AIS2IH
Datasheet
MEMS digital output motion sensor: high-performance 3-axis accelerometer for
automobile applications
Features
•
•
•
LGA-12 (2 x 2 x 0.93 mm3)
Product status link
AIS2IH
Product summary
Order code
AIS2IHTR
Temp. range [°C]
-40 to +115
Package
LGA-12
Packing
Tape and reel
•
•
•
•
•
•
•
•
•
•
•
•
•
AEC-Q100 qualified
±2g/±4g/±8g/±16g dynamically selectable full scales
Low power consumption down to 110 µA in high-performance mode and 0.67 µA
@ 1.6 Hz in low-power mode
Very low noise: down to 90 µg/√(Hz) in high-performance mode
Multiple operating modes with multiple bandwidths and resolution
Single data conversion on demand
High-speed I²C/SPI digital output interface
32-level FIFO
2 independent programmable interrupts
Extended temperature range: -40 °C to 115 °C
Supply voltage, 1.62 V to 3.6 V
Independent IO supply
Embedded temperature sensor
Self-test
10000 g high shock survivability
ECOPACK, RoHS and “Green” compliant
Applications
•
•
•
•
•
•
•
Tilt / inclination measurement
Telematics and black boxes
In-dash car navigation
Anti-theft devices
Smart power saving
Motion-activated functions
Impact recognition and logging
Description
The AIS2IH is an ultra-low-power three-axis linear accelerometer which leverages
on the robust and mature manufacturing processes already used for the production
of micromachined accelerometers and designed to address non-safety automotive
applications.
The AIS2IH has user-selectable full scales of ±2g/±4g/±8g/±16g and is capable of
measuring accelerations with output data rates from 1.6 Hz to 1600 Hz.
The AIS2IH has an integrated 32-level first-in, first-out (FIFO) buffer allowing the user
to store data in order to limit intervention by the host processor.
The device offers broad flexibility to applications as it can switch from ultra-low-power
modes to high-resolution, high-performance modes on the fly.
The embedded self-test capability allows the user to check the functioning of the
sensor in the final application.
DS12421 - Rev 4 - January 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
AIS2IH
The AIS2IH has a dedicated internal engine to process motion and acceleration
detection including free-fall, wakeup, highly configurable single/double-tap
recognition, 6D/4D orientation, and activity/inactivity.
The AIS2IH is available in a small thin plastic land grid array package (LGA) and it is
guaranteed to operate over an extended temperature range from -40 °C to +115 °C.
DS12421 - Rev 4
page 2/63
AIS2IH
Block diagram and pin description
1
Block diagram and pin description
1.1
Block diagram
Figure 1. Block diagram
X+
Y+
CHARG E
AMPLIFIE R
Z+
a
CS
A/D
CONVERTER
MUX
CONTROL
LOGIC
Z-
2
IC
SDA/SDO/SDI
SPI
Y-
SCL/SPC
SDO/SA0
X-
TEMPERATURE SENSOR
SELF TEST
DS12421 - Rev 4
REFERENCE
TRIMMING
CIRCUITS
32 Level
CLOCK
FIFO
CONTROL LOGIC
&
INTERRUPT GEN.
INT1
INT2
page 3/63
AIS2IH
Pin description
1.2
Pin description
Figure 2. Pin connections
11
12
1
SCL/SPC
9
2
CS
GND
8
3
SDO/SA0
RES
7
4
SDA/SDI/SDO
Vdd_IO
10
VDD
6
5
NC
Y
GND
X
INT1
1
INT2
Z
(TOPVIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
(BOTTOM VIEW)
Table 1. Pin description
Pin #
1
Name
Function
SCL
I²C serial clock (SCL)
SPC
SPI serial port clock (SPC)
SPI enable
2(1)
CS
I²C/SPI mode selection
(1: SPI idle mode / I²C communication enabled;
0: SPI communication mode / I²C disabled)
3(1)
4
SDO
SPI serial data output (SDO)
SA0
I²C less significant bit of the device address (SA0)
SDA
I²C serial data (SDA)
SDI
SPI serial data input (SDI)
SDO
3-wire interface serial data output (SDO)
5
NC
Internally not connected. Can be tied to VDD, Vdd_IO, or GND.
6
GND
0 V supply
7
RES
Connect to GND
8
GND
0 V supply
9
VDD
Power supply
10
Vdd_IO
11
INT2
Interrupt pin 2. Clock input when selected in single data conversion on demand.
12
INT1
Interrupt pin 1
Power supply for I/O pins
1. SDO/SA0 and CS pins are internally pulled up. Refer to Table 2 for the internal pull-up values (typ).
DS12421 - Rev 4
page 4/63
AIS2IH
Pin description
Table 2. Internal pull-up values (typ.) for SDO/SA0 and CS pins
Vdd_IO
Resistor value for SDO/SA0 and CS pins
Typ. (kΩ)(1)
1.7 V
54.4
1.8 V
49.2
2.5 V
30.4
3.6 V
20.4
1. Typical values @ T = 25 °C, not guaranteed.
DS12421 - Rev 4
page 5/63
AIS2IH
Mechanical and electrical specifications
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
@ Vdd = 3.0 V, T = -40 °C to +115 °C unless otherwise noted. The product is factory calibrated at 3.0 V.
Table 3. Mechanical characteristics
Symbol
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±2
FS
±4
Measurement range
g
±8
±16
So
So %
An
RMS
TyOff
Nominal sensitivity
Sensitivity tolerance - long term(2)
Noise density High-Performance Mode(3)(5)
RMS noise - Low-Power Modes(4)
@ FS ±2 g, @ 25 °C(5)
Zero-g level offset accuracy(6)
@ FS ±2 g in High-Performance Mode and
all low-power modes except Low-Power Mode 1
0.244
@ FS ±4 g in High-Performance Mode and
all low-power modes except Low-Power Mode 1
0.488
@ FS ±8 g in High-Performance Mode and
all low-power modes except Low-Power Mode 1
0.976
@ FS ±16 g in High-Performance Mode and
all low-power modes except Low-Power Mode 1
1.952
@ FS ±2 g in Low-Power Mode 1
0.976
@ FS ±4 g in Low-Power Mode 1
1.952
@ FS ±8 g in Low-Power Mode 1
3.904
@ FS ±16 g in Low-Power Mode 1
7.808
mg/digit
in High-Performance Mode
-10
+10
in Low-Power Modes 1/2/3/4
-15
+15
@ FS ±2 g, @ 25 °C
90
130
Low-Power Mode 4
1.6
2.9
Low-Power Mode 3
2.1
3.8
Low-Power Mode 2
3.0
5.7
Low-Power Mode 1
5.5
11.0
@ 25 °C
±20
OFF_Acc Offset accuracy - long term(2)
-300
%
µg/√Hz
mg(RMS)
mg
+300
mg
TCO
Zero-g offset change vs. temperature
±0.2
mg/°C
TCS
Sensitivity change vs. temperature
±0.01
%/°C
±0.3
%FS
best-fit straight line
NL
Non-linearity(7)
Cx
Cross-axis sensitivity(7)
@ FS ±2 g, @ 25 °C
ST
Self-test positive difference
@ FS ±16 g, Vdd from 1.62 V to 3.6 V
@ FS ±2 g, @ 25 °C
±0.4
70
1500
mg
1. Typical specifications are not guaranteed.
2. Long term includes the following conditions: post solder, drift in temperature in the range [-40°C; +115°C]
and over life.
DS12421 - Rev 4
page 6/63
AIS2IH
Electrical characteristics
3. Noise density is the same for all ODRs. Low-noise setting enabled.
4. RMS noise is the same for all ODRs. Low-noise setting disabled.
5. Max. values from design and characterization at ambient temperature (T = 25°C).
6. Values after factory calibration test and trimming at T = 25 °C.
7. Based on characterization data on a limited number of samples. Not measured during final test for
production.
2.2
Electrical characteristics
@ Vdd = 3.0 V, T = -40 °C to +115 °C unless otherwise noted. The product is factory calibrated at 3.0 V.
Table 4. Electrical characteristics
Symbol
Vdd
IddLP
Idd_PD
Typ. (1)
Max.
Unit
1.62
3.0
3.6
V
Vdd+0.1
V
140
180
µA
ODR 100 Hz, @ Vdd = 3 V
6.5
14
ODR 50 Hz, @ Vdd = 3 V
3.7
9.5
ODR 12.5 Hz, @ Vdd = 3 V
1.3
6.5
ODR 1.6 Hz, @ Vdd = 3 V
0.67
5.5
@ Vdd = 3 V
0.1
5
Test conditions
Supply voltage
Vdd_IO I/O pins supply
IddHR
Min.
Parameter
voltage(2)
Current consumption in
High-Performance Mode(3)(4)
Current consumption in Low-Power Mode(4)(5)
Current consumption in power-down(4)
VIH
Digital high-level input voltage
VIL
Digital low-level input voltage
1.62
@ ODR range 12.5 Hz - 1600 Hz,
14-bit, @ Vdd = 3 V
µA
µA
0.7*Vdd_IO
V
0.3*Vdd_IO
mA(6)
VOH
Digital high-level output voltage
IOH = 4
VOL
Digital low-level output voltage
IOL = 4 mA(6)
Top
Operating temperature range
Vdd_IO - 0.2 V
-40
V
V
0.2 V
V
+115
°C
1. Typical specifications are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses. In this
condition the measurement chain is powered off.
3. Low-noise setting enabled.
4. Typical value of current consumption measured at T = 25 °C.
5. Low-Power Mode 1. Low-noise setting disabled.
6. 4 mA is the maximum driving capability, ie. the maximum DC current that can be sourced/sunk by the digital
pad in order to guarantee the correct digital output voltage levels VOH and VOL.
DS12421 - Rev 4
page 7/63
AIS2IH
Temperature sensor characteristics
2.3
Temperature sensor characteristics
@ Vdd = 3.0 V, T = -40 °C to +115 °C unless otherwise noted
Table 5. Temperature sensor characteristics
Symbol
Top
Toff
TSDr
Parameter
Min.
Operating temperature range
Temperature
offset(2)
Temperature sensor output change vs. temperature
Temperature refresh rate in High-Performance Mode for all ODRs
or in low-power modes for ODRs equal to 200/100/50 Hz
TODR
Temperature refresh rate in low-power modes for ODR equal to 25 Hz
Typ. (1)
Max.
