0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A6986

A6986

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP16_EP

  • 描述:

    ICREGBUCKADJ2ASYNC16HTSSOP

  • 数据手册
  • 价格&库存
A6986 数据手册
A6986 38 V, 2 A synchronous step-down switching regulator with 30 µA quiescent current Datasheet - production data Description HTSSOP16 (RTH = 40 °C/W) Features  AECQ100 qualification  2 A DC output current  4 V to 38 V operating input voltage  Low consumption mode or low noise mode  30 µA IQ at light-load (LCM VOUT = 3.3 V)  8 µA IQ-SHTDWN  Adjustable fSW (250 kHz - 2 MHz)  Output voltage adjustable from 0.85 V to VIN  Embedded output voltage supervisor  Synchronization  Adjustable soft-start time  Internal current limiting The A6986 device is a step-down monolithic switching regulator able to deliver up to 2 A DC. The output voltage adjustability ranges from 0.85 V to VIN. The 100% duty cycle capability to withstand the cold crank event and the wide input voltage range make the A6986 device ideal for battery powered automotive systems. The “Low Consumption Mode” (LCM) is designed for applications active during car parking, so it maximizes the efficiency at the light-load with the controlled output voltage ripple. The “Low Noise Mode” (LNM) makes the switching frequency constant and minimizes the output voltage ripple overload current range, meeting the low noise application specification like car audio. The output voltage supervisor manages the reset phase for any digital load (µC, FPGA). The RST open collector output can also implement output voltage sequencing during the power-up phase. The synchronous rectification, designed for high efficiency at the medium - heavy load, and the high switching frequency capability makes the size of the application compact. Pulse-by-pulse current sensing on both power elements implements effective constant current protection.  Overvoltage protection  Output voltage sequencing  Peak current mode architecture  RDSON HS = 180 m, RDSON LS = 150 m  Thermal shutdown Applications  Designed for automotive systems  Battery powered applications  Car body applications (LCM)  Car audio and low noise applications (LNM) August 2020 This is information on a product in full production. DocID026211 Rev 8 1/68 www.st.com Contents A6986 Contents 1 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Datasheet parameters over the temperature range . . . . . . . . . . . . . . . 13 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 Soft-start and inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.1 Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3.2 Output voltage sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.5 Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.6 5.7 5.5.1 Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5.2 Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6.1 LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6.2 LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 OCP and switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 2/68 5.8 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.9 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DocID026211 Rev 8 A6986 7 Contents 6.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.5 Compensation network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1 Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.3 MLF pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.4 Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.5 Synchronization (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.6.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.6.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.6.3 Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8 Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 10.1 HTSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 DocID026211 Rev 8 3/68 68 Application schematic 1 A6986 Application schematic Figure 1. Application schematic  9,1 & 9%,$6  3:5*1' *1' 9      Q) 567 & 9 & 9,1 & Q) & Q)  3*1' /; 3*1' /; 5    9287 /  5 $ 0/) & 9&& 66,1+ )% '(/$< &203 )6: 6*1' (3 6 VFB t > TSS SETUP AND VEA+ < VFB VSS_L_CLMP SS discharge voltage VSS START SSGAIN VSS_H_CLMP VCC < VCCH OR t < TSS SETUPOR thermal fail Start of internal error amplifier ramp SS/INH to internal error amplifier gain (2) mV 1 A (2) 4 855 900 945 mV 0.995 1.1 1.15 0 V 3.6 V 3 SS/INH voltage at the end of SS phase 2.5 DocID026211 Rev 8 9/68 68 Electrical characteristics A6986 Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit Error amplifier VFB Voltage feedback IFB FB biasing current Gm Transconductance AV Error amplifier gain ICOMP 0.85 9 V 50 500 nA 90 155 210 70 155 210 0.841 0.85 (4) (2) 100 ±6 EA output current capability (4) ±12 S dB ±25 ±4 A Inner current loop gCS V PP  g CS Current sense transconductance (VCOMP to inductor current gain) Ipk = 1 A (5) (5) Slope compensation 2.5 A/V 0.4 0.75 1.0 1.15 1.2 1.25 1 2 6 A Overvoltage protection VOVP VOVP HYST Overvoltage trip (VOVP/VREF) Overvoltage hysteresis % Synchronization (fan out: 6 slave devices typ.) fSYN MIN VSYN TH ISYN VSYN OUT Synchronization frequency LNM; fSW = VCC 266.5 SYNCH input threshold LNM, SYNCH rising 0.70 SYNCH pulldown current LNM, VSYN = 1.2 V high level output LNM, 5 mA sinking load low level output LNM, 0.7 mA sourcing load Selected RST threshold MLF pinstrapping before SS kHz 1.2 0.7 V mA 1.40 0.6 V Reset VTHR VTHR HYST VRST (2) RST hysteresis RST open collector output see Table 7 2 % VIN > VINH AND VFB < VTH 4 mA sinking load 0.4 2 < VIN < VINH 4 mA sinking load 0.8 V Delay VTHD RST open collector released as soon as VDELAY > VTHD VFB > VTHR 1.19 ID CH CDELAY charging current VFB > VTHR 1 10/68 DocID026211 Rev 8 1.23 1.25 4 8 2 3 V A A6986 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit Thermal shutdown TSHDWN Thermal shutdown temperature (2) 165 THYS Thermal shutdown hysteresis (2) 30 °C 1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition. 2. Not tested in production. 3. LCM enables SLEEP mode at light-load. 4. TJ = -40 °C. 5. Measured at fSW = 250 kHz. All the population tested at TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. Table 6. fSW selection Symbol fSW RVCC (E24 series) RGND (E24 series) fSW min. fSW typ. fSW max. Note 0 NC 225 250 275 (1) 1.8 k NC 285 3.3 k NC 330 5.6 k NC 380 10 k NC 435 NC 0 18 k NC 575 33 k NC 660 56 k NC 755 NC 1.8 k 870 NC 3.3 k NC 5.6 k 1150 NC 10 k 1310 NC 18 k 1500 NC 33 k 1575 1750 1925 NC 56 k 1800 2000 2200 450 900 500 1000 Unit (2) 550 (1) (2) kHz 1100 (2) (2) (3) , (3) 1. Preferred codifications don't require any external resistor. 2. Not tested in production. 3. No synchronization as slave in LNM. DocID026211 Rev 8 11/68 68 Electrical characteristics A6986 All the population tested at TJ = -40 to 135 °C, VIN = 12 V unless otherwise specified. . Symbol VRST Table 7. LNM / LCM selection RVCC (E24 series) RGND (E24 series) 0 NC 8.2 k ± 1% NC 18 k ± 1% NC 39 k ± 1% Operating mode VRST/VOUT (tgt value) VRST min. VRST typ. VRST max. Unit 93% 0.779 0.791 0.802 80% 0.670 0.680 0.690 87% 0.728 0.740 0.751 NC 96% 0.804 0.816 0.828 NC 0 93% 0.779 0.791 0.802 NC 8.2 k ± 1% 80% 0.670 0.680 0.690 NC 18 k ± 1% 87% 0.728 0.740 0.751 NC 39 k ± 1% 96% 0.804 0.816 0.828 LCM LNM VRST = 0.791 V typical, LNM and LCM preferred codifications don't require any external resistor. 12/68 DocID026211 Rev 8 V A6986 4 Datasheet parameters over the temperature range Datasheet parameters over the temperature range The 100% of the population in the production flow is tested at three different ambient temperatures (-40 °C, +25 °C, +135 °C) to guarantee the datasheet parameters inside the junction temperature range (-40 °C, +135 °C). The device operation is guaranteed when the junction temperature is inside the (-40 °C, +150 °C) temperature range. The designer can estimate the silicon temperature increase respect to the ambient temperature evaluating the internal power losses generated during the device operation. However the embedded thermal protection disables the switching activity to protect the device in case the junction temperature reaches the TSHTDWN (+165 °C typ.) temperature. All the datasheet parameters can be guaranteed to a maximum junction temperature of +135 °C to avoid triggering the thermal shutdown protection during the testing phase because of self-heating. DocID026211 Rev 8 13/68 68 Functional description 5 A6986 Functional description The A6986 device is based on a “peak current mode”, constant frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the power switch. The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to increase the efficiency at light-load. The main internal blocks shown in the block diagram in Figure 3 are: 14/68  Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low dropout operation  A fully integrated sawtooth oscillator with adjustable frequency  A transconductance error amplifier  The high-side current sense amplifier to sense the inductor current  A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at power-up. The SS/INH pin inhibits the device when driven low.  