TS472
Very low noise microphone preamplifier with
2.0 V bias output and active low standby mode
Features
Flip-chip - 12 bumps
■
Low noise: 10 nV/√Hz typ. equivalent input
noise at F = 1 kHz
■
Fully-differential input/output
■
2.2 to 5.5 V single supply operation
■
Low power consumption at 20 dB: 1.8 mA
■
Fast start up time at 0 dB: 5 ms typ.
■
Low distortion: 0.1% typ.
■
40 kHz bandwidth regardless of the gain
■
Active low standby mode function (1 μA max)
■
Low noise 2.0 V microphone bias output
■
Available in flip-chip lead-free package and in
QFN24 4 x 4 mm package
■
ESD protection (2 kV)
Pin connections (top view)
Applications
QFN24
■
Video and photo cameras with sound input
■
Sound acquisition and voice recognition
■
Video conference systems
■
Notebook computers and PDAs
Pin connections (top view)
Description
The TS472 is a differential-input microphone
preamplifier optimized for high-performance PDA
and notebook audio systems.
This device features an adjustable gain from 0 to
40 dB with excellent power-supply and commonmode rejection ratios. In addition, the TS472 has
a very low noise microphone bias generator of
2 V.
NC
24
23
GND STBY VCC
22
21
20
NC
19
NC
1
18
NC
BYP
2
17
OUT+
NC
3
16
OUT-
GND
4
15
C2
IN-
5
14
C1
NC
6
13
NC
It also includes a complete shutdown function,
with active low standby mode.
August 2009
NC
Doc ID 11015 Rev 6
7
8
9
10
11
12
NC
IN+
GS
BIAS
NC
NC
1/25
www.st.com
25
Contents
TS472
Contents
1
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
Low-noise microphone bias source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6
Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.10
Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1
Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2
QFN24 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Doc ID 11015 Rev 6
TS472
Typical application schematic
Figure 1 shows a typical application schematic for the TS472.
Figure 1.
Application schematic (flip-chip)
Optional
C1
VCC
Cs
1uF
Rpos
TS472_FC
Vcc
Cin+
+
Electret Mic
C2
U1
C1
C3
1uF
C2
Cout+
IN+
OUT+
IN-
OUT-
Positive Output
Cout-
G
BIAS
2.0V
Rout-
GAIN
SELECT
BYPASS
Cb
1uF
STDBY
Bias
Rout+
Negative Output
CinRneg
GND
1
Typical application schematic
Standby Control
Table 1.
Description of external components
Components
Functional description
Cin+, Cin-
Input coupling capacitors that block the DC voltage at the amplifier input
terminal.
Cout+, Cout-
Output coupling capacitors that block the DC voltage coming from the
amplifier output terminal (pins C2 and D2) and determine the lower cut-off
frequency (see Section 4.3: Lower cut-off frequency).
Rout+, Rout-
Output load resistors used to charge the output coupling capacitors Cout.
These output resistors can be represented by an input impedance of a
following stage.
Rpos, Rneg
Polarizing resistors for biasing of a microphone.
Cs
Supply bypass capacitor that provides power supply filtering.
Cb
Bypass pin capacitor that provides half-supply filtering.
C1, C2
C3
Low pass filter capacitors allowing to cut the high frequency.
Bias output filtering capacitor.
Doc ID 11015 Rev 6
3/25
Typical application schematic
Table 2.
4/25
TS472
Pin descriptions
Pin name
Flip-chip
designator
QFN
designator
IN+
A1
8
Positive differential input
IN-
B1
5
Negative differential input
BIAS
A2
10
2 V bias output
GND
C1
4, 22
Ground
STBY
C3
21
Standby
BYP
D1
2
Bypass
GS
B2
9
Gain select
OUT-
D2
16
Negative differential output
OUT+
C2
17
Positive differential output
C1
A3
14
Low-pass filter capacitor
C2
B3
15
Low-pass filter capacitor
Vcc
D3
20
Power supply
NC
---
3, 6, 7, 11,
12, 13, 18,
19, 23, 24
Pin description
Not connected, floating pins
Doc ID 11015 Rev 6
TS472
2
Absolute maximum ratings
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
VCC
Vi
Parameter
Supply voltage (1)
Input voltage
Value
Unit
6
V
-0.3 to VCC+0.3
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient:
Flip-chip
QFN24
180
110
°C/W
ESD
Human body model
2
kV
ESD
Machine model
200
V
Lead temperature (soldering, 10sec)
250
°C
Tj
1. All voltage values are measured with respect to the ground pin.
Table 4.