Unit
-40
+115
°C
-15
+15
°C
1(3)
16(4)
LSB/°C
50
25
Temperature refresh rate in low-power modes for ODR equal to 12.5 Hz
12.5
Temperature refresh rate in low-power modes for ODR equal to 1.6 Hz
1.6
Hz
1. Typical specifications are not guaranteed.
2. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
3. 8-bit resolution (i.e. when using the OUT_T (26h) register)
4. 12-bit resolution (i.e. when using the OUT_T_L (0Dh) and OUT_T_H (0Eh) registers)
DS12421 - Rev 4
page 8/63
AIS2IH
Communication interface characteristics
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
Symbol
Value (1)
Parameter
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
12
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Unit
Max
ns
100
10
MHz
ns
50
9
50
1. 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.
Figure 3. SPI slave timing diagram
CS
tc(SPC)
tsu(CS)
th(CS)
SPC
tsu(SI)
SDI
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
MSB OUT
tdis(SO)
th(SO)
LSB OUT
Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both input and output ports.
DS12421 - Rev 4
page 9/63
AIS2IH
Communication interface characteristics
2.4.2
I²C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Table 7. I²C slave timing values
Symbol
I²C fast mode(1)(2) I²C fast mode+(1)(2) I²C high speed mode
Parameter
Min.
Max.
Min.
Max.
Min.
Max
0
400
0
1000
0
3400
tw(SCLL) SCL clock low time
1.3
-
0.5
-
0.16
-
tw(SCLH) SCL clock high time
0.6
-
0.26
-
0.06
-
tsu(SDA)
SDA setup time
100
-
50
-
10
-
th(SDA)
SDA data hold time
0.01
0.9
0
-
0
0.07
th(ST)
START/REPEATED START condition hold
time
0.6
-
0.26
-
0.16
-
tsu(SR)
REPEATED START condition setup time
0.6
-
0.26
-
0.16
-
tsu(SP)
STOP condition setup time
0.6
-
0.26
-
0.16
-
Bus free time between STOP and START
condition
1.3
-
0.5
-
-
-
Data valid time
-
0.9
-
0.45
-
-
Data valid acknowledge time
-
0.9
-
0.45
-
-
Capacitive load for each bus line
-
400
-
550
-
100
f(SCL)
SCL clock frequency
tw(SP:SR)
CB
Unit
kHz
µs
ns
µs
pF
1. Data based on standard I²C protocol requirement, not tested in production.
2. Data for I²C fast mode and I²C fast mode+ have been validated by characterization, not tested in production.
Figure 4. I²C slave timing diagram
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tsu(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
tw(SCLL)
tw(SCLH)
Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.
DS12421 - Rev 4
page 10/63
AIS2IH
Absolute maximum ratings
2.5
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to
maximum rating conditions for extended periods may affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
3000 g for 0.5 ms
g
10000 g for 0.2 ms
g
Input voltage on any control pin
Vin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +115
°C
TSTG
Storage temperature range
-40 to +125
°C
2 kV (HBM)
ESD
Electrostatic discharge protection
200 V (MM)
V
500 V (CDM)
Note: Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.
DS12421 - Rev 4
page 11/63
AIS2IH
Terminology and functionality
3
Terminology and functionality
3.1
Terminology
3.1.1
Sensitivity
Sensitivity describes the gain of the sensor and can be determined by applying 1 g acceleration to it. As the
sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center
of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the
output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value
from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes
very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large
population of sensors.
3.1.2
Zero-g level offset
Zero-g level offset describes the deviation of an actual output signal from the ideal output signal if no acceleration
is present. A sensor in a steady state on a horizontal surface will measure 0 g on the X-axis and 0 g on the
Y-axis whereas the Z-axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor
(content of OUT registers 00h, data expressed as two’s complement number). A deviation from ideal value in this
case is called zero-g level offset. Offset is to some extent a result of stress to the MEMS sensor and therefore
the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive
mechanical stress. Offset changes little over temperature, see “Zero-g level offset change vs. temperature”.
DS12421 - Rev 4
page 12/63
AIS2IH
Functionality
3.2
Functionality
3.2.1
Operating modes
Two sets of operating modes have been designed to offer the customer a broad choice of noise/power
consumption combinations:
•
Low-noise disabled (see Table 9)
•
Low-noise enabled (see Table 10)
Writing the LOW_NOISE bit in CTRL6 (25h) selects the operating mode (low-noise).
From each of these two sets, five operating modes have been designed:
•
1 High-Performance Mode: focus on low noise
•
4 Low-Power Modes: trade-off between noise and power consumption
These operating modes are selected by writing the MODE[1:0] and LP_MODE[1:0] bits in CTRL1 (20h).
Table 9. Operating modes - low-noise setting disabled
High-Performance
Mode
Low-Power
Low-Power
Low-Power
Low-Power
Mode 4
Mode 3
Mode 2
Mode 1
14-bit
14-bit
14-bit
14-bit
12-bit
12.5 - 1600
1.6 - 200
1.6 - 200
1.6 - 200
1.6 - 200
ODR/2 (N/A for
1600 Hz),
180
360
720
3200
ODR/4, ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
Typ. noise density [µg/√Hz](1)
@ FS = ±2 g, ODR = 200 Hz
110
-
-
-
-
Typ. RMS noise [mg(RMS)](1)
@ FS = ±2 g
-
1.6
2.1
3
5.5
ODR = 1.6 Hz
-
0.65
0.55
0.45
0.38
ODR = 12.5 Hz
90
4
2.5
1.6
1
ODR = 25 Hz
90
8.5
4.5
3
1.5
ODR = 50 Hz
90
16
9
5.5
3
ODR = 100 Hz
90
32
17.5
10.5
5
ODR = 200 Hz
90
63
34.5
20.5
10
ODR = 400, 800, 1600 Hz
90
-
-
-
-
ODR = 1.6 Hz
-
1.3
0.95
0.75
0.67
ODR = 12.5 Hz
110
5.3
3
2
1.3
ODR = 25 Hz
110
10.5
6
3.8
2.1
ODR = 50 Hz
110
20.5
11.5
7
3.7
ODR = 100 Hz
110
40
22
13.5
6.5
ODR = 200 Hz
110
80
44
26
12.5
ODR = 400, 800, 1600 Hz
110
-
-
-
-
Parameter
Resolution [bit]
ODR [Hz]
BW [Hz]
Typ. current consumption [µA]
@ Vdd = 1.8 V(1)
Typ. current consumption [µA]
@ Vdd = 3 V(1)
1. Typical values, verified at characterization level @ T = 25 °C, not guaranteed.
DS12421 - Rev 4
page 13/63
AIS2IH
Functionality
Table 10. Operating modes - low-noise setting enabled
High-Performance
Mode
Low-Power
Low-Power
Low-Power
Low-Power
Mode 4
Mode 3
Mode 2
Mode 1
14-bit
14-bit
14-bit
14-bit
12-bit
12.5 - 1600
1.6 - 200
1.6 - 200
1.6 - 200
1.6 - 200
ODR/2 (N/A for
1600 Hz),
180
360
720
3200
ODR/4, ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
ODR/4,
ODR/10,
ODR/20
Typ. noise density [µg/√Hz](1)
@ FS = ±2 g, ODR = 200 Hz
90
-
-
-
-
Typ. RMS noise [mg(RMS)](1)
@ FS = ±2 g
-
1.3
1.8
2.4
4.5
ODR = 1.6 Hz
-
0.7
0.6
0.5
0.4
ODR = 12.5 Hz
120
5
3
2
1.1
ODR = 25 Hz
120
10
6
3.5
2
ODR = 50 Hz
120
20
11
7
3.5
ODR = 100 Hz
120
39
21.5
13
6
ODR = 200 Hz
120
77
42
25
12
ODR = 400, 800, 1600 Hz
120
-
-
-
-
ODR = 1.6 Hz
-
1.35
1
0.8
0.7
ODR = 12.5 Hz
140
7
4
2.5
1.5
ODR = 25 Hz
140
12.5
7
4.5
2.5
ODR = 50 Hz
140
24.5
14
8.5
4.5
ODR = 100 Hz
140
48.5
26.5
16
8
ODR = 200 Hz
140
95.5
52.5
31
14.5
ODR = 400, 800, 1600 Hz
140
-
-
-
-
Parameter
Resolution [bit]
ODR [Hz]
BW [Hz]
Typ. current consumption [µA]
@ Vdd = 1.8 V(1)
Typ. current consumption [µA]
@ Vdd = 3 V(1)
1. Typical values, verified at characterization level @ T = 25 °C, not guaranteed.
DS12421 - Rev 4
page 14/63
AIS2IH
Functionality
3.2.2
Single data conversion on-demand mode
The device features a single data conversion on-demand mode which is valid for both sets of operating modes
(low-noise disabled or enabled) in the 4 low-power modes. This mode is enabled by writing the MODE[1:0] bits to
'10' in CTRL1 (20h). Low power modes are selected by writing the LP_MODE[1:0] bits in CTRL1 (20h).
The trigger for output data generation can be managed through the I²C/SPI or by applying a clock signal on the
INT2 pin acting here as an input by writing the SLP_MODE_ SEL bit in CTRL3 (22h):
•
When SLP_MODE_SEL = '0', output data generation is triggered by the clock signal on the INT2 pin (see
Figure 5).
•
When SLP_MODE_SEL = '1', output data generation starts when the SLP_MODE_1 bit is set to '1' logic
through the I²C/SPI. When XL data are available in the registers, this bit is automatically set to '0' and the
device is ready for another triggered session.
Output data are generated according to the selected low-power mode.
When output data is saved in an output register or FIFO, the device goes to power-down mode and waits for a
new trigger.
All ODRs in the range from 0 to up to 200 Hz are supported due to the INT2 clock input.
A DRDY signal or FIFO flags are available on the INT1 pin.
Power consumption is the same as that of standard low-power modes for the same ODR.