The switchover capability of the internal regulator to supply a portion of the quiescent current when the VBIAS pin is connected to an external output voltage  The synchronization circuitry to manage master / slave operation and the synchronization to an external clock  The current limitation circuit to implement the constant current protection, sensing pulse-by-pulse high-side / low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the stress of the external components  A circuit to implement the thermal protection function  The OVP circuitry to discharge the output capacitor in case of overvoltage event  MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator  FSW pinstrapping sets the switching frequency  The RST open collector output DocID026211 Rev 8 A6986 Functional description Figure 3. Internal block diagram &203  6 C0 + CP): Equation 25 1 f PLF = ------------------------------------2    R0  Cc DocID026211 Rev 8 37/68 68 Closing the loop A6986 Equation 26 whereas the zero is defined as: 1 f PHF = -------------------------------------------------------2    R0   C0 + Cp  Equation 27 1 f Z = ------------------------------------2    Rc  Cc 6.3 Voltage divider The contribution of a simple voltage divider is: Equation 28 R2 G DIV  s  = -------------------R1 + R2 A small signal capacitor in parallel to the upper resistor (see Figure 26) of the voltage divider implements a leading network (fzero < fpole), sometimes necessary to improve the system phase margin: Figure 26. Leading network example  9,1 9,1 567 9%,$6  *1' 3:5JQG       3*1' /; 3*1' /; 0/)    9287  &U $ 5 9&& 66,1+ )% '(/$< &203 )6: 6*1' (3 6G%@ (;7(51$//22302'8/(      [    [    [    [    [   )UHTXHQF\>+]@ $0 Equation 32 BW = 67kHz phase margin = 53 40/68 DocID026211 Rev 8 0 A6986 Closing the loop Figure 28. Phase plot (;7(51$//223*$,13+$6(               [    [    [    [    [   $0 The blue solid trace represents the transfer function including the sampling effect term (see Equation 22 on page 36), the dotted blue trace neglects the contribution. 6.5 Compensation network design The maximum bandwidth of the system can be designed up to fSW/6 to guarantee a valid small signal model. Equation 33 f SW BW = --------6 Equation 34 2    BW  C OUT  V OUT R C = ---------------------------------------------------------------0.85V  g CS  g m TYP where: Equation 35 p f POLE = ----------2 DocID026211 Rev 8 41/68 68 Closing the loop A6986 p is defined by Equation 20 on page 36, gCS represents the current sense transconductance (see Table 5: Electrical characteristics on page 8) and gm TYP the error amplifier transconductance. Equation 36 5 C C = -------------------------------------2    R C  BW Example 2 Considering VIN = 12 V, VOUT = 3.3 V, L = 6.8 H, COUT = 15 F, fSW = 500 kHz. The maximum system bandwidth is 80 kHz. Assuming to design the compensation network to achieve a system bandwidth of 70 kHz: Equation 37 f POLE = 6kHz Equation 38 V OUT R LOAD = -------------- = 2.2 I OUT so accordingly with Equation 34 and Equation 36: Equation 39 R C = 68k Equation 40 C C = 168pF  180pF 42/68 DocID026211 Rev 8 A6986 Application notes 7 Application notes 7.1 Output voltage adjustment The error amplifier reference voltage is 0.85 V typical. The output voltage is adjusted accordingly with Equation 41 (see Figure 29): Equation 41 R1 V OUT = 0.85   1 + -------  R 2 Cr1 capacitor is sometimes useful to increase the small signal phase margin (please refer to Section 6.5: Compensation network design). Figure 29. A6986 application circuit  9,1 9,1 567 9%,$6  *1' 3:5JQG       3*1' /; 3*1' /; 0/)    9287  &U $ 5 9&& 66,1+ )% '(/$< &203  )6: 6*1' (3 6 0.5 The graphical representation of the input RMS current of the input filter in the case of two devices with 0° phase shift (synchronized to an external signal) or 180° phase shift (synchronized connecting their SYNCH pins) regulating the same output voltage is provided in Figure 31. To dimension the proper input capacitor please refer to Chapter 7.6.1: Input capacitor selection. Figure 31. Input RMS current  506FXUUHQWQRUPDOL]HG ,UPV,287 7.5 Application notes  WZR UHJXODWRUV RSHUDWLQJ LQ SKDVH  WZR UHJXODWRUV RSHUDWLQJ RXW RI SKDVH       DocID026211 Rev 8    45/68 68 Application notes A6986 Figure 32 shows two regulators not synchronized. Figure 32. Two regulators not synchronized Figure 33 shows the same regulators working synchronized. The MASTER regulator (LX2 trace) delivers the synchronization signal (SYNCH1, SYNCH2 pins are connected together) to the SLAVE device (LX1). The SLAVE regulator works in phase with the synchronization signal which is out of phase with the MASTER switching operation. Figure 33. Two regulators synchronized 46/68 DocID026211 Rev 8 A6986 Application notes Multiple A6986 can be synchronized to an external frequency signal fed to the SYNCH pin. In this case the regulator set is phased to the reference and all the devices will work with 0° phase shift. The frequency range of the synchronization signal is 275 kHz - 1.4 MHz and the minimum pulse width is 100 nsec (see Figure 34). Figure 34. Synchronization pulse definition L)[ G4:/$)30 .)