Operating conditions
Symbol
VCC
A
VSTBY
Parameter
Supply voltage
Typical differential gain
(GS connected to 4.7 kΩ or bias)
Standby voltage input:
Device ON
Device OFF
Value
Unit
2.2 to 5.5
V
20
dB
1.5 ≤VSTBY ≤VCC
GND ≤VSTBY ≤0.4
V
Top
Operational free air temperature range
-40 to +85
°C
Rthja
Thermal resistance junction to ambient:
Flip-chip
QFN24
150
60
°C/W
Doc ID 11015 Rev 6
5/25
Electrical characteristics
3
Electrical characteristics
Table 5.
Electrical characteristics at VCC = 3 V with GND = 0 V, Tamb = 25° C
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Equivalent input noise voltage density
REQ = 100 Ω at 1 kHz
10
nV
-----------Hz
Total harmonic distortion + noise
20 Hz ≤F ≤ 20 kHz, gain = 20 dB, Vin = 50 mVRMS
0.1
%
Vin
Input voltage, gain = 20 dB
10
BW
Bandwidth at -3 dB
Bandwidth at -1 dB
pin A3, B3 floating
40
20
en
THD+N
G
Overall output voltage gain (Rgs variable):
Minimum gain, Rgs infinite
Maximum gain, Rgs = 0
Zin
70
mVRMS
kHz
-3
39.5
-1.5
41
0
42.5
dB
Input impedance referred to GND
80
100
120
kΩ
RLOAD
Resistive load
10
CLOAD
Capacitive load
ICC
Supply current, gain = 20 dB
ISTBY
Standby current
PSRR
Power supply rejection ratio, gain = 20 dB,
F = 217 Hz, Vripple = 200 mVpp, inputs grounded
Differential output
Single-ended outputs,
Table 6.
kΩ
1.8
100
pF
2.4
mA
1
μA
dB
-70
-46
Bias output: VCC = 3 V, GND = 0 V, Tamb = 25° C
(unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
Vout
No load condition
1.9
2
2.1
V
Rout
Output resistance
80
100
120
W
Iout
Output bias current
PSRR
6/25
TS472
Power supply rejection ratio, F = 217 Hz,
Vripple = 200 mVpp
Doc ID 11015 Rev 6
70
2
mA
80
dB
TS472
Electrical characteristics
Table 7.
Differential RMS noise voltage
Input referred noise voltage
(μVRMS)
Gain
(dB)
Output noise voltage
(μVRMS)
Unweighted filter
A-weighted filter
Unweighted filter
A-weighted filter
0
15
10
15
10
20
3.4
2.3
34
23
40
1.4
0.9
141
91
Table 8.
Bias output RMS noise voltage
C3(1)
(μF)
Unweighted filter
(μVRMS)
A-weighted filter
(μVRMS)
1
5
4.4
10
2.2
1.2
1. Bias output filtering capacitor.
Table 9.
Gain
(dB)
SNR (signal to noise ratio), THD+N < 0.5%
Unweighted filter 20 Hz - 20 kHz
(dB)
A-weighted filter
(dB)
VCC = 2.2 V
VCC = 3 V
VCC = 5.5 V
VCC = 2.2 V
VCC = 3 V
VCC = 5.5 V
0
75
76
76
79
80
80
20
82
83
83
89
90
90
40
70
72
74
80
82
84
Doc ID 11015 Rev 6
7/25
Electrical characteristics
2.5
2.5
Current Consumption (mA)
Current Consumption (mA)
3.0
Tamb=85°C
2.0
1.5
Tamb=25°C
1.0
Tamb=-40°C
0.5
No Loads
GS floating
0
Figure 4.
1
2
3
4
Power Supply Voltage (V)
5
Current consumption vs. standby
voltage
Tamb=85°C
1.0
2.0
Vcc=5V
1.0
0.5
No Loads
GS floating
Tamb = 25°C
0
Figure 6.
1
2
3
Standby Voltage (V)
4
0
1
Current consumption vs. standby
voltage
Vcc=5V
0.5
30
0.8
20
PSRR (dB)
6
1.0
1.0
0.4
5
Vcc=3V
No Loads
GS grounded
Tamb = 25°C
0
1
Figure 7.
0.6
2
3
4
Power Supply Voltage (V)
1.5
0.0
5
Standby threshold voltage vs.
power supply voltage
No Loads
GS grounded
Figure 5.
2.0
Vcc=3V
Tamb=-40°C
0.5
2.5
1.5
Tamb=25°C
1.5
0.0
6
Current consumption vs. power
supply voltage
2.0
2.5
0.0
Standby Treshold Voltage (V)
Figure 3.
3.0
0.0
2
3
Standby Voltage (V)
4
5
Frequency response
Cb=1μ F, T AMB =25° C, Gain=20dB, Rout=100k Ω
10
no C1,C2
C1,C2=100pF
0
Cin,Cout=100nF
0.2
0.0
8/25
Current consumption vs. power
supply voltage
Current Consumption (mA)
Current Consumption (mA)
Figure 2.