Figure 5. Single data conversion on-demand functionality
Trigger Signal (INT2 pin)
T_on
PD
T_on
DRDY (INT1 pin)
At the end of turn-on time T_on, the DRDY interrupt is activated, output data are available to be read and the
device goes into power-down. T_on values depend on the low-power mode as follows:
T_on (typ.) =
•
1.20 ms for Low-Power Mode 1
•
1.70 ms for Low-Power Mode 2
•
2.30 ms for Low-Power Mode 3
•
3.55 ms for Low-Power Mode 4
3.2.3
Self-test
The self-test allows checking the sensor functionality without moving it. The self-test function is off when the
self-test bits (ST) are programmed to ‘00’. When the self-test bits are changed, an actuation force is applied to the
sensor, simulating a definite input acceleration. In this case the sensor outputs will exhibit a change in their DC
levels which are related to the selected full scale through the device sensitivity. When the self-test is activated, the
device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor
and by the electrostatic test-force. If the output signals change within the amplitude specified in Table 3, then the
sensor is working properly and the parameters of the interface chip are within the defined specifications.
DS12421 - Rev 4
page 15/63
AIS2IH
Sensing element
3.2.4
Activity/Inactivity, stationary/motion detection functions
The activity/inactivity function recognizes the device’s sleep state and allows reducing system power
consumption.
When the activity/inactivity function is activated by setting the SLEEP_ON bit in WAKE_UP_THS (34h), the
AIS2IH automatically goes to 12.5 Hz ODR in the low-power mode previously selected by the LP_MODE[1:0] bits
in CTRL1 (20h) if the sleep state condition is detected and wakes up as soon as the interrupt event has been
detected, increasing the output data rate and bandwidth.
With this feature the system may be efficiently switched from low-power mode to full performance depending on
user-selectable positioning and acceleration events, thus ensuring power saving and flexibility.
The stationary/motion detection function only recognizes the device’s sleep state.
When the stationary/motion detection function is activated by setting the STATIONARY bit in WAKE_UP_DUR
(35h), the AIS2IH detects acceleration below a fixed threshold but does not change either ODR or operating
mode (High-Performance mode or Low-Power mode) after sleep state detection.
The Activity/Inactivity recognition and stationary/motion detection functions are activated by writing the desired
threshold in the WAKE_UP_THS (34h) register. The high-pass filter is automatically enabled.
If the device is in sleep (inactivity/stationary) mode, when at least one of the axes exceeds the threshold in
WAKE_UP_THS (34h), the device goes into a sleep-to-wake state (as wake-up).
For the activity/inactivity function, the device, in a wake-up state, will return to the operating mode (HP or LP) and
ODR before sleep state detection.
Activity/Inactivity, stationary/motion detection threshold and duration can be configured in the following control
registers:
WAKE_UP_THS (34h)
WAKE_UP_DUR (35h)
3.2.5
High tap/double-tap user configurability
The device embeds the possibility to select the following parameters:
•
single axis or multiple axes in TAP_THS_Z (32h)
•
axis priority in TAP_THS_Y (31h)
•
threshold value of each axis in TAP_THS_X (30h), TAP_THS_Y (31h), TAP_THS_Z (32h)
•
max time threshold between 2 consecutive taps for double-tap recognition, min time threshold between 2
consecutive taps to detect a new tap event in INT_DUR (33h)
3.2.6
Offset management
The user can manage offset in the output or for wakeup detection using dedicated embedded hardware (see
Section 5.1 Block diagram of filters).
3.3
Sensing element
A proprietary process is used to create a surface micromachined accelerometer. The technology allows
processing suspended silicon structures which are attached to the substrate in a few points called anchors
and are free to move in the direction of the sensed acceleration. In order to be compatible with the traditional
packaging techniques, a cap is placed on top of the sensing element to avoid blocking the moving parts
during the molding phase of the plastic encapsulation. When an acceleration is applied to the sensor the proof
mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is
measured using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state the nominal value of the capacitors are a few pF and when an acceleration is applied, the
maximum variation of the capacitive load is in the fF range.
3.4
IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive
unbalancing of the MEMS sensor into an analog voltage using an analog-to-digital converter.
The acceleration data may be accessed through an I²C/SPI interface thus making the device particularly suitable
for direct interfacing with a microcontroller.
DS12421 - Rev 4
page 16/63
AIS2IH
Factory calibration
The AIS2IH features a data-ready signal which indicates when a new set of measured acceleration data is
available, thus simplifying data synchronization in the digital system that uses the device.
3.5
Factory calibration
The IC interface is factory-calibrated for sensitivity (So) and Zero-g level offset.
The trim values are stored inside the device in nonvolatile memory. Any time the device is turned on, the trimming
parameters are downloaded into the registers to be used during active operation. This allows using the device
without further calibration. If an accidental write occurs in the registers where trimming parameters are stored, the
BOOT bit in CTRL2 (21h) can help to retrieve the correct trimming parameters from nonvolatile memory without
the need to switch on/off the device. This bit is automatically reset at the end of the download operation. Setting
this bit has no impact on the control registers.
3.6
Temperature sensor
The temperature is available in OUT_T_L (0Dh), OUT_T_H (0Eh) stored as two's complement data, left-justified
in 12-bit mode and in OUT_T (26h) stored as two's complement data, left-justified in 8-bit mode.
Refer to Table 5. Temperature sensor characteristics for the conversion factor.
DS12421 - Rev 4
page 17/63
AIS2IH
Application hints
4
Application hints
Figure 6. AIS2IH electrical connections (top view)
Vdd_IO
HOST
GND
INT2
INT1
100nF
I2C / SPI (3/4-w)
Vdd
10µF
CS
SDO/SA0
12
11
3
4
10
9
2
8
5
NC
SDA/SDI/SDO
1
6
GND
SCL/SPC
7
AIS2IH
Vdd_IO
VDD
GND
100nF
I2C configuration
GND
Vdd_IO
RES
Rpu
Rpu
SCL
SDA
Pull-up to be added
Rpu=10kOhm
The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power
supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should be placed as near as possible to pin 9 of
the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to
Figure 6). It is possible to remove Vdd while maintaining Vdd_IO without blocking the communication bus, in this
condition the measurement chain is powered off.
The functionality of the device and the measured acceleration data are selectable and accessible through the I²C
or SPI interfaces. When using the I²C, CS must be tied high (i.e. connected to Vdd_IO).
The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely
programmed by the user through the I²C /SPI interface.
DS12421 - Rev 4
page 18/63
AIS2IH
Application hints
Table 11. Internal pin status
Pin #
1
Name
Function
SCL
I²C serial clock (SCL)
SPC
SPI serial port clock (SPC)
Pin status
Default: input without internal pull-up
SPI enable
2
CS
I²C/SPI mode selection
1: SPI idle mode / I²C communication enabled
Default: input with internal pull-up(1)
0: SPI communication mode / I²C disabled
3
4
SDO
Serial data output (SDO)
SA0
I²C less significant bit of the device address (SA0)
SDA
I²C serial data (SDA)
SDI
SPI serial data input (SDI)
SDO
3-wire interface serial data output (SDO)
5
NC
6
GND
0 V supply
7
RES
Connect to GND
8
GND
0 V supply
9
VDD
Power supply
10
Default: input with internal pull-up(2)
Default: (SDA) input without internal pull-up
Internally not connected. Can be tied to VDD, Vdd_IO, or GND.
Vdd_IO Power supply for I/O pins
11
INT2
Interrupt pin 2. Clock input when selected in single data conversion on demand.
Default: push-pull output forced to Gnd
12
INT1
Interrupt pin 1
Default: push-pull output forced to Gnd
1. In order to disable the internal pull-up on the CS pin, write '1' to the CS_PU_DISC bit in CTRL2 (21h).
2. Internal pull-up on SDO/SA0 pin cannot be disabled: do not connect this pin to GND in low-power
applications.
DS12421 - Rev 4
page 19/63
AIS2IH
Digital main blocks
5
Digital main blocks
5.1
Block diagram of filters
Figure 7. Accelerometer chain
Referring to Figure 7, the first block is the Low-Pass Filter 1 (LPF1) whose behavior is a function of the actual
ODR and mode selected in CTRL1 (20h). The signal is then downsampled and can be either directly sent to the
output registers or to the Low-Pass Filter 2 (LPF2) or High-Pass-Filter (HP) using the BW_FILT[1:0] bits and FDS
bit in CTRL6 (25h).
In the low-pass path, it is possible to apply a user offset determined by the X_OFS_USR (3Ch), Y_OFS_USR
(3Dh), Z_OFS_USR (3Eh) register values and the USR_OFF_W bit in CTRL7 (3Fh) and send the result to the
output using the USR_OFF_ON_OUT bit in CTRL7 (3Fh).
In the high-pass path, it is possible to use the high-pass filter reference mode (HP) using the HP_REF_MODE bit
in CTRL7 (3Fh).
DS12421 - Rev 4
page 20/63
AIS2IH
Data stabilization time vs. ODR/device setting
5.2
Data stabilization time vs. ODR/device setting
Some data samples need to be discarded when changing the ODR in HP mode with ODR/2 bandwidth selection.
The table below provides the number of samples to be discarded in order to obtain valid usable data.
Table 12. Number of samples to be discarded
MODE[1:0] in
CTRL1 (20h)
ODR [Hz]
00
-
0
12.5
0
25
0
50
0
01
DS12421 - Rev 4
100
BW_FILT[1:0] in
CTRL6 (25h)
00
Samples to be discarded
1
200
1
400
1
800
1
1600
2
page 21/63
AIS2IH
FIFO
5.3
FIFO
The AIS2IH embeds 32 slots of 14-bit data FIFO for each of the three output channels, X, Y and Z of the
acceleration data. This allows consistent power saving for the system, since the host processor does not need to
continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out
from the FIFO.
The internal FIFO allows collecting 32 samples (14-bit size data) for each axis.
When the FIFO mode is other than Bypass, reading the output registers (28h to 2Dh) returns the oldest FIFO
sample set. In order to minimize communication between the master and slave, the address read may be
automatically incremented by the device by setting the IF_ADD_INC bit of CTRL2 (21h) to '1'; the device rolls
back to 0x28 when register 0x2D is reached.
This buffer can work according to the following 5 different modes:
•
Bypass mode
•
FIFO mode
•
Continuous-to-FIFO
•
Bypass-to-Continuous
•
Continuous
Each mode is selected by the FMode[2:0] bits in the FIFO_CTRL (2Eh) register.
Programmable FIFO threshold is selected in FIFO_CTRL (2Eh). Status and FIFO overrun events are available in
the FIFO_SAMPLES (2Fh) register and can be used to generate dedicated interrupts on the INT1 and INT2 pins
using the CTRL4_INT1_PAD_CTRL (23h) and CTRL5_INT2_PAD_CTRL (24h) registers.
