16. Output capacitors Manufacturer Series Cap value (F) Rated voltage (V) ESR (m) GRM32 22 to 100 6.3 to 25
A6985F3V3 价格&库存

很抱歉,暂时无法提供与“A6985F3V3”相匹配的价格&库存,您可以联系我们找货

免费人工找货