[ G4:/$)30 G4:/$)30 OTFD NJO OTFD NJO ". Since the slope compensation contribution that is required to prevent subharmonic oscillations in peak current mode architecture depends on the switching frequency, it is important to select the same oscillator frequency for all regulators (all of them operate as SLAVE) as close as possible to the frequency of the reference signal (please refer to Table 6: fSW selection on page 11). As a consequence all the regulators have the same resistor value connected to the FSW pin, so the slope compensation is optimized accordingly with the frequency of the synchronization signal. The slope compensation contribution is latched at power-up and so fixed during the device operation. The A6986 normally operates in MASTER mode, driving the SYNCH line at the selected oscillator frequency as shown in Figure 35 and Figure 32. In SLAVE mode the A6986 sets the internal oscillator at 250 kHz typ. (see Table 6 on page 11 - first row) and drives the line accordingly. Figure 35. A6986 synchronization driving capability VCC INT 5 mA fOSC 150nsec typ. HIGH LEVEL LOW LEVEL 0.7 mA In order to safely guarantee that each regulator recognizes itself in SLAVE mode during the normal operation, the external master must drive the SYNCH pin with a clock signal DocID026211 Rev 8 47/68 68 Application notes A6986 frequency higher than the maximum oscillator spread (refer to Table 6 on page 11) for at least 10 internal clock cycles. For example: selecting RFSW = 0 to GND Table 9. Example of oscillator frequency selection from Table 6 Symbol RVCC (E24 series) RGND (E24 series) fSW min. fSW typ. fSW max. fSW NC 0 450 500 550 the device enters in slave mode after 10 pulses at frequency higher than 550 kHz and so it is able to synchronize to a clock signal in the range 275 kHz - 1.4 MHz (see Figure 34). Anyway it is suggested to limit the frequency range within ± 20% FSW resistor nominal frequency (see details in text below). If not spread spectrum is required, all the regulators synchronize to a frequency higher to the maximum oscillator spread (550 kHz in the example). The device keeps operating in slave mode as far as the master is able to drive the SYNCH pin faster than 275 kHz (maximum oscillator spread for 250 kHz oscillator), otherwise it goes back into MASTER mode at the nominal oscillator frequency after successfully driving one pulse at 250 kHz (see Figure 36) in the SYNCH line. Figure 36. Slave to master mode transition switching node SLAVE mode 250kHz typ. stand alone operation at nominal fsw SYNCH signal The external master can force a latched SLAVE mode driving the SYNCH pin low at powerup, before the soft-start starts the switching activity. So the oscillator frequency is 250 kHz typ. fixed until a new UVLO event is triggered regardless FSW resistor value, that otherwise counts to design the slope compensation. The same considerations above are also valid. 48/68 DocID026211 Rev 8 A6986 Application notes The master driving capability must be able to provide the proper signal levels at the SYNCH pin (see Table 5 on page 8 - Synchronization section):  Low level < VSYN THL= 0.7 V sinking 5 mA  High level > VSYN THH = 1.2 V sourcing 0.7 mA Figure 37. Master driving capability to synchronize the A6986 VCCM 5 mA VSYN_TH_H 0.7 mA VSYN_TH_L RH RL As anticipated above, in SLAVE mode the internal oscillator operates at 250 kHz typ. but the slope compensation is dimensioned accordingly with FSW resistors so, even if the A6986 supports synchronization over the 275 kHz - 1.4 MHz frequency range, it is important to limit the switching operation around a working point close to the selected frequency (FSW resistor). As a consequence, to guarantee the full output current capability and to prevent the subharmonic oscillations the master must limit the driving frequency range within ± 20% of the selected frequency. A wider frequency range may generate subharmonic oscillation for duty > 50% or limit the peak current capability (see IPK parameter in Table 5) since the internal slope compensation signal may be saturated. In order to guarantee the synchronization as a slave over distribution, temperature and the output load, the external clock frequency must be lower than 1.4 MHz. 7.6 Design of the power components 7.6.1 Input capacitor selection The input capacitor voltage rating must be higher than the maximum input operating voltage of the application. During the switching activity a pulsed current flows into the input capacitor and so its RMS current capability must be selected accordingly with the application conditions. Internal losses of the input filter depends on the ESR value so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On the other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher conversion efficiency. DocID026211 Rev 8 49/68 68 Application notes A6986 The maximum RMS input current flowing through the capacitor can be calculated as: Equation 44 D D I RMS = I OUT   1 – ----  ---   Where IOUT is the maximum DC output current, D is the duty cycles,  is the