FIFO_SAMPLES (2Fh) (FIFO_FTH) goes to '1' when the number of unread samples FIFO_SAMPLES (2Fh)
(Diff[5:0]) is greater than or equal to FTH[4:0] in FIFO_CTRL (2Eh).
If FTH[4:0] is equal to '0', FIFO_SAMPLES (2Fh) (FIFO_FTH) goes to '0'.
FIFO_SAMPLES (2Fh) (FIFO_OVR) is equal to '1' if a FIFO slot is overwritten.
FIFO_SAMPLES (2Fh) (Diff[5:0]) contains stored data levels of unread samples. When Diff[5:0] is equal to
‘000000’, FIFO is empty. When Diff[5:0] is equal to ‘100000’, FIFO is full and the unread samples are 32.
To guarantee the correct acquisition of data during the switching into and out of FIFO, the first sample acquired
must be discarded.
When the FIFO threshold status flag is '0'-logic, FIFO filling is lower than the threshold level and when '1'-logic,
FIFO filling is equal to or higher than the threshold level.
5.3.1
Bypass mode
In Bypass mode (FIFO_CTRL (2Eh) (FMode [2:0])= 000), the FIFO is not operational, no data is collected in FIFO
memory, and it remains empty with the only actual sample available in the output registers.
Bypass mode is also used to reset the FIFO when in FIFO mode.
For each channel only the first address is used. When new data is available, the old data is overwritten.
5.3.2
FIFO mode
In FIFO mode (FIFO_CTRL (2Eh)(FMode [2:0])= 001) data from the X, Y and Z channels are stored in the FIFO
until it is full, when 32 unread samples are stored in memory, data collecting is stopped.
To reset the FIFO content, Bypass mode should be written in the FIFO_CTRL (2Eh) register, setting the FMODE
[2:0] bits to '000'. After this reset command, it is possible to restart FIFO mode, writing the value '001' in
FIFO_CTRL (2Eh)(FMODE [2:0]).
The FIFO buffer can memorize 32 slots of X, Y and Z data.
DS12421 - Rev 4
page 22/63
AIS2IH
FIFO
5.3.3
Continuous mode
Continuous mode (FIFO_CTRL (2Eh)(FMode[2:0] = 110) provides a continuous FIFO update: when 32 unread
samples are stored in memory, as new data arrives the oldest data is discarded and overwritten by the newer.
A FIFO threshold flag FIFO_SAMPLES (2Fh)(FIFO_FTH) is asserted when the number of unread samples in
FIFO is greater than or equal to (FIFO_CTRL (2Eh)FTH[4:0]).
It is possible to route FIFO_SAMPLES (2Fh)(FTH) to the INT1 pin by writing the INT1_FTH bit to '1' in
register CTRL4_INT1_PAD_CTRL (23h) or to the INT2 pin by writing the INT2_FTH bit to '1' in register
CTRL5_INT2_PAD_CTRL (24h).
If an overrun occurs, the oldest sample in FIFO is overwritten and the FIFO_OVR flag in FIFO_SAMPLES (2Fh) is
asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples
available in FIFO_SAMPLES (2Fh)(Diff[5:0]).
5.3.4
Continuous-to-FIFO mode
In Continuous-to-FIFO mode FIFO_CTRL (2Eh)(FMode[2:0] = 011), FIFO operates in Continuous mode and FIFO
mode starts upon an internal trigger event. When the FIFO is full, data collecting is stopped. The trigger could be
a wake-up, free-fall, 6D interrupt event or any combination of these events, but every interrupt has to be routed on
the corresponding pad to be used as a trigger.
Figure 8. Continuous-to-FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
xi,yi,zi
Continuous Mode
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
FIFO Mode
Trigger event
Figure 9. Trigger event to FIFO for Continuous-to-FIFO mode
DS12421 - Rev 4
page 23/63
AIS2IH
FIFO
5.3.5
Bypass-to-Continuous mode
In Bypass-to-Continuous mode FIFO_CTRL (2Eh)(FMode[2:0] = '100'), data measurement storage inside FIFO
starts in Continuous mode upon an internal trigger event, then the sample that follows the trigger is available in
FIFO. The trigger could be a wake-up, free-fall, 6D interrupt event or any combination of these events, but every
interrupt has to be routed on the corresponding pad to be used as a trigger.
Figure 10. Bypass-to-Continuous mode
xi,yi,zi
empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
xi,yi,zi
z31
Bypass Mode
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
Continuous Mode
Trigger event
Figure 11. Trigger event to FIFO for Bypass-to-Continuous mode
DS12421 - Rev 4
page 24/63
AIS2IH
Digital interfaces
6
Digital interfaces
The registers embedded inside the AIS2IH may be accessed through both the I²C and SPI serial interfaces. The
latter may be SW configured to operate either in 3-wire or 4-wire interface mode.
The serial interfaces are mapped to the same pins. To select/exploit the I²C interface, the CS line must be tied
high (i.e. connected to Vdd_IO).
Table 13. Serial interface pin description
Pin name
Pin description
SPI enable
CS
I²C/SPI mode selection
(1: SPI idle mode / I²C communication enabled;
0: SPI communication mode / I²C disabled)
6.1
SCL
I²C serial clock (SCL)
SPC
SPI serial port clock (SPC)
SDA
I²C serial data (SDA)
SDI
SPI serial data input (SDI)
SDO
3-wire interface serial data output (SDO)
SA0
I²C address selection (SA0)
SDO
SPI serial data output (SDO)
I²C serial interface
The AIS2IH I²C is a bus slave. The I²C is employed to write data into registers whose content can also be read
back.
The relevant I²C terminology is given in the table below.
Table 14. I²C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a transfer
Slave
The device addressed by the master
There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The
latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be
connected to Vdd_IO through an external pull-up resistor. When the bus is free, both the lines are high.
The I²C interface is compliant with fast mode (400 kHz) I²C standards as well as with normal mode.
In order to disable the I²C block, CTRL2 (21h) (I2C_DISABLE) = 1 must be set.
DS12421 - Rev 4
page 25/63
AIS2IH
I²C serial interface
6.1.1
I²C operation
The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low
transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus
is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in
the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits after a start condition
with its address. If they match, the device considers itself addressed by the master.
The Slave Address (SAD) associated to the AIS2IH is 001100xb where the x bit is modified by the SA0/SDO
pin in order to modify the device address. If the SA0/SDO pin is connected to the supply voltage, the address is
0011001b, otherwise if the SA0/SDO pin is connected to ground, the address is 0011000b. This solution permits
to connect and address two different accelerometers to the same I²C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge
pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the
acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each
byte of data received.
The I²C embedded inside the AIS2IH behaves like a slave device and the following protocol must be adhered
to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned,
an 8-bit sub-address (SUB) is transmitted: the 7 LSb represents the actual register address while the CTRL2
(21h)(IF_ADD_INC) bit defines the address increment.
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated START (SR) condition
must be issued after the two sub-address bytes. If the bit is ‘0’ (Write) the master will transmit to the slave with
direction unchanged. Table 15 explains how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Table 15. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Table 16. Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
DATA
SAK
SP
SAK
SAK
Table 17. Transfer when master is writing multiple bytes to slave
Master
ST
SAD + W
SUB
Slave
DATA
SAK
DATA
SAK
SP
SAK
SAK
Table 18. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SR
SAK
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 19. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
ST
Slave
DS12421 - Rev 4
SAD+
W
SUB
SAK
SR
SAK
SAD+R
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
page 26/63
AIS2IH
SPI bus interface
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred
per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn’t
acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the
data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the
SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the
generation of a STOP (SP) condition.
In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.
6.2
SPI bus interface
The AIS2IH SPI is a bus slave. The SPI allows writing to and reading from the registers of the device.
The serial interface interacts with the application using 4 wires: CS, SPC, SDI and SDO.
Figure 12. Read and write protocol
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and
goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high
when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those
lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case
of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at
the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling
edge of SPC just before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is
read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands additional blocks of 8 clock periods will be added. When the CTRL2 (21h)
(IF_ADD_INC) bit is ‘0’, the address used to read/write data remains the same for every block. When the CTRL2
(21h)(IF_ADD_INC) bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
DS12421 - Rev 4
page 27/63
AIS2IH
SPI bus interface
6.2.1
SPI read
Figure 13. SPI read protocol
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding
blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).
bit 16-... : data DO(...-8). Additional data in multiple byte reads.
Figure 14. Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15 DO14DO13DO12 DO11DO10 DO9 DO8
DS12421 - Rev 4
page 28/63
AIS2IH
SPI bus interface
6.2.2
SPI write
Figure 15. SPI write protocol
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding
blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).
bit 16-... : data DI(...-8). Additional data in multiple byte writes.
Figure 16. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
DS12421 - Rev 4
page 29/63
AIS2IH
SPI bus interface
6.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the CTRL2 (21h)(SIM) bit equal to ‘1’ (SPI serial interface mode selection).
Figure 17. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DS12421 - Rev 4
page 30/63
AIS2IH
Register mapping
7
Register mapping
The table given below provides a list of the 8-bit registers embedded in the device and the corresponding
addresses.