TS472
C1,C2=220pF
-10
Cin,Cout=10nF
No Loads
Tamb = 25°C
2.2
3
4
Power Supply Voltage (V)
5
5.5
-20
10
Doc ID 11015 Rev 6
100
1000
Frequency (Hz)
10000
100000
TS472
Electrical characteristics
Figure 8.
Bias output voltage vs. bias output Figure 9.
current
2.2
2.2
Vcc=2.5-6V
Tamb=25°C
2.0
Bias Output Voltage (V)
Bias Output Voltage (V)
Bias output voltage vs. power
supply voltage
Tamb=85°C
1.8
1.6
Tamb=-40°C
Ibias=0mA
2.0
Ibias=2mA
1.8
Ibias=4mA
1.6
Tamb=25°C
1.4
0
1
2
3
Bias Output Current (mA)
1.4
4
Figure 10. Bias PSRR vs. frequency
4
Power Supply Voltage (V)
5
5.5
Figure 11. Bias PSRR vs. frequency
0
0
Vripple=200mVpp
Vcc=3V
Cb=1 μ F
Tamb =25 ° C
-40
Vripple=200mVpp
Vcc=5V
Cb=1 μ F
Tamb=25 ° C
-20
PSRR (dB)
-20
PSRR (dB)
3
2.2
Bias floating or 1k Ω to GND
-60
Bias = 1k Ω to GND
-40
-60
-80
-80
-100
-100
Bias floating
50
100
1000
50
10000 20k
100
1000
Frequency (Hz)
Frequency (Hz)
Figure 12. Differential output PSRR vs.
frequency
Figure 13. Differential output PSRR vs.
frequency
0
PSRR (dB)
-20
-30
0
Vripple=200mVpp
Inputs grounded
Vcc=3V
Cb=1 μ F
Cin=100nF
Tamb=25 ° C
-10
-20
GS grounded
-40
GS=bias
GS floating
-50
PSRR (dB)
-10
-30
-70
-70
100
1000
Frequency (Hz)
10000 20k
GS grounded
-50
-60
50
Vripple=200mVpp
Inputs grounded
Vcc=5V
Cb=1 μ F
Cin=100nF
Tamb=25 ° C
-40
-60
-80
10000 20k
-80
50
Doc ID 11015 Rev 6
GS=bias
GS floating
100
1000
Frequency (Hz)
10000 20k
9/25
Electrical characteristics
TS472
Figure 14. Differential output PSRR vs.
frequency
Figure 15. Differential output PSRR vs.
frequency
0
0
V RIPPLE =200mV PP , Inputs grounded
-40
Cb=1μ F
No Cb
V CC =3V, Gain=20dB, Cin=1 μ F, T AMB =25° C
-20
PSRR (dB)
-20
PSRR (dB)
V RIPPLE =200mV PP, Inputs grounded
V CC =3V, Minimum Gain, Cin=1 μ F, T AMB =25° C
Cb=100nF
-60
-40
Cb=1μ F
No Cb
-60
-80
-80
-100
50
-100
50
Cb=100nF
100
1k
Frequency (Hz)
10k
20k
Figure 16. Single-ended output PSRR vs.
frequency
1k
Frequency (Hz)
10k
20k
Figure 17. Equivalent input noise voltage
density
0
1000
-20
-30
Cin=100nF
R EQ=100 Ω
Vcc=3V
T AMB =25 ° C
en (nV/√ Hz)
Vripple=200mVpp
Inputs grounded
Cb=1μ F
Cin=100nF
Tamb=25° C
-10
PSRR (dB)
100
-40
-50
100
10
-60
-70
Vcc=2.2V
-80
100
50
Vcc=5V
1000
Frequency (Hz)
1
10
10000 20k
Figure 18. Δgain vs. power supply voltage
0.25
Maximum Gain
100k
F=1kHz
V IN =5mV
0.00
Δ Gain (dB)
Δ Gain (dB)
10k
0.50
F=1kHz
Vin=5mV
Tamb=25°C
0.6
0.4
0.2
-0.25
Maximum Gain
-0.50
0.0
Gain=20dB
Minimum Gain
-0.2
-0.75
Gain=20dB
-0.4
2.2
10/25
1k
Frequency (Hz)
Figure 19. Δgain vs. ambient temperature
1.0
0.8
100
3
4
Power Supply Voltage (V)
5
5.5
-1.00
-40
Doc ID 11015 Rev 6
Minimum Gain
-20
0
20
40
Ambient Temperature (°C)
60
80
TS472
Electrical characteristics
Figure 20. Maximum input voltage vs. gain,
THD+N