efficiency. This function has a maximum at D = 0.5 and, considering  = 1, it is equal to Io/2. In a specific application the range of possible duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and minimum duty cycles can be calculated as: Equation 45 V OUT + V LOWSIDE D MAX = -----------------------------------------------------------------------------------------------V INMIN + V LOWSIDE – V HIGHSIDE Equation 46 V OUT + V LOWSIDE D MIN = -------------------------------------------------------------------------------------------------V INMAX + V LOWSIDE – V HIGHSIDE Where VHIGH_SIDE and VLOW_SIDE are the voltage drops across the embedded switches. The peak to peak voltage across the input filter can be calculated as: Equation 47 I OUT D D V PP = -------------------------   1 – ----  ---- + ESR   I OUT + I L  C IN  f SW    In case of negligible ESR (MLCC capacitor) the equation of CIN as a function of the target VPP can be written as follows: Equation 48 I OUT D D C IN = --------------------------   1 – ----  ---V PP  f SW    Considering this function has its maximum in D = 0.5: Equation 49 I OUT C INMIN = ---------------------------------------------4  V PPMAX  f SW Typically CIN is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of 5% VIN_MAX. 50/68 DocID026211 Rev 8 A6986 Application notes Table 10. Input capacitors Manufacturer TDK Taiyo Yuden 7.6.2 Series Size Cap value (F) Rated voltage (V) C3225X7S1H106M 1210 10 50 C3216X5R1H106M 1206 UMK325BJ106MM-T 1210 Inductor selection The inductor current ripple flowing into the output capacitor determines the output voltage ripple (please refer to Section 7.6.3). Usually the inductor value is selected in order to keep the current ripple lower than 20% - 40% of the output current over the input voltage range. The inductance value can be calculated by Equation 50: Equation 50 V IN – V OUT V OUT I L = ------------------------------  T ON = --------------  T OFF L L Where TON and TOFF are the on and off time of the internal power switch. The maximum current ripple, at fixed VOUT, is obtained at maximum TOFF that is at minimum duty cycle (see Section 7.6.1: Input capacitor selection to calculate minimum duty). So fixing IL = 20% to 40% of the maximum output current, the minimum inductance value can be calculated: Equation 51 V OUT 1 – D MIN L MIN = -------------------  ----------------------I LMAX F SW where fSW is the switching frequency 1/(TON + TOFF). For example for VOUT = 3.3 V, VIN = 12 V, IO = 2 A and FSW = 500 kHz the minimum inductance value to have IL = 30% of IO is about 8.2 µH. The peak current through the inductor is given by: Equation 52 I L I L PK = I OUT + -------2 So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device) increases. The higher is the inductor value, the higher is the average output current that can be delivered, without reaching the current limit. In Table 11 some inductor part numbers are listed. Table 11. Inductors Manufacturer Series Inductor value (H) Saturation current (A) Coilcraft XAL50xx 2.2 to 22 6.5 to 2.7 XAL60xx 2.2 to 22 12.5 to 4 DocID026211 Rev 8 51/68 68 Application notes 7.6.3 A6986 Output capacitor selection The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). As a consequence the output capacitor has to be selected in order to have a voltage ripple compliant with the application requirements. The voltage ripple equation can be calculated as: Equation 53 I LMAX V OUT = ESR   I LMAX + --------------------------------------8  C OUT  f SW Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi layer ceramic capacitor (MLCC). The output capacitor is important also for loop stability: it determines the main pole and the zero due to its ESR. (see Section 6: Closing the loop on page 35 to consider its effect in the system stability). For example with VOUT = 3.3 V, VIN = 12 V, IL = 0.6 A, fSW = 500 kHz (resulting by the inductor value) and COUT = 10 F MLCC: Equation 54 V OUT I LMAX 1 1 0 6 15mV ------------------  --------------  ------------------------------ =  ------  -------------------------------------------------- = ---------------- = 0.45%  33 8  10F  500kHz V OUT V OUT C OUT  f SW 3.3 The output capacitor value has a key role to sustain the output voltage during a steep load transient. When the load transient slew rate exceeds the system bandwidth, the output capacitor provides the current to the load. In case the final application specifies high slew rate load transient, the system bandwidth must be maximized and the output capacitor has to sustain the output voltage for time response shorter than the loop response time. In Table 12 some capacitor series are listed. Table 12. Output capacitors Manufacturer Series Cap value (F) Rated voltage (V) ESR (m) GRM32 22 to 100 6.3 to 25
A6986 价格&库存

很抱歉,暂时无法提供与“A6986”相匹配的价格&库存,您可以联系我们找货

免费人工找货