Table 20. Register map
Name
Type(1)
Register address
Hex
Binary
Default
Comment
OUT_T_L
R
0D
00001101
00000000
OUT_T_H
R
0E
00001110
00000000
WHO_AM_I
R
0F
00001111
01000100
Who am I ID
RESERVED
-
10-1F
-
RESERVED
CTRL1
R/W
20
00100000
00000000
CTRL2
R/W
21
00100001
00000100
CTRL3
R/W
22
00100010
00000000
CTRL4_INT1_PAD_CTRL
R/W
23
00100011
00000000
CTRL5_INT2_PAD_CTRL
R/W
24
00100100
00000000
CTRL6
R/W
25
00100101
00000000
OUT_T
R
26
00100110
00000000
Temp sensor output
STATUS
R
27
00100111
00000000
Status data register
OUT_X_L
R
28
00101000
00000000
OUT_X_H
R
29
00101001
00000000
OUT_Y_L
R
2A
00101010
00000000
OUT_Y_H
R
2B
00101011
00000000
OUT_Z_L
R
2C
00101100
00000000
OUT_Z_H
R
2D
00101101
00000000
R/W
2E
00101110
00000000
FIFO control register
R
2F
00101111
00000000
Unread samples stored in FIFO
TAP_THS_X
R/W
30
00110000
00000000
TAP_THS_Y
R/W
31
00110001
00000000
TAP_THS_Z
R/W
32
00110010
00000000
INT_DUR
R/W
33
00110011
00000000
FIFO_CTRL
FIFO_SAMPLES
Temp sensor output
Control registers
Output registers
Tap thresholds
Interrupt duration
Tap/double-tap selection,
WAKE_UP_THS
R/W
34
00110100
00000000
inactivity enable,
wakeup threshold
DS12421 - Rev 4
WAKE_UP_DUR
R/W
35
00110101
00000000
Wakeup duration
FREE_FALL
R/W
36
00110110
00000000
Free-fall configuration
STATUS_DUP
R
37
00110111
00000000
Status register
WAKE_UP_SRC
R
38
00111000
00000000
Wakeup source
TAP_SRC
R
39
00111001
00000000
Tap source
SIXD_SRC
R
3A
00111010
00000000
6D source
page 31/63
AIS2IH
Register mapping
Name
Type(1)
Register address
Default
Hex
Binary
R
3B
00111011
00000000
X_OFS_USR
R/W
3C
00111100
00000000
Y_OFS_USR
R/W
3D
00111110
00000000
Z_OFS_USR
R/W
3E
00000100
00000000
CTRL7
R/W
3F
00000100
00000000
ALL_INT_SRC
Comment
1. R = read-only register, R/W = readable/writable register
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to
the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration
values. Their content is automatically restored when the device is powered up.
DS12421 - Rev 4
page 32/63
AIS2IH
Register description
8
Register description
8.1
OUT_T_L (0Dh)
Temperature output register in 12-bit resolution (r)
Table 21. OUT_T_L register
TEMP3
TEMP2
TEMP1
TEMP0
0
0
0
0
Table 22. OUT_T_L register description
TEMP[3:0]
8.2
The 8 least significant bits of the temperature sensor output. 0 LSB = 25 °C. Sensitivity = 16 LSB/°C.
Together with OUT_T_H (0Eh) , it forms the output value expressed as a 16-bit word in 2's complement.
OUT_T_H (0Eh)
Temperature output register in 12-bit resolution (r)
Table 23. OUT_T_H register
TEMP11
TEMP10
TEMP9
TEMP8
TEMP7
TEMP6
TEMP5
TEMP4
Table 24. OUT_T_H register description
TEMP[11:4]
8.3
The 8 most significant bits of the temperature sensor output. 0 LSB = 25 °C. Sensitivity = 16 LSB/°C.
Together with OUT_T_L (0Dh), it forms the output value expressed as a 16-bit word in 2's complement
WHO_AM_I (0Fh)
Who_AM_I register (r). This register is a read-only register. Its value is fixed at 44h.
Table 25. WHO_AM_I register default values
0
DS12421 - Rev 4
1
0
0
0
1
0
0
page 33/63
AIS2IH
CTRL1 (20h)
8.4
CTRL1 (20h)
Control register 1 (r/w)
Table 26. Control register 1
ODR3
ODR2
ODR1
ODR0
MODE1
MODE0
LP_MODE1
LP_MODE0
Table 27. Control register 1 description
ODR[3:0]
Output data rate and mode selection (see Table 28 )
MODE[1:0]
Mode selection (see Table 29 )
LP_MODE[1:0]
Low-power mode selection (see Table 30)
ODR[3:0] is used to set the power mode and ODR selection. The following table lists the bit settings for powerdown mode and each available frequency.
Table 28. Data rate configuration
Power mode / data rate configuration
ODR[3:0]
0000
Power-down
0001
High-Performance / Low-Power mode 12.5/1.6 Hz
0010
High-Performance / Low-Power mode 12.5 Hz
0011
High-Performance / Low-Power mode 25 Hz
0100
High-Performance / Low-Power mode 50 Hz
0101
High-Performance / Low-Power mode 100 Hz
0110
High-Performance / Low-Power mode 200 Hz
0111
High-Performance / Low-Power mode 400/200 Hz
1000
High-Performance / Low-Power mode 800/200 Hz
1001
High-Performance / Low-Power mode 1600/200 Hz
Table 29. Mode selection
MODE[1:0]
Mode and resolution
00
Low-Power Mode (12/14-bit resolution)
01
High-Performance Mode (14-bit resolution)
10
Single data conversion on-demand mode (12/14-bit resolution)
11
-
Table 30. Low-power mode selection
Power mode and resolution
LP_MODE[1:0]
DS12421 - Rev 4
00
Low-Power Mode 1 (12-bit resolution)
01
Low-Power Mode 2 (14-bit resolution)
10
Low-Power Mode 3 (14-bit resolution)
11
Low-Power Mode 4 (14-bit resolution)
page 34/63
AIS2IH
CTRL2 (21h)
8.5
CTRL2 (21h)
Control register 2 (r/w)
Table 31. Control register 2
BOOT
SOFT_
RESET
0(1)
CS_PU_
DISC
BDU
IF_ADD_ INC
I2C_
DISABLE
SIM
1. This bit must be set to ‘0’ for the correct operation of the device.
Boot enables retrieving the correct trimming parameters from nonvolatile memory into registers where
trimming parameters are stored.
BOOT
Once the operation is over, this bit automatically returns to 0.
Default value: 0 (0: disabled; 1: enabled)
SOFT_RESET
Soft reset acts as reset for all control registers, then goes to 0.
Default value: 0 (0: disabled; 1: enabled)
Disconnect CS pull-up. Default value: 0
CS_PU_DISC
(0: pull-up connected to CS pin;
1: pull-up disconnected to CS pin)
BDU
IF_ADD_INC
I2C_DISABLE
SIM
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB read)
Register address automatically incremented during multiple byte access with a serial interface (I²C or SPI).
Default value: 1 (0: disabled; 1: enabled)
Disable I²C communication protocol. Default value: 0
(0: SPI and I²C interfaces enabled; 1: I²C mode disabled)
SPI serial interface mode selection. Default value: 0
0: 4-wire interface; 1: 3-wire interface
The BDU bit is used to inhibit the update of the output registers until both upper and lower register parts are
read. In default mode (BDU = ‘0’) the output register values are updated continuously. When the BDU is activated
(BDU = ‘1’), the content of the output registers is not updated until both MSB and LSB are read which avoids
reading values related to different sample times.
DS12421 - Rev 4
page 35/63
AIS2IH
CTRL3 (22h)
8.6
CTRL3 (22h)
Control register 3 (r/w)
Table 32. Control register 3
ST2
ST1
PP_OD
LIR
H_LACTIVE
0
SLP_
MODE_SEL
SLP_
MODE_1
Table 33. Control register 3 description
Self-test enable. Default value: 00
ST[2:1]
(00: Self-test disabled; Other: see Table 34)
Push-pull/open-drain selection on interrupt pad. Default value: 0
PP_OD
(0: push-pull; 1: open-drain)
Latched Interrupt. Switches between latched ('1'-logic) and pulsed ('0'-logic) mode for function source
signals and interrupts routed to pins (wakeup, single/double-tap). Default value: 0
LIR
(0: interrupt request not latched; 1: interrupt request latched)
H_LACTIVE
Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
Single data conversion on-demand mode selection:
SLP_MODE_SEL 0: enabled with external trigger on INT2;
1: enabled by I²C/SPI writing SLP_MODE_1 to 1.
SLP_MODE_1
Single data conversion on-demand mode enable. When SLP_MODE_SEL = '1' and this bit is set to '1'
logic, single data conversion on-demand mode starts. When XL data are available in the registers, this bit
is set to '0' automatically and the device is ready for another triggered session.
Table 34. Self-test mode selection
DS12421 - Rev 4
ST2
ST1
0
0
Normal mode
0
1
Positive sign self-test
1
0
Negative sign self-test
1
1
-
Self-test mode
page 36/63
AIS2IH
CTRL4_INT1_PAD_CTRL (23h)
8.7
CTRL4_INT1_PAD_CTRL (23h)
Control register 4 (r/w)
Table 35. Control register 4
INT1_6D
INT1_
SINGLE_TAP
INT1_WU
INT1_FF
INT1_TAP
INT1_
DIFF5
INT1_
FTH
INT1_
DRDY
Table 36. Control register 4 description
INT1_6D
INT1_SINGLE_TAP
INT1_WU
INT1_FF
INT1_TAP
INT1_DIFF5
INT1_FTH
INT1_DRDY
DS12421 - Rev 4
6D recognition is routed to INT1 pad. Default: 0
(0: disabled; 1: enabled)
Single-tap recognition is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
Wakeup recognition is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
Free-fall recognition is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
Double-tap recognition is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO full recognition is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO threshold interrupt is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
Data-Ready is routed to INT1 pad. Default value: 0
(0: disabled; 1: enabled)
page 37/63
AIS2IH
CTRL5_INT2_PAD_CTRL (24h)
8.8
CTRL5_INT2_PAD_CTRL (24h)
Control register 5 (r/w)
Table 37. Control register 5
INT2_
SLEEP_STATE
INT2_
SLEEP_CHG
INT2_
BOOT
INT2_
DRDY_T
INT2_
OVR
INT2_
DIFF5
INT2_
FTH
INT2_
DRDY
Table 38. Control register 5 description
INT2_SLEEP_STATE
INT2_SLEEP_CHG
INT2 _BOOT
INT2_DRDY_T
INT2 _OVR
INT2_DIFF5
INT2 _FTH
INT2 _DRDY
DS12421 - Rev 4
Enable routing of SLEEP_STATE on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Sleep change status routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Boot state routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Temperature data-ready is routed to INT2. Default value: 0
(0: disabled; 1: enabled)
FIFO overrun interrupt is routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO full recognition is routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO threshold interrupt is routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Data-ready is routed to INT2 pad. Default value: 0
(0: disabled; 1: enabled)
page 38/63
AIS2IH
CTRL6 (25h)
8.9
CTRL6 (25h)
Control register 6 (r/w)
Table 39. Control register 6
BW_FILT1
BW_FILT0
FS1
FS0
FDS
BW_FILT[1:0]
Bandwidth selection (see Table 40)
FS[1:0]
Full-scale selection (see Table 41)
LOW_NOISE
0
0
Filtered data type selection. Default value: 0
FDS
(0: low-pass filter path selected;
1: high-pass filter path selected)
Low-noise configuration.
LOW_NOISE
(0: disabled; 1: enabled)
Table 40. Digital filtering cutoff selection
BW_FILT[1:0]
Bandwidth selection
00
ODR/2 (up to ODR = 800 Hz, 400 Hz when ODR = 1600 Hz)
01
ODR/4 (HP/LP)
10
ODR/10 (HP/LP)
11
ODR/20 (HP/LP)
Table 41. Full-scale selection
8.10
FS[1:0]
Full-scale selection
00
±2 g
01
±4 g
10
±8 g
11
±16 g
OUT_T (26h)
Temperature output register in 8-bit resolution (r)
Table 42. OUT_T register
TEMP7
TEMP6
TEMP5
TEMP4
TEMP3
TEMP2
TEMP1
TEMP0
Table 43. OUT_T register description
Temperature sensor output data.
TEMP[7:0]
The value is expressed as two’s complement sign. Sensitivity = 1°C/LSB
0 LSB represents T=25 °C ambient.
DS12421 - Rev 4
page 39/63
AIS2IH
STATUS (27h)
8.11
STATUS (27h)
Status register (r)
Table 44. STATUS register
FIFO_THS
WU_IA
SLEEP_
STATE
DOUBLE_
TAP
SINGLE_
TAP
6D_IA
FF_IA
DRDY
Table 45. STATUS register description
FIFO_THS
WU_IA
SLEEP_STATE
DOUBLE_TAP
SINGLE_TAP
6D_IA
FF_IA
DRDY
DS12421 - Rev 4
FIFO threshold status flag.
(0: FIFO filling is lower than threshold level; 1: FIFO filling is equal to or higher than the threshold level.)
Wakeup event detection status.
(0: Wakeup event not detected; 1: Wakeup event detected)
Sleep event status.
(0: Sleep event not detected; 1: Sleep event detected)
Double-tap event status
(0: Double-tap event not detected; 1: Double-tap event detected)
Single-tap event status
(0: Single-tap event not detected; 1: Single-tap event detected)
Source of change in position portrait/landscape/face-up/face-down.
(0: no event detected; 1: a change in position detected)
Free-fall event detection status.
(0: free-fall event not detected; 1: free-fall event detected)
Data-ready status.
(0: not ready; 1: X-, Y- and Z-axis new data available)
page 40/63
AIS2IH
OUT_X_L (28h)
8.12
OUT_X_L (28h)
X-axis LSB output register (r)
Table 46. OUT_X_L register
X_L7
X_L6
X_L5
X_L3(1)
X_L4
X_L2(1)
0
0
1. If Low-Power Mode 1 is enabled, this bit is set to 0.
The 8 least significant bits of linear acceleration sensor X-axis output. Together with the OUT_X_H (29h) register,
it forms the output value expressed as a 16-bit word in 2's complement.
8.13
OUT_X_H (29h)
X-axis MSB output register (r)
Table 47. OUT_X_H register
X_H7
X_H6
X_H5
X_H4
X_H3
X_H2
X_H1
X_H0
The 8 most significant bits of linear acceleration sensor X-axis output. Together with the OUT_X_L (28h) register,
it forms the output value expressed as a 16-bit word in 2's complement.
8.14
OUT_Y_L (2Ah)
Y-axis LSB output register (r)
Table 48. OUT_Y_L register
Y_L7
Y_L6
Y_L5
Y_L4
Y_L3(1)
Y_L2(1)
0
0
1. If Low-Power Mode 1 is enabled, this bit is set to 0.
The 8 least significant bits of linear acceleration sensor Y-axis output. Together with the OUT_Y_H (2Bh) register,
it forms the output value expressed as a 16-bit word in 2's complement.
8.15
OUT_Y_H (2Bh)
Y-axis MSB output register (r)
Table 49. OUT_Y_H register
Y_H7
Y_H6
Y_H5
Y_H4
Y_H3
Y_H2
Y_H1
Y_H0
The 8 most significant bits of linear acceleration sensor Y-axis output. Together with the OUT_Y_L (2Ah) register,
it forms the output value expressed as a 16-bit word in 2's complement.
DS12421 - Rev 4
page 41/63
AIS2IH
OUT_Z_L (2Ch)
8.16
OUT_Z_L (2Ch)
Z-axis LSB output register (r)
Table 50. OUT_Z_L register
Z_L7
Z_L6
Z_L5
Z_L4
Z_L3(1)
Z_L2(1)
0
0
1. If Low-power Mode 1 is enabled, this bit is set to 0.
The 8 least significant bits of linear acceleration sensor Z-axis output. Together with the OUT_Z_H (2Dh) register,
it forms the output value expressed as a 16-bit word in 2's complement.
8.17
OUT_Z_H (2Dh)
Z-axis MSB output register (r)
Table 51. OUT_Z_H register
Z_H7
Z_H6
Z_H5
Z_H4
Z_H3
Z_H2
Z_H1
Z_H0
The 8 most significant bits of linear acceleration sensor Z-axis output. Together with the OUT_Z_L (2Ch) register,
it forms the output value expressed as a 16-bit word in 2's complement.
8.18
FIFO_CTRL (2Eh)
FIFO control register (r/w)
Table 52. FIFO_CTRL register
FMode2
FMode1
FMode0
FTH4
FTH3
FTH2
FTH1
FTH0
Table 53. FIFO_CTRL register description
FMode[2:0]
FIFO mode selection bits. Default: 000. For further details refer to Table 54
FTH[4:0]
FIFO threshold level setting.
Table 54. FIFO mode selection
FMode[2:0]
DS12421 - Rev 4
Mode description
000
Bypass mode: FIFO turned off
001
FIFO mode: Stops collecting data when FIFO is full.
010
Reserved
011
Continuous-to-FIFO: Stream mode until trigger is deasserted, then FIFO mode
100
Bypass-to-Continuous: Bypass mode until trigger is deasserted, then FIFO mode
101
Reserved
110
Continuous mode: If the FIFO is full, the new sample overwrites the older sample.
111
Reserved
page 42/63
AIS2IH
FIFO_SAMPLES (2Fh)
8.19
FIFO_SAMPLES (2Fh)
FIFO_SAMPLES control register (r)
Table 55. FIFO_SAMPLES register
FIFO_FTH
FIFO_OVR
Diff5
Diff4
Diff3
Diff2
Diff1
Diff0
TAP_
THSX_1
TAP_
THSX_0
Table 56. FIFO_SAMPLES register desription
FIFO threshold status flag.
FIFO_FTH
(0: FIFO filling is lower than threshold level;
1: FIFO filling is equal to or higher than the threshold level.)
FIFO overrun status.
FIFO_OVR
(0: FIFO is not completely filled;
1: FIFO is completely filled and at least one sample has been overwritten)
Represents the number of unread samples stored in FIFO.
Diff[5:0]
8.20
(000000 = FIFO empty; 100000 = FIFO full, 32 unread samples).
TAP_THS_X (30h)
4D configuration enable and TAP threshold configuration (r/w)
Table 57. TAP_THS_X register
4D_EN
6D_THS1
6D_THS0
TAP_
THSX_4
TAP_
THSX_3
TAP_
THSX_2
Table 58. TAP_THS_X register description
4D detection portrait/landscape position enable.
4D_EN
(0: no position detected;
1: portrait/landscape detection and face-up/face-down position enabled).
6D_THS[1:0]
Thresholds for 4D/6D function @ FS = ±2 g (refer to Table 59)
TAP_THSX_[4:0]
Threshold for TAP recognition @ FS = ±2 g on X direction
Table 59. 4D/6D threshold setting FS @ ±2 g
DS12421 - Rev 4
6D_THS[1:0]
Threshold decoding (degrees)
00
6 (80 degrees)
01
11 (70 degrees)
10
16 (60 degrees)
11
21 (50 degrees)
page 43/63
AIS2IH
TAP_THS_Y (31h)
8.21
TAP_THS_Y (31h)
Table 60. TAP_THS_Y register
TAP_
PRIOR_2
TAP_
PRIOR_1
TAP_
PRIOR_0
TAP_
THSY_4
TAP_
THSY_3
TAP_
THSY_2
TAP_
THSY_1
TAP_
THSY_0
Table 61. TAP_THS_Y register description
TAP_PRIOR_[2:0]
Selection of priority axis for tap detection (see Table 62).
TAP_THSY_[4:0]
Threshold for tap recognition @ FS = ±2 g on Y direction.
Table 62. Selection of axis priority for tap detection
8.22
TAP_PRIOR_[2:0]
Max priority
Mid priority
Min priority
000
X
Y
Z
001
Y
X
Z
010
X
Z
Y
011
Z
Y
X
100
X
Y
Z
101
Y
Z
X
110
Z
X
Y
111
Z
Y
X
TAP_THS_Z (32h)
Table 63. TAP_THS_Z register
TAP_X_
EN
TAP_Y_
EN
TAP_Z_
EN
TAP_
THSZ_4
TAP_
THSZ_3
TAP_
THSZ_2
TAP_
THSZ_1
TAP_
THSZ_0
Table 64. TAP_THS_Z register description
TAP_X_EN
TAP_Y_EN
TAP_Z_EN
TAP_THSZ_[4:0]
DS12421 - Rev 4
Enables X direction in tap recognition.
(0: disabled; 1: enabled)
Enables Y direction in tap recognition.
(0: disabled; 1: enabled)
Enables Z direction in tap recognition.
(0: disabled; 1: enabled)
Threshold for tap recognition @ FS = ±2 g on Z direction.
page 44/63
AIS2IH
INT_DUR (33h)
8.23
INT_DUR (33h)
Interrupt duration register (r/w)
Table 65. INT_DUR register
LATENCY3
LATENCY2
LATENCY1
LATENCY0
QUIET1
QUIET0
SHOCK1
SHOCK0
Table 66. INT_DUR register description
Duration of maximum time gap for double-tap recognition. When double-tap recognition is enabled, this
register expresses the maximum time between two successive detected taps to determine a double-tap event.
LATENCY[3:0]
Default value is LATENCY[3:0] = 0000 (which is 16 * 1/ODR)
1 LSB = 32 * 1/ODR
Expected quiet time after a tap detection: this register represents the time after the first detected tap in which
there must not be any overthreshold event.
QUIET[1:0]
Default value is QUIET[1:0] = 00 (which is 2 * 1/ODR)
1 LSB = 4 * 1/ODR
Maximum duration of over-threshold event: this register represents the maximum time of an over-threshold
signal detection to be recognized as a tap event.
SHOCK[1:0]
Default value is SHOCK[1:0] = 00 (which is 4 * 1/ODR)
1 LSB = 8 *1/ODR
8.24
WAKE_UP_THS (34h)
Wakeup threshold register (r/w)
Table 67. WAKE_UP_THS register
SINGLE_
DOUBLE_
TAP
SLEEP_ ON
WK_THS5
WK_THS4
WK_THS3
WK_THS 2
WK_THS 1
WK_THS 0
Table 68. WAKE_UP_THS register description
SINGLE_DOUBLE_ TAP
SLEEP_ON
WK_THS[5:0]
DS12421 - Rev 4
Enable single/double-tap event. Default value: 0
(0: only single-tap event is enabled; 1: single and double-tap events are enabled)
Sleep (inactivity) enable. Default value: 0
(0: sleep disabled; 1: sleep enabled)
Wakeup threshold, 6-bit unsigned 1 LSB = 1/64 of FS. Default value: 000000
page 45/63
AIS2IH
WAKE_UP_DUR (35h)
8.25
WAKE_UP_DUR (35h)
Wakeup and sleep duration configuration register (r/w)
Table 69. WAKE_UP_DUR register
WAKE_
DUR1
FF_DUR5
WAKE_
DUR0
STATIONARY
SLEEP_ DUR3
SLEEP_ DUR2
SLEEP_ DUR1
SLEEP_ DUR0
Table 70. WAKE_UP_DUR register description
Free-fall duration. In conjunction with FF_DUR [4:0] bit in FREE_FALL (36h) register.
FF_DUR5
1 LSB = 1 * 1/ODR
WAKE_DUR[1:0]
Wakeup duration. 1 LSB = 1 *1/ODR
STATIONARY
Default value: 0
Enable stationary detection / motion detection with no automatic ODR change when detecting stationary state.
(0: disabled; 1: enabled)
Duration to go in sleep mode.
SLEEP_ DUR[3:0]
Default value is SLEEP_ DUR[3:0] = 0000 (which is 16 * 1/ODR).
1 LSB = 512 * 1/ODR
8.26
FREE_FALL (36h)
Free-fall duration and threshold configuration register (r/w)
Table 71. FREE_FALL register
FF_DUR4
FF_DUR3
FF_DUR2
FF_DUR1
FF_DUR0
FF_THS2
FF_THS1
FF_THS0
Table 72. FREE_FALL register description
FF_DUR [4:0]
FF_THS [2:0]
Free-fall duration. In conjunction with FF_DUR5 bit in WAKE_UP_DUR (35h) register.
1 LSB = 1 * 1/ODR
Free-fall threshold @ FS = ±2 g (refer to Table 73)
Table 73. FREE_FALL threshold decoding @ ± 2 g FS
DS12421 - Rev 4
FF_THS[2:0]
Threshold decoding (LSB)
000
5
001
7
010
8
011
10
100
11
101
13
110
15
111
16
page 46/63
AIS2IH
STATUS_DUP (37h)
8.27
STATUS_DUP (37h)
Event detection status register (r)
Table 74. STATUS_DUP register
OVR
DRDY_T
SLEEP_
STATE_IA
DOUBLE_
TAP
SINGLE_
TAP
6D_IA
FF_IA
DRDY
Table 75. STATUS_DUP register description
FIFO overrun status flag.
OVR
(0: FIFO is not completely filled;
1: FIFO is completely filled and at least one sample has been overwritten)
DRDY_T
SLEEP_ STATE_IA
DOUBLE_ TAP
SINGLE_ TAP
6D_IA
FF_IA
DRDY
DS12421 - Rev 4
Temperature status.
(0: data not available; 1: a new set of data is available)
Sleep event status.
(0: Sleep event not detected; 1: Sleep event detected)
Double-tap event status:
(0: Double-tap event not detected; 1: Double-tap event detected)
Single-tap event status:
(0: Single-tap event not detected; 1: Single-tap event detected)
Source of change in position portrait/landscape/face-up/face-down.
(0: no event detected; 1: a change in position is detected)
Free-fall event detection status.
(0: free-fall event not detected; 1: free-fall event detected)
Data-ready status.
(0: not ready; 1: X-, Y- and Z-axis new data available)
page 47/63
AIS2IH
WAKE_UP_SRC (38h)
8.28
WAKE_UP_SRC (38h)
Wakeup source register (r)
Table 76. WAKE_UP_SRC register
0
0
FF_IA
SLEEP_
STATE IA
WU_IA
X_WU
Y_WU
Z_WU
Table 77. WAKE_UP_SRC register description
FF_IA
SLEEP_ STATE IA
WU_IA
X_WU
Y_WU
Z_WU
DS12421 - Rev 4
Free-fall event detection status.
(0: FF event not detected; 1: FF event detected)
Sleep event status.
(0: Sleep event not detected; 1: Sleep event detected)
Wakeup event detection status.
(0: Wakeup event not detected; 1: Wakeup event is detected)
Wakeup event detection status on X-axis.
(0: Wakeup event on X not detected; 1: Wakeup event on X-axis is detected)
Wakeup event detection status on Y-axis.
(0: Wakeup event on Y not detected; 1: Wakeup event on Y-axis is detected)
Wakeup event detection status on Z-axis.
(0: Wakeup event on Z not detected; 1: Wakeup event on Z-axis is detected)
page 48/63
AIS2IH
TAP_SRC (39h)
8.29
TAP_SRC (39h)
Tap source register (r)
Table 78. TAP_SRC register
0
TAP_IA
SINGLE_
TAP
DOUBLE_
TAP
TAP_SIGN
X_TAP
Y_TAP
Z_TAP
Table 79. TAP_SRC register description
TAP_IA
SINGLE_TAP
DOUBLE_TAP
TAP_SIGN
X_TAP
Y_TAP
Z_TAP
DS12421 - Rev 4
Tap event status.
(0: tap event not detected; 1: tap event detected)
Single-tap event status.
(0: single-tap event not detected; 1: single-tap event detected)
Double-tap event status.
(0: double-tap event not detected; 1: double-tap event detected)
Sign of acceleration detected by tap event.
(0: positive sign of acceleration detected; 1: negative sign of acceleration detected)
Tap event detection status on X-axis.
(0: Tap event on X not detected; 1: Tap event on X-axis is detected)
Tap event detection status on Y-axis.
(0: Tap event on Y not detected; 1: Tap event on Y-axis is detected)
Tap event detection status on Z-axis.
(0: Tap event on Z not detected; 1: Tap event on Z-axis is detected)
page 49/63
AIS2IH
SIXD_SRC (3Ah)
8.30
SIXD_SRC (3Ah)
6D source register (r)
Table 80. SIXD_SRC register
0
6D_IA
ZH
ZL
YH
YL
XH
XL
Table 81. SIXD_SRC register description
Source of change in position portrait/landscape/face-up/face-down.
6D_IA
(0: no event detected; 1: a change in position is detected)
ZH over threshold.
ZH
(0: ZH does not exceed the threshold; 1: ZH is over the threshold)
ZL over threshold.
ZL
(0: ZL does not exceed the threshold; 1: ZL is over the threshold)
YH over threshold.
YH
(0: YH does not exceed the threshold; 1: YH is over the threshold)
YL over threshold.
YL
(0: YL does not exceed the threshold; 1: YL is over the threshold)
XH over threshold.
XH
(0: XH does not exceed the threshold; 1: XH is over the threshold)
XL over threshold.
XL
8.31
(0: XL does not exceed the threshold; 1: XL is over the threshold)
ALL_INT_SRC (3Bh)
Reading this register, all related interrupt function flags routed to the INT pads are reset simultaneously.
Table 82. ALL_INT_SRC register
0
0
SLEEP_
CHANGE_IA
6D_IA
DOUBLE_
TAP
SINGLE_
TAP
WU_IA
FF_IA
Table 83. ALL_INT_SRC register description
SLEEP_CHANGE_IA
6D_IA
DOUBLE_TAP
SINGLE_TAP
WU_IA
FF_IA
DS12421 - Rev 4
Sleep change status.
(0: Sleep change not detected; 1: Sleep change detected)
Source of change in position portrait/landscape/face-up/face-down.
(0: no event detected; 1: a change in position detected)
Double-tap event status.
(0: double-tap event not detected; 1: double-tap event detected)
Single-tap event status.
(0: single-tap event not detected; 1: single-tap event detected)
Wakeup event detection status.
(0: wakeup event not detected; 1: wakeup event detected)
Free-fall event detection status.
(0: free-fall event not detected; 1: free-fall event detected)
page 50/63
AIS2IH
X_OFS_USR (3Ch)
8.32
X_OFS_USR (3Ch)
Table 84. X_OFS_USR register
X_OFS_
USR_7
X_OFS_
USR_6
X_OFS_
USR_5
X_OFS_
USR_4
X_OFS_
USR_3
X_OFS_
USR_2
X_OFS_
USR_1
X_OFS_
USR_0
Table 85. X_OFS_USR register description
X_OFS_USR_[7:0]
8.33
Two's complement user offset value on X-axis data, used for wakeup function.
Y_OFS_USR (3Dh)
Table 86. Y_OFS_USR register
Y_OFS_
USR_7
Y_OFS_
USR_6
Y_OFS_
USR_5
Y_OFS_
USR_4
Y_OFS_
USR_3
Y_OFS_
USR_2
Y_OFS_
USR_1
Y_OFS_
USR_0
Table 87. Y_OFS_USR register description
Y_OFS_USR_[7:0]
8.34
Two's complement user offset value on Y-axis data, used for wakeup function.
Z_OFS_USR (3Eh)
Table 88. Z_OFS_USR register
Z_OFS_
USR_7
Z_OFS_
USR_6
Z_OFS_
USR_5
Z_OFS_
USR_4
Z_OFS_
USR_3
Z_OFS_
USR_2
Z_OFS_
USR_1
Z_OFS_
USR_0
Table 89. Z_OFS_USR register description
Z_OFS_USR_[7:0]
DS12421 - Rev 4
Two's complement user offset value on Z-axis data, used for wakeup function.
page 51/63
AIS2IH
CTRL7 (3Fh)
8.35
CTRL7 (3Fh)
Table 90. CTRL7 register
DRDY_
PULSED
INT2_ON_
INT1
INTERRUPTS
_ENABLE
USR_OFF
_ON_OUT
USR_OFF
_ON_WU
USR_
OFF _W
HP_REF
_MODE
LPASS_
ON6D
Table 91. CTRL7 register description
DRDY_PULSED
INT2_ON_INT1
Switches between latched and pulsed mode for data ready interrupt.
(0: latched mode is used; 1: pulsed mode enabled for data-ready)
Signal routing.
(1: all signals available only on INT2 are routed on INT1)
INTERRUPTS_ENABLE Enable interrupts.
USR_OFF_ON_OUT
Enable application of user offset value on XL output data registers.
FDS bit in CTRL6 (25h) must be set to '0'-logic (low-pass path selected).
USR_OFF_ON_WU
Enable application of user offset value on XL data for wakeup function only.
USR_OFF_W
Selects the weight of the user offset words specified by X_OFS_USR_[7:0], Y_OFS_USR_[7:0] and
Z_OFS_USR_[7:0] bits.
(0: 977 µg/LSB; 1: 15.6 mg/LSB)
High-pass filter reference mode enable.
HP_REF_MODE
(0: high-pass filter reference mode disabled (default);
1: high-pass filter reference mode enabled)
LPASS_ON6D
DS12421 - Rev 4
(0: ODR/2 low pass filtered data sent to 6D interrupt function (default);
1: LPF2 output data sent to 6D interrupt function)
page 52/63
AIS2IH
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
9.1
Soldering information
The LGA package is compliant with the ECOPACK, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Land pattern and soldering recommendations are available at www.st.com.
9.2
LGA-12 package information
Figure 18. LGA-12 2.0 x 2.0 x 0.93 mm package outline and mechanical data
Dimensions are in millimeter unless otherwise specified
General Tolerance is +/-0.1mm unless otherwise specified
OUTER DIMENSIONS
ITEM
Length [L]
W idth [W ]
Height [H]
Slot [S1]
Slot [S2]
Slot [S3]
DS12421 - Rev 4
DIMENSION [mm]
2
2
1 Ma x
0.100min
0.070 minimum
0.025 minimum
TOLERANCE [mm]
±0.1
±0.1
-
DM00369449_4
page 53/63
AIS2IH
LGA-12 packing information
9.3
LGA-12 packing information
Figure 19. Carrier tape information for LGA-12 package
Figure 20. LGA-12 package orientation in carrier tape
DS12421 - Rev 4
page 54/63
AIS2IH
LGA-12 packing information
Figure 21. Reel information for carrier tape of LGA-12 package
T
40mm min.
Access hole at
slot location
B
C
N
D
A
Full radius
G measured at hub
Tape slot
in core for
tape start
2.5mm min. width
Table 92. Reel dimensions for carrier tape of LGA-12 package
Reel dimensions (mm)
DS12421 - Rev 4
A (max)
330
B (min)
1.5
C
13 ±0.25
D (min)
20.2
N (min)
60
G
12.4 +2/-0
T (max)
18.4
page 55/63
AIS2IH
Revision history
Table 93. Document revision history
DS12421 - Rev 4
Date
Version
11-Jan-2021
4
Changes
First public release
page 56/63
AIS2IH
Contents
Contents
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5
3
2.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2
I²C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.1
3.2
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2
Zero-g level offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2
Single data conversion on-demand mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3
Self-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4
Activity/Inactivity, stationary/motion detection functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.5
High tap/double-tap user configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.6
Offset management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
IC interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Factory calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5
Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.1
Block diagram of filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2
Data stabilization time vs. ODR/device setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DS12421 - Rev 4
page 57/63
AIS2IH
Contents
5.3
6
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.3
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.4
Continuous-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.5
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
6.1
I²C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.1
6.2
I²C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7
Register mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
8
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
8.1
OUT_T_L (0Dh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2
OUT_T_H (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.4
CTRL1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5
CTRL2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.6
CTRL3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.7
CTRL4_INT1_PAD_CTRL (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.8
CTRL5_INT2_PAD_CTRL (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.9
CTRL6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.10
OUT_T (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.11
STATUS (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.12
OUT_X_L (28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.13
OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.14
OUT_Y_L (2Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.15
OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.16
OUT_Z_L (2Ch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DS12421 - Rev 4
page 58/63
AIS2IH
Contents
9
8.17
OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.18
FIFO_CTRL (2Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.19
FIFO_SAMPLES (2Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.20
TAP_THS_X (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.21
TAP_THS_Y (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.22
TAP_THS_Z (32h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.23
INT_DUR (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.24
WAKE_UP_THS (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.25
WAKE_UP_DUR (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.26
FREE_FALL (36h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.27
STATUS_DUP (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.28
WAKE_UP_SRC (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.29
TAP_SRC (39h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.30
SIXD_SRC (3Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.31
ALL_INT_SRC (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.32
X_OFS_USR (3Ch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.33
Y_OFS_USR (3Dh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.34
Z_OFS_USR (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.35
CTRL7 (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
9.1
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2
LGA-12 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.3
LGA-12 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
DS12421 - Rev 4
page 59/63
AIS2IH
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal pull-up values (typ.) for SDO/SA0 and CS pins . . . . . . . . . . . . . . . .
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating modes - low-noise setting disabled . . . . . . . . . . . . . . . . . . . . . .
Operating modes - low-noise setting enabled . . . . . . . . . . . . . . . . . . . . . .
Internal pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Number of samples to be discarded . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transfer when master is writing one byte to slave. . . . . . . . . . . . . . . . . . . .
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . .
Transfer when master is receiving (reading) one byte of data from slave . . . .
Transfer when master is receiving (reading) multiple bytes of data from slave
Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WHO_AM_I register default values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low-power mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital filtering cutoff selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Full-scale selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_T register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STATUS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STATUS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_X_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_X_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_Y_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_Y_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_Z_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUT_Z_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_CTRL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS12421 - Rev 4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 5
. 6
. 7
. 8
. 9
10
11
13
14
19
21
25
25
26
26
26
26
26
31
33
33
33
33
33
34
34
34
34
34
35
36
36
36
37
37
38
38
39
39
39
39
39
40
40
41
41
41
41
42
42
42
page 60/63
AIS2IH
List of tables
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
FIFO_CTRL register description. . . . . . . . . . . . . . .
FIFO mode selection . . . . . . . . . . . . . . . . . . . . . .
FIFO_SAMPLES register . . . . . . . . . . . . . . . . . . .
FIFO_SAMPLES register desription . . . . . . . . . . . .
TAP_THS_X register . . . . . . . . . . . . . . . . . . . . . .
TAP_THS_X register description . . . . . . . . . . . . . .
4D/6D threshold setting FS @ ±2 g . . . . . . . . . . . .
TAP_THS_Y register . . . . . . . . . . . . . . . . . . . . . .
TAP_THS_Y register description . . . . . . . . . . . . . .
Selection of axis priority for tap detection . . . . . . . .
TAP_THS_Z register . . . . . . . . . . . . . . . . . . . . . .
TAP_THS_Z register description . . . . . . . . . . . . . .
INT_DUR register . . . . . . . . . . . . . . . . . . . . . . . .
INT_DUR register description . . . . . . . . . . . . . . . .
WAKE_UP_THS register. . . . . . . . . . . . . . . . . . . .
WAKE_UP_THS register description . . . . . . . . . . .
WAKE_UP_DUR register . . . . . . . . . . . . . . . . . . .
WAKE_UP_DUR register description . . . . . . . . . . .
FREE_FALL register . . . . . . . . . . . . . . . . . . . . . .
FREE_FALL register description . . . . . . . . . . . . . .
FREE_FALL threshold decoding @ ± 2 g FS . . . . . .
STATUS_DUP register . . . . . . . . . . . . . . . . . . . . .
STATUS_DUP register description . . . . . . . . . . . . .
WAKE_UP_SRC register . . . . . . . . . . . . . . . . . . .
WAKE_UP_SRC register description . . . . . . . . . . .
TAP_SRC register . . . . . . . . . . . . . . . . . . . . . . . .
TAP_SRC register description . . . . . . . . . . . . . . . .
SIXD_SRC register . . . . . . . . . . . . . . . . . . . . . . .
SIXD_SRC register description . . . . . . . . . . . . . . .
ALL_INT_SRC register . . . . . . . . . . . . . . . . . . . . .
ALL_INT_SRC register description. . . . . . . . . . . . .
X_OFS_USR register . . . . . . . . . . . . . . . . . . . . . .
X_OFS_USR register description . . . . . . . . . . . . . .
Y_OFS_USR register . . . . . . . . . . . . . . . . . . . . . .
Y_OFS_USR register description . . . . . . . . . . . . . .
Z_OFS_USR register . . . . . . . . . . . . . . . . . . . . . .
Z_OFS_USR register description . . . . . . . . . . . . . .
CTRL7 register . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL7 register description . . . . . . . . . . . . . . . . . .
Reel dimensions for carrier tape of LGA-12 package
Document revision history . . . . . . . . . . . . . . . . . . .
DS12421 - Rev 4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
42
42
43
43
43
43
43
44
44
44
44
44
45
45
45
45
46
46
46
46
46
47
47
48
48
49
49
50
50
50
50
51
51
51
51
51
51
52
52
55
56
page 61/63
AIS2IH
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
DS12421 - Rev 4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single data conversion on-demand functionality . . . . . . . . . . . . .
AIS2IH electrical connections (top view). . . . . . . . . . . . . . . . . . .
Accelerometer chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trigger event to FIFO for Continuous-to-FIFO mode . . . . . . . . . .
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . .
Trigger event to FIFO for Bypass-to-Continuous mode. . . . . . . . .
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . .
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiple byte SPI write protocol (2-byte example) . . . . . . . . . . . .
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . .
LGA-12 2.0 x 2.0 x 0.93 mm package outline and mechanical data
Carrier tape information for LGA-12 package . . . . . . . . . . . . . . .
LGA-12 package orientation in carrier tape. . . . . . . . . . . . . . . . .
Reel information for carrier tape of LGA-12 package . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 9
10
15
18
20
23
23
24
24
27
28
28
29
29
30
53
54
54
55
page 62/63
AIS2IH
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS12421 - Rev 4
